220 research outputs found

    Autonomous mobility for an electronic wheelchair

    Get PDF
    Despite the rapid development of medical technologies the health sector does not yet offer any universal remedy for people suffering from permanent impairment of motor functions. Individuals depending on the range of disability require rehabilitation and help to perform the ALDs (activities of daily living). To aid people affected by the impairment and relieve from some duties the ones responsible for helping them the electronic wheelchair was developed. One of the functions of the electronic wheelchair is supposed to be autonomous navigation with speech recognition. The main objective of this project was to extend the existing electronic wheelchair solution with all necessary equipment and software necessary to make the autonomous navigation possible. As a result, a versatile system was created capable of mapping the working space and navigating in both known and unknown dynamic environments. The system allows dynamic obstacle detection and avoidance, basic recovery behaviors and accepts navigation goals provided by speech recognition.A pesar del rápido desarrollo de las tecnologías médicas el sector de la salud todavía no ofrece ningún remedio universal para las personas sufriendo de falta de control motor. Dependiente del rango de discapacidad las personas requieren rehabilitación y ayuda para realizar AC (actividades cotidianas). Para ayudar a las personas afectadas por discapacidad y relevar de algunos deberes la gente que los soporta se desarrolló la silla de ruedas electrónica. Una de las funciones de ya mencionada silla de ruedas debería ser la navegación autónoma con reconocimiento de voz. Entonces el objetivo principal de este proyecto fue extender la solución existente con todo el hardware y software necesarios para que la navegación autónoma sea posible. El proyecto resultado en creación de un sistema versátil capaz de mapear el espacio de trabajo y navegar en entornos también conocidos y desconocidos. El sistema permite detección y evitación dinámica de obstáculos, soporta comportamientos básicos de recuperación y acepta objetivos de navegación proporcionados por el software de reconocimiento de voz

    State estimation of over-sensored systems applied to a low-cost robotic manipulator

    Get PDF
    There is an increasing demand for robotic manipulators to perform more complex and versatile tasks. In order to fulfill this need, expeditious calibration and estimation techniques are required as a first step for the correct usage of the manipulator. This article aims at finding a subset of these algorithms that could be used in a generic manipulator and should allow for its prompt use. Two models for the representation of the pose of the manipulator are described and used in the state estimation problem. The results of the implementation are tested, and some performance metrics are obtained.info:eu-repo/semantics/publishedVersio

    A Modified HOSM Controller Applied to an ABS Laboratory Setup with Adaptive Parameter

    Get PDF
    The antilock braking system (ABS) is an electromechanical device whose controller is challenging to design because of its nonlinear dynamics and parameter uncertainties. In this paper, an adaptive controller is considered under the assumption that the friction coefficient is unknown. A modified high-order sliding-mode controller is designed to enhance the controller performance. The controller ensures tracking of the desired reference and identifies the unknown parameter, despite parametric variations acting on the real system. The stability proof is done using the Lyapunov approach. Some numerical and experimental tests evaluate the controller on a mechatronic system that represents a quarter-car model

    Automatic Dense 3D Scene Mapping from Non-overlapping Passive Visual Sensors for Future Autonomous Systems

    Get PDF
    The ever increasing demand for higher levels of autonomy for robots and vehicles means there is an ever greater need for such systems to be aware of their surroundings. Whilst solutions already exist for creating 3D scene maps, many are based on active scanning devices such as laser scanners and depth cameras that are either expensive, unwieldy, or do not function well under certain environmental conditions. As a result passive cameras are a favoured sensor due their low cost, small size, and ability to work in a range of lighting conditions. In this work we address some of the remaining research challenges within the problem of 3D mapping around a moving platform. We utilise prior work in dense stereo imaging, Stereo Visual Odometry (SVO) and extend Structure from Motion (SfM) to create a pipeline optimised for on vehicle sensing. Using forward facing stereo cameras, we use state of the art SVO and dense stereo techniques to map the scene in front of the vehicle. With significant amounts of prior research in dense stereo, we addressed the issue of selecting an appropriate method by creating a novel evaluation technique. Visual 3D mapping of dynamic scenes from a moving platform result in duplicated scene objects. We extend the prior work on mapping by introducing a generalized dynamic object removal process. Unlike other approaches that rely on computationally expensive segmentation or detection, our method utilises existing data from the mapping stage and the findings from our dense stereo evaluation. We introduce a new SfM approach that exploits our platform motion to create a novel dense mapping process that exceeds the 3D data generation rate of state of the art alternatives. Finally, we combine dense stereo, SVO, and our SfM approach to automatically align point clouds from non-overlapping views to create a rotational and scale consistent global 3D model

    Development Of Inertial Navigation System With Applications To Airborne Collision Avoidance

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2016Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2016Ülkemizde ve dünyada insansız hava araçlarının kullanımı gün geçtikçe artmaktadır. Sadece insansız hava aracı kullanımı değil, kullanıldığı alanlar da artış göstermektedir. Bu da insansız hava aracı marketini daha cezbedici kılmaktadır. Bu artış sonucu dünyada bir çok insansız hava aracı şirketi kurulmuş ve bazıları bu araçları seri üretim şeklinde üreterek ihtacat yapabilmektedirler. Dünyadaki bu ekonomik büyümenin bir yansıması olarak dünyadaki insansız hava aracının sayısı da gün geçtikçe artmaktadır. Bu talebin büyüklüğüne bakılarak, 20 yıl sonra meydana gelecek insansız hava aracı çarpışmaları ve trafikleri otoriteleri bu konu ile ilgili çalışmaya sevketmiştir. Bununla beraber uygulama alanlarının artması ve daha da detaylanması nedeniyle belirli özellikleri ve otonom uçuşu gerçekleştirebilen insansız hava araçları artık yetersiz kalmaktadır. Günümüzde genel olarak DJI, Pixhawk, ardupilot gibi markaların araçları veya otopilotları kullanılmaktadır. Bazıları açık kaynak kodlu olsalar bile kod içerisinde değişiklik yapmak veya farklı bir donanım entegre etmek oldukça zor. Bunun haricinde piyasada baskın olup market değeri de en yüksek olan DJI firmasının ürünleri tamamiyle kapalı kutu şekilde satılmaktadır. Otonom uçui, rota takibi, havada asılı kalma ve video çekme, canlı yayın yapma gibi temel isterleri yapabilmelerine ragmen, genişleyen sektörde endüstrinin istekleri, artık insansız hava aracının sadece canlı yayın yapması için değil, harici eklenecek donanımlar ile beraber çalışabilirliği veya başka sistemlerle entegre çalışabilirliği gibi problemleri ortaya çıkarmıştır. Bu nedenle piyasada ciddi bir şekilde müşteri isteğine göre configure edilebilen otopilot sistemleri ihtiyacı doğmuştur. Diğer yandan insansız hava aracı trafiğine bile yol açacak kadar büyüyen bu sektör ve sivil havacılığın da benzer bir şekilde büyüdüğü iki sektör ile karşı karşıyayız. Sivil havacılığın artan trafiği ve çarpışma önleme sistemlerinin yetersiz kalması gibi durumlara çözümler aranmaktadır. Yapılan çalışmalar sonucu [1] insansız hava aracı sahası ile sivil havacılık sahasının birleştirilmesi ve bu birleştirmelerin nasıl yapılması gerektiği konusu ortaya çıkmıştır. Bunun üzerine bir çok üniversite, bu konu üzerine çalışmalar yapmış ve yayınlar ortaya çıkmıştır. Genel olarak problem ise elbette eski teknolojinin hüküm sürdüğü sivil havacılıkta kullanılan ürünlerin, insansız hava araçlarına entegrasyonu imkansızdır. Doğal olarak tüm hava araçlarının kontrolü için tek bir iletişim ağı hepsini kapsayacak şekilde kurulması amaçlanmıştır. Tüm bu hava araçlarının gözlemlenmesi aynı anda yapılabilmeli ki tehlike durumlarında gerekli müdahaleler ve tedbirler önceden veya o an alınabilsin. Bu tezde iki farklı problemin çözümü önerilmiştir. Önerilerin ilki bahsedilen müşteri odaklı insansız hava aracının tasarlanmasıdır. İnsansız hava aracı tasarımındaki en önemli modüllerden biri de INS-AHRS sistemidir. İstanbul Teknik Üniversitesi Kontrol ve Aviyonik Laboratuvarında yapılan bu çalışma öncesinde, otopilot kontrolcü tasarımı çalışmaları yapılmış ve system oturtulmuştur. Yapılan uçuşlarda piyasadaki pahalı sistemler kullanılmaktaydı. Fakat sistemden sisteme farklılıklar göstermesi gereken bu ürünler, platform değişikliklerinde sıkıntılara yol açabiliyordu. Buna örnek vermek gerekirse sabit kanatlı insansız hava aracında sıkıntısız uçabilirken, multi-copter platformunda sapma açısında uçuş anında düzensizlikler ortaya çıkıyordu. Bunun nedeni ise alınan üründe sapma açısı sadee GPS verilerinden elde ediliyor olmasıydı. Hareketli platformun her zaman bir sapma açısı olacağından sabit kanatlı sistemlerde çalışması gayet normaldi. Fakat multi-copter platformunda havada asılı kaldığı zamanlarda sapma açısında bir hız vektörü olmadığından GPS hesaplayamıyor ve bu yüzden salınımlara neden oluyordu. Bu gibi problemlerin çözümü ve tamamiyle yerli, dışarıda çalışabilen, istenilen tüm platformlara tasarım değişiklikleriyle entegre edilebilecek bir INS-AHRS tasarımı yapılmaya çalışılmıştır. Bu tasarım yapılırken literatürde yapılan çalışmalar referans alınmış, ve filtreleme tekniklerinden navigasyon koordinat sistemlerine kadar çalışmalar yapılmıştır. Sensor çıkışlarının gürültülerini bastırmak için alçak geçiren filtrelerden geçirildikten sonra gerekli dönüşümler yapılarak filter seviyesine kadar getirilmiştir. Filtre kısmında iki farklı filter testi yapılmıştır. Biri tamamlayıcı filter ve diğeri kalman filtresidir. Bu filtrelerin her bir INS-AHRS üzerinde testleri yapılmış ve nihai olarak AHRS’de tamamlayıcı filter, INS’de ise kalman filtresinin kullanımı kararlaştırılmıştır. Yapılan çalışmalar İstanbul Teknik Üniversitesi Stadyumunda ve İstanbul Teknik Üniversitesi Havacılık Araştırma Merkezinde test edilmiştir. Yapılan testler 6 aydan fazla sürmesine ragmen nihai sonuca ulaşılabilmiştir. Bu süre zarfında tecrübe edilen en önemli nokta ise gerçek hayatta karşılaşılan problemler ile simulasyon ortamının farklı olmasıdır. Gerçek hayatta en küçük problemde bile aracınız yere çakılabilir ve her çakılmada 200-1000 TL zarar alabilirsiniz. Test yaptığımız süre içerisinde bizden kaynaklı olmayan, fakat üretim hatası olan pervanelerin kopması nedeni ile de kırımlar yaşanmıştır. Bu nedenle sistemin argesinin yapılması pahalıya mal olmuştur. Yapılan test sonuçlarının videoları çekilmiş ve sosyal mecralarda paylaşılmıştır. Bir diğer problem ise insansız hava araçlarının sivil hava sahasına entegrasonudur. Bu entegrasyonun yapılması için gereken teknolojik gelişmeler ve algoritmik çalışmalar gerekmektedir. Önerilen sistemde araç bazlı ve uçuş bazlı haberleşme verileri belirlenip, hangi sistemler üzerinden bu haberleşmenin gereçekleşmesi gerektiği gösterilmiştir. Daha sonra tüm bu sistemler hem hava araçlarında, yer istasyonlarında ve hava trafik kontrolcülerinde olacağından tüm haberleşme ortak bir platform için toplanmış oldu. Bu nedenle uçuş kontrollerinin yapılması daha da kolaylaşacaktır. Bununla beraber çarpışma önleme sistemi için günümüzde kullanılan 2B system değil, zamanın da içine dahil olduğu 4B istem önerilmiştir. Bu algoritmaının adı RRT-Star olup, olasılıksal yaklaşarak çarpışmadan kaçmayı hedefler. Bu kaçışı hedeflerken de en optimal yolu bulmaya çalışır ve o yoldan rotasına devam eder. Olasılıksal yaklaşımların savunduğu argüman sonsuz sayıda örnek sayısında bulunacak yol limitte en optimal yola doğru gider. Bu nedenle olasılıksal çözüm bulma, deterministic yöntemlere göre çok daha hızlı olmaktadır. Fakat algoritmada optimale ne kadar yaklaşmak istenirse o kadar örnekleme sayısını arttırmak gerekmektedir. Bu artış daha çok araştırma yapması ve sistemin uzun zaman boyunca rota üretmesi demektir. Buradaki dengeyi iyi tutturarak hem uygun yolu bulmaya ve en uygun kısa sürede bulmayı amaçlanması istenmektedir. Sistemin testi için donanımla benzetim çalışması gerçekleştirilmiştir. Bu tezde donanım benzetimi öncesi otopilot şeması verilmiş, buna bağlı test düzeneklerinin sistemi gösterilmiştir. Simulasyon olarak XPLANE programı kullanılmış ve programdan gelen sensor verilerine göre donanım sistemi uçurmaya çalışmıştır. Daha sonra çarpışma önleme algoritmasının entegrasyonu ile system testleri gerçekeştirilmiş ve sonuçları paylaşılmıştır. Nihai olarak bu tez, insansız hava aracı sektöründeki günümüzde ve gelecekte meydana gelecek problemleri öngörüp bunlara çözüm bulmak amaçlanmıştır. INS-AHRS tasarımları gerçekleştirilip, gerçek ortamda dışarıda testleri gerçekleştirilmiştir. Çarpışma önleme algoritması üzerine çalışmalar yapılarak da bu sistemin entegrasyonu yapılmış ve donanımsal benzetim ile testleri gerçekleştirilmiştir.Last years, the market growth of UAV is increasing day by day. This market growth is not just for some typical applications, but also application areas are increasing, too. This demand also increases the market value of the UAV. For competition in the market, UAV companies try to develop UAVs more efficient, cost effective and adding different capabilities. However, this growth generates some dangerous situations, moreover, because of the growth in application area, common UAVs are become not enough for applications or missions. In this thesis, I present and demostrate INS-AHRS Design and also Flight Management System with Collision Avoidance for UAV. These algorithms and demonstrations are made by the funding of ITU Control and Avionics Laboratory. In Laboratory, we already have autopilot system for multi-copter platforms and fixed-wing platforms. Before development of this INS-AHRS, we used other products from industry. But these products do not let you manage all system. But with the growth on the UAV applications, in the world also even in our laboratory, many projects required to solve specific problems with UAV. Industry products are designed for just one specific platform which may not be work on another platform. That is the main reason of necessity to develop new INS-AHRS, which can be used for multi-copter platforms. To develop INS-AHRS, filtering techniques and other conversation equations are studied. In this study, it is decided to use one IMU and one GPS. But after encounter with different problems, external magnetometer is added to the system. Then, as datasheet recommended, scaling and also alignment and offset shifting is studied. Before developing the all system, for inner loop, controller all need is attitude and attitude rate feed back. So first, with complimentary filter, gyroscope and accelerometer filtering is developed and tried to test at outside. In simulation, decision of coefficient of complimentary filter is easy to find. But these coefficients do not work at the outside. This shows the most important challenge that simulation platform can never be the same with outside real flight. For INS design, inertial frame to NWU frame conversation is developed. Accelerometers gravity vector and Coriolis vector is removed. Gyroscope outputs are also converted to the NWU frame. At least, all sensor outputs become the type of navigation frame. Whenever all datas gathered are become the type of the same frame, kalman filter is designed for INS. AS a result of INS-AHRS design, after 6 months of testing with other industrial INS, final coefficient of both INS and AHRS is decided. After few more development, test videos are recorded. For the growth of the UAV problem, this thesis presents Flight Management System (FMS) with multi-level autonomy modes that meet the requirements of future flight operations for unmanned aerial systems (UAS). It is envisioned that the future of airspace will become highly heterogeneous and integrate non-standardized aerial systems. In that case, only ground systems will be able to predict future trajectories based on performance models (stored in huge parametric databases). Meanwhile, airborne systems are required to share information. The proposed FMS structure integrates new functionalities such as (1) formal intent and information exchange and collaboration in tactical planning utilizing air-to-air and air-to-ground data links and (2) decentralized, short-term collision detection and avoidance. The air-to-ground data link enables intent sharing and allows field operators (i.e., flight operators or air traffic controllers) to interpret, modify, or re-plan UAS flight intent. The onboard FMS persistently monitors the airspace, tracks potential collisions with the other aircraft and the terrain, and requests re-planning when it detects a possible issue. When an immediate response is needed, the onboard FMS generates a 3D evasive maneuver and executes it autonomously. Flight traffic information is obtained from ADS-B/In transponders and air-to-air data links. ADSB-In/Out implementations make the unmanned systems more visible to the systems in 3D. In addition, the air-to-air data links enable intent sharing between airborne systems and are traceable in four dimensions (i.e., space and time). The experimental FMS was deployed in quadrotor UASs and a ground station and GUI was designed to perform demonstrations and field experiments for the issues introduced in the paper.Yüksek LisansM.Sc

    A robotic platform for precision agriculture and applications

    Get PDF
    Agricultural techniques have been improved over the centuries to match with the growing demand of an increase in global population. Farming applications are facing new challenges to satisfy global needs and the recent technology advancements in terms of robotic platforms can be exploited. As the orchard management is one of the most challenging applications because of its tree structure and the required interaction with the environment, it was targeted also by the University of Bologna research group to provide a customized solution addressing new concept for agricultural vehicles. The result of this research has blossomed into a new lightweight tracked vehicle capable of performing autonomous navigation both in the open-filed scenario and while travelling inside orchards for what has been called in-row navigation. The mechanical design concept, together with customized software implementation has been detailed to highlight the strengths of the platform and some further improvements envisioned to improve the overall performances. Static stability testing has proved that the vehicle can withstand steep slopes scenarios. Some improvements have also been investigated to refine the estimation of the slippage that occurs during turning maneuvers and that is typical of skid-steering tracked vehicles. The software architecture has been implemented using the Robot Operating System (ROS) framework, so to exploit community available packages related to common and basic functions, such as sensor interfaces, while allowing dedicated custom implementation of the navigation algorithm developed. Real-world testing inside the university’s experimental orchards have proven the robustness and stability of the solution with more than 800 hours of fieldwork. The vehicle has also enabled a wide range of autonomous tasks such as spraying, mowing, and on-the-field data collection capabilities. The latter can be exploited to automatically estimate relevant orchard properties such as fruit counting and sizing, canopy properties estimation, and autonomous fruit harvesting with post-harvesting estimations.Le tecniche agricole sono state migliorate nel corso dei secoli per soddisfare la crescente domanda di aumento della popolazione mondiale. I recenti progressi tecnologici in termini di piattaforme robotiche possono essere sfruttati in questo contesto. Poiché la gestione del frutteto è una delle applicazioni più impegnative, a causa della sua struttura arborea e della necessaria interazione con l'ambiente, è stata oggetto di ricerca per fornire una soluzione personalizzata che sviluppi un nuovo concetto di veicolo agricolo. Il risultato si è concretizzato in un veicolo cingolato leggero, capace di effettuare una navigazione autonoma sia nello scenario di pieno campo che all'interno dei frutteti (navigazione interfilare). La progettazione meccanica, insieme all'implementazione del software, sono stati dettagliati per evidenziarne i punti di forza, accanto ad alcuni ulteriori miglioramenti previsti per incrementarne le prestazioni complessive. I test di stabilità statica hanno dimostrato che il veicolo può resistere a ripidi pendii. Sono stati inoltre studiati miglioramenti per affinare la stima dello slittamento che si verifica durante le manovre di svolta, tipico dei veicoli cingolati. L'architettura software è stata implementata utilizzando il framework Robot Operating System (ROS), in modo da sfruttare i pacchetti disponibili relativi a componenti base, come le interfacce dei sensori, e consentendo al contempo un'implementazione personalizzata degli algoritmi di navigazione sviluppati. I test in condizioni reali all'interno dei frutteti sperimentali dell'università hanno dimostrato la robustezza e la stabilità della soluzione con oltre 800 ore di lavoro sul campo. Il veicolo ha permesso di attivare e svolgere un'ampia gamma di attività agricole in maniera autonoma, come l'irrorazione, la falciatura e la raccolta di dati sul campo. Questi ultimi possono essere sfruttati per stimare automaticamente le proprietà più rilevanti del frutteto, come il conteggio e la calibratura dei frutti, la stima delle proprietà della chioma e la raccolta autonoma dei frutti con stime post-raccolta

    Propuesta de inclusión de esfuerzos en el control de un brazo robot para asegurar el cumplimiento de la rugosidad superficial durante operaciones de lijado en diferentes materiales

    Full text link
    Tesis por compendio[ES] El mecanizado con brazos robots ha sido estudiado aproximadamente desde los años 90, durante este tiempo se han llevado a cabo importantes avances y descubrimientos en cuanto a su campo de aplicación. En general, los robots manipuladores tienen muchos beneficios y ventajas al ser usados en operaciones de mecanizado, tales como, flexibilidad, gran área de trabajo y facilidad de programación, entre otras, frente a las Máquinas Herramientas de Control numérico (MHCN) que necesitan de una gran inversión para trabajar piezas muy grandes o incrementar sus grados de libertad. Como desventajas, frente a las MHCN, los brazos robóticos poseen menor rigidez, lo que combinado con las altas fuerzas producidas en los procesos de mecanizado hace que aparezcan errores de precisión, desviaciones en las trayectorias, vibraciones y, por consiguiente, una mala calidad en las piezas fabricadas. Entre los brazos robots, los brazos colaborativos están en auge debido a su programación intuitiva y a sus medidas de seguridad, que les permiten trabajar en el mismo espacio que los operadores sin que estos corran riesgos. Como desventaja añadida de los robots colaborativos se encuentra la mayor flexibilidad que estos tienen en sus articulaciones, debido a que incluyen reductores del tipo Harmonic drive. El uso de un control de fuerza en procesos de mecanizado con brazos robots permite controlar y corregir en tiempo real las desviaciones generadas por la flexibilidad en las articulaciones del robot. Utilizar este método de control es beneficioso en cualquier brazo robot; sin embargo, el control interno que incluyen los robots colaborativos presenta ventajas que permiten que el control de fuerza pueda ser aplicado de una manera más eficiente. En el presente trabajo se desarrolla una propuesta real para la inclusión del control de esfuerzos en el brazo robot, así como también, se evalúa y cuantifica la capacidad de los robots industriales y colaborativos en tareas de mecanizado. La propuesta plantea cómo mejorar la utilización de un control de fuerza por bucle interior/exterior aplicado en un brazo colaborativo cuando se desconocen los pares reales de los motores del robot, así como otros parámetros internos que los fabricantes no dan a conocer. Este bucle de control interior/exterior ha sido utilizado en aplicaciones de pulido y lijado sobre diferentes materiales. Los resultados indican que el robot colaborativo es factible para realizar tales operaciones de mecanizado. Sus mejores resultados se obtienen cuando se utiliza un bucle de control interno por velocidad y un bucle de control externo de fuerza con algoritmos, Proporcional-Integral-Derivativo o Proporcional más Pre-Alimentación de la Fuerza.[CA] El mecanitzat amb braços robots ha estat estudiat aproximadament des dels anys 90, durant aquest temps s'han dut a terme importants avanços i descobriments en el que fa al seu camp d'aplicació. En general, els robots manipuladors tenen molts beneficis i avantatges al ser usats en operacions de mecanitzat, com ara, flexibilitat, gran àrea de treball i facilitat de programació, entre d'altres, davant de Màquines Eines de Control Numèric (MECN) que necessiten d'una gran inversió per treballar peces molt grans o incrementar els seus graus de llibertat. Com a desavantatges, enfront de les MECN, els braços robòtics posseeixen menor rigidesa, el que combinat amb les altes forces produïdes en els processos de mecanitzat fa que apareguin errors de precisió, desviacions en les trajectòries, vibracions i, per tant, una mala qualitat en les peces fabricades. Entre els braços robots, els braços col·laboratius estan en auge a causa de la seva programació intuïtiva i a les seves mesures de seguretat, que els permeten treballar en el mateix espai que els operadors sense que aquests corrin riscos. Com desavantatge afegida als robots col·laboratius es troba la major flexibilitat que aquests tenen en les seves articulacions, a causa de que inclouen reductors del tipus Harmonic drive. L'ús d'un control de força en processos de mecanitzat amb braços robots permet controlar, i corregir, en temps real les desviacions generades per la flexibilitat en les articulacions del robot. Utilitzar aquest mètode de control és beneficiós en qualsevol braç robot, però, el control intern que inclouen els robots col·laboratius presenta avantatges que permeten que el control de força es puga aplicar d'una manera més eficient. En el present treball es desenvolupa una proposta real per a la inclusió del control d'esforços en el braç robot, així com s'avalua i quantifica la capacitat dels robots industrials i col·laboratius en tasques de mecanitzat. La proposta planteja com millorar la utilització d'un control de força per bucle interior/exterior aplicat en un braç col·laboratiu, quan es desconeixen els parells reals dels motors del robot, així com altres paràmetres interns que els fabricants no donen a conèixer. Aquest bucle de control interior/exterior ha estat utilitzat en aplicacions de polit sobre diferents materials. Els resultats indiquen que el robot col·laboratiu és factible de realitzar aquestes operacions de mecanitzat. Els seus millors resultats s'obtenen quan s'utilitza un bucle de control intern per velocitat i un bucle de control extern de força amb els algoritmes Proporcional-Integral-Derivatiu o Proporcional més Pre-alimentació de la Força.[EN] Machining with robot arms has been studied approximately since the 90s; during this time, important advances and discoveries have been made in its field of application. In general, manipulative robots have many benefits and advantages when they are used in machining operations, such as flexibility, large work area, and ease of programming, among others, compared to Numerical Control Machine Tools (NCMT) that need a great investment to work very large pieces or increase their degrees of freedom. As for disadvantages, compared to NCMT, robotic arms have lower rigidity, which, combined with the high forces produced in machining processes, causes precision errors, path deviations, vibrations, and, consequently, poor quality in the manufactured parts. Among robot arms, collaborative arms are on the rise due to their intuitive programming and safety measures, which allow them to work in the same space without risk for the operators. An added disadvantage of collaborative robots is their flexibility in their joints because they include Harmonic drive type reducers. The use of force control in machining processes with robot arms makes possible to control and correct, in real-time, the deviations generated by the flexibility in the robot's joints. The use of this control method is beneficial for any robot arm. However, the internal control included in collaborative robots has advantages that allow the force control to be applied more efficiently. In this work, a real proposal is developed to include effort control in the robot arm. The capacity of industrial and collaborative robots in machining tasks is evaluated and quantified. The proposal recommends how to improve the use of an inner/outer force control loop applied in a collaborative arm, when the real torques of the robot's motors are unknown and other internal parameters that manufacturers do not disclose. This inner/outer control loop has been used in polishing and sanding applications on different materials. The results indicate that the collaborative robot is feasible to perform such machining operations. Best results are obtained using an internal velocity control loop and external force control loop with Proportional-Integral-Derivative or Proportional plus Feed Forward.The authors are grateful for the financial support of the Spanish Ministry of Economy and European Union, grant DPI2016-81002-R (AEI/FEDER, UE). This work was funded by the CONICYT PFCHA/DOCTORADO BECAS CHILE/2017 – 72180157.Pérez Ubeda, RA. (2022). Propuesta de inclusión de esfuerzos en el control de un brazo robot para asegurar el cumplimiento de la rugosidad superficial durante operaciones de lijado en diferentes materiales [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182000TESISCompendi

    Modular multilevel converter with embedded batteries as a motor controller.

    Get PDF
    This thesis details the design of the control system and hardware for a prototype of the new inverter topology the modular multilevel converter with embedded batteries for electric vehicle applications. Within this topology, the battery cells incorporated within the battery pack are directly integrated into the motor controller/ power converter by replacing the individual module capacitors with batteries. Since the batteries are directly connected to the module switching circuit, the batteries can be individually balanced using the same technique as an active battery management system, without the need for external energy-shunting hardware. A control algorithm for balancing the embedded batteries without affecting the motor control scheme with significantly unbalanced battery cells is presented and discussed. A multilevel space vector modulation scheme using the abc-reference frame for the selection of space vectors is developed. Initial testing of both the simulation model and prototype was carried out using a static RL load to test the PWM scheme and battery SOC balancing scheme. A Field-oriented control scheme was then designed and implemented for controlling a salient pole surface-mounted PMSM. The performance of the converter as a motor controller was assessed in terms of ability to balance the SOC of the embedded module batteries and total harmonic distortion over the course of the operating torque-speed range. Simulation of the control system on simulated hardware has been carried out in MATLAB; these simulation results verify the theoretical analysis. Then further verified and analysed using the developed laboratory-scale embedded battery MMC prototype

    Combining Sensors and Multibody Models for Applications in Vehicles, Machines, Robots and Humans

    Get PDF
    The combination of physical sensors and computational models to provide additional information about system states, inputs and/or parameters, in what is known as virtual sensing, is becoming increasingly popular in many sectors, such as the automotive, aeronautics, aerospatial, railway, machinery, robotics and human biomechanics sectors. While, in many cases, control-oriented models, which are generally simple, are the best choice, multibody models, which can be much more detailed, may be better suited to some applications, such as during the design stage of a new product
    corecore