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Abstract: There is an increasing demand for robotic manipulators to perform more complex and
versatile tasks. In order to fulfill this need, expeditious calibration and estimation techniques are
required as a first step for the correct usage of the manipulator. This article aims at finding a subset
of these algorithms that could be used in a generic manipulator and should allow for its prompt use.
Two models for the representation of the pose of the manipulator are described and used in the state
estimation problem. The results of the implementation are tested, and some performance metrics
are obtained.
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1. Introduction

Robotics has been an integral part of society for several decades. It is present in
industry, the medical field, and the military, among others. Wherever physical labor is
required, robotics serves as a more economical, stronger, more precise, and overall more
effective alternative to human labor. In addition, robots have been proven to be capable of
performing tasks that are otherwise dangerous, if not impossible, for people to do, such as
search and rescue missions in dangerous environments.

Within this very broad field, one of the most explored areas is the control of rigid
structure robotic manipulators. There are still numerous problems to be solved within this
scope, like the manipulator’s configuration (number and type of joints, link’s shape and
size), that must be chosen according to its objective; its motors must be precisely controlled,
and information such as the pose of the manipulator must be known to serve as an input
to the controller. This last problem is commonly called in the literature state estimation.
Being a common problem, many algorithms have been developed to help solve it. These
algorithms read information from imperfect sensors and merge it to find what is believed
to be the best estimate of the system’s state.

In the context of robotic manipulators, there already are numerous examples of the
usage of estimators to determine their pose. In most cases, the pose is simply defined
as the angles of each joint, and it is estimated using non-linear variants of the Kalman
filter. For example, in [1], several instances of the extended Kalman filter were chained to
estimate the angles and angular velocities of each joint. In this example, the models of the
manipulator are defined according to the orientation of the axes of rotation of the joints
and the placement of the inertial measurement units, and the base is assumed fixed. In [2],
the authors proposed to estimate the same variables using the extended Kalman filter by
modeling them as a function of the inertial sensors’ measurements. Despite being a more
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generic approach, it requires each link of the manipulator to be equipped with one triad of
gyroscopes and two triads of accelerometers. The study in [3] focused on the description of
a variant of the Kalman filter named the adaptive square-root unscented Kalman filter and
applied it to this context. It compares the results of this filter with the extended Kalman
filter, the unscented Kalman filter, and its adaptive counterparts. It demonstrates that these
variants are mostly suitable for the state estimation problem, each with its advantages
depending on the nature of the measurements’ noise. However, there is not much focus on
the models used for estimation.

Examples of interesting sensors capable of obtaining important information that can
be embedded are accelerometers, gyroscopes, magnetometers, and encoders, allowing the
manipulator to estimate its state without the support of other external hardware. State
estimation using only these kinds of sensors is considered automatic.

Estimators designed for a specific application are often better at estimating the vari-
ables of interest for the context for which they were built; however, this means that they are
not portable from one system to another. That is, if another manipulator is to be built with a
different purpose, another estimator must be developed for this new context. Considering
this problem, the estimators applied to the system are designed to be as modular and
reusable as possible. To serve as a test-bed, an over-sensored manipulator is used, and the
main goal of this redundancy is to correct the sensor’s errors. Beyond that, the use of a
system like the one mentioned also means that the developed models can be used in other
manipulators.

Throughout this article, the development process behind the presented estimators is
described, as well as the developed test-bed manipulator. Section 2 presents the different
models for manipulators and sensors. The experimental setup for the used manipulator is
described in Section 3, while the different aspects of the implementation of the estimation
algorithms are discussed in Section 4. Finally, some conclusions and remarks about future
objectives are made in Section 5.

2. Models

The design process behind the implementation of a state estimator starts with knowing
the system, as well as its components. More specifically, mathematical models capable of
describing any of the subsystems and sensors of the robotic manipulator must be developed.
A study of the used subsystems is performed throughout this section.

2.1. Inertial Measurement Unit

An inertial measurement unit (IMU) is, in its simplest form, a device composed
of accelerometers, capable of measuring specific force (acceleration subtracted by the
acceleration of gravity), and gyroscopes, capable of measuring angular velocity. With these
measurements, position and orientation can be determined at any moment in time given
an initial position, velocity, and orientation.

Most IMU sensors are built from 3 accelerometers and 3 gyroscopes, although some
include 3 magnetometers as well. These trios of sensors are unaligned to provide mea-
surements in all 3 spatial dimensions. However, these are not perfectly orthogonal to one
another. This means that a measurement in one sensor might correspond to a value in more
than one axis. Even if the axes were orthogonal, they still might not be aligned with the
chosen referential. Another issue in modeling an IMU is the existence of the parameters
of its model that depend on the specific conditions under which it is working, such as
temperature and magnetic interference.

Regarding the IMU model, the parameters on which each of the IMU’s sensors depend
are the gain (g) and bias (b). These relate the electric signal measured by the sensor (m) and
the value of the quantity being measured (v) by Equation (1).

v = g× (m− b) (1)
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where v is usually expressed in m/s2 (when measuring acceleration), rad/s (when mea-
suring angular velocity), or µT (when measuring the magnetic field) and m is usually
expressed in mV.

An especially troublesome parameter in this model is the bias. If it is not accounted
for or if it is not correctly determined, it causes a systematic error in the measurements of
the inertial sensors. This error accumulates when determining position and orientation
since these are calculated by integrating the original measurements. As a consequence, a
drift is accumulated in the position and orientation state variables.

This is the affine relation that models single axis sensors. However, as previously
stated, the IMU is not made up of just one sensor. Moreover, each sensor can influence
more than one axis of the chosen referential. This implies that each measurement (mi,
i = {x, y, z}) is influenced by each value (vi, i = {x, y, z}).

That is:

vi = gix(mx − bx) + giy(my − by) + giz(mz − bz) (2)

i = {x, y, z} (3)

Assuming V = [vx vy vz]T and M = [mx my mz]T , the new model equation is:

V = G× (M− B∗) (4)

where G is a 3 × 3 matrix with entry (i, j) equal to gij for i = {x, y, z} and B∗ =

[bx by bz]T .
Alternatively, the previous equation is often written as:

V = G×M + B (5)

with B = −G× B∗. With the non-diagonal elements in the gain matrix (G), scaling factors
and misalignments between the axes and the reference frame are all accounted for.

The calibration process for the IMU is finding the parameters G and B. This is usually
done by reading several measurements in a multitude of scenarios and attempting to
find the parameters that match the real values with the measurements. Even though
this problem seems to be solvable by simply using algebra to solve the equations for the
parameters, two problems stand in the way of using this method. First, all measurements
are noisy, which means that if there are more measurements than parameters, the system
of equations probably will not be solvable. Second, the use of these equations assumes the
real values being measured are known.

Since acquiring the real values, often referred to as the ground truth, is theoretically
impossible, instead of trying to achieve perfect real values, high precision instruments
are used to obtain practically acceptable ones. However, with the creation of low-cost
microelectromechanical system (MEMS) IMUs, the devices have become more popular
among hobbyists. Those without special equipment needed to find a way to calibrate
their sensors without a ground truth. This necessity brings up several new calibration
techniques that rely on the properties of the measured quantities.

For example, when stationary, the accelerometers should measure a vector that has
a constant norm. This property gives rise to Equation (6), which can be used to find
the parameters:

‖G×M + B‖2 = g (6)

This equation is not linear, which means least squares cannot be used directly in this
case. Alternatives include using other optimization methods or redefining the variables to
make the problem linear [4]. In the absence of magnetic field disturbances, this method can
also be used to calibrate the magnetometers.

Alternatively, after calibrating one of the sensors, the others could be calibrated by
assuming the dot product of their reference vectors (magnetic field and symmetry of
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the acceleration of gravity) is constant in the working region [5]. This method has the
added bonus of correcting misalignments between the frames of the accelerometers and
the magnetometers.

The gyroscope does not have a reference vector to measure while it is standing still.
The rotation of the Earth could be used; however, it is negligible when compared to the
magnitude of the noise of low-cost MEMS gyroscopes. This absence of a reference makes it
difficult to independently calibrate a gyroscope based on its static measurements. However,
once the other sensors are calibrated, they can be used as an acceptable ground truth. When
reading a reference vector from another sensor before and after a rotation, the rotation
matrix obtained by integrating the gyroscope measurements should match those vectors [6].
This method, much like the dot product one, corrects for misalignments between sensor
frames since it is using another sensor as the ground truth.

2.2. DC Motor

A DC motor is usually modeled as a resistor (R), a coil (L), and a voltage source (vb(t))
in series [7,8], as presented in Equation (7).

vs(t) = R× i(t) + L× di(t)
dt

+ vb(t) (7)

where vs(t) is the voltage applied to the motor and i(t) is the current that goes through it.
This voltage source is a counter-electromotive force produced by the rotor, and there-

fore, it is proportional to the angular velocity with which it spins. Given that the power
delivered at vb(t) is useful, then it is equal to the mechanical power delivered at the rotor.
Since the useful electric power is equal to vb(t)i(t) and the mechanical power is given by
the product of the torque T(t) and the angular velocity of the rotor ω(t), the torque must
be proportional to the current that goes through the stator.

vb(t) = k×ω(t) (8)

T(t) = k× i(t) (9)

where k is a constant with the same value for both equations. This information can be
combined with the mechanical equation of the motor to define a continuous time model of
the motor.

The mechanical equation relates the angular acceleration with all the torques applied
to it.

J × dω(t)
dt

= T(t)− Te(t)− B×ω(t) (10)

In this equation, J is the mass moment of inertia, T(t) is the torque produced by the
motor, Te(t) is the set of opposing torques produced outside of the motor, and B is the drag
coefficient (making B×ω(t) the drag induced torque).

Combining the electric Equation (7) with the mechanical one (10), the following can
be written.

L× di(t)
dt

= vs(t)− R× i(t)− k×ω(t) (11)

J × dω(t)
dt

= k× i(t)− Te(t)− B×ω(t) (12)

With these equations, the resulting continuous time model of the DC motor is:

ẋ(t) = A× x(t) + B× u(t) (13)

y(t) = C× x(t) (14)

These can be presented in matrix form, as presented below:
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x(t) =
[

i(t)
ω(t)

]
u(t) =

[
vs(t)
Te(t)

]
y(t) = ω(t)

A =

[
−R/L −k/L

k/J −B/J

]
B =

[
1/L 0
0 −1/J

]
C =

[
0 1

]
2.3. Robot Kinematics

Kinematics is the field of study of the motion of objects. In the case of robotic arms,
this field is divided into two: forward and inverse kinematics. Forward kinematics is
a tool for determining the position and orientation of any point of an arm in terms of
the angles of the robot’s joints. Inverse kinematics does the exact opposite: it finds out
which angles should be in each joint in order to place a link in a certain position with a
certain orientation.

An important aspect of robotic arms is the number of degrees of freedom (DOF). This
number defines how many ways a manipulator can position and orient itself. The number
of degrees of freedom a robotic arm has is equal to its number of joints. Considering there
are only 3 spatial dimensions, a 6-DOF manipulator is already capable of positioning and
orienting itself in (almost) any way.

The equations defining the forward kinematics of a manipulator are usually translated
into matrices. These matrices correspond to linear transformations between two Cartesian
referentials. Each of the matrices represents a rotation and a translation.

i
i−1T =

[ i
i−1R i−1ti
01×3 1

]
(15)

i
i−1R is a 3 × 3 matrix representing the rotation, and i−1ti is a 3 × 1 vector representing
the translation.

If one of these transformations is used to find the position of a link with respect to the
previous one, several of these transformations can be chained to find the position of any
link with respect to any other. For example, the transformation that relates link n with the
base of the arm is:

n
0T = 1

0T 2
1T... n

n−1T (16)

where i
i−1T is the transformation between referentials i− 1 and i.

Out of the many different ways of determining the individual transformations ( i
i−1T),

one of the most used is the Denavit–Hartenberg method [9]. This systematic method of
finding the entries of a transformation matrix takes only 4 parameters:

• a—distance between the previous z axis and the current one (translation along the
x axis);

• α—angle between the previous z axis and the current one (rotation along the x axis);
• d—distance between the previous x axis and the current one (translation along the

z axis);
• θ—angle between the previous x axis and the current one (rotation along the z axis).

These parameters should be applied in the previously described order, as is presented
in Figure 1. However, it is indifferent about whether the translations and the rotations
along the same axis are applied in reverse order.
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Figure 1. Example of a coordinate transformation with Denavit–Hartenberg (DH) parameters.

Once the parameters are determined, the transformation matrix is built from them.

i
i−1T =


cos θ − sin θ cos α sin θ sin α a× cos θ
sin θ cos θ cos α − cos θ sin α a× sin θ

0 sin α cos α d
0 0 0 1

 (17)

2.4. Kalman Filter

Once a system is modeled, its state can be approximated according to measurements
taken from sensors. The state is a vector composed of all variables of interest of the system,
and the way it is approximated is with sensor fusion techniques.

The techniques described below assume that the state of the system is a first-order
Markov process. This means that the next state will depend on the current state, the system
inputs, and some noise. Similarly to the next state, the measurements obtained from sensors
are dependent on the state, the inputs, and some noise.

Generically, a digital system can be mathematically described by:

x(k + 1) = f (x(k), u(k), w(k), k) (18)

y(k) = g(x(k), u(k), v(k), k) (19)

where x is the state, u the set of inputs, y the set of outputs, w the process noise, and v the
measurement noise. It should be noted that the system may be dependent on time k, which
means it is not necessarily time invariant.

To estimate the state of a system, the Kalman Filter (KF) makes some assumptions.
The first is the linearity of the system, and the second is related to the process and measure-
ment noises, both assumed to be zero-mean white noise stochastic variables. Under this
assumptions, Equations (18) and (19) can be rewritten.

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k) w(k) ∼ N(0, Q(k)) (20)

y(k) = C(k)x(k) + D(k)u(k) + v(k) v(k) ∼ N(0, R(k)) (21)

where N(µ, Σ) is a Gaussian distribution of mean µ and covariance matrix Σ. Once again, it
should be noted that the system matrices (A, B, C, and D) are not time invariant. In the case
of the robotic manipulator, the system must be considered time variant, because different
joint angles produce different transformations between the referentials of each link.

If these assumptions are valid, the KF is the minimum-variance unbiased estimator [10]
that gives the most certain estimate out of the ones that do not produce a systematic error.
The Kalman filter’s algorithm is usually implemented in 2 stages: prediction and filtering.
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The prediction stage uses the model of the system and the current state (or its estimate)
to guess what the next state might be. Besides that, it determines the level of certainty of
that guess in the form of a covariance matrix.

In the filtering stage, measurements are used to correct the guess of the prediction
stage. The influence the measurements have in the final estimate depend on the previously
calculated covariance matrix and the certainty granted to the measurements. A covariance
matrix of the final estimate is also calculated as it is needed in the prediction stage. As-
suming the process noise and the measurement noise are uncorrelated (which is the most
common situation), the estimator is implemented with the following steps [11]:

Prediction:

1. x̂(k + 1|k) = A(k)x̂(k|k) + B(k)u(k) (next state estimate)
2. P(k + 1|k) = A(k)P(k|k)A(k)T + Q(k) (next state estimate’s covariance)

Filtering:

1. e(k) = y(k)− C(k)x̂(k|k− 1)− D(k)u(k) (innovation)
2. S(k) = R(k) + C(k)P(k|k− 1)C(k)T (innovation’s covariance)
3. K(k) = P(k|k− 1)C(k)TS(k)−1 (Kalman gain)
4. x̂(k|k) = x̂(k|k− 1) + K(k)e(k) (current state estimate)
5. P(k|k) = (I − K(k)C(k))P(k|k− 1) (current state estimate’s covariance)

In this algorithm, x̂ is a state estimate, and the notation (α|β) refers to the instant at
which the estimate corresponds (α) given measurements up to time β.

The variables calculated in Steps 1, 2, and 3 of the filtering stage are merely auxiliary.
The innovation e(k) is the error in the measurements, i.e., the difference between the
expected measurements and the ones actually obtained. The innovation’s covariance
S(k) is used to calculate the Kalman gain K(k): a matrix that weighs the trust in the
measurements against the trust in the model to find out which of these should have more
influence in the filtered estimate.

These two stages are then applied iteratively to estimate the state at every time step.
After the prediction stage, the current time instant is updated (k← k + 1), and the filtering
stage can now be applied, since x̂(k|k − 1) ← x̂(k + 1|k) and P(k|k − 1) ← P(k + 1|k).
Then, the prediction stage is executed again, making this process cyclic. Note the need for
an initial estimate (x̂(0| − 1)) and its covariance (P(0| − 1)) in order to begin the algorithm.

Recall that the Kalman filter assumes the system whose state is being estimated
is linear. However, the robotic manipulator is not a linear system, some entries of the
transformation matrices being trigonometric functions of the joints’ angles. However,
because the performance of the KF is such an appealing factor, many variants, capable of
estimating the state of non-linear systems, have been developed. Some of these include the
Extended Kalman Filter (EKF), the Unscented Kalman Filter (UKF), the Quadrature Kalman
Filter (QKF), and the Cubature Kalman Filter (CKF), all of which have been proven reliable
solutions to the state estimation problem in the context of robotic manipulators [1–3,12–14].

2.4.1. Extended Kalman Filter

As mentioned, one of the variants of the KF is the extended Kalman filter. This variant
starts by finding the required Jacobian matrices (matrices composed of partial derivatives)
and uses them to describe an approximation of the system, then it solves the estimation
problem for the approximate system with a conventional KF.

A(k) =
∂ f
∂x

(k) B(k) =
∂ f
∂u

(k) C(k) =
∂g
∂x

(k) D(k) =
∂g
∂u

(k) (22)

This simple workaround removes the assurance that this is the minimum-variance
unbiased estimator. However, it produces good enough results to be used in many practi-
cal applications.

Even though this filter is usable in the context at hand, it presents some issues when
used to estimate orientations. The main problem lies in the way that orientation is rep-
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resented. For example, when the orientation of a body is described by a rotation matrix,
then the correction of this orientation with a measurement, which is performed in Step 4 of
the filtering stage, is the sum of two rotation matrices. This sum most likely is not a valid
rotation matrix (i.e., is not orthogonal). This means that representing an orientation by the
sum of its estimate with its error is not a valid model.

Rθ = Rθ̂ + Rε (23)

This makes it difficult to apply the filtering step of the Kalman filter. One way to work
around this problem is to assume that Equation (23) is valid and to alter the resulting matrix
to become orthogonal again. If the orientation was being described by unit quaternions,
this process would be even simpler, as the only change needed to turn the quaternion into a
valid orientation would be to divide it by its magnitude. However, letting the filter assume
that rotation matrices can simply be summed produces an incorrect model of the system,
which in turn causes the filter to have a wrong sense of certainty about the state of the
system [15].

A different way to model the dynamics of an orientation is through matrix multiplication.

Rθ = Rθ̂ Rη (24)

This equation always produces at its output a valid rotation matrix (assuming there
are no rounding errors), as long as the error matrix (Rη) is a rotation matrix as well. Rη can
be made into a valid rotation matrix if it is built by an orientation representation that is not
redundant (i.e., has no constraints), for example a rotation vector η. The conversion between
rotation vector and rotation matrix can be performed using matrix exponentiation [11,15].
This approach to orientation estimation is called the Multiplicative Extended Kalman
Filter (MEKF). This extra step in the MEKF is called the reset step, and it is what allows for
the orientation to be stored in the rotation matrix while the filter operations are applied
to the rotation vector. This filter is often used in spacecraft orientation estimation [16],
which proves this filter’s worth. Its intricacies will be further explored when the robotic
manipulator model is explained.

2.4.2. Unscented Kalman Filter

Another variant of the Kalman filter is the unscented Kalman filter. This estimator
does not assume linearity. Instead, it uses sigma points to describe the state’s distribution,
the sigma points being the vectors of possible states.

These points are calculated as a function of the previous estimate, the covariance
matrices (of the state and noises), and some parameters. Then, they are updated according
to the non-linear model of the system. Each of these points is then used, together with
measurements, to calculate the Kalman gain. From this gain, the error between the expected
measurements and the real ones, the predicted state, the filtered estimate, and its covariance
matrix can be determined.

The UKF algorithm, in the case of additive noises, is described as follows [11,17]:
Sigma points:

1. X0(k|k) = x̂(k|k)
2. Xi(k|k) = x̂(k|k) +

(√
n

1−W0
P(k|k)

)
i

i = {1, 2, ..., n}

3. Xi(k|k) = x̂(k|k)−
(√

n
1−W0

P(k|k)
)

i−n
i = {n + 1, n + 2, ..., 2n}

Prediction:

1. Xi(k + 1|k) = f (Xi(k|k), u(k), k) (next sigma points)
2. x̂(k + 1|k) = ∑2n

i=0[WiXi(k + 1|k)]
3. P(k + 1|k) = ∑2n

i=0
[
Wi(Xi(k + 1|k)− x̂(k + 1|k))(Xi(k + 1|k)− x̂(k + 1|k))T]+ Q(k)

4. Yi = g(Xi(k + 1|k), u(k), k) (expected “sigma” measurements)
5. ŷ(k + 1|k) = ∑2n

i=0[WiYi] (expected measurements)
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Filtering:

1. e(k) = y(k)− ŷ(k|k− 1)
2. Py,y = ∑2n

i=0
[
Wi(Yi − ŷ(k|k− 1))(Yi − ŷ(k|k− 1))T]+ R(k)

3. Px,y = ∑2n
i=0
[
Wi(Xi(k + 1|k)− x̂(k|k− 1))(Yi − ŷ(k|k− 1))T]

4. K(k) = Px,yP−1
y,y

5. x̂(k|k) = x̂(k|k− 1) + K(k)e(k)
6. P(k|k) = P(k|k− 1)− K(k)Py,yK(k)T

In the algorithm:

• n is the length of the state vector;
• Wi is the weight of the i-th sigma point, i.e., its contribution to the calculation of the

estimates and covariances;
• −1 <W0 < 1;
• ∑2n

i=0Wi = 1, that isWi =
1−W0

2n for all i = {1, 2, ..., 2n}
•

(√
n

1−W0
P(k|k)

)
i

is the i-th column of the matrix
√

n
1−W0

P(k|k), and the square root

matrix is obtained from the Cholesky decomposition.

3. Test Setup

Throughout this section, the robotic manipulator that is used as a test-bed is introduced
and detailed.

3.1. Hardware

A low-cost robotic manipulator was developed to validate the study of over-sensored
systems within an academic context. With this purpose in mind, the manipulator was
designed based on three criteria:

• Its structural components musts be 3D printable;
• The design and sensors have to be low-cost;
• It should be as modular as possible.

Following these objectives, the manipulator presented in Figure 2a was designed and
then physically built, as shown in Figure 2b.

It is equipped with 3 JGY-371 motors with a worm gearbox and incremental encoder.
The worm gearbox gives the motor the unique capability of self-locking, being able to
save energy while the motor is stopped. There are 2 TAL220 load cells, mounted on both
connection links, with the corresponding signal amplifiers (HX711). These make the system
capable of measuring the torque applied in each link. Links 2 and 3 are also equipped
with inertial measurement units. There is one MPU-9250 IMU in Link 2 and one Adafruit
3463 Precision 9-DOF IMU in Link 3. An Arduino Uno is used to process the data from the
sensors and control the motors through an Adafruit Motor Shield v2. Table 1 contains a bill
of materials with the price range of each component.
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(a) 3D model. (b) Implementation.
Figure 2. Designed robotic manipulator.

Table 1. Bill of materials of the robotic manipulator.

Reference Description Price Range

TAL 220 10 kg Load Cell 10–12 e

A000066 ARDUINO UNO REV3 20–25 e

HX711 Load Cell Amplifier 12–15 e

ADA-3463 Adafruit Precision NXP 9-DOF Breakout Board 15–18 e

MPU-9250 GY-91 10DOF MPU-9250 and BMP280 Multi-Sensor Module 10–15 e

JGY-371 12V DC Motor with worm gearbox and incremental encoder 25–30 e

ADA-1438 Adafruit Motor/Stepper/Servo Shield for Arduino v2 Kit—v2.3 20–25 e

TOTAL 184–227 e

3.2. Software

The control loop of the robotic manipulator is separated into two parts. The Arduino is
used for low level tasks such as reading measurements from the sensors and controlling the
motors. Serving as a central processing unit, a PC application is used, connected directly to
the Arduino Uno by a USB cable. This application is coded in the Free Pascal programming
language, specifically using the Lazarus Integrated Development Environment (IDE). It is
responsible for high level tasks such as state estimation and user interaction.

More specifically, the control loop starts in the Arduino, where raw measurements
from all sensors are collected. The measurements are then transmitted to the PC via serial
communication. The application receives these data and displays them in a Graphical
User Interface (GUI). The GUI can also display graphically the evolution of any variable
of interest and gives the user the ability to interact with the system. For example, the
user can move sliders to set the position or velocity of any motor and can set the PID
parameters for the control of the motors. Besides interacting with the user through the GUI,
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the application pre-processes measurements according to its calibration parameters and
then uses them in state estimation algorithms. The algorithms for calibration are also run
in this application. The references for the motors are then sent to the Arduino, again using
serial communication, which controls the motors using a PID controller. Figure 3 shows
the GUI with which the user can interact.

Figure 3. Graphical user interface of the PC application.

3.3. Models

Initially, the equations that define the behavior of the manipulator and its sensors
are written in the most general form possible. This is done with the intent of keeping the
models reusable for different manipulator configurations. However, the assumption that all
joints are revolute is made because it keeps the model simpler, and it is a constraint that the
implemented manipulator follows. Before describing the models, the used nomenclature
is presented. Regarding the coordinate frames, two are used per joint. For joint number
i (counting from the base), the two frames are i and i−. Both have their origins in the
rotation axis of the joint and have the z axis aligned with it. However, frame i is fixed to the
link directly after the joint, whereas frame i− is fixed to the link directly before the joint.
The frames in which the sensors take measurements can be rotated to align with the frames
of the adjacent joints [1].

Some consequences of this nomenclature are that the transformation matrices i−
i−1T

are constant and there is no translation in the transformations i
i−T. This implies that all the

necessary information required to determine the pose of the manipulator is described by
the rotation matrices i

i−R given by:

i
i−R = Rθi =

cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 (25)

The argument can be extended to the velocity and acceleration of each joint. All
the information needed to do so is the rotation matrix, angular velocity, and angular
acceleration between the two joints. In the two following sections, two models are built
based on this nomenclature. The sensors are also modeled according to each of the
state choices.
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3.3.1. Link Model

As mentioned, in this model, the state is composed of the rotation matrices i
nR and

angular velocities ωi of each link. Each of these represents the orientation of link i (with
0 being the base) with respect to an inertial frame n. The inertial frame is denoted by n
because it refers to the navigation frame. This is a frame situated at a specific point on
Earth’s surface. As the planet rotates, so does the frame. Even though this frame is not
inertial, it can be considered approximately inertial. As demonstrated in [15], the Coriolis
and centrifugal accelerations suffered by this frame are negligible.

The choice of representing orientations with respect to an inertial frame means that
any error in estimating the orientation of any link does not propagate to the next one. It
also means that inertial measurements from the IMU will be easier to model as they are
independent of the previous link. On the other hand, this will make sensors like encoders,
which depend on the orientation of two links, have a more complex model.

The rotation matrix for each link evolves according to the following equation:

i
nR(k + 1) = i

nR(k)Rδi (k) (26)

where Rδi (k) is the rotation matrix corresponding to the rotation vector δi(k). δi(k) is the
vector around which frame i rotates from instant k to instant k + 1. The way the rotation
matrix can be built from the rotation vector is through matrix exponentiation. The value of
δi(k) is given by:

∆i(k) = ∆t(ωi(k) + εωi (k)) = ∆tωi(k) + εδi (k) (27)

with ∆t the time interval between instants k and k + 1, ωi =
iωni the angular velocity of

link i with respect to frame n represented in frame i, and ε the error of the model.
One filter designed to find the orientation of a rigid body using an IMU is the MEKF.

As mentioned in Section 2.4.1, Model (26) must be linearized in order to apply the MEKF.
With that intent, the rotation matrix i

nR is rewritten such that the state becomes a vector
around an operating point.

i
nR(k) = i

nR̂(k)Rηi (k) (28)

In this equation, i
nR̂ is the rotation matrix representing the operating point, and Rηi

is the rotation around the operating point defined by the rotation vector ηi. Rηi can be
approximated by:

Rηi (k) ≈ I3 + [ηi(k)×] (29)

where [ · ×] is an operator that gives a 3× 3 matrix from a vector. This operator can be
used to solve a cross product:

a× b = [a×]b = −[b×]a (30)

and therefore is defined as

[a×] =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (31)

with a = [a1 a2 a3]
T . Given Equation (29), the linear model can be deduced:

ηi(k + 1) = R̂T
δi
(k)ηi(k) + ∆tεωi (k) (32)

Note that this model is not required for the update stage of the MEKF because ηi and
εωi are zero-mean variables. This model is only needed to find the matrices required for
the filtering stage.

Finally, the angular velocity ωi is modeled as a random walk that is corrected
by measurements:

ωi(k + 1) = ωi(k) + εωi (k) (33)
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Gyroscope Model
Once properly calibrated, each gyroscope should give a direct measure of one of the

state variables (per link). Its measurement model is defined by the following equation:

ωgi (k) = ωi(k) + εωgi
(k) (34)

which is already linear.
Magnetometer Model
When considering a sensor like the magnetometer, all one needs to take into consider-

ation is the orientation of the vector being measured, i.e., the magnetism vector. Because
this vector exists within a field that is approximately constant for the neighborhood of the
manipulator, the direction of the vector in the magnetometer can be considered the same
as in the joint; that is mmi =

im, where mmi is the magnetism vector in magnetometer i and
im is the magnetism vector in joint i. Given the magnetism vector in frame n (nm), which
should be constant in time and only dependent on the manipulator’s location on the Earth,
the relation between the orientation of the link and the measurement is:

mmi (k) =
i

nRT(k) nm + εmi (k) (35)

where εmi is the magnetometer measurement noise.
The previous equation can be linearized:

mmi (k) =
i

nR̂T(k) nm + [
i

nR̂T(k) nm×]ηi(k) + εmi (k) (36)

Accelerometer Model
Considering a negligible acceleration when compared to the acceleration due to

gravity, the accelerometer model is very similar to the magnetometer one. In fact, what is
being measured is a rotated constant vector (− ng). The measured specific force is given by:

fai (k) = −
i

nRT(k) ng + εai (k) (37)

with εai the accelerometer noise.
Clearly, the condition that the IMU acceleration is negligible is false whenever the

manipulator is moving. However, the variance of the accelerometers is larger when
compared to the gyroscopes. This will have the effect, when applying the MEKF, of being
mostly ignored when there is motion. This assumption was also followed in [1], where
good joint angle estimates were still obtained despite it.

The similarity with the magnetometer model makes it simple to find the linear model
of the accelerometer:

fai (k) = −
i

nR̂T(k) ng− [
i

nR̂T(k) ng×]ηi(k) + εai (k) (38)

Encoder Models
Incremental encoders measure the number of pulses produced in a time interval,

which, given the resolution of the encoder, can be translated into the angular velocity of a
joint. Therefore, their model is:

ωiei (k) =
(

ωi(k)− i
nRT(k) i−1

nR(k)ωi−1(k)
)

z
+ εiei (k) (39)

However, it can be expanded to describe the lack of angular velocity in the other axes
(imposed by the joint): 0

0
ωiei (k)

 = ωi(k)− i
nRT(k) i−1

nR(k)ωi−1(k) +

εωsi ,x(k)
εωsi ,y(k)
εiei (k)

 (40)



Appl. Sci. 2021, 11, 2519 14 of 30

where εωsi is the error in angular velocity due to slack between the joints that allows them
to slightly rotate along other directions.

3.3.2. Joint Model

The joint model describes the pose of the manipulator by the angles θi(k), angular
velocities θ̇i(k), and angular accelerations θ̈i(k) of each joint. These variables define the
orientation of each joint relative to its previous joint instead of the n frame.

Given that the angular acceleration θ̈i(k) is the derivative of the angular velocity θ̇i(k)
and that the angular velocity θ̇i(k) is the derivative of the angle θi(k), the model can be
immediately written.

θi(k + 1) = θi(k) + ∆tθ̇i(k) +
∆t2

2
θ̈i(k) + εθi (k) (41)

θ̇i(k + 1) = θ̇i(k) + ∆tθ̈i(k) + εθ̇i
(k) (42)

θ̈i(k + 1) = θ̈i(k) + εθ̈i
(k) (43)

In this model, ∆t is once again the time interval between the instants k and k + 1.
One advantage of this model over the link model is that its state vector is much

smaller, with only three variables per joint. Furthermore, it is a linear model. However,
because the position of a specific point in the manipulator depends on the orientation of
all the preceding joints, the error of each joint builds up when estimating that position.
Regarding the sensor models, the advantages of this model are the disadvantages of the
previous one, and vice versa. Encoders will have a much simpler model as they give direct
measurements of the state, whereas inertial measurements will depend on the states of all
preceding joints. Lastly, this model cannot be used to know the pose of the manipulator
with respect to an inertial frame if the relation between the base frame (0) and frame n
is not known. Throughout the rest of this section, the base is considered fixed relative to
frame n to simplify the model.

The linearization of the models presented in this section is not calculated. This is
due to the recursive nature of the models of the inertial sensors. This aspect produces
complicated formulas that are configuration dependent and difficult to implement and
debug. The lack of partial derivatives for those models prohibits the use of the EKF. Instead,
the UKF should be used to estimate the state for this model.

Encoder Models
Given the nature of the chosen state, the encoder model is very simple:

ωiei (k) = θ̇i(k) + εiei (k) (44)

with εiei (k) the incremental encoder measurement noise.
Magnetometer Model
Under the same assumptions as the link model, a magnetometer’s measurements can

be considered to be constant in the neighborhood of the manipulator. This means that,
once again, the measurements can be considered to be obtained in the joints’ frames. Given
this assumption, the following can be written.

im(k) = RT
θi
(k) i−

i−1RT i−1m(k) (45)

Knowing that the measurements are noisy:

mmi (k) =
im(k) + εmi (k) (46)

This equation, along with the previous one, defines a recursive model that can be
applied as long as the magnetism vector is known in any specific link. For example, if the
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magnetism vector in the base (Link 0) is known, the measurement from the magnetometer
in Link 2 is given by:

mm2(k) = RT
θ2
(k) 2−

1RT 1m(k) + εm2(k)

= RT
θ2
(k) 2−

1RT RT
θ1
(k) 1−

0RT 0m + εm2(k)
(47)

Gyroscope Model
The angular velocity measured by a gyroscope is always done with respect to an

inertial frame. However, given the relation:

iωni(k) = RT
θi
(k) i−

i−1RT i−1ωn(i−1)(k) +
iω(i−1)i(k) (48)

the gyroscope measurements can be written as a function of the angular velocity of the joint
(iω(i−1)i), the angle of the joint (which affects RT

θi
), and the angular velocity of the previous

link with respect to the inertial frame (i−1ωn(i−1)). With this relation, the gyroscope model
can be deduced.

ωgi (k) =
iωni(k) + εgi (k) (49)

with εgi (k) the gyroscope measurement noise and iω(i−1)i(k) =
[
0 0 θ̇i(k)

]T .
Accelerometer Model
The acceleration of a joint can be written as a function of the acceleration of the

previous joint:
nai(k) = i−1

nR(k) i−1Ωn(i−1)(k)
i−1ti +

nai−1(k) (50)

with i−1ti the translation vector from joint i− 1 to joint i in frame i− 1 and:

i−1Ωn(i−1)(k) = [iαni(k)×] + [iωni(k)×]2 (51)

From this relation, the specific force in a joint can be determined:

n f i(k) = i−1
nR(k) i−1Ωn(i−1)(k)

i−1ti +
n f i−1(k) (52)

Rotating it to the joint’s frame:

i f i(k) = RT
θi
(k) i−

i−1RT
(

i−1Ωn(i−1)(k)
i−1ti +

i−1 f i−1(k)
)

(53)

The matrix i−1Ωn(i−1)(k) is a function of the angular velocity and angular acceleration
of frame i− 1 with respect to frame n. However, the state is composed of variables that
describe the angular velocity and angular acceleration of the joints. In order to write the
accelerometer measurement as a function of the state variables, the angular velocity and
angular acceleration are rewritten:

iαni(k) = RT
θi
(k) i−

i−1RT i−1αn(i−1)(k) +
iα(i−1)i(k) (54)

iωni(k) = RT
θi
(k) i−

i−1RT i−1ωn(i−1)(k) +
iω(i−1)i(k) (55)

with iω(i−1)i(k) =
[
0 0 θ̇i(k)

]T and iα(i−1)i(k) =
[
0 0 θ̈i(k)

]T . Note that the influence
of the angular acceleration in this model is what created the necessity for it to be included
in the state vector.

With these three recursive expressions, the accelerometer can now be modeled.

fai (k) =
iΩni(k) i pai +

i f i(k) + εai (k) (56)

with i pai the position of the accelerometer in the link and εai (k) the accelerometer measure-
ment noise.
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3.3.3. Application of the Models to the Manipulator

The models presented thus far are all symbolic and serve for all manipulators that
follow the constraints initially mentioned. To make practical use of these models, the
symbolic variables must be replaced by the appropriate constants for a specific manipulator.

The manipulator is represented in Figure 4 along with the frames of each joint. From
this representation, the constant rotation matrices can be found. Frames 0 and 1− are
aligned, as are are Frames 2 and 3−. This means the rotation matrices between these frames
are the identity.

1−
0R = 3−

2R = I3 (57)

Figure 4. Manipulator sketch with coordinate frames.

In fact, if all joints have their angle at zero, the only referentials that are misaligned
are 1 and 2−. Using the Denavit–Hartenberg (DH) method, the rotation matrix 2−

1R is the
result of a rotation of −90◦ around z followed by a rotation of −90◦ around x.

2−
1R = R−90◦xR−90◦z =

0 1 0
0 0 1
1 0 0

 (58)

The translation vectors between the frames were measured with a ruler as precisely as
possible. The following measurements are all in millimeters.

0t1 =

 0
0

174.5

 1t2 =

0
0
0

 2t3 =

180.5
0
0

 3ttip =

190.5
0
0

 (59)

Note that the transformation between Frames 1 and 2 is purely a rotation, which
implies that vector 1t2 is a null vector.
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The positions of the accelerometers with respect to their corresponding joints are some
of the constants in the accelerometer models. These were found by measuring the position
of the IMUs with a ruler and adding the offset of the MEMS device present in the datasheet.

2 pa2 = 3 pa3 =

 94
−1
11

 (60)

Finally, the last constants needed are the time interval of the filter (∆t), which is
kept undefined for now, the gravity vector in the navigation frame n, and the magnetism
vector in the same frame. Assuming the base frame (0) is the same as the navigation
frame (n) and that this frame follows the north-west-up convention, the gravity vector is
ng = [0 0 − 9.81]T . The magnetic field vector in the navigation frame was later deter-
mined using the onboard magnetometers. From this information, the models developed
earlier can be put to use.

4. State Estimation

The two different descriptions of pose, the link model and the joint model, are used
with different filters. The link model has its state estimated using the MEKF as described in
Section 2.4.1, whereas the UKF, which is described in Section 2.4.2, is used to estimate the
state of the joint model. The covariance matrices in the algorithms were diagonal since the
cross variance between different variables was negligible. The empirical values obtained
for the variances of the state variables were:

• 4× 10−5 for εηij , with i = {1, 2, 3} and j = {x, y, z} (link model);
• 1× 10−3 for εωij , with i = {1, 2, 3} and j = {x, y, z} (link model);
• 1× 10−7 for εθi , εωi and εαi , with i = {1, 2, 3} (joint model).

The sensors’ variances were obtained experimentally and are presented in Table 2 in
their respective units ((rad/s)2 for gyroscopes and encoders and (m/s2)2 for accelerometers).

Table 2. Variance of the errors of the sensors.

Gyroscopes
Variable εωgA x εωgAy εωgAz εωgB x εωgB y εωgBz

Variance 3.4× 10−6 6.5× 10−6 1.1× 10−5 9.7× 10−6 8.4× 10−6 1.3× 10−5

Accelerometers
Variable εaAx εaAy εaAz εaBx εaBy εaBz

Variance 6.7× 10−6 3.1× 10−5 2.3× 10−5 8.8× 10−5 1.9× 10−4 7.0× 10−5

Encoders
Variable εie1 εωs1 εie2 εωs2 εie3 εωs3

Variance 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3 1× 10−3

After implementing the filters, each of the sensor models were tested individually
(along with the manipulator model) to verify that they were working correctly. Most of
these tests were performed with the manipulator stationary or while following this set of
movements:

• θ1 = 0◦ θ2 = 0◦ θ3 = 0◦ @0s

• θ1 = 0◦ θ2 = 90◦ θ3 = 0◦ @5s

• θ1 = 0◦ θ2 = 90◦ θ3 = −90◦ @10s

• θ1 = 90◦ θ2 = 90◦ θ3 = −90◦ @15s

• θ1 = 90◦ θ2 = 0◦ θ3 = 0◦ @20s

• θ1 = −90◦ θ2 = 0◦ θ3 = 0◦ @25s

• θ1 = −90◦ θ2 = 90◦ θ3 = 0◦ @30s

• θ1 = −90◦ θ2 = 90◦ θ3 = −90◦ @35s

• θ1 = 0◦ θ2 = 90◦ θ3 = −90◦ @40s

• θ1 = 0◦ θ2 = 0◦ θ3 = 0◦ @45s
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These movements were controlled using a PD controller with a proportional gain
of five and a differential gain of 0.2. The error that served as the input to this controller
was the difference between the references described above and the dead-reckoning of the
encoders’ measurements. On their own, the encoders do not provide an accurate ground
truth. However, their measurements are reliable enough to verify the correctness of the
models. Once this process was complete, all the sensors were used to test the accuracy of
the estimators at finding the position of the tip of the manipulator. This accuracy test was
performed with the aid of a structure with points in specific locations. This structure is
displayed in Figure 5.

Figure 5. Structure used for accuracy tests with its interest points marked.

By manually driving the tip of the manipulator to each of the structure’s points of
interest and calculating the position from the estimated state, the error of the methods can
be found for the different points. The tip was guided to the points in alphabetical order,
starting at Point A, going through all the others, and finishing at A again. The coordinates
of the presented points, in millimeters, are:

• A: (0; 0; 545.5)
• B: (371; 0; 174.5)
• C: (340.5; 141.5; 174.5)
• D: (0; 224; 200)
• E: (0; 224; 450)
• F: (100; 224; 450)
• G: (100; 224; 200)

This analysis is performed for the estimator of the link model in Section 4.1 and for
the estimator of the joint model in Section 4.2.

4.1. Link Model Estimation

To verify the correctness of the sensor models, the estimated state of the link model,
which is composed of rotation matrices, had to be converted into the angles of the joints.
These angles could then be compared to the baseline created by dead-reckoning of the
encoder measurements. The matrix that should be converted to a vector is i

i−R(k) for joint
i. This can be obtained from the state matrices as:

i
i−R(k) = i−

i−1RT i−1
nRT(k) i

nR(k) (61)
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Since the rotation of joint i is around the z axis of frame i for all joints, the expected
rotation vectors should have their x and y components (θix and θiy) close to zero, and the z
component (θiz) should match the baseline angle (θib).

4.1.1. Gyroscope Model

Using just the gyroscopes, the orientation of Link 1 remained static throughout the
execution of the test. This is a consequence of the lack of an IMU in that link. Under these
circumstances, the orientations of each link are independent. Therefore, there is nothing
preventing adjacent links from being rotated by an axis different than the one allowed by
the joints. This is evident in the graph of Figure 6.

Figure 6. Evolution of Rotation Vector 2 when testing the link model using only gyroscope measure-
ments.

This graph shows the evolution of the rotation vector θ2 and the baseline for the first
two angles (θ1b and θ2b). Note that θ1b was included here since there would be no relation
between this angle and the one estimated by the link model as the estimated orientation of
Link 1 is static.

However, there should be a relation between θ1b and θ2x, because when θ2 = 0, a
rotation of θ1 is equivalent to a rotation of Link 2 around its x axis. This association is
evident in the time intervals when θ1 6= 0, that is [15; 40] s. Note this relation is even
stronger in the interval [20; 30] s, which is when θ2 = 0.

The relation between θ2b and θ2z is also evident in the intervals [5; 20] s and [30; 45]
s. Again, because the rotation vector is not always pointing along the z axis of Frame 2,
the association is mostly present when θ1 = 0, which is in intervals [5; 15] s and [40; 45] s.
However, even in these intervals, the value of θ2z seems to be slightly higher than that of
θ2b by about 5◦. This slight overshoot is actually visible when performing the test, which
means the gyroscope is more accurate than the encoders. The reason the encoder measures
a smaller value than the real one is that the movement performed at instants 5 s and 30 s is
so fast that the encoder misses some pulses. This kind of error is correctable by the other
sensors.

In the moments when θ1 6= 0 and θ2 6= 0, the rotation vector points along a direction
that also has a y component, which is visible in the intervals [15; 20] s and [30; 40] s. These
also correspond to the intervals when there is not a direct correlation between the baseline
variables and the corresponding rotation vector components.

Figure 7 shows the graph with the components of Rotation Vector 3 (θ3x, θ3y, and
θ3z) and the baseline for the angle of the third joint (θ3b). Assuming the orientation of
Link 2 is being correctly estimated, this rotation vector should only have a z component.
As expected, θ3z roughly matches θ3b.
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Figure 7. Evolution of Rotation Vector 3 when testing the link model using only gyroscope measurements.

However, the x and y components of the rotation vector are still significant during
some periods. This discrepancy starts to be noticeable at 15 s, which is exactly when the
first joint starts rotating out of the 0◦ angle. This error is justifiable by a slight tilt of the
manipulator in one direction that should not be allowed by the manipulator. Nevertheless,
it is relevant to have the model notice these imprecisions, as they influence the estimate of
the position of the manipulator’s tip. The reason the error only appears at that moment is
related to the joint that moves. Once θ1 varies, inertia in the manipulator can cause it to tilt
to a different side from the original. Nevertheless, the x and y components are small when
compared to the length of the rotation vector, which is approximately equal to θ3z.

4.1.2. Accelerometer Model

Similarly to the gyroscope test, the orientation of Link 1 remained static throughout
the execution of all movements for the test using only accelerometers. This is once again
due to the lack of an IMU in Link 1. However, because the gravity acceleration vector
was approximately parallel to the axis of rotation of Joint 1, the angle of this joint has no
relation with any component of the available rotation vectors. Much like the previous test,
the system is not fully observable. Nevertheless, the remaining angles can be estimated
using the information from the accelerometers.

Figure 8 shows the evolution of the components of Rotation Vector 2 along with the
baseline for the angles of Joints 1 and 2. The baseline for Joint 1 (θ1b) is only included in the
graph to show that it is not related to the rotation vector.

Figure 8. Evolution of Rotation Vector 2 when testing the link model using only accelerometer
measurements.

As expected, the angle of Joint 2 is coincident with θ2z. Furthermore, there are peaks
in acceleration during the transitions, which influence the rotation vector in a visible way.
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The accelerometer measurements even justify the encoder errors that were found using the
gyroscope test. Once again, there is an overshoot of θ2z.

An unexpected detail is the small value for the θ2x and θ2y variables that starts being
noticed at around 5 s. This error is probably associated with imperfections in the initial
angle of Joint 3. The initial gravity acceleration vector, and therefore the one expected
in the inertial frame, is calculated as the average of the first 100 measurements of the
accelerometers of IMU B. If θ3 is slightly different from zero, then the initial gravity vector
for Link 2 will be inconsistent with the one from Link 3. Therefore, the orientation of Link
2 changes slightly to match the initial acceleration vector.

The graph in Figure 9 displays the coherence between θ3z and θ3b. It also demonstrates
that the initial error of θ3 does not affect the orientation of Link 3, since the slight orientation
change of Link 2 produces errors in θ2x and θ2y that are exact opposites of θ3x and θ3y.
The peaks of acceleration during the transitions are also more noticeable in this link as a
consequence of it being further from the base.

Figure 9. Evolution of Rotation Vector 3 when testing the link model using only accelerometer
measurements.

4.1.3. Encoder Model

If the encoder model is correctly implemented, the z component of the rotation vectors
obtained from the orientation estimates of each link should perfectly match the base-
line angles since the baseline is obtained using the encoders. This is mostly verified in
Figures 10–12.

There are slight changes noticeable when a different encoder detects movement. For
example, at 10 s, which is when θ3 changes, θ2 is slightly affected by that movement. This is
a natural consequence of the way ωi was modeled. Since it follows a random walk model,
there should be some inertia when altering the orientation of a link. For example, if θ3
changes, then the expectations of the model for Links 2 and 3 to stand still force θ2 to also
change. However, the lack of a change in that joint detected by its encoder quickly reverts
this small effect.
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Figure 10. Evolution of Rotation Vector 1 when testing the link model using only encoder
measurements.

Figure 11. Evolution of Rotation Vector 2 when testing the link model using only encoder
measurements.

Figure 12. Evolution of Rotation Vector 3 when testing the link model using only encoder
measurements.

4.1.4. Full Model

Combining the measurements of all available sensors produces the estimates from
Figures 13–15.
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Figure 13. Evolution of Rotation Vector 1 when testing the link model using all measurements.

Figure 14. Evolution of Rotation Vector 2 when testing the link model using all measurements.

Figure 15. Evolution of Rotation Vector 3 when testing the link model using all measurements.

Clearly, the full model detects the overshoot of θ2, as well as the smallvalues of the x
and y components of the rotation vectors that the encoders cannot measure. Furthermore,
this model is capable of estimating the value of θ1 since it limits the relative orientations of
adjacent links and attributes changes along the x axis of Links 2 and 3 to the first encoder’s
measurements. This gives the model a level of awareness that it lacks when using only the
gyroscopes and the accelerometers, making the system fully observable.

Table 3 displays a summary of the previously discussed errors of the link model when
using individual sensors.
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Table 3. Summary of the errors of the link model using individual sensors.

Sensors Used Problem Cause

Gyroscopes

Static θ1 rotation vector Missing IMU in Link 1

No direct relation of the components
of θ2 with θ1b
and θ2b

Static orientation of Link 1 causes the
orientation of Link 2 to have 2 DOF

Accelerometers

Static θ1 rotation vector Missing IMU in Link 1

Significant values for the components
θ2x and θ2y

Initial misalignment of
Link 2 relative to Link 3

Significant noise on θ3z
during transitions

Large distance from the
base of the manipulator

Encoders
Low noise on θ2b

“Inertia” of the model causes the
orientations of the links to fall behind

Overshoot not detected Fast angular velocity of a joint
causes the encoder to miss pulses

4.1.5. Accuracy Test

The accuracy test was performed using the link model under the previously speci-
fied conditions.

The norm of the error vectors was collected for each point and is displayed in Table 4.
All the values from the table are presented in millimeters. Even though the tip of the
manipulator was initially at Point A, its error is not displayed. This is because, at the
starting point, the error is always zero since the initial conditions provided to the estimation
methods correspond to the expectations of the position of the tip.

Table 4. Norm of the errors of the accuracy test performed on the link model.

Point B C D E F G A

Norm of the Error (mm) 9.50 12.69 21.40 20.25 43.79 56.64 40.75

Norm of the Error
projected on the xy-plane (mm) 9.49 10.60 19.32 16.19 42.48 54.98 40.04

Norm of the Error
projected on the z axis (mm) 0.28 6.98 9.20 12.16 10.64 13.62 7.57

The maximum error has a norm of 5.7 cm, which is quite large in the scale of the
manipulator. Note that most of the error is located in the horizontal projection. Furthermore,
this error has a tendency to increase, except when reaching Points E and A. This large error
is caused by a drift of θ1. The accelerometers are the only sensors capable of correcting for
sources of drift. Given that the acceleration of gravity is almost parallel to the rotation axis
of θ1, drift on this angle cannot be compensated. The reason this error is decreased when
reaching Points E and A is that the error of the tip’s position becomes less dependent on
the value of θ1 as the manipulator approaches a vertical pose.

A confirmation of the cause of the problem can be observed in Table 5. From it, it
becomes even more evident that the error in θ1 increases and that it is the most responsible
joint for the accumulation of error.
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Table 5. Error of the angles of the joints during the accuracy test for the link model.

Point B C D E F G A

Error in θ1 (◦) 1.85 5.49 13.74 18.06 19.28 23.27 23.74

Error in θ2 (◦) 4.48 1.85 6.54 10.66 16.63 17.20 9.17

Error in θ3 (◦) 1.35 2.80 4.61 4.54 3.40 26.81 3.59

4.2. Joint Model Estimation

Unlike with the previous model, no conversion is needed in order to compare the
results with the baseline given by the encoders. The state of the joint model already includes
the best estimates of each angle.

4.2.1. Gyroscope Model

Figure 16 shows the estimates of the joints’ angles obtained with the joint model using
only gyroscope measurements. There is clearly an aberrant behavior that manifests at the
first sign of movement. When θ2 changes at 5 s, the estimate of θ2 (θ2est) falls short of the
baseline (θ2b), and the estimate of θ3 (θ3est) also changes. This error in θ3est persists after
rotation of that joint at 10 s. Later, when θ1 changes at 15 s, the error in both estimates (θ2est
and θ3est) is corrected.

These errors are the first sign of a flaw in the joint model. This model assumes that the
pose of the manipulator is fully describable by the angles of each joint. However, as the
results of the link model show, there can be slight misalignments between the links that
result in a slightly different pose. These misalignments are not accounted for by the joint
model. In this case, the consequence is that the small difference of the rotation axes of Joints
2 and 3 results in a different amount of rotation measured in the axes of the inclined joints.

The errors are corrected when θ1 changes because the different IMUs measure that
rotation in different axes. Assuming θ2 ≈ 90◦ and θ3 ≈ −90◦, the rotation of Joint 1 should
be measured mostly in the y axis of IMU A and on the x axis of IMU B. Therefore, the
only way the model can justify this change is by quickly altering its estimates to the actual
values of θ2 and θ3. The full model avoids this flaw using the accelerometers to correct the
steady-state value of these estimates.

Figure 16. Evolution of estimates of the joints’ angles when testing the joint model using gyro-
scope measurements.

4.2.2. Accelerometer Model

The accelerometer test results present even stronger evidence of the flaw in the joint
model.

The graph in Figure 17 was obtained from the first two seconds of the execution of
a static test. Despite the absence of movements, the results imply that the manipulator is
spinning its first joint at high speed.
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Figure 17. Evolution of the estimates of the joints’ angles during a static test of the joint model using
accelerometer measurements.

Once again, the culprit behind this problem is the tilt, which causes a misalignment
of the links from their expected frames. This tilt causes a part of the gravity acceleration
vector to be projected into the yz-plane of the IMUs. However, if the manipulator was
perfectly vertical, the same vector should only be noticed in the x axis of the IMUs. Since
there is no acceleration expected in that plane from that vector, the acceleration in that
plane is justified as centrifugal acceleration. Considering the distance of the IMUs to the
axis of rotation, the angular velocity must be high in order to justify the small acceleration
measured in the horizontal plane. This angular velocity translates to a quickly changing
value of θ1.

The solution adopted for this problem was to deny the model the ability to justify
the acceleration in the horizontal plane as centrifugal acceleration. In other words, the
accelerometer model was simplified to assume the only acceleration measured was due to
the acceleration of gravity:

ig(k) = RT
θi
(k) i−

i−1RT i−1g(k) (62)

fai (k) = −
ig(k) + εai (k) (63)

This is the same assumption as the one used in the link model. This new model is
similar to the model of the magnetometer since it is equivalent to measuring a rotated
vector that is static in inertial space. The results of this corrected model to the test with
the usual movements are presented in Figure 18. Note that this model is still incapable of
finding the value of θ1.

Figure 18. Evolution of estimates of the joints’ angles when testing the corrected joint model using
accelerometer measurements.
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4.2.3. Encoder Model

The graph from Figure 19 displays what was expected: the estimates of the joint
model using only encoders follow the baseline obtained from the same encoders. This is
an obvious outcome, which has its limitations. The measurements from the encoders do
not constitute a reliable ground truth and therefore should not be trusted as an accurate
estimate. For example, this model is incapable of detecting overshoots like the ones
observed in Figures 16 and 18 of the results of the gyroscope and accelerometer models.

Figure 19. Evolution of estimates of the joints’ angles when testing the joint model using encoder
measurements.

4.2.4. Full Model

Finally, the results of the full model for the same test are presented in Figure 20. The
gyroscope problem of the initially incorrect steady-state estimates of θ2 and θ3 is removed,
and the overshoots are detected.

Figure 20. Evolution of estimates of the joints’ angles when testing the joint model using
all measurements.

A summary of the errors observed when using individual sensors is displayed in
Table 6.
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Table 6. Summary of the errors of the joint model using individual sensors.

Sensors Used Problem Cause

Gyroscopes Incorrect amount of rotation estimated
for θ2 and θ3

Misalignment of the rotation axes
caused by a misalignment
of the links’ orientations

Accelerometers

Fast change of θ1

A small acceleration projected into
the horizontal plane is obtained
from the tilt in the links and
justified as centrifugal acceleration

(After correction) inability
to estimate θ1

Gravity acceleration vector parallel
to rotation axis of joint 1

(After correction) significant noise on
θ3est during transitions

Large distance from the
base of the manipulator

Encoders Overshoot not detected Fast angular velocity of a joint
causes the encoder to miss pulses

4.2.5. Accuracy Test

The errors observed during the accuracy test can be found in Table 7. Much like the
link model, the drift problem is maintained since the sensors used are the same.

Table 7. Norm of the errors of the accuracy test performed on the joint model.

Point B C D E F G A

Norm of the Error (mm) 1.50 29.83 7.59 4.45 24.30 35.60 2.12

Norm of the Error
projected on the xy-plane (mm) 1.06 29.80 6.44 3.67 23.94 35.55 2.12

Norm of the Error
projected on the z axis (mm) 1.07 1.37 4.02 2.52 4.19 1.90 0.01

A notable difference is the overall performance of this filter relative to the other. The
maximum error was around 5.7 cm for the link model, whereas the error for the joint model
always stays below 3.6 cm. This improvement is not drastic. However, if the effects of drift
are set aside, the vertical projection of the error goes from a maximum of 13.6 mm in the
link model to 4.2 mm in the joint model. Apparently, the freedom given to the link model
of tilting the links independently allows it to tilt to far off the real orientations. These extra
degrees of freedom cause the drift to project to the other axes, allowing the maximum error
to be higher.

For the sake of completeness, Table 8 presents the errors of the joints’ angles. Overall,
the error of this model, when not considering drift, is always below 1 cm, which, given the
limited precision with which the structure was assembled, means this model might have
even better performance when tested with a different ground truth.

Table 8. Error of the angles of the joints during the accuracy test for the joint model.

Point B C D E F G A

Error in θ1 (◦) 0.16 4.63 0.93 0.85 5.55 8.33 10.01

Error in θ2 (◦) 0.83 0.61 0.31 0.08 1.69 0.01 0.02

Error in θ3 (◦) 1.94 1.60 2.22 1.03 4.56 0.75 0.68
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5. Conclusions

In this paper, a robotic manipulator has its state estimated using two different filters,
each of which applies to a different model. After a description of the different components
of the manipulator and of some of the possible solutions to the state estimation problem,
both models are depicted in a modular and reusable way.

The filters are then implemented and tested in a real platform. During the implemen-
tation of the filters, the correctness of the two used models is verified with extensive tests
on the individual sensors. These reveals flaws in each individual sensor. However, when
combined, these flaws are corrected. The only one that is uncorrectable by sensor fusion
is the one from the joint model, which originated from the accelerometers measuring a
small horizontal acceleration. This acceleration is caused by a slight tilt of the manipulator;
however, the model justifies it as centrifugal acceleration, which causes the model to por-
tray the movement of the manipulator as rapidly spinning along one axis. This problem
is corrected by simplifying the accelerometers’ model, by removing its ability to consider
centrifugal acceleration.

Despite this flaw of the joint model, it still outperforms the link model in an accuracy
test. This test is performed resorting to an external structure with specified points marked
in multiple strategic predefined locations. The estimate of the position of the manipulator’s
tip is compared to the coordinates of the points of interest when the tip is driven to those
points. Both models suffer from drift around an axis. Despite that fact, during the execution
of the accuracy test, the joint model is able to keep its maximum vertical error under 5 mm.
This is an error that is not affected by drift and therefore represents the accuracy the filter
would have achieved if the drift problem were not present.

A possible solution to this issue would be to find a way to correctly calibrate the
magnetometers. These would provide measurements that would compensate for drift in
the direction in which it existed. Besides an improved calibration technique, the proposed
models can be expanded to work with other sensors.
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