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)e antilock braking system (ABS) is an electromechanical device whose controller is challenging to design because of its
nonlinear dynamics and parameter uncertainties. In this paper, an adaptive controller is considered under the assumption that the
friction coefficient is unknown. Amodified high-order sliding-mode controller is designed to enhance the controller performance.
)e controller ensures tracking of the desired reference and identifies the unknown parameter, despite parametric variations
acting on the real system. )e stability proof is done using the Lyapunov approach. Some numerical and experimental tests
evaluate the controller on a mechatronic system that represents a quarter-car model.

1. Introduction

)e antilock braking system (ABS) in the actual vehicles is a
mechatronic system that helps the driver to maintain control
of the vehicle during emergency braking by preventing the
wheels from lock-up. )e ABS is designed to increase the
braking efficiency and maintain the vehicle’s maneuver-
ability, reducing the driving instability, obtaining maximum
wheel grip on the surface while the vehicle is braking, and
decreasing the braking distance.

During the last decade, ABSs were improved considering
more advanced technologies and more sophisticated control
strategies. However, it is essential to highlight that the tire-
road friction coefficient is one of the most critical parameters

since friction is the mechanism for transmitting external
forces to the vehicle. )ese friction forces are the primary
forces affecting the planar vehicle motion. From a physical
point of view, these forces are limited by the road surface
coefficient of friction μ and the instantaneous tire normal
forces.)e condition (i.e., the value of μ ) of the road surface,
even if regular, could negatively influence the vehicle motion
since the road could be dangerously slippery (e.g., due to
water or ice). In practical cases, the road condition is one of
the most relevant parameters causing the driving control
loss. In particular, the knowledge of the real tire-road
friction coefficient is critical to apply active control actions
properly. )erefore, its precise estimation increases the ef-
ficiency of the control system considerably. )ere is
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literature regarding the modeling [1] and the estimation [2]
of the tire-road friction coefficient.)ese studies deal mainly
with identifying the tire-road friction coefficient to improve
the vehicle acceleration or deceleration [3–13]. However,
today, the ABS is very important for passenger car safety, so
further efforts should be made to continue studying it. In
fact, novel techniques can be applied such as those in
[14–16].

In this article, the ABS laboratory setup, manufactured
by Inteco Ltd., has been used to test the proposed controller.
)is setup represents a quarter-car model [17], and it
consists of two rolling wheels. Earlier works about nonlinear
controllers were considered. )ese works are mainly based
on the assumption that the information of all sensors is
available for measurement. In [18], an experimental com-
parison between PID and nonlinear stabilizing controllers is
presented, and in [19], an event-triggered control is pro-
posed. Also, the sliding mode control strategies are analyzed
in [20, 21]. Other works deal with intelligent control
techniques such as adaptive neuro-fuzzy [22, 23], neuro-
fuzzy techniques [24], or other fuzzy controllers [25, 26].

In this paper, an adaptive controller using the modified
HOSM is designed for the ABS laboratory setup. )e
controllers ensure tracking of the desired reference, even in
uncertainties in the friction coefficient and external per-
turbations. At the same time, the identification of the friction
coefficient parameter is developed. )e stability proof using
the appropriate function of Lyapunov and the performance
of the controller is evaluated by some numerical simulations
and experimental tests on the ABS laboratory setup.

)e paper is organized as follows. Section 2 introduces
the description and the mathematical model of the exper-
imental ABS laboratory setup. In Section 3, the main con-
tributions are presented. Section 4 presents some numerical
simulation and real-time tests on the ABS laboratory setup.
Some comments conclude the paper.

2. Mathematical Model of the ABS
Laboratory Setup

)eABS laboratory setup describes the essential dynamics of
a quarter-car model. It consists of two rolling wheels: the
lower aluminum wheel emulates the road motion, and the
upper plastic wheel simulates the vehicle wheel. In order to
accelerate the lower wheel, a DC motor is coupled on it,
whereas the upper wheel is equipped with a disk-brake
system. Encoders on the wheels allow determining the
positions and velocities of the two wheels, using numerical
differentiation. )is laboratory setup, manufactured by
Inteco Ltd., and shown in Figure 1, preserves the funda-
mental characteristics of an actual ABS system in the range
of 0–70 km/h [17].

)e dynamic equations of the ABS laboratory setup are
obtained from Figure 1 and are currently used in the lit-
erature [27–30]. )e braking torque Tb is used as a control
variable, and it acts on the upper wheel. Additionally, the
tangential braking force Ft represents the tractive force
generated at the contact between the upper and lower wheel.

_ω1 �
r1

J1
Ft −

1
J1

d1ω1 + Tb( ,

_ω2 � −
r2

J2
Ft −

1
J2

d2ω2,

(1)

where ω1 and ω2 are the angular velocities of the upper and
lower wheels, respectively, whose inertia moments are J1 and
J2 and whose radii are r1 and r2. Furthermore, d1 and d2 are
the viscous friction coefficients of the upper and lower wheel.

)e braking torque Tb is modeled by a first-order
equation [17]:

_Tb � c − Tb + b(u)( , (2)

where c> 0 is a constant, u ∈ [0, 1] is the control input, and
b(u) describes the relation between u and the input applied
to the DC motor. )is relation can be approximated by an
equation similar to the brake pedal model in an automobile
[27, 31, 32]:

b(u) �
b1u − b0, if u≥ u0,

0, if u< u0,
 (3)

where u0 is the threshold of the brake driving system.
On the other side, the tractive force Ft is proportional,

via the tire-road friction coefficient μ ∈ [0, 1], to the normal
load of the vehicle and is a nonlinear function of the lon-
gitudinal wheel slip.

λ �
r2ω2 − r1ω1

r2ω2
�

vx − vw

vx

. (4)

Under normal operation conditions, the wheel velocity
vw matches the vehicle forward velocity vx and λ � 0. When
the braking is applied, vw tends to be lower than vx > 0
(remaining nonnegative), a slippage λ> 0 occurs, and a
tractive force Ft is generated at the contact point, whose
magnitude is given by

Ft � μDφ(λ) � θφ(λ), θ � μD, (5)

where φ(λ) represents the force Ft normalized with respect
to θ and D is the force peak value:

φ(λ) � sin(C arctan(Bλ)), (6)

ω1

ω2

Ft

r1

r2

J1

J2

Lower wheel

Upper wheel

Figure 1: )e ABS laboratory setup and its scheme.
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with B being the stiffness factor and C being the shape factor.
)e parameters B, C, and D are determined to match the
experimental data.

Remark 1. Various models are available in the literature to
model the tire behavior, for example, the so-called Pacejka’s
“magic formula” [33] which approximates the response
curve of the braking process based on experimental data. It is
widely used and allows working with a wide range of values,
including the linear and nonlinear regions of the tire
characteristics.

Hence, considering (5), the dynamic equation of the ABS
laboratory setup (1) can be rewritten as

_ω1 �
r1

J1
θφ(λ) −

1
J1

d1ω1 + Tb( ,

_ω2 � −
r2

J2
θφ(λ) −

1
J2

d2ω2.

(7)

To design the controller, it is assumed that vx > 0. )e
output to be controlled is the wheel slip λ, and the control
aim is to design a controller such that λ tracks in finite time a
constant reference λref in the presence of parameter un-
certainties inherent to the ABS laboratory setup.

3. Design of an Adaptive Controller for the ABS
Laboratory Setup

In this section, a modified high-order sliding-mode
(MHOSM) controller is designed to force the error,

eλ � λ − λref , (8)

to zero in finite time, even in the presence of variations of θ.
)e control law needs a control reference λref . Hence, instead
of considering the wheel slip as the control variable, an
auxiliary slip velocity vs � vx − vω � λvx will be used
[29, 30, 32]. )en, the slip velocity reference is given by
vs,ref � λrefvx. )erefore, the slip velocity error is defined as

ev � vs − vs,ref � 1 − λref( vx − vω,

ev � 1 − λref( r2ω2 − r1ω1,
(9)

and the dynamics

_ev � 1 − λref(  _vx − _vω � 1 − λref( r2 _ω2 − r1 _ω1

� − k λref( θφ(λ) +
r1

J1
d1ω1 − 1 − λref( 

r2

J2
d2ω2 +

r1

J1
Tb,

(10)

with k(λref ) � (r21/J1) + (1 − λref )(r22/J2).
However, the friction coefficient μ is a parameter that, in

real cases, may vary considerably, according to the road and
tire conditions. Also, the parameter D (value of force peak of
Pacejka’s magic formula) depends on the tire condition. In
this article, a controller in which the parameter θ is constant

and unknown is proposed. )e next result solves the control
problem in the case of uncertainty of this parameter.

Theorem 1. Consider the following assumption:

(i) Ce slip reference λref is a constant
(ii) Ce angular velocities ω1,ω2 are measurable
(iii) Ce parameter θ is constant and unknown

Cen, the modified high-order sliding mode controller is
proposed:

_ω1 � −
r1

J1

θφ(λ) −
1
J1

d1ω1 + Tb( ,

Tb �
J1

r1
χ,

χ � k λref( θφ(λ) −
r1

J1
d1ω1 + 1 − λref( 

r2

J2
d2ω2 − α11⌊ev⌉

(1/2)

− α12ev + xv,

_xv � − α2,1⌊ev⌉
0

− α2,2ev,

(11)

with k(λref ) � (r21/J1) + (1 − λref )(r22/J2) and
α11, α12, α21, α22 > 0 ensures that the tracking error (9) con-
verges to zero in finite time [34] and the estimation error θ �

θ − θ globally exponentially tends to zero along their
derivatives.

Proof. Substituting the control input (11) into the dynamics
of the slip velocity error (10), one obtains

_ev � − k λref( θφ(λ) +
r1

J1
d1ω1( 

− 1 − λref( 
r2

J2
d2ω2(  +

r1

J1

J1

r1
χ 

� α11⌊ev⌉
(1/2)

− α12ev + xv − k λref( φ(λ)θ,

(12)

_ev

_xv

  �
− α11⌊ev⌉

(1/2)
− α12ev + xv

− α21⌊ev⌉
0

− α22ev

  +
1
0

 ϑ(λ)θ, (13)

with ϑ(λ) � − k(λref )φ(λ).
Let us consider the following Lyapunov function:

V � Vξ + Vθ, (14)

with

Vξ �
1
2
ξT

Pξ,

Vθ �
1
2c

θ
2
,

(15)

with θ � θ − θ and
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ξ �

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

P �

4α21 + α211 α11α12 − α11
α11α12 2α22 + α212 − α12
− α11 − α12 2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(16)

Deriving (15) along the trajectories of the system,

V
.

ξ � ξT
P _ξ,

V
.

θ �
1
c

θ _θ,

(17)

with

_ξ �

⌊ev⌉
. (1/2)

_ev

_xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� −

1

2 ev



(1/2)
Λ1ξ −

1
2
Λ2ξ

+
1

2 ev



(1/2)
Θ1θ +

1
2
Θ2θ,

Λ1 �

α11 0 − 1

0 0 0

2α21 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Λ2 �

α12 0 0

2α11 2α12 − 2

0 2α22 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Θ1 �

ϑ(λ)

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

Θ2 �

0

2ϑ(λ)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(18)

)e derivative of Vξ (15) is

V
.

ξ � −
1

2 ev



(1/2)

ξT
PΛ1ξ −

1
2
ξT

PΛ2ξ +
1

2 ev



(1/2)

ξT
PΘ1θ +

1
2
ξT

PΘ2θ,

(19)

with

PΛ1 �

α11 α211 + 2α21  0 − α211
α12 α211 − 2α21  0 − α11α12

− α211 0 α11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

PΛ2 �

α12 4α21 + 3α211 2α11 α212 − α22  − 2α11α12
α11 4α22 + 3α212  2α12 α212 + α22  − 2 2α22 + α212 

− 3α11α12 4α22 − 2α212 2α12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠,

PΘ1 �

4α21 + α211
α11α12
− α11

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ϑ(λ),

PΘ2 � 2
α11α12

2α22 + α212
− α12

⎛⎜⎜⎝ ⎞⎟⎟⎠ϑ(λ).

(20)
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Analyzing the first term of (19), i.e., − (1/2|ev|(1/2))ξT
PΛ1ξ

can be rewritten as

−
1

2 ev



(1/2)

ξT
PΛ1ξ �

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T α11 α211 + 2α21  0 − α211

α12 α211 − 2α21  0 − α11α12

− α211 0 α11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� −
1

2 ev



(1/2)

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

α11 α211 + 2α21  0 − α211

0 0 −
1
2
α11α12

− α211 −
1
2
α11α12 α11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−
1

2 ev



(1/2)

α12 α211 − 2α21 ⌊ev⌉
(1/2)

ev.

(21)

If

−
1

2 ev



(1/2)

α12 α211 − 2α21 ⌊ev⌉
(1/2)

ev � −
1
2
α12 α211 − 2α21  ⌊ev⌉

(1/2)
 

2
, (22)

the first term in matrix form is written as

−
1

2 ev



(1/2)

ξT
PΛ1ξ � −

1

2 ev



(1/2)

ξT

α11 α211 + 2α21  0 − α211

0 0 −
1
2
α11α12

− α211 −
1
2
α11α12 α11

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ξ −
1
2
ξT

α12 α211 − 2α21  0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ξ. (23)

Similarly, the second term of (19) is − (1/2)ξT
PΛ2ξ and

can be evaluated as

−
1
2
ξT

PΛ2ξ � −
1
2

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T α12 4α21 + 3α211  2α11 α212 − α22  − 2α11α12

α11 4α22 + 3α212  2α12 α22 + α212  − 2 2α22 + α212 

− 3α11α12 4α22 − 2α212 2α12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⌊ev⌉
(1/2)

ev

xv

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� −
1
2
ξT

α12 4α21 + 3α211  0 0

0 2α12 α22 + α212  − 2α212

0 − 2α212 2α12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ξ

� −
1
2

α11 5α212 + 2α22 ⌊ev⌉
(1/2)

ev − 5α11α12⌊ev⌉
(1/2)

xv .

(24)
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Since ⌊ev⌉(1/2)ev � (1/|ev|(1/2))e2v and ⌊ev⌉(1/2)xv � (1/|
ev|(1/2))evxv, the second term is presented in the matrix form:

−
1
2
ξT

PΛ2ξ � −
1
2
ξT

α12 4α21 + 3α211  0 0

0 2α12 α22 + α212  − 2α212

0 − 2α212 2α12

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
ξ

−
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Following with the terms of (19), one analyzes the term
(1/2|ev|(1/2))ξT

PΘ1θ:
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Using (23), (25), (26), and (27), one rewrites (19) as
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Finally, using V
.

ξ (28) and V
.

θ (17), the derivative of the
Lyapunov function (14) is
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Since θ
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.

, recalling that θ is constant, one gets
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Finally, substituting the equation (30) into (29), one
obtains

V
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(32)

)en, V
.

is negative definite. )erefore, ev and θ tend to
zero. Since the adaptive controller (12) ensures that vs tends
to vs,ref in asymptotic time, one concludes that λ also tends to
λref in asymptotic time. □

4. Simulation Results

In this section, some numerical results and real-time ex-
perimental results are shown, using the ABS laboratory setup

controlled by a PC.)e objective is to show the performance
of the controller (11).

4.1. Numerical Simulation. To develop the numerical sim-
ulations, the coefficients of the ABS laboratory setup are
given in Table 1 and the controller implemented in nu-
merical simulations (11) are given in Table 2. Also, the tests
are done considering ω1(0) � ω2(0) � 178 (rad/s)
(1700 rpm), as initial conditions for (7). )ese conditions
simulate a vehicle that runs at a speed of 65 km/h, and
suddenly, the brake system is activated, sending a control
signal to the actuator to start the braking process. It is worth
noticing that, in this setup, the nominal value of the friction
coefficient between the two wheels, given by the constructor,
is μ0 � 1. Nevertheless, this coefficient may vary in practice,
remaining close to this value.

)e numerical simulations are summarized in
Figures 2–5, where it can be seen that the proposed con-
troller (11) ensures the performance of the system. Figure 3
shows the wheel velocity vw and the vehicle longitudinal
velocity vx. )e wheel slip λ and the tracking error eλ �

λ − λref are shown in Figure 4.)e applied input Tb is shown
in Figure 2. Finally, the estimation θ given by (29) and used
in the controller (11) is shown in Figure 5, where the real
value is θ � 22.98 N.

4.1.1. Real-Time Simulation. In this section, some real-time
experimental results are shown, using the ABS laboratory
setup controlled by a PC. )e interested reader can find in
[17] the details about the system hardware and the imple-
mentation of the proposed controller. )e objective is to
show the performance of the controller (11). )e coefficients
of the ABS laboratory setup are given in Table 1, and the
controller (11) implemented in real-time simulation is given
in Table 3.

)e real-time simulation is shown in Figures 6–9. )e
braking phase of the ABS laboratory setup starts at 5.7 s
and finishes at 7 s. It is important to highlight that, after
this braking phase, corresponding to the maximum
braking efficiency, the performance is no longer relevant.
Figure 7 shows the wheel velocity vw and the vehicle
longitudinal velocity vx. It can be observed that the control
input Tb applied to the ABS setup system, shown in
Figure 6, reduces the velocities gradually to zero in ap-
proximately 1.8 s. Figure 8 shows the behavior of the wheel
slip λ, the wheel slip desired λ\r, and the tracking error
eλ � λ − λref . Finally, Figure 9 shows the identification of
the unknown parameter θ and the estimation error
eθ � θ − θ. Note that, in the real-time simulation, the
braking process can be considered concluded after about
1.1 s. )e reader can compare these results with those of
Section 4.1. It can be noticed that these experimental
results differ from the simulation results due to the
unmodeled dynamics, parameters variations, etc., affecting
the real system. )is is particularly evident after 6.5 s, i.e.,
when the braking process can be considered concluded.
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Table 1: Coefficients and system variables for the ABS laboratory setup.

r1 Radius of the upper wheel 0.0995m
r2 Radius of the lower wheel 0.0990m
J1 Upper wheel inertia moment 7.54 × 10− 3 Kgm2

J2 Lower wheel inertia moment 2.56 × 10− 3 Kgm2

β1 Upper wheel viscous friction coefficient 118.74 × 10− 6 Kgm2/s
β2 Lower wheel viscous friction coefficient 214.68 × 10− 6 Kgm2/s
μ Friction coefficient between wheels 1
b1 Constant 15.24
b0 Constant 6.21
c Constant 20.37 s− 1

u0 Constant 0.415
B Stiffness factor 26.76
C Shape factor 1.13
D Peak value 22.98

Table 2: Coefficients and system variables of controller (11) used in numerical simulations.

c11 Gain of the controllers (11) 50
c12 Gain of the controllers (11) 15
c21 Gain of the controllers (11) 50
c22 Gain of the controllers (11) 35.0
c Adaptive gain (15) 0.025
kθ Adaptive gain (29) 2500

10 1.50.5
Time (s)

0

5

10

15

T b
 (N

)

Figure 2: Input control Tb.
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Figure 3: Angular velocity: (a) upper wheel ω1; (b) lower wheel ω2.
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Figure 4: (a) Wheel slip λ (black) and wheel slip reference λref (constant, blue). (b) Tracking error eλ � λ − λref .
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Figure 5: Friction coefficient between the wheels of the ABS laboratory setup: (a) real θ (blue) and estimated θ (black) and (b) estimation
error θ − θ.
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Table 3: Coefficients and system variables of the controller (11) used in real application.

c11 Gain of the controllers (11) 15
c12 Gain of the controllers (11) 12
c21 Gain of the controllers (11) 1.7
c22 Gain of the controllers (11) 0.5
c Adaptive gain (15) 0.011
kθ Adaptive gain (29) 5000
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Figure 6: Input control Tb.
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Figure 7: Angular velocity of the upper wheel ω1.
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Figure 8: (a) Wheel slip λ (black) and wheel slip reference λref (constant, blue). (b) Tracking error eλ � λ − λref .
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5. Conclusions

)is paper presents a modified high-order sliding mode
(HOSM) controller with parameter estimation applied to an
ABS laboratory setup. )e system emulates a quarter-car
model. )is controller provides estimations for the friction
coefficient acting between the wheels. Once that parameter is
estimated, the estimation can be used to determine the
modified HOSM controller. )is latter ensures tracking of
the desired slip reference. )e asymptotic stability is proven,
and experimental tests show the effectiveness of the pro-
posed controller. For the future, the work will be focused on
finite-time sampled-data fuzzy control and the reliable fuzzy
H∞ control of the ABS considering further dynamics,
perturbations acting on the real system and parameter
uncertainties.
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