1,143 research outputs found

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Integrative mixture of experts to combine clinical factors and gene markers

    Get PDF
    Motivation: Microarrays are being increasingly used in cancer research to better characterize and classify tumors by selecting marker genes. However, as very few of these genes have been validated as predictive biomarkers so far, it is mostly conventional clinical and pathological factors that are being used as prognostic indicators of clinical course. Combining clinical data with gene expression data may add valuable information, but it is a challenging task due to their categorical versus continuous characteristics. We have further developed the mixture of experts (ME) methodology, a promising approach to tackle complex non-linear problems. Several variants are proposed in integrative ME as well as the inclusion of various gene selection methods to select a hybrid signature

    Diseño de sistemas neurocomputacionales en el ámbito de la Biomedicina

    Get PDF
    El área de la biomedicina es un área extensa en el que las entidades públicas de cada país han invertido y continúan invirtiendo en investigación una gran cantidad de financiación a través de proyectos nacionales, europeos e internacionales. Los avances científicos y tecnológicos registrados en los últimos quince años han permitido profundizar en las bases genéticas y moleculares de enfermedades como el cáncer, y analizar la variabilidad de respuesta de pacientes individuales a diferentes tratamientos oncológicos, estableciendo las bases de lo que hoy se conoce como medicina personalizada. Ésta puede definirse como el diseño y aplicación de estrategias de prevención, diagnóstico y tratamiento adaptadas a un escenario que integra la información del perfil genético, clínico, histopatológico e inmuhistoquímico de cada paciente y patología. Dada la incidencia de la enfermedad de cáncer en la sociedad, y a pesar de que la investigación se ha centrado tradicionalmente en el aspecto de diagnóstico, es relativamente reciente el interés de los investigadores por el estudio del pronóstico de la enfermedad, aspecto integrado en la tendencia creciente de los sistemas nacionales de salud pública hacia un modelo de medicina personalizada y predictiva. El pronóstico puede ser definido como conocimiento previo de un evento antes de su posible aparición, y puede enfocarse a la susceptibilidad, supervivencia y recidiva de la enfermedad. En la literatura, existen trabajos que utilizan modelos neurocomputacionales para la predicción de casuísticas muy particulares como, por ejemplo, la recidiva en cáncer de mama operable, basándose en factores pronóstico de naturaleza clínico-histopatológica. En ellos se demuestra que estos modelos superan en rendimiento a las herramientas estadísticas tradicionalmente utilizadas en análisis de supervivencia por el personal clínico experto. Sin embargo, estos modelos pierden eficacia cuando procesan información de tumores atípicos o subtipos morfológicamente indistinguibles, para los que los factores clínicos e histopatológicos no proporcionan suficiente información discriminatoria. El motivo es la heterogeneidad del cáncer como enfermedad, para la que no existe una causa individual caracterizada, y cuya evolución se ha demostrado que está determinada por factores no sólo clínicos sino también genéticos. Por ello, la integración de los datos clínico-histopatológicos y proteómico-genómica proporcionan una mayor precisión en la predicción en comparación con aquellos modelos que utilizan sólo un tipo de datos, permitiendo llevar a la práctica clínica diaria una medicina personalizada. En este sentido, los datos de perfiles de expresión provenientes de experimentos con plataformas de microarrays de ADN, los datos de microarrays de miRNA, o más recientemente secuenciadores de última generación como RNA-Seq, proporcionan el nivel de detalle y complejidad necesarios para clasificar tumores atípicos estableciendo diferentes pronósticos para pacientes dentro de un mismo grupo protocolizado. El análisis de datos de esta naturaleza representa un verdadero reto para clínicos, biólogos y el resto de la comunidad científica en general dado el gran volumen de información producido por estas plataformas. Por lo general, las muestras resultantes de los experimentos en estas plataformas vienen representadas por un número muy elevado de genes, del orden de miles de ellos. La identificación de los genes más significativos que incorporen suficiente información discriminatoria y que permita el diseño de modelos predictivos sería prácticamente imposible de llevar a cabo sin ayuda de la informática. Es aquí donde surge la Bioinformática, término que hace referencia a cómo se aplica la ciencia de la información en el área de la biomedicina. El objetivo global que se intenta alcanzar en esta tesis consiste, por tanto, en llevar a la práctica clínica diaria una medicina personalizada. Para ello, se utilizarán datos de perfiles de expresión de alguna de las plataformas de microarrays más relevantes con objeto de desarrollar modelos predictivos que permitan obtener una mejora en la capacidad de generalización de los sistemas pronóstico actuales en el ámbito clínico. Del objetivo global de la tesis pueden derivarse tres objetivos parciales: el primero buscará (i) pre-procesar cualquier conjunto de datos en general y, datos de carácter biomédico en particular, para un posterior análisis; el segundo buscará (ii) analizar las principales deficiencias existentes en los sistemas de información actuales de un servicio de oncología para así desarrollar un sistema de información oncológico que cubra todas sus necesidades; y el tercero buscará (iii) desarrollar nuevos modelos predictivos basados en perfiles de expresión obtenidos a partir de alguna plataforma de secuenciación, haciendo hincapié en la capacidad predictiva de estos modelos, la robustez y la relevancia biológica de las firmas genéticas encontradas. Finalmente, se puede concluir que los resultados obtenidos en esta tesis doctoral permitirían ofrecer, en un futuro cercano, una medicina personalizada en la práctica clínica diaria. Los modelos predictivos basados en datos de perfiles de expresión que se han desarrollado en la tesis podrían integrarse en el propio sistema de información oncológico implantado en el Hospital Universitario Virgen de la Victoria (HUVV) de Málaga, fruto de parte del trabajo realizado en esta tesis. Además, se podría incorporar la información proteómico-genómica de cada paciente para poder aprovechar al máximo las ventajas añadidas mencionadas a lo largo de esta tesis. Por otro lado, gracias a todo el trabajo realizado en esta tesis, el doctorando ha podido profundizar y adquirir una extensa formación investigadora en un área tan amplia como es la Bioinformática

    Maximal Clique Enumeration and Related Tools for Microarray Data Analysis

    Get PDF
    The purpose of this study was to investigate the utility of exact maximal clique enumeration in DNA microarray analysis, to analyze and improve upon existing exact maximal clique enumeration algorithms, and to develop new clique-based algorithms to assist in the analysis as indicated during the course of the study. As a first test, microarray data sets comprised of pre-classified human lung tissue samples were obtained through the Critical Assessment of Microarray Data Analysis (CAMDA) conference. A combination of exact maximal clique enumeration and approximate dominating set was used to attempt to classify the samples. In another test, maximal clique enumeration was used for a priori clustering of microarray data from Mus musculus (mouse). Cliques from this graph, though smaller than the anticipated groups of co-regulated genes, exhibited a high degree of overlap. Many genes within the overlap are either known or suspected to be involved in one or more gene regulatory networks. Experimental tests of four exact maximal clique enumeration algorithms on graphs derived from Mus musculus data normalized by either RMA or MAS 5.0 software were performed. A branch and bound Bron and Kerbosch algorithm was shown to perform the best on the widest range of inputs. A base Bron and Kerbosch algorithm was faster on very sparse graphs, but slowed considerably as edge density increased. Both the Kose and greedy algorithms were significantly slower than both Bron and Kerbosch algorithms on all inputs. Means to improve further the branch and bound Bron and Kerbosch algorithm were then considered. Two preprocessing rules and more exacting bounds were added to the algorithm both together and separately. The low degree preprocessing rule was found to improve performance most consistently, though significant improvement was only observed with the sparsest graphs, where improvement is least necessary. Finally, a first attempt at developing an algorithm that would integrate genes that were likely excluded from a clique as a result of noise into the appropriate group was made. Initial testing of the resulting paraclique algorithm revealed that the algorithm maintains the desired high level of inter-group edge density while expanding the core clique to a more acceptable size. Research in this area is ongoing

    Predicting breast cancer risk, recurrence and survivability

    Full text link
    This thesis focuses on predicting breast cancer at early stages by using machine learning algorithms based on biological datasets. The accuracy of those algorithms has been improved to enable the physicians to enhance the success of treatment, thus saving lives and avoiding several further medical tests

    Gene expression profile based classification models of psoriasis

    Get PDF
    AbstractPsoriasis is an autoimmune disease, which symptoms can significantly impair the patient's life quality. It is mainly diagnosed through the visual inspection of the lesion skin by experienced dermatologists. Currently no cure for psoriasis is available due to limited knowledge about its pathogenesis and development mechanisms. Previous studies have profiled hundreds of differentially expressed genes related to psoriasis, however with no robust psoriasis prediction model available. This study integrated the knowledge of three feature selection algorithms that revealed 21 features belonging to 18 genes as candidate markers. The final psoriasis classification model was established using the novel Incremental Feature Selection algorithm that utilizes only 3 features from 2 unique genes, IGFL1 and C10orf99. This model has demonstrated highly stable prediction accuracy (averaged at 99.81%) over three independent validation strategies. The two marker genes, IGFL1 and C10orf99, were revealed as the upstream components of growth signal transduction pathway of psoriatic pathogenesis
    corecore