456 research outputs found

    Detecting scene changes using synthetic aperture radar interferometry

    Get PDF
    Copyright © 2006 IEEEIn repeat-pass interferometric synthetic aperture radar (SAR), man-made scene disturbances are commonly detected by identifying changes in the mean backscatter power of the scene or by identifying regions of low coherence. Change statistics such as the sample mean backscatter-power ratio and the sample coherence, however, are susceptible to high false-alarm rates unless the change in the mean backscatter power is large or there is sufficient contrast in scene coherence between the changed and unchanged regions of the image pair. Furthermore, as the sample mean backscatter-power ratio and sample coherence measure different properties of a SAR image pair, both change statistics need to be considered to properly characterize scene changes. In this paper, models describing the changed and unchanged regions of a scene are postulated, and the detection problem is expressed in a Bayesian hypothesis-testing framework. Forming the log-likelihood ratio gives a single sufficient statistic, encoding changes in both the coherence and the mean backscatter power, for discriminating between the unchanged- and changed-scene models. The theoretical detection performance of the change statistic is derived and shows a significant improvement over both the sample mean backscatter-power ratio and sample coherence change statistics. Finally, the superior detection performance of the log-likelihood change statistic is demonstrated using experimental data collected using the Defence Science and Technology Organisation's Ingara X-band airborne SAR.Mark Preiss, Douglas A. Gray, and Nick J. S. Stac

    Minimizing the residual topography effect on interferograms to improve DInSAR results: estimating land subsidence in Port-Said City, Egypt

    Get PDF
    The accurate detection of land subsidence rates in urban areas is important to identify damage-prone areas and provide decision-makers with useful information. Meanwhile, no precise measurements of land subsidence have been undertaken within the coastal Port-Said City in Egypt to evaluate its hazard in relationship to sea-level rise. In order to address this shortcoming, this work introduces and evaluates a methodology that substantially improves small subsidence rate estimations in an urban setting. Eight ALOS/PALSAR-1 scenes were used to estimate the land subsidence rates in Port-Said City, using the Small BAse line Subset (SBAS) DInSAR technique. A stereo pair of ALOS/PRISM was used to generate an accurate DEM to minimize the residual topography effect on the generated interferograms. A total of 347 well distributed ground control points (GCP) were collected in Port-Said City using the leveling instrument to calibrate the generated DEM. Moreover, the eight PALSAR scenes were co-registered using 50 well-distributed GCPs and used to generate 22 interferogram pairs. These PALSAR interferograms were subsequently filtered and used together with the coherence data to calculate the phase unwrapping. The phase-unwrapped interferogram-pairs were then evaluated to discard four interferograms that were affected by phase jumps and phase ramps. Results confirmed that using an accurate DEM (ALOS/PRISM) was essential for accurately detecting small deformations. The vertical displacement rate during the investigated period (2007–2010) was estimated to be −28 mm. The results further indicate that the northern area of Port-Said City has been subjected to higher land subsidence rates compared to the southern area. Such land subsidence rates might induce significant environmental changes with respect to sea-level rise

    Lokaalstatistikute kasutamine rohumaade ja metsade kaugseires

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsiooneKĂ€esolev doktoritöö analĂŒĂŒsib lokaalstatistikute kasutamist rohumaade ja metsade kaugseires. Töö esimene osa kĂ€sitleb rohumaade monitoorimist tehisava-radari (synthetic aperture radar (SAR)) abil ning teine osa metsade kaugseiret kasutades optilisi sensoreid. AnalĂŒĂŒsides rohumaade niitmise ja C- laineala tehisava-radari interferomeetrilise koherentsuse seoseid leiti, et selle parameetri kasutamisel on potentsiaali niitmise tuvastamise algoritmide ja rakenduste vĂ€ljaarendamiseks. Tulemused nĂ€itavad, et pĂ€rast niitmist on VH ja VV polarisatsiooni 12-pĂ€eva interferomeetrilise koherentsuse mediaan vÀÀrtused statistiliselt oluliselt kĂ”rgemad vĂ”rreldes niitmise eelse olukorraga. Koherentsus on seda kĂ”rgem, mida vĂ€iksem on ajaline vahe niitmise ja pĂ€rast seda ĂŒles vĂ”etud esimese interferomeetrilise mÔÔtmise vahel. Hommikune kaste, sademed, pĂ”llutööde teostamine, nĂ€iteks kĂŒlv vĂ”i kĂŒndmine, kĂ”rgelt niitmine ja kiire rohu kasv pĂ€rast niitmist vĂ€hendavad koherentsust ja raskendavad niitmise sĂŒndmuste eristamist. Selleks, et eelpoolnimetatud mĂ”jusid leevendada tuleks tulevikus uurida 6-pĂ€eva koherentsuse ja niitmise sĂŒndmuste vahelisi seoseid. KĂ€esolevas doktoritöös esitatud tulemused loovad siiski tugeva aluse edasisteks uuringuteks ja arendusteks eesmĂ€rgiga vĂ”tta C-laineala tehisava-radari andmed niitmise tuvastamisel ka praktikas kasutusele. Lisaks nĂ€idati, et ortofotodel pĂ”hinevate metsa kaugseire hinnangute andmisel on abi lokaalstatistikute kasutamisest. AnalĂŒĂŒsides kaugseire hinnangut riigimetsa takseerandmete (national forest inventory) kohta leiti, et nĂ€idistel pĂ”hinev jĂ€reldamine (case-based reasoning (CBR)) sobib hĂ€sti selliste kaugseire ĂŒlesannete empiirilisteks lahendusteks, kus sisendandmetena on kasutatavad vĂ€ga paljud erinevad andmeallikad. Leiti, et klasteranalĂŒĂŒsi saab kasutada kaugseire tunnuste eelvaliku meetodina. VĂ”rreldes erinevaid tekstuuri statistikuid nĂ€idati, et lokaalselt arvutatud keskvÀÀrtus on kĂ”ige vÀÀrtuslikum tunnus. JĂ€reldati, et nii statistiliste kui ka struktuursete lokaalstatistikute kasutamisega saab lisada pikslipĂ”histele kaugseire hinnangutele olulist andmestikku.This thesis studies approaches for remote sensing of grasslands and forests based on local statistics. The first part of the thesis focuses on monitoring of grasslands with SAR and the second part to monitoring of forests with optical sensors. It is shown that there is potential to develop mowing detection algorithms and applications using C-band SAR temporal interferometric coherence. The results demonstrate that after a mowing event, median VH and VV polarisation 12-day interferometric coherence values are statistically significantly higher than those from before the event. The sooner after the mowing event the first interferometric acquisition is taken, the higher the coherence. Morning dew, precipitation, farming activities, such as sowing or ploughing, high residual straws after the cut and rapid growth of grass are causing the coherence to decrease and impede the distinction of a mowing event. In the future, six-day interferometric coherence should also be analysed in relation to mowing events to alleviate some of these factors. Nevertheless, the results presented in this thesis offer a strong basis for further research and development activities towards the practical use of spaceborne C-band SAR data for mowing detection. Further, it was shown that local statistics can be useful for estimation of forest parameters from ortophotos and they could also provide helpful ancillary information to conduct a photo-interpretation tasks over forested areas. It was demonstrated that cluster analysis can be used as pre-selection method for the reduction of remote sensing features. Additionally, it was shown that case-based reasoning (a machine learning method) is well suited for empirical solutions of remote sensing tasks where there are many different data sources available. It was concluded that the use of local statistics adds valuable data to pixel-based remote sensing estimations

    Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data

    Get PDF
    A model for aboveground biomass estimation from single-pass interferometric synthetic aperture radar (InSAR) data is presented. Forest height and canopy density estimates Delta h and eta(0), respectively, obtained from two-level model (TLM) inversion, are used as biomass predictors. Eighteen bistatic VV-polarized TanDEM-X (TDM) acquisitions are used, made over two Swedish test sites in the summers of 2011, 2012, and 2013 (nominal incidence angle: 41 degrees; height-of-ambiguity: 32-63 m). Remningstorp features a hemiboreal forest in southern Sweden, with flat topography and where 32 circular plots have been sampled between 2010 and 2011 (area: 0.5 ha; biomass: 42-242 t/ha; height: 14-32 m). Krycklan features a boreal forest in northern Sweden, 720-km north-northeast from Remningstorp, with significant topography and where 31 stands have been sampled in 2008 (area: 2.4-26.3 ha; biomass: 23-183 t/ha; height: 7-21 m). A high-resolution digital terrain model has been used as ground reference during InSAR processing. For the aforementioned plots and stands and if the same acquisition is used for model training and validation, the new model explains 65%-89% of the observed variance, with root-mean-square error (RMSE) of 12%-19% (median: 15%). By fixing two of the three model parameters, accurate biomass estimation can also be done when different acquisitions or different test sites are used for model training and validation, with RMSE of 12%-56% (median: 17%). Compared with a simple scaling model computing biomass from the phase center elevation above ground, the proposed model shows significantly better performance in Remningstorp, as it accounts for the large canopy density variations caused by active management. In Krycklan, the two models show similar performance

    Orbital Effects in Spaceborne Synthetic Aperture Radar Interferometry

    Get PDF
    This book reviews and investigates orbit-related effects in synthetic aperture Radar interferometry (InSAR). The translation of orbit inaccuracies to error signals in the interferometric phase is concisely described; estimation and correction approaches are discussed and evaluated with special focus on network adjustment of redundantly estimated baseline errors. Moreover, the effect of relative motion of the orbit reference frame is addressed

    Change Detection Techniques with Synthetic Aperture Radar Images: Experiments with Random Forests and Sentinel-1 Observations

    Get PDF
    This work aims to clarify the potential of incoherent and coherent change detection (CD) approaches for detecting and monitoring ground surface changes using sequences of synthetic aperture radar (SAR) images. Nowadays, the growing availability of remotely sensed data collected by the twin Sentinel-1A/B sensors of the European (EU) Copernicus constellation allows fast mapping of damage after a disastrous event using radar data. In this research, we address the role of SAR (amplitude) backscattered signal variations for CD analyses when a natural (e.g., a fire, a flash flood, etc.) or a human-induced (disastrous) event occurs. Then, we consider the additional pieces of information that can be recovered by comparing interferometric coherence maps related to couples of SAR images collected between a principal disastrous event date. This work is mainly concerned with investigating the capability of different coherent/incoherent change detection indices (CDIs) and their mutual interactions for the rapid mapping of "changed" areas. In this context, artificial intelligence (AI) algorithms have been demonstrated to be beneficial for handling the different information coming from coherent/incoherent CDIs in a unique corpus. Specifically, we used CDIs that synthetically describe ground surface changes associated with a disaster event (i.e., the pre-, cross-, and post-disaster phases), based on the generation of sigma nought and InSAR coherence maps. Then, we trained a random forest (RF) to produce CD maps and study the impact on the final binary decision (changed/unchanged) of the different layers representing the available synthetic CDIs. The proposed strategy was effective for quickly assessing damage using SAR data and can be applied in several contexts. Experiments were conducted to monitor wildfire's effects in the 2021 summer season in Italy, considering two case studies in Sardinia and Sicily. Another experiment was also carried out on the coastal city of Houston, Texas, the US, which was affected by a large flood in 2017; thus, demonstrating the validity of the proposed integrated method for fast mapping of flooded zones using SAR data

    The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space

    Get PDF
    The primary objective of the European Space Agency's 7th Earth Explorer mission, BIOMASS, is to determine the worldwide distribution of forest above-ground biomass (AGB) in order to reduce the major uncertainties in calculations of carbon stocks and fluxes associated with the terrestrial biosphere, including carbon fluxes associated with Land Use Change, forest degradation and forest regrowth. To meet this objective it will carry, for the first time in space, a fully polarimetric P-band synthetic aperture radar (SAR). Three main products will be provided: global maps of both AGB and forest height, with a spatial resolution of 200 m, and maps of severe forest disturbance at 50 m resolution (where “global” is to be understood as subject to Space Object tracking radar restrictions). After launch in 2022, there will be a 3-month commissioning phase, followed by a 14-month phase during which there will be global coverage by SAR tomography. In the succeeding interferometric phase, global polarimetric interferometry Pol-InSAR coverage will be achieved every 7 months up to the end of the 5-year mission. Both Pol-InSAR and TomoSAR will be used to eliminate scattering from the ground (both direct and double bounce backscatter) in forests. In dense tropical forests AGB can then be estimated from the remaining volume scattering using non-linear inversion of a backscattering model. Airborne campaigns in the tropics also indicate that AGB is highly correlated with the backscatter from around 30 m above the ground, as measured by tomography. In contrast, double bounce scattering appears to carry important information about the AGB of boreal forests, so ground cancellation may not be appropriate and the best approach for such forests remains to be finalized. Several methods to exploit these new data in carbon cycle calculations have already been demonstrated. In addition, major mutual gains will be made by combining BIOMASS data with data from other missions that will measure forest biomass, structure, height and change, including the NASA Global Ecosystem Dynamics Investigation lidar deployed on the International Space Station after its launch in December 2018, and the NASA-ISRO NISAR L- and S-band SAR, due for launch in 2022. More generally, space-based measurements of biomass are a core component of a carbon cycle observation and modelling strategy developed by the Group on Earth Observations. Secondary objectives of the mission include imaging of sub-surface geological structures in arid environments, generation of a true Digital Terrain Model without biases caused by forest cover, and measurement of glacier and icesheet velocities. In addition, the operations needed for ionospheric correction of the data will allow very sensitive estimates of ionospheric Total Electron Content and its changes along the dawn-dusk orbit of the mission

    Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

    Get PDF
    This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this fiel

    Spatial and temporal statistics of SAR and InSAR observations for providing indicators of tropical forest structural changes due to forest disturbance

    Get PDF
    Tropical forests are extremely important ecosystems which play a substantial role in the global carbon budget and are increasingly dominated by anthropogenic disturbance through deforestation and forest degradation, contributing to emissions of greenhouse gases to the atmosphere. There is an urgent need for forest monitoring over extensive and inaccessible tropical forest which can be best accomplished using spaceborne satellite data. Currently, two key processes are extremely challenging to monitor: forest degradation and post-disturbance re-growth. The thesis work focuses on these key processes by considering change indicators derived from radar remote sensing signal that arise from changes in forest structure. The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) observations, which can provide forest structural information while simultaneously being able to collect data independently of cloud cover, haze and daylight conditions which is a great advantage over the tropics. The main principle of the work is that a connection can be established between the forest structure distribution in space and signal variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest structure spatial characteristics and changes are used to map forest condition (intact or degraded) or disturbance. The innovative approach focuses on looking for textural patterns (and their changes) in radar observations, then connecting these patterns to the forest state through supporting evidence from expert knowledge and auxiliary remote sensing observations (e.g. high resolution optical, aerial photography or LiDAR). These patterns are descriptors of the forest structural characteristics in a statistical sense, but are not estimates of physical properties, such as above-ground biomass or canopy height. The thesis tests and develops methods using novel remote sensing technology (e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods (wavelet-based space-scale analysis). The work is developed on an experimental basis and articulated in three test cases, each addressing a particular observational setting, analytical method and thematic context. The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis concludes that intact forest and degraded forest (arising from selective logging) are significantly different based on canopy structural properties when measured by wavelet based space-scale analysis. In this case, C-band data are more effective than longer wavelength L-band data. Such a result could be explained by the lower wave penetration into the forest volume at shorter wavelength, with the mechanism driving the differences between the two forest states arising from upper canopy heterogeneity. In the second paper, wavelet based space-scale analysis is also used to provide information on upper canopy structure. A DSM derived from TanDEM-X acquired in 2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, Indonesian Borneo) which was affected by the 1997/1998 El Niño Southern Oscillation (ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR DSMs between primary and secondary forest was in some cases comparable to results achieved by high resolution LiDAR data. The third test case introduces a temporal component, with change detection aimed at detecting forest structure changes provided by differencing TanDEM-X DSMs acquired at two dates separated by one year (2012-2013) in the Republic of Congo. The method enables cancelling out the component due to terrain elevation which is constant between the two dates, and therefore the signal related to the forest structure change is provided. Object-based change detection successfully mapped a gradient of forest volume loss (deforestation/forest degradation) and forest volume gain (post-disturbance re-growth). Results indicate that the combination of InSAR observations and wavelet based space-scale analysis is the most promising way to measure differences in forest structure arising from forest fires. Equally, the process of forest degradation due to shifting cultivation and post-disturbance re-growth can be best detected using multiple InSAR observations. From the experiments conducted, single-pass InSAR appears to be the most promising remote sensing technology to detect forest structure changes, as it provides three-dimensional information and with no temporal decorrelation. This type of information is not available in optical remote sensing and only partially available (through a 2D mapping) in SAR backscatter. It is advised that future research or operational endeavours aimed at mapping and monitoring forest degradation/regrowth should take advantage of the only currently available high resolution spaceborne single-pass InSAR mission (TanDEM-X). Moreover, the results contribute to increase knowledge related to the role of SAR and InSAR for monitoring degraded forest and tracking the process of forest degradation which is a priority but still highly challenging to detect. In the future the techniques developed in the thesis work could be used to some extent to support REDD+ initiatives
    • 

    corecore