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ABSTRACT 

The purpose of this study was to investigate the utility of exact maximal clique 

enumeration in DNA microarray analysis, to analyze and improve upon existing exact 

maximal clique enumeration algorithms, and to develop new clique-based algorithms to 

assist in the analysis as indicated during the course of the study. As a first test, 

microarray data sets comprised of pre-classified human lung tissue samples were 

obtained through the Critical Assessment ofMicroarray Data Analysis (CAMDA) 

conference. A combination of exact maximal clique enumeration and approximate 

dominating set was used to attempt to classify the samples. 

In another test, maximal clique enumeration was used for a priori clustering of 

microarray data from Mus musculus (mouse). Cliques from this graph, though smaller 

than the anticipated groups of co-regulated genes, exhibited a high degree of overlap. 

Many genes within the overlap are either known or suspected to be involved in one or 

more gene regulatory networks. 

Experimental tests of four exact maximal clique enumeration algorithms on 

graphs derived from Mus musculus data normalized by either RMA or MAS 5.0 software 

were performed. A branch and bound Bron and Kerbosch algorithm was shown to 

perform the best on the widest range of inputs. A base Bron and Kerbosch algorithm was 

faster on very sparse graphs, but slowed considerably as edge density increased. Both the 

Kose and greedy algorithms were significantly slower than both Bron and Kerbosch 

algorithms on all inputs. 

Means to improve further the branch and bound Bron and Kerbosch algorithm 

were then considered. Two preprocessing rules and more exacting bounds were added to 

the algorithm both together and separately. The low degree preprocessing rule was found 

to improve performance most consistently, though significant improvement was only 

observed with the sparsest graphs, where improvement is least necessary. 

Finally, a first attempt at developing an algorithm that would integrate genes that 

were likely excluded from a clique as a result of noise into the appropriate group was 

made. Initial testing of the resulting paraclique algorithm revealed that the algorithm 
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maintains the desired high level of inter-group edge density while expanding the core 
clique to a more acceptable size. Research in this area is ongoing. 
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Chapter 1 

A Combinatorial Approach to the Analysis of Differential Gene Expression Data: 
The Use of Graph Algorithms for Disease Prediction and Screening 

This chapter is a revised form of another paper published under the same name in 
Methods of Microarray Data Analysis IV, Papers from CAMDA '03 in 2003 by Michael 
A. Langston, Lan Lin, Xinxia Peng, Nicole E. Baldwin, Chris T. Symons, Bing Zhang, 
and Jay R. Snoddy: 
M.A. Langston, L. Lin, X. Peng, N. E. Baldwin , C. T. Symons, B. Zhang, and J. R. 
Snoddy. A Combinatorial Approach to the Analysis of Differential Gene Expression 
Data: The Use of Graph Algorithms for Disease Prediction and Screening. Methods of 

Microarray Data Analysis IV, Papers from CAMDA '03. 

My use of ''we" in this chapter refers to my co-authors and myself. My primary 
contributions to this paper include ( 1) researching, coding, and running the maximal 
clique enumeration algorithm, (2) assisting with developing both the maximal clique
based and the dominating set-based procedures, (3) assisting with the development of 
both weighting and scoring functions, ( 4) elucidating the rationale for utilizing clique 
based clustering as opposed to currently popular methods, ( 5) interpreting results from a 
biological viewpoint, (6) helping to pull the individual sections into an integrated chapter, 
(7) performing a significant portion of the writing and figure creation, (8) editing between 
chapter submission and publication, and (9) presenting the work at the Critical 
Assessment ofMicroarray Data Analysis (CAMDA) conference. 

Introduction 

A fundamental problem in cancer treatment is early and reliable detection. 
Identification of a set of genes whose expression levels serve as an accurate discriminator 
among normal and cancerous tissue samples would not only represent significant 
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progress towards developing more reliable cancer diagnosis protocols, but might also 

identify novel therapeutic targets. With this motivation in mind, we investigated the 

hypothesis that only a modest number of genes may suffice for this task. We sought to 

develop algorithms and software for this purpose, and introduce a graph theoretical 

method of differential gene expression analysis. The goals of this method were to 

identify a set of genes useful in discriminating among tissue samples, and to use these 

genes in disease prediction and screening. 

One of the important features of our algorithms is the computation of 

discrimination scores for each gene represented in an input microarray .. These scores 

estimated a gene's relative ability to distinguish among sample tissue classes. We then 

selected the highest-scoring genes, and used them to calculate a pairwise similarity metric 

between patients' tissue sample expression profiles. Genes that failed to discriminate 

among a defined percentage of the samples were eliminated using a dominating set 

algorithm as a high pass filter. With this information, we constructed a complete 

weighted graph, in which the vertices represented the tissue samples and the edges were 

weighted by the similarity metric between sample vertices. A user-defined threshold was 

next used to transform the complete weighted graph into an incomplete unweighted graph 

where the weights were ignored. The combination of these tools produced some very 

encouraging predictive results. 

Datasets Employed 

We used the Harvard [Bhattacharjee et al., 2001.], Michigan [Beer et al., 2002], 

and Stanford [Garber et al., 2001] datasets in this study. We did not include the Ontario 

dataset due to a lack of overlap in annotated genes with the other datasets. Since the log

expression image plots for Samples L54, L88, L89 and L90 in the Michigan dataset 

showed large, round dark spots at the center of the arrays [Hu et al., 2003] indicative of 

poor data quality, they were removed from the dataset. This left us with 92 samples from 

the Michigan dataset. Because the Harvard and Michigan datasets were generated by 

different institutes using different Affymetrix array types (HG_ U95A and HUGeneFL, 

2 



respectively), the distributions of the two datasets may not be comparable. Thus, we 
chose to normalize the two datasets separately. The log-scale quantifications of the gene 
expression levels for each probe set were obtained by robust multi-array average (RMA) 
[Irizarry et al., 2003.] using Bioconductor. 

Since we intended to train and test our algorithms on different datasets, we needed 
a mapping schema among the different datasets. However, the three datasets came from 
different array platforms using different gene identifiers; hence, direct mapping is not 
possible. We chose to use LocusLink IDs (LL_IDs) for gene mapping, because the NCBI 
LocusLink Database is both relatively reliable and stable. For the Harvard and Michigan 
datasets, we mapped each probe set ID to its corresponding LL_ ID using array annotation 
files from Affymetrix. For the Stanford dataset, we mapped each UNIGENE ID to its 
corresponding LL_ID using our local database, GeneKeyDB. To construct a gene 
expression summary for each LL_ ID, we averaged the values within each sample across 
the original gene identifiers that map to a common LL_ ID. The final datasets used in this 
study include: the Harvard dataset, which had expression profiles for 8509 unique genes 
among 254 samples; the Michigan dataset, which had expression profiles for 4985 unique 
genes among 92 samples; and the Stanford dataset, which had expression profiles for 
8829 unique genes among 73 samples. 

A Clique-Based Strategy 

The Clique Problem 

Clique is a well-known NP-complete problem, and is typically formulated as in 
Garey and Johnson [ 1979]: 

Input: 
Question: 

A graph G=(V,E) and a positive integer k � IVI. 

Is there a subset V' c V for which IV' I � k and such that every pair 
of vertices in V' is joined by an edge in E. 
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Clique is rapidly becoming recognized for its relevance in bioinformatics. It can 

be roughly viewed as a clustering algorithm based on graph theory. In our own work, for 

example, we used clique in the following ways. In [Abu-Khzam et al., 2003], we devised 

and applied fast parallel algorithms for clique to extremely large microarray datasets in 

an effort to identify putatively co-regulated genes in murine neural regulatory networks. 

In another application [Baldwin et al., 2004 ], we employed high performance 

implementations of clique in the study of cis-regulatory elements to discover putative 

motifs. 

Scoring Method 

Our goal in training was to develop graph-theoretic tools to distinguish among 

sample groups (such as normal and adenocarcinoma). Ideally, we hoped to be able to 

construct an unweighted graph in which edges connect mainly members of the same 

group. At that point, clique analysis would be an attractive approach for testing our 

methods against additional data. 

In order to pinpoint a modest number of genes out of thousands from the original 

dataset, our first step in training was to determine which genes appeared to discriminate 

best among sample types. To accomplish this, a discrimination score was calculated for 

each gene. Only the best genes (those with the highest scores) were retained for 

subsequent steps. Since the distributions of the expression values of these genes would 

be expected to be bimodal with respect to two distinct sample classes, the differences 

between class medians gave us a general measure of the difference of expression between 

two classes. Subtracting the sum of the standard deviations of a gene within each group 

allowed us to eliminate, or at least diminish, the importance of any gene whose 

expression levels varied excessively. 

The data was obtained as an n x m matrix, A, of expression values. Rows 

represented test samples, and columns denoted genes. When training on the Michigan 

dataset in order to learn to distinguish between normal (group 1) and adenocarcinoma 
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(group 2) samples and using a lower limit of zero, our method delivered a collection of 

105 genes for further evaluation. 

An assignment of inter-sample weights can help demonstrate the degree to which 

these genes and their respective scores delineated normal samples from adenocarcinoma. 

Here, the weight between samples i and j represented the degree of similarity in their 

respective expression profiles and can be viewed as equivalent to the distance function 

for clustering. We computed this weight as a sum over all genes selected in the previous 

step, because it is these genes that seemed to have the greatest potential to serve as good 

discriminators. Accordingly, we set weight(i,j) to: 

}:score(genet) • (1-�xpression_valueit-expression_value
;t

j) 

As is shown in Figure 1-1, higher-weighted sample pairs tended to be 

homogenous. That is, either both tissue samples were normal or both were 

adenocarcinoma. Conversely, lower-weighted pairs tended to be heterogenous, where 

one sample was normal and the other was adenocarcinoma. While this seems to confirm 

our gene scoring and selection procedure, other scoring approaches appeared to be viable 

as well. Therefore, we investigated several other alternatives before settling on this 

approach. 

Two of these alternative approaches were worthy of note in the computation of 

gene discrimination scores. One was the elimination of outliers before computing the 

scores, which was motivated by the fact that outliers might affect both the median and the 

standard deviation. The other involved changing our original scoring function to a 

variant of the t-test function, a standard statistical measurement of population similarity. 

This test was realized using division rather than subtraction within our scoring function. 

Neither of these appeared to improve upon our original results. We also experimented 

with Pearson's Correlation Coefficients and Spearman's Rank Correlation Coefficients, 

two popular methods of weighting. Neither of these methods was helpful. In fact, 

neither even revealed the bimodal distribution we observed using our weight function. 
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In addition to confirming the validity of our approach, Figure 1 - 1 also suggests an 
initial threshold weight below which we deleted edges in a later step (to be described 
shortly). Call this threshold T. For example, based on the figure, we chose as a 
somewhat informed but still rather arbitrary starting value T=7.6. We used our restricted 
set of genes to build an edge-weighted graph. In this graph, samples were represented by 
vertices and the weight of an edge between a pair of samples was set using the simple 
summation formula already described. Any edge whose weight was less than T was 
removed. The resulting unweighted graph was then searched for all maximal cliques. 
Our aim was to train our codes so that we can find appropriately sized cliques to cover all 
groups. 

Because we know which samples are normal and which are adenocarcinoma in 
the Michigan dataset, we were able to iterate our method until we have a reasonable set 
of covering cliques. The optimal threshold seemed to be centered at around T=8. l .  We 
were not completely satisfied, however, with the lingering presence of overlapping 
cliques. Additional experimentation with gene cutoff scores seemed to indicate that the 
presence of genes with low scores is problematic. However, neither raising the cutoff 
score nor additional modification of the threshold was of much use. What seemed to be 
missing in our estimates of gene discrimination was a way to determine which genes 
impact the greatest number of samples and to eliminate the rest. For this, we turned to 
another graph metric, dominating set. 

Refinement Via Dominating Set 

The Dominating Set Problem 

Dominating Set, another well-known NP-complete problem, can be stated as follows: 

Input: 
Question: 

A graph G=(V ,E) and a positive integer k � IVI . 

Is there a subset V' c V for which IV' I � k and every vertex 
v e V - V' is joined to a vertex in V' by an edge in E. 
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Using the theory of fixed-parameter tractablility (FPT) [Downey and Fellows, 

1999], dominating set may be even more difficult than clique. This is because clique is 

W[ l ]-complete and can be solved using graph complementation and vertex cover. 

Practical, efficient kemelization techniques are known for vertex cover [Abu-Khzam et 

al., 2004]. The same, however, may not hold for dominating set. In fact the dominating 

set version we address here is nonplanar red/blue dominating set, which is W[2]

complete. Although its complement problem is FPT, there are currently no practical 

kemelization techniques known for it. Thus, we only approximated solutions to 

dominating set. 

Scoring Method 

We first assumed a normal distribution of the expression values of each gene, and 

estimated for it the mean and standard deviation. We did this separately for each of the 

sample groups. Then, based on the estimated normal distribution, we calculated the p

values for the original individual expression values. It is perhaps easiest to formulate our 

approach by constructing a bipartite graph. In this graph, one set of vertices represented 

the genes, and the opposing set represented the samples. We placed an edge between a 

gene and a sample if and only if the p-value of the expression value corresponding to that 

gene-sample combination was greater than 0.05. Following statistical convention, we 

considered a p-value below this cutoff to indicate an outlier. 

In this setting, we wanted to identify the genes that dominate ( or nearly dominate) 

all the samples. Therefore, we winnowed out from consideration any gene vertex not 

adjacent to at least 90% of the sample vertices. For example, in the Michigan dataset, a 

gene was eliminated if it was connected to fewer than 74 of the adenocarcinoma samples 

or fewer than nine of the normal samples. The choice of 90% was arbitrary, but selected 

only after extensive testing. 

Next, in an effort to remove any remaining genes with a low possibility of 

discriminating between the two groups, we calculated the p-values for tests of equal 

means using both the Wilcoxon and t-test methods. We used both since the t-test 
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assumes a normal distribution, while the Wilcoxon test does not. Only genes for which 

both p-values are less than 0.05 were retained. 

For those genes that remain, we generated scores based on the previously 

calculated p-values from the Wilcoxon tests. We then filtered out genes using an 

adjusted p-value cutoff by means of the Bonferroni method. Specifically, we chose a 

significance level of a = 0.0 1 and only kept genes with a p-value less than a/N, where N 

is the total number of genes we began with at this step. Since a smaller p-value indicates 

a greater probability that the groups' expression values are different for a given gene, we 

used -logl O(p-value) for the gene score. 

Finally, and most importantly, we computed the intersection of the genes 

identified by the clique-based approach described in the last section with the genes 

chosen by the dominating set method as described in this section. We were left with a set 

of genes that passed both the clique and the dominating set tests. We found that this 

refinement of our gene lists gave us improved results in the testing phase of our 

experiments. 

Results 

Having completed the training phase, we proceeded to testing on a new dataset 

under the assumption that we will not know sample classification in advance. We 

evaluated our approach with the following three experiments. First, we trained on the 

Michigan dataset as explained in section 3 in order to learn to distinguish between normal 

and adenocarcinoma samples. We proceeded to test our ability to classify samples on the 

Harvard dataset. Second, we reversed this process, applying our training algorithms to 

the Harvard dataset to distinguish between cancerous and normal samples and testing our 

method on the Michigan dataset. Third, we trained on the Harvard dataset to learn to 

separate adenocarcinoma from squamous samples, testing on the Stanford dataset. 
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Experiment One 

Clique-based training on the Michigan dataset identified 105 genes that 
distinguished between adenocarcinoma and normal samples. Our dominating- set-based 
refinement reduced this to 84 genes, 78 of which are available in the Harvard data. 
Figure 1-2 shows the distribution of the edge-weight scores generated using these genes 
on the normal and adenocarcinoma samples from the Harvard dataset. If our method is to 
be predictive, we expected to see something of a bimodal distribution, although peak 
height is dependent on the relative populations of the two groups. This is because 
weights between members of the same group are expected to be high, while weights 
between members of different groups are expected to be low. Such a distribution is in 
fact what we observed in Figure 1-2. 

We exploited this property when carrying out threshold selection. We chose an 
initial threshold slightly to the right of the median edge-weight value. We then 
enumerated all maximal cliques in the unweighted graph, and checked to see whether 
every sample is in at least one clique. If not, we chose lower and lower threshold values 
until we had full coverage (that is, until every sample was in at least one clique). If, on 
the other hand, our initial threshold gave us full coverage, we incrementally selected 
higher and higher thresholds until we generated an unweighted graph for which there was 
at least one sample that was missing from every maximal clique. At this point, we went 
back one step and used the highest threshold with full coverage. Naturally, this is only 
one �ssible method for selecting the threshold; other methods may work equally well. 
After a suitable threshold was determined, we analyzed the data by testing the 
supposition that all cliques of significant size were uniform in the sense that they 
contained samples from adenocarcinoma samples only or from normal samples only. 

When this iterative process was carried out on the Harvard dataset without the use 
of any previous knowledge pertaining to its sample classifications, we were effectively 
able to separate the subjects into adenocarcinoma cliques and normal cliques. In fact, at 
our chosen threshold of7.9, only one sample out of the 207 combined adenocarcinoma 
and normal samples was misclassified according to the Harvard dataset using this 
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approach. See Figure 1-3. This sample is 2001032848AA.CEL. Because it was 
originally classified as adenocarcinoma but appeared in multiple normal cliques and no 
adenocarcinoma cliques, we suspected the original classification may be incorrect The 
histogram of the enumerated cliques is shown in Figure 1 -4. The largest mixed clique 
was of size six, and there were only five mixed cliques in total. 

Of course, we were able to check the quality of our results because the tissue 
samples represented in the Harvard study were previously classified. To use our methods 
in the absence of such information, one needs merely to examine the expression values of 
the highest-scoring genes to determine whether a clique represents a set of 
adenocarcinoma or normal samples. 
Experiment Two 

In this case, we initially identified 195 genes that differentiated cancerous and normal 
samples. This was reduced to 180 using our refinement technique, and 109 of these 
genes were available in the Michigan dataset 

After following the process we have detailed, we selected a threshold of 8.7. We 
enumerated maximal cliques on the resulting unweighted graph shown in Figure 1 -5. 
Our methods were able to sort the samples into cancerous and normal cliques almost 
flawlessly. In fact, out of the 235 cliques of size 3 or greater in the resulting graph, only 
one clique had both cancerous and normal samples, and this was very small (size 3). The 
resultant frequency distribution of these cliques is depicted in Figure 1 -6. 
Experiment Three 

Training on the Harvard dataset to discriminate between adenocarcinoma and 
squamous cell carcinoma initially gives us 37 genes. After refinement, 35 are left, 26 of 
which are found in the Stanford data set In this case, the results given by our method are 
not as compelling as in the previous two experiments. By using the largest clique 
containing each sample, we classify 41 out of 47 samples correctly according to the 
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Stanford classifications. Nevertheless, there were still too many mixed cliques. This was 
not unexpected. Our methods isolated a set of 35 genes as good discriminators. 
However, with only 26 of these available in the test dataset, their use provided at best a 
crude classification tool. 

Conclusions 

There is no apparent consensus as to the best approach for mining microarray 
data. Popular methods in current use include Bayesian analysis [Friedman et al . ,  2000, 
Sok et al., 2003], hierarchical clustering, and scale-free networks [<lei Rio et al., 2001], to 
name just a few. We believe that the novel methodology we have described here can be 
used to complement these techniques, and also is of independent interest. Deliverables 
accompanying this effort include the algorithmic framework of our overall strategy, the 
software tools we have developed and implemented, and of course the resultant gene sets 
themselves. 

A key feature of our approach is the use of two distinct gene-scoring systems, 
each coupled with a different combinatorial algorithm. One was based on finding 
optimal cliques within general graphs, the other on isolating near-optimal dominating sets 
within bipartite graphs. Used in tandem, these algorithms appeared to provide an 
effective means for identifying and ranking predictive genes whose expression levels 
serve as an accurate discriminator between adenocarcinoma and normal tissues. We 
emphasize that the use of clique and dominating set together seems to produce better 
results than would be possible with either approach alone. 

The high fidelity with which the resulting cliques partitioned cancerous and 
normal samples, as illustrated in Figures 1-4 and 1-6, prompts us· to posit that our 
methodology has the potential to become the basis for a highly reliable tool for cancer 
prediction. No a priori knowledge of the number of classes contained in the dataset is 
required. Moreover, it is known that tumor tissue samples are frequently a mixture of 
multiple types of cells, and that the exact ratio of this mixture is not necessarily 
consistent, even among samples from the same tumor. Therefore, it is expected that 
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tissue samples might have significant similarity to more than one class, such as 
adenocarcinoma and normal. This is, in fact, what was observed. Using our method, the 
classification of the sample is not limited to one class. Nor is the classification based on 
the highest similarity score. Instead, it is based on a significant degree of similarity to the 
greatest number of samples that also are significantly similar to each other. In other 
words, classification is based on the largest (maximal) clique to which the sample 
belongs. This should result in a higher degree of confidence in our classification. 

As a further proof of principle, several of the genes we identified as 
discriminators in the Michigan data are known or suspected to play a role in oncogenesis. 
Among these are: CYP4B 1 ,  a cytochrome P450 enzyme that has been implicated in both 
bladder and lung cancer in humans [Czerwinski et al., 1 994, Imaoka et al., 2000] ; FHLl ,  
shown to have cytotoxic effects on melanoma cell lines and possibly to play a role in 
cellular differentiation[de Vries et al., 1975] ; the p85 alpha subunit of phosphoinositide-
3 -kinase, which plays a role in human breast cancer [Das et al., 2003 ., Mahabeleshwar et 
al., 2003] ;  and tetranectin, which has already been shown to have prognosticative value 
for survival rates at certain stages of ovarian cancer [Hogdall et al ., 2002] . 
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Chapter 2 

Applying Maximal Clique Enumeration to Elucidating Gene Regulatory Networks 

Introduction 

Since maximal clique enumeration proved its usefulness in analyzing microarray 

data for disease prediction and screening, we turned to another, more common type of 

analysis - that required by basic research 1 • One of the main goals of fundamental biology 

is to elucidate gene regulatory networks, or the collection of cellular components (genes, 

proteins, etc.) and their interactions that carry out a specific function. For example, one 

of the simplest such networks would be the less than twenty member set of genes and 

their products that are responsible for regulation of lactose metabolism in the bacterium 

Escherichia coli [Reznikoff, 1 992]. Most networks, particularly in advanced organisms, 

are more extensive and can involve hundreds of genes. Until recently, available methods 

of investigating such networks allowed researchers to observe only a few genes at a time. 

With such limitations, it took decades to understand even small networks. 

In order to comprehend the interactions within and among larger networks, a way 

to observe the actions of a large number of genes in response to any experimental 

stimulus was needed. This is now possible with DNA microarrays, which are capable of 

testing an entire genome (all genes in a cell) simultaneously. Unfortunately, it is not a 

simple task to interpret such a mass of information, particularly considering the noise 

inherent in all biological experiments, and in particular microarray experiments. A first 

goal in analyzing microarray data in relation to gene regulatory networks is to be able to 

group genes that exhibit similar responses to series of specific stimuli. This implies that 

the genes may be co-regulated and therefore acting within the same network. 

In this case, clustering must be accomplished a priori, as typically there is 

insufficient knowledge about the system or systems being studied to permit a training 

phase. This lack of information also makes determining the correctness of the clustering 

1 All figures in this chapter are the work of the author, except where indicated. 
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impossible without extensive and time-consuming laboratory experiments to verify the 

results. Instead, clusters are used for their probative value in order to generate new 

hypotheses to be tested, or to evaluate those that already exist. 

Rationale for the Use of Maximal Clique Enumeration 

For this purpose, maximal clique enumeration has three attractive features that are 

lacking in other popularly used techniques such as those mentioned in Chapter 1. Firstly, 

cliques are, by nature, the most stringent measure of similarity possible. This affords the 

advantage that any genes that are a member of a clique are highly likely to be co

regulated. This level of stringency does not effectively cope with noise, but that issue 

can be addressed by a variety of methods, some of which will be discussed in Chapter 4. 

Secondly, maximal clique enumeration permits transcript membership in multiple 

cliques. This is a significant advantage, because it is common for a gene to participate in 

multiple networks. Forcing such a gene into one cluster not only loses critical 

information, but also has the potential to significantly skew subsequent classifications. 

Finally, it is not necessary to know or be able to infer the expected number of clusters, a 

value that is rarely available for microarray data. Supplying an incorrect value to an 

algorithm that required such wo·uld clearly invalidate any result. 

Experimental Design 

All microarray data described in this chapter was provided courtesy of 

collaborators Dr. Robert W. Williams and Dr. Elissa J. Chesler from the Department of 

Anatomy and Neurobiology of the University of Tennessee in Memphis. The Affymetrix 

U74Av2 array was used to test 12,422 probesets in samples from the brain of Mus 

musculus (mouse). Each sample consisted of tissue from three genetically identical mice. 

One sample was collected from each of three related recombinant inbred strains of mice, 

bred such that each strain was a genetic mosaic of the parental strains (C57BL/6J and 

DBA/21). In other words, a gene in one of the recombinant inbred strains has an equal 
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chance of having been inherited from the C57BL/6J or DBA/2J parental strain. The 

difference in genetic background of each of the three recombinant inbred strains served 

as changing experimental conditions. In all other aspects, the samples were treated the 

same. The experiment was repeated three times and the data pooled. 

Graph Generation 

A simplified example of converting normalized data to an unweighted graph is 

shown in Figure 2- 1 (Data and figures in this chapter, with the exception of Figures 2- 1 

and 2-2, are being published in Baldwin et al., In press.). Raw data from DNA 

microarray experiments was normalized using the MAS 5.0 (Microarray Suite) software 

package. Pairwise Spearman's rank coefficients were calculated, resulting in a 12,422 x 

12,422 weighted adjacency matrix, where 12,422 was the number of genes measured in 

the microarray experiment. A threshold of 0.85 was chosen by our colleagues in 

neurobiology because the maximum clique size at that threshold (17) was of appropriate 

size. The weighted matrix was filtered using this threshold to produce an unweighted 

matrix where an edge (i, j) is present if and only if the absolute value of the Spearman 

rank coefficient for (i, j) is greater than or equal to the threshold value. A degree 

histogram of the resulting unweighted graph is shown in Figure 2-2. 

Results 

Maximal clique enumeration of the unweighted graph discussed in the previous 

section resulted in a total of 5,227 maximal cliques. The maximum clique size was 17, 

with a user-determined minimum clique size of 3. The distribution of clique sizes 

generated is shown in Figure 2-3 . There was a tremendous amount of overlap among 

these cliques, as shown in the clique intersection graph in Figure 2-4. As indicated by the 

lack of an isolated vertex in the aforementioned graph, every clique of size 15 or greater 

' ( 179 in total) overlapped with at least one other clique by more than 76%. Additionally, 

a very high density region containing the three maximum cliques (shown in red) can be 
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Figure 2-2. Degree histogram of 0.85 threshold MAS 5.0 graph. 
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Figure 2-3 . Histogram of clique sizes for 0.85 threshold MAS 5.0 graph. 
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Figure 2-4. Clique intersection graph for 0.85 threshold MAS 5 .0 graph. 

Vertices represent cliques of size 1 5  (green), 1 6  (black), and 1 7  (red). Each edge 

represents an intersection of at least size 1 3  between the endpoints (cliques). 
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observed. Examination of genes occurring most frequently in the intersection of the 
larger cliques reveals Veli3 (also known as Lin7c), a gene that studies indicate is crucial 
to neurological function [Butz et al. ,  1998, Becamel et al., 2002]; Sp3 and Atfl, members 
of a nuclear transcription complexes active in mouse neural cells [Cheng et al. ,  2004, 
Laifenfield, et al. , 2004]; and Strn3, a calmodulin binding protein thought to be involved 
in calcium signaling pathways in mouse neural cells [Blondeau et. al. , 2003]. 

Conclusion 

Maximal clique enumeration appears to be an effective means of clustering co
regulated genes. Of course, even one missing edge between vertices in a set of otherwise 
completely connected vertices of size n fragments what would have been a k-clique into 
two cliques of size k-1 whose intersection is of size k-2. This explanation is even more 
reasonable given the high degree of clique overlap observed. 

Within that overlap lay genes that either are known to be involved in one or more 
gene regulatory networks active in mouse neural cells, or whose functional annotations 
indicate that they are likely to participate in such networks. Four such whose functions 
have been confirmed by experiment were previously mentioned. 

Perhaps even more encouraging, when clique members were examined as to their 
functional ontology2, larger cliques were found, largely, to contain members belonging to 
the same or a closely related ontology group. An example of this can be seen in Figure 2-
5 ( original figure by Bing Zhang), where a clique of size eight contains five members 
classified as having a DNA-binding function and the remaining three members' 
ontologies are unknown. 

2 A formalized, general description of gene product function. Genes may belong to multiple functional ontologies. 26 
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Chapter 3 

Experimental Analysis of Existing Maximal Clique Enumeration Algorithms 

Introduction 

Having established in Chapters 1 and 2 that maximal clique enumeration is a 

viable alternative to more popular clustering methods for microarray analysis, an obvious 

next step was to investigate several algorithms and experimentally determine which are 

most suitable for this purpose. An experimental approach was chosen to focus on the 

particular features of microarray data and its analysis. 

Four algorithms were chosen for analysis. The first two are very similar recursive 

algorithms. Indeed they were published in the same article by Bron and Kerbosch in 

1973 . The third is an innovative approach that eliminates repetitive search of the same 

problem space, and the fourth is a greedy algorithm based on random set generation. 

Each of these algorithms was challenged with graphs derived from microarray data. For 

one set of graphs, the data had been normalized with MAS 5.0 software prior to graph 

generation, while the second set had been normalized with RMA. The inclusion of both 

types of normalization was necessary since both are equally prevalent in microarray 

analysis, yet each produces a very different end result, as can be seen in the differences in 

the resulting edge weights as shown in Figure 3 -1. Unweighted graphs were produced 

from each of the MAS 5.0 and RMA normalized datasets using a range of threshold 

values and the algorithms were challenged with the results. 

Description of Algorithms 

Base Bron and Kerbosch Algorithm 

Published in 1973 along with the more commonly referenced derivative algorithm 

discussed in the next section, the basic Bron and Kerbosch algorithm is a recursive 

28 



14000000 

12000000 

10000000 

8000000 

6000000 

4000000 

2000000 

0 
T"-4 

0 
0 
T"-4 

Figure 3- 1 .  Edge weight histogram of MAS 5.0 and RMA derived graphs. 

29 



branching algorithm. The core of the algorithm consists of three sets: local sets 
candidates and not, and the global set compsub. Set candidates holds all vertices that 
will eventually be added to the current compsub. Set not contains all vertices that have 
previously been added to compsub. Set compsub contains the growing or shrinking 
clique. Every call to the extend function selects a vertex from candidates to add to 
compsub. Returning from extend causes the most recently added vertex to be removed 
from compsub and added to not. 

The extend function itself consists of four basic steps. An integer array, vertices, 
containing both not and candidates is passed as the first argument. The remaining 
arguments, ne and ce, provide the size of the not and not + candidates sets, respectively. 
First, the vertex at position ne in vertices becomes the selected vertex and is added to 
compsub. Second, an array, new _vertices is created to hold new _not and new _candidates 

sets. Iterating through the old vertices array, a vertex from the old not set is added to 
new_ not if and only if the vertex is connected to the earlier selected vertex. The set 
new _candidates is built from the old candidates set in the same fashion. Third, if 
new_ not and new_ candidates is empty, compsub holds a maximal clique. This is 
reported, and the function returns. Otherwise, extend is called on new_ vertices to operate 
on the new sets just formed. Fourth, upon returning, the selected vertex is removed from 
compsub and added to the old set not. As long as set candidates is not empty, the 
function begins again with the first step. Pseudocode for this function is provided in 
Figure 3-2. 

Bron and Kerbosch Algorithm 

The second of the Bron and Kerbosch algorithms published in 1 973 
follows the branching blueprint laid out by the base algorithm, but also takes some 
measures to limit the number of branches traversed. It 's worst case time complexity has 
only very recently been proven to be o(t'3} where n is the number of vertices and the 
clique list is not printed. Printing the list adds a factor of n, resulting in o(n · 3n 13 ) 

[Tomita et al., 2004] . The main difference from the base algorithm lies in the choice of 
30 



Let size = 0 when extend is initially called 
extend( vertices, ne, ce) { while (ne < ce) { 

} 

{ 
selected = vertices[ ne] ; 

Step 1 compsub[size] = selected; 
size++; 

Step 2 

Step 3 

Step 4 { 
} 

new_ne = O; for (i = O; i < ne; i++) if vertices[i] connected to selected { 

} 

new_ vertices[ new_ ne] = vertices[ i] ; 
new_ne++; 

new_ce = new_ne; for (i = O; ne + 1 ;  i < ce; i++) if vertices[i] connected to selected { 

} 
new_ vertices[ new_ ce] = vertices[ i] ; 
new_ce++; 

if new _ce == 0 { 

} else 

size--; 
ne++; 

compsub contains maximal clique return; 

extend(new _vertices, new _ne, new _ce); 

Figure 3-2. Pseudocode for base Bron and Kerbosch algorithm. 
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the selected vertex in step one. Instead of choosing vertices in the order they are 
presented, this algorithm finds the vertex with the most number of connections to the 
other vertices in candidates and swaps it with the vertex at position ne. The rationale for 
this is the following. If at any point set not contains a vertex that is connected to all 
vertices in set candidates, it is not possible to generate a new maximal clique with the 
current sets, and the function should return. Clearly, it would be best in terms of running 
time if this boundary condition is reached as soon as possible in order to eliminate the 
most number of branches that would otherwise be traversed. 

This modification is, of course, only useful if the time spent finding maximally 
connected vertices and performing the subsequent swap is less than the time that would 
have been spent exploring the eliminated branches of the search space. The expectation 
was that this algorithm would be a better choice for graphs with areas of large numbers of 
highly overlapping cliques. Under these conditions, the algorithm should encounter the 
bounding condition more frequently to provide the greatest advantage. On the other 
hand, the base algorithm should be faster when the input has little clique overlap or the 
number of cliques is sufficiently small. 
A Constructive Algorithm 

This algorithm, published by Kose et. al. in 2001 , takes a very different approach 
than the recursive branching procedure of Bron and Kerbosch. It takes advantage of the 
fact that every clique of size k, where k � 2, is comprised of two cliques of size k-1 that 
share k-2 vertices. Using this basic principle (illustrated in Figure 3-3), the algorithm 
takes as input an edge list with the edges (2-cliques) listed in non-repeating, canonical 
order and builds from it all possible 3-cliques. Any 2-clique that cannot become a 
component of a 3-clique is declared maximal and the list of 2-cliques is deleted. The 
algorithm then attempts to construct 4-cliques from the just built 3-cliques using the same 
procedure. This continues, enumerating maximal cliques in increasing order of size until 
it is no longer possible to build a larger clique. 
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(k- 1 )-clique k-clique 

Figure 3-3 .  Any k-clique is comprised of two (k-1)-cliques sharing k-2 vertices. 
(A) Two 2-cliques sharing one vertex (green and purple). The addition of an edge 
connecting the green vertex with the purple vertex results in a 3-clique. (B) Two 3-
cliques sharing two vertices (green and purple). As in (A), adding an edge between the 
green and the purple vertices creates a 4-clique. 
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This algorithm was attractive, in that it prevents repeat searching of the same 
space. Once a clique is built, the connections that formed it do not need to be re
discovered. The algorithm treats those vertices as a unit from then on. This is in direct 
contrast to the other algorithms discussed in this chapter. 

Unfortunately, the algorithm also has less than appealing features. First, it was 
evident that building cliques in this manner requires the computer to maintain somewhere 
a list of cliques being built and a list of cliques that are the current building blocks. With 
a graph of size n, building cliques of size k requires { ( n :! k)) memory space. For 
graphs of any significant size and density, it is not feasible for the typical workstation to 
keep these lists in main memory. However, if the lists are kept on disk, a tremendous 
amount of overhead would be incurred from 1/0 operations. Secondly, the algorithm has 
a hidden cost. Every time a k-clique is formed, all (k-J)-cliques contained within the new 
clique must be marked as used, or they might be mistaken for maximal cliques. This cost 
is not negligible, as it requires a search of the (k-1)-clique list. This list is j ( n! )) 

l,_ n - k - 1  

in length. 
A Greedy Algorithm 

The greedy algorithm employed is the most basic of clique enumeration 
algorithms. The counter, k, is set to a user-determined maximal clique size. All vertices 
with degree less than (k-1) are removed from the graph. Then, while k is greater than a 
user-determined minimal clique size, it generates all k-sets and tests each to determine if 
it is a clique, or that all set members are completely connected to one another. If so, the 
neighborhood of one of the clique members is examined to determine whether one of the 
neighbors is completely connected to the set. If not, then the clique is maximal. Once all 
k-sets have been tested, k is decremented and the loop continues. Although this 
algorithm was likely to perform poorly in comparison with the others employed, given its 
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j L" ( 
n! 

)
) time complexity. It was chosen for its ability to enumerate maximal 

� k=3 n - k  

cliques in descending order of size, a feature that would be extremely useful in many 

applications. 

Methods Employed 

The raw microarray data detailed in Chapter 2 was used in these experiments. 

The data was normalized with either the MAS 5.0 software package or with the RMA 

function as implemented in the BioConductor. As before, pairwise Spearman' s  rank 

coefficients were calculated for each of the MAS 5 .0 and RMA-treated datasets, resulting 

in two 1 2,422 x 1 2,422 weighted adjacency matrices, where 1 2,422 was the number of 

genes measured in the microarray experiment. Multiple thresholds, including those 

chosen for actual analysis of each graph were used to filter the weighted graphs. 

Thresholds for the MAS 5 .0 graph were 0.70, 0.75, 0.80, and 0.85. Thresholds for the 

RMA graph were 0.95, 0.92 1 954446, 0.90, 0.87. Percent edge densities of the resultant 

graphs is reported in Table 3-1 . (Percent edge density is defined as the number of edges 
in the paraclique divided by the maximum number of edges possible in the paraclique 

multiplied by one hundred.) Each unweighted graph was then provided as input for each 

of the algorithms discussed and the compute times recorded. All experiments were 

performed on an Apple Powerbook using a 1 GHz PowerPC 04 processor with 256K L2 

cache and 1MB L3 cache outfitted with 1 024MB of RAM. Bus speed was 1 33MHz. 
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Table 3-1. Graph Edge Densities 

(A) RMA Graphs 

Threshold 

0.95 0.921954446 0.90 0.87 

Edge Density 0.0082% 0.0743% 0.2093% 0.5526% 

(B) MAS 5.0 Graphs 

Threshold 

0.85 0.80 0.75 0.70 

Edge Density 0.0080% 0.0371% 0. 1178% 0.2972% 
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Results 

Each of the four algorithms was implemented by the author and run on graphs 
derived from either RMA or MAS 5.0 treated microarray data. Two versions of the Kose 
algorithm were implemented to determine the overhead induced by 1/0 operations when 
accessing clique lists. Results are presented in Tables 3-2 and 3-3. 

Under these conditions, the two worst performers were the Kose and greedy 
algorithms. The greedy algorithm was halted after a day on all graphs. The fastest 
implementation of the Kose algorithm, that which kept its clique lists in core memory, 
finished on the two sparsest graphs, the 0.95 threshold RMA graph (0.0082 edge density) 
and the 0.85 threshold MAS 5.0 graph (0.0080 edge density) in a little over and a little 
under five hours, respectively. It was not capable of finishing on any other graphs in less 
than a day. The implementation of Kose storing clique lists on disk was still running 
after a week's time on both the 0.95 threshold RMA graph and the 0.85 threshold MAS 
5.0 graph. 

The base Bron and Kerbosch algorithm, as anticipated, performed the best on the 
sparsest graphs. It was nearly twice as fast as the branch and bound Bron and Kerbosch 
algorithm, finishing at six seconds as opposed to eleven. However, when challenged with 
denser graphs, the branch and bound Bron and Kerbosch algorithm was clearly superior 
to all others tested. It finished the 0.80 threshold MAS 5.0 graph (0.0371 edge density) in 
thirteen seconds as opposed to the base algorithm's 193 seconds, and was the only 
algorithm capable of finishing the MAS 5.0 graphs with thresholds of 0.75 (0. 1 1 78 edge 
density) or 0.70 (0.2972 edge density). Similar results were seen with the RMA graphs, 
where only the branch and bound algorithm finished the 0.921954446 and 0.90 threshold 
graphs (edge densities of 0.0743 and 0.2093, respectively) in less than a day. Observe 
from Table 3-2 that 0.921954446 was the threshold used. This number was chosen for a 
recent analysis of the RMA treated data by our colleagues in neurobiology. The branch 
and bound algorithm was unable to finish enumerating all maximal cliques of the 0.87 
threshold RMA graph (0.5526 edge density) in less than a day. 
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Table 3-2. Time Trials for Maximal Clique Enumeration on RMA Microarray Data 

Threshold 

Algorithm 

0.95 0.921 954446. 0.90 0.87 

Halted after 1 
Base BK 6 sec N.A. N.A. 

day 

Halted after 1 
BK 1 1  sec 4 19  sec 53220 sec 

day 

Halted after 1 
Kose (RAM) 1 8632 sec N.A. N.A. 

day 

Halted after 1 
Kose (Disk) N.A. N.A. N.A 

week 

Halted after 1 
Greedy N.A. N.A. N.A 

day 
. 

Threshold used for actual analysis 
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Table 3-3. Time Trials for Maximal Clique Enumeration on MAS 5.0 Microarray Data 
Threshold 

Algorithm 
o.s5· 0.80 0.75 0.70 

Halted after 1 Base BK 6 sec 193 sec N.A. day 
BK 11 sec 13 sec 257 sec 53470 sec 

Halted after 1 Kose (RAM) 17261 sec N.A. N.A. day 
Halted after 1 Kose (Disk) N.A. N.A. N.A. week 
Halted after 1 Greedy N.A. N.A. N.A day 

,. Threshold used for actual analysis 
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Conclusions 

Of the existing maximal clique enumeration algorithms tested, the most suited to 

DNA microarray analysis seems to be the branch and bound Bron and Kerbosch 

algorithm. Although the base Bron and Kerbosch algorithm performed better on very 

sparse graphs, the branch and bound algorithm was significantly faster on the denser 

graphs and the loss of a few seconds on sparse graphs is not sufficient to rationalize 

choosing the base algorithm over the branch and bound algorithm. 

The Kose algorithm, while interesting is not useful for this application. In 

addition to being more than 1,000 times slower than either Bron and Kerbosch algorithm 

at its best, it generates cliques in increasing order. Since, for this application, the desired 

cliques tend to be large, this confers no advantage. Worse, the fastest implementation of 

the Kose algorithm has memory requirements that are not likely to be met by most 

workstations when running graphs of any significant density. Running this algorithm on 

the sparsest graphs was only possible with all other processes save system software were 

terminated, as it monopolized the available memory. This would only worsen as the 

graph density increased. 

Another promising algorithm is the greedy algorithm based on k-set enumeration. 

Although it was not able to enumerate all maximal cliques within a day on any provided 

input, the algorithm has ample opportunity for improvement with the introduction of 

boundary conditions, such as are used in the Bron and Kerbosch algorithm. It is possible 

that this algorithm could be useful in enumerating cliques when tight size boundaries are 

imposed. We realize that this experimental study has a number of limitations. Among 

these are the limited amount of data and chosen thresholds, and therefore, a limited 

number of graphical inputs. We anticipate more extensive studies as new maximal clique 

algorithms are brought online. 

40 



Chapter 4 

Algorithm Development for Application to DNA Microarray Analysis 

Introduction 

Thus far, our application of graph-based algorithms to DNA microarray analysis 
had used only pre-existing maximal clique enumeration algorithms in order to establish 
their utility for this purpose. Satisfied that the basic approach was a complementary 
approach to more popular clustering techniques and that the problem, though NP-hard, 
was solvable in a reasonable amount of time for most expected inputs, the focus turned to 
improving the speed of the existing enumeration algorithms. Only the branch and bound 
Bron and Kerbosch algorithm described in Chapter 3 was considered for improvement, 
based on its overall performance. Additionally, a means to address the issue of noise was 
sought. A new, clique-based algorithm was developed and tested for that purpose. 

Results 

Enumeration Adaptations 

The notion of fixed-parameter tractability [Downey and Fellows, 1999] has been 
useful when devising approaches for solving NP-complete problems. Formally defined, a 
problem is fixed-parameter tractable if it can be solved in time o(/(k)· na), where/is 
any function, and a is a constant independent from both k and n. Although clique is not 
fixed-parameter tractable unless the W-hierarchy collapses, the notion of imposing limits 
based on expected inputs should allow the adapted algorithms to process graphs that were 
previously unsolvable in a reasonable amount of time. 

One such technique that is a cornerstone of fixed-parameter tractability is data 
preprocessing. When a minimum clique size is specified, two preprocessing rules 
become available. The first of these is the low degree rule. The rule states that all 
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vertices of degree less than k-1 may be removed from the graph if the minimum clique 

size is known to be k. A corollary to this is the minimum common neighbor rule 

[AbuKhzam, 2004], that states that if two connected vertices, i andj, share less than k-2 

common neighbors, then the edge (i, j) may be removed from the graph, again, given that 

the minimum clique size is k. These methods are doubly useful in that they can be 

applied regardless of the enumeration algorithm, so long as a minimum clique size is 

defined. 

A second technique to limit the search space is to introduce more bounding rules 

to the original algorithms. On examination, it was found that two rules could be added to 

the existing algorithm. Testing for a known minimum clique size allows the branch and 

bound algorithm to return immediately if there are insufficient candidate vertices to 

extend the current clique. Once a k-clique is found, removing any member vertex whose 

degree is k-1 prevents later redundant searching. 

Each of the above mentioned adaptations was implemented by the author and 

tested, separately and in combination. The experiments were performed as described in 

Chapter 3 on the same input graphs and hardware. Results are shown in Table 4-1 .  

The addition of boundary conditions did not improve performance. The boundary 

conditions were not met frequently enough to counterbalance the increased number of 

instructions necessary to implement them. When a direct comparison is made, algorithms 

with additional boundary conditions were either equal to or slower on the same input than 

those without. Adding either the low degree or minimum neighbor preprocessing rules 

only improved running time on graphs with an edge density lower than 0. 1 1 78%. In any 

other case, running time increased up to 3 .25 fold. Even when running time was 

improved over the algorithm with no preprocessing rule, it was still slower than the 

original Bron and Kerbosch algorithm with the same preprocessing rule 

The original Bron and Kerbosch algorithm in combination with the low degree 

preprocessing rule improved performance in all cases where a comparison could be made 

(when at least one program finished in less than a day) with the exception of the 0.90 

42 



� 
w 

Table 4- 1 .  Time Trials for Preprocessing and Boundary Rules on MAS 5.0 Microarray Data. 

BK 

BK +Low Degree 

BK +Min. Neighbor 

BK+bounds 

BK+ bounds+ 

Low Degree 

BK+bounds+ 

Min. Neighbor 

0.85 

1 1  sec 

< 1 sec 

1 sec 

1 1  sec 

< 1 sec 

1 sec 

MAS 5.0 

0.80 0.75 

1 3  sec 257 sec 

4 sec· 253 sec 

7 sec 388 sec 

1 6  sec 265 sec 

6 sec 542 sec 

12 sec 86 1 sec 

0.70 

53470 sec 

50285 sec 

56787 sec 

535 10  sec 

Halted after 

1 day 

Halted after 

1 day 

0.95 

1 1  sec 

< 1 sec 

1 sec 

1 1  sec 

<l sec 

1 sec 

RMA 

0.92 195 0.90 

4 1 9  sec 53220 sec 

1 1 3 sec Halted after 

1 day 

1 1 7 sec 59056 sec 

425 sec 533 1 8  sec 

252 sec Halted after 

1 day 

263 sec Halted after 

1 day 

0.87 

Halted after 

1 day 

Halted after 

1 day 

Halted after 

1 day 

Halted after 

1 day 

N.A. 

N.A. 



threshold graph. The decrease in running time was more marked on sparse graphs, with a 

greater than eleven-fold speedup on the 0.85 threshold MAS 5.0 graph and the 0.95 

threshold RMA graph. There was still some improvement on the denser graphs, with the 

worst being a 1 .5% speedup on the 0.75 threshold MAS 5 .0 graph. In contrast, addition 

of the minimum neighbor rule only improved running time on graphs with an edge 

density lower than 0.1178%. In any other case, running time increased up to 11  %. 

Noise Compensation 

One disadvantage to using maximal clique enumeration for DNA microarray 

analysis is the inability of clique to compensate for noise. This is a serious issue, because 

there are multiple sources of noise in a microarray experiment. Biological variations 

among cells and/or tissues are one such, but these are typically subsumed by 

experimental noise. The greatest sources of noise have been determined to be introduced 

during the hybridization and subsequent readout steps [Tu et al., 2002]. Unfortunately, 

this means that significant reductions in noise levels are dependent on improvements in 

hybridization and image analysis technologies, rather than the more easily controlled 

experimental design. 

For our purposes of all this noise can be to artificially raise or lower a gene 's 

signal strength in both raw and normalized data. While this alteration may have multiple 

effects, two are our primary concerns. The first occurs when the gene is properly a 

member of a co-regulation group and the change causes a decrease in pairwise correlation 

coefficients between the affected gene and one or more group members. The second 

occurs when the pairwise correlation coefficients between genes that are not co-regulated 

are increased. 

For the most part, it is the first situation that is of greatest concern. Consider what 

must occur for a gene to be falsely included in a co-regulation group. The correlation 

coefficients between the gene and a significant number of members of the group must 

increase above the applied threshold to form a clique of sufficient size. On the other 

hand, decreasing the correlation coefficient between the gene and even one member of its 
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proper co-regulation group below the applied threshold fragments the clique. 
Furthermore, assuming that the affected gene does belong to a co-regulation group, it is 
more likely that any change in its expression pattern would weaken its relationship to its 
group members than that the change would strengthen the pattern's similarity to 
sufficient members of an unrelated co-regulation group. 

Therefore, our goal was to develop an algorithm that would detect genes that were 
likely excluded from a clique as a result of noise and re-integrate them into the 
appropriate group [Langston, 2004]. The algorithm needed to meet the three 
requirements. First, the algorithm was to be clique-based. This would provide a solid 
base from which to expand the co-regulated group. Second, the end result needed to have 
a high edge density. This would indicate that most likely all members are co-regulated 
and limit the number of false inclusions. Third, the result should be somewhat robust. 
That is, changes such as re-ordering the input graphs should not change the result. After 
some consideration, a simple algorithm was conceived that met all of these requirements. 
Para clique 

To handle the noisy data, we devised the scheme described below. Because there 
are many clique variants already known, we left the naming of this method to our 
colleagues in neurobiology. Dr. Rob Williams, a colleague from neurobiology, coined 
the term paraclique, and it has stuck. The paraclique algorithm takes as input a weighted 
graph, Gw; an unweighted subgraph of Gw filtered with threshold H, Gn; a tolerance, T; a 
paraclique factor, 0 � k < ICmaxl ; and a maximum clique, Cmax, from Gn. The paraclique, 
P, is set to Cmax· For every vertex, v E { Gn-P}, if v is connected to at least k vertices in P 
and for all vp E P, !weight of (v, vp) l 2: H-T, then P = P v v. This loop is repeated until 
no more vertices can be added to P. An unweighted graph, Gn-P, and paraclique, P, are 
output. If more than one paraclique is desired, the new unweighted subgraph, Gn, is set 
to Gn-P from the previous iteration. 

This algorithm was applied to the 0.85 threshold RMA graph. The tolerance was 
set at 0.05. The paraclique factor was maintained at k-1 ,  where k was the size of the input 
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clique. The I -neighborhood of the input clique was also computed for comparison. 

Results are in Table 4-2. In all instances, the paraclique algorithm maintained a high 

edge density, at least a four-fold increase over the I -neighborhood. Paraclique edge 

density increased with increasing size of the input clique. 

Conclusions 

An experimental study of three methods of potentially improving the Bron and 

Kerbosch algorithm's performance on graphs derived from microarray data revealed that 

preprocessing, in particular the low degree rule, was the most effective technique of those 

tested. However, significant speedup was only observed in the sparsest graphs, where it 

is least needed. Indeed, on the densest graphs, application of either preprocessing rule 

resulted in a net decrease in performance. Intuitively, this seems impossible. However, 

eliminating some vertices can limit the efficacy of the bounding rules in the original Bron 

and Kerbosch algorithm. This effect was also observed, to a more pronounced degree, 

when additional bounding rules were applied to the original algorithm lending further 

credence to this rationale. 

As discussed, the primary disadvantage to maximal clique enumeration as a 

microarray analysis tool is its inability to compensate for the noise inherent in such data. 

The goal was to develop an algorithm that retains much of the stringent requirements of 

clique, yet incorporates the "near misses" that cause clique fragmentation in the 

enumeration algorithm. As a first attempt, the paraclique algorithm was developed. 

Initial experiments show that a high level of edge density is maintained in the resulting 

paracliques when the given parameters are used. 

Although this algorithm produces only vertex disjoint paracliques, eliminating 

one advantage to using clique, it can be used to decompose graphs not tractable to 

maximal clique enumeration, such as the 0.85 threshold RMA graph. The reason for this 
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Table 4-2. Comparison of Paraclique and I -Neighborhood. 

Paraclique I -Neighborhood 

Core Clique Size Edge Density Size Edge Density 

280 466 95.58% 2657 1 6.09% 

1 1 3 1 93 93 .80% 1 636 1 7.22% 

72 1 32 90.05% 2067 22.68% 

58 1 27 86.74% 2320 1 8 .50% 
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is that the paraclique algorithm uses maximum clique, a much more efficient algorithm 

than maximal clique enumeration, to generate its core clique input. Research into 

alternate versions of this algorithm are ongoing. A relatively minor change to the 

algorithm, constraining the maximum clique to contain at least one vertex disjoint from 

all already elucidated paracliques, would allow overlap. Our colleagues in neurobiology 

are encouraged by the results of paraclique because it parallels their study of quantitative 

trait loci. Other methods of determining which vertices become members should also be 

investigated. 
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