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Abstract 

Tropical forests are extremely important ecosystems which play a substantial role 

in the global carbon budget and are increasingly dominated by anthropogenic 

disturbance through deforestation and forest degradation, contributing to emissions 

of greenhouse gases to the atmosphere.  

There is an urgent need for forest monitoring over extensive and inaccessible 

tropical forest which can be best accomplished using spaceborne satellite data. 

Currently, two key processes are extremely challenging to monitor: forest 

degradation and post-disturbance re-growth. 

The thesis work focuses on these key processes by considering change indicators 

derived from radar remote sensing signal that arise from changes in forest structure. 

The problem is tackled by exploiting spaceborne Synthetic Aperture Radar (SAR) and 

Interferometric SAR (InSAR) observations, which can provide forest structural 

information while simultaneously being able to collect data independently of cloud 

cover, haze and daylight conditions which is a great advantage over the tropics.  

The main principle of the work is that a connection can be established between 

the forest structure distribution in space and signal variation (spatial statistics) within 

backscatter and Digital Surface Models (DSMs) provided by SAR. In turn, forest 

structure spatial characteristics and changes are used to map forest condition (intact 

or degraded) or disturbance.  

The innovative approach focuses on looking for textural patterns (and their 

changes) in radar observations, then connecting these patterns to the forest state 

through supporting evidence from expert knowledge and auxiliary remote sensing 

observations (e.g. high resolution optical, aerial photography or LiDAR). These 

patterns are descriptors of the forest structural characteristics in a statistical sense, but 

are not estimates of physical properties, such as above-ground biomass or canopy 

height. The thesis tests and develops methods using novel remote sensing technology 

(e.g. single-pass spaceborne InSAR) and modern image statistical analysis methods 

(wavelet-based space-scale analysis). 
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The work is developed on an experimental basis and articulated in three test 

cases, each addressing a particular observational setting, analytical method and 

thematic context.  

The first paper deals with textural backscatter patterns (C-band ENVISAT ASAR 

and L-band ALOS PALSAR) in semi-deciduous closed forest in Cameroon. Analysis 

concludes that intact forest and degraded forest (arising from selective logging) are 

significantly different based on canopy structural properties when measured by 

wavelet based space-scale analysis. In this case, C-band data are more effective than 

longer wavelength L-band data. Such a result could be explained by the lower wave 

penetration into the forest volume at shorter wavelength, with the mechanism 

driving the differences between the two forest states arising from upper canopy 

heterogeneity. 

In the second paper, wavelet based space-scale analysis is also used to provide 

information on upper canopy structure. A DSM derived from TanDEM-X acquired in 

2014 was used to discriminate primary lowland Dipterocarp forest, secondary forest, 

mixed-scrub and grassland in the Sungai Wain Protection Forest (East Kalimantan, 

Indonesian Borneo) which was affected by the 1997/1998 El Niño Southern Oscillation 

(ENSO). The Jeffries- Matusita separability of wavelet spectral measures of InSAR 

DSMs between primary and secondary forest was in some cases comparable to results 

achieved by high resolution LiDAR data. 

The third test case introduces a temporal component, with change detection 

aimed at detecting forest structure changes provided by differencing TanDEM-X 

DSMs acquired at two dates separated by one year (2012-2013) in the Republic of 

Congo. The method enables cancelling out the component due to terrain elevation 

which is constant between the two dates, and therefore the signal related to the forest 

structure change is provided. Object-based change detection successfully mapped a 

gradient of forest volume loss (deforestation/forest degradation) and forest volume 

gain (post-disturbance re-growth). 

Results indicate that the combination of InSAR observations and wavelet based 

space-scale analysis is the most promising way to measure differences in forest 
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structure arising from forest fires. Equally, the process of forest degradation due to 

shifting cultivation and post-disturbance re-growth can be best detected using 

multiple InSAR observations.  

From the experiments conducted, single-pass InSAR appears to be the most 

promising remote sensing technology to detect forest structure changes, as it provides 

three-dimensional information and with no temporal decorrelation. This type of 

information is not available in optical remote sensing and only partially available 

(through a 2D mapping) in SAR backscatter. It is advised that future research or 

operational endeavours aimed at mapping and monitoring forest degradation/re-

growth should take advantage of the only currently available high resolution 

spaceborne single-pass InSAR mission (TanDEM-X).  

Moreover, the results contribute to increase knowledge related to the role of SAR 

and InSAR for monitoring degraded forest and tracking the process of forest 

degradation which is a priority but still highly challenging to detect. In the future the 

techniques developed in the thesis work could be used to some extent to support 

REDD+ initiatives. 
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Lay Summary 

Tropical forests are the largest forest biome on the planet, and play a key role for 

regulating the climate system and supporting hundreds of millions of people. 

Anthropogenic disturbance severely affects tropical forests through deforestation 

and forest degradation (the removal of some trees in an area that remains classified 

as forest).  The Congo Basin and South-East Asian tropical forests are considered 

hotspots of forest disturbance. The former is characterised by vast areas of forest 

under commercial logging concessions and widespread small-scale disturbance from 

small-holders. The latter has long been prone to damaging forest fires exacerbated by 

the El Niño Southern Oscillation, as well as high intensity commercial logging, and 

clearing of land for palm oil plantations. Large scale conversion of forests into 

different land uses (deforestation) is routinely mapped from satellites and the 

contribution to greenhouse gas emissions is reasonably well quantified. Detecting 

degraded and regenerating forest and the associated release (or uptake) of carbon is 

more challenging to perform by observations from space. These processes are usually 

limited in size, with low magnitude leading to almost imperceptible changes, (often 

restricted to understorey vegetation) which makes them hard to detect by the most 

commonly employed optical satellites, since these are not sensitive to vertical 

vegetation structure. Importantly, forest degradation practices have severe 

consequences on forest properties (e.g. change in structure, biodiversity and carbon 

stocks), but using current technologies these may all be undetectable. The thesis 

explored new ways based on radar observations to detect changes in forest structure 

(patterns arising from canopy development in width and height) caused by forest 

disturbance in three test sites: Cameroon, Indonesian Borneo and the Republic of 

Congo. Each case included different forest degradation drivers and each presenting 

particular challenges. The main challenges faced in detecting degraded and re-

growing forest in tropical countries are: a) possibility of all-weather, cloud and haze 

independent image acquisitions; b) snapshots repeated in time to capture dynamic 

events; c) high resolution to track small changes; d) three-dimensional (3D) datasets. 

The work follows a stepwise approach by leveraging on limitations identified by the 

previous results and by testing ways of extracting information on forest structure 

from: a) images of the returned radar echo; b) 3D images of canopy vertical patterns 

and c) multiple 3D images taken at different times. The use of multiple high resolution 

3D datasets proved to be the most suitable way to track forest degradation and forest 

re-growth. The thesis demonstrated the potential of radar remote sensing coupled 

with pattern recognition methods for detecting disturbed and re-growing forest.  

Results might support projects under an upcoming scheme under the UN Framework 

Convention on Climate Change. 
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Figure 1. Thesis overview and interaction between the 3 results chapters (Chapter 

3, 4 and 5) illustrating (a) study site; (b) disturbance drivers; (c) sensors used and (d) 

methods tested. Chapter 3 and 4 are linked by the used wavelet space-scale analysis 

method, while Chapter 4 and 5 both made use of InSAR observations. All results 

chapters are based on statistical analysis: spatial statistics (Chapter 3 and 4) and 

temporal statistics (Chapter 5). 

3 

Figure 2. (a) Central Africa and (b) South-East Asia Global Land Cover Map 

(GlobCover 2009) (Bontemps, et al., 2011) illustrating the main landcover types and 

the Intact Forest Landscape 2013 (IFL) dataset (red outline) (Potapov, et al., 2017). 

The figure illustrates areas of remaining IFL in 2013 located around the tropics in 

Africa (99 million ha) and in South East Asia (60 million ha) (Potapov, et al., 2017). 

Note that IFLs are not the same as 'primary forest' but these are included in the IFL 

dataset. IFLs are defined as: 'a seamless mosaic of forests and associated natural 

treeless ecosystems that exhibit no remotely detected signs of human activity or 

habitat fragmentation and are large enough to maintain all native biological 

diversity, including viable populations of wide-ranging species') (Potapov, et al., 

2017). 
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Chapter 2 
 

Figure 1. Side-looking Synthetic Aperture Radar (SAR) system imaging geometry 

(Bamler, 2000). The side-looking radar acquires images of the ground reflectivity at 

microwave frequency by measuring distances in the range direction by time of 

flight. This is performed by sending pulses of electromagnetic energy, while the 

satellite moves in the azimuth (cross-range or along-track) direction, that cover a 

portion of the ground called the swath. The ground range is the distance from the 

nadir position of the satellite to the first pulse return in the slant range geometry. 

Conversion from slant range to the ground geometry must be performed for 

mapping applications. 

40 

Figure 2. Example of SAR imagery acquired at different wavelength and 

polarisation over the city of Bertoua (Lom-et-Djerem, Cameroon) surrounded by 

agricultural fields, savanna and semi-deciduous forest. SAR image acquired by: (a) 

ENVISAT ASAR (C-band, VV polarisation, 15 m resolution) and (b) L-band ALOS 

PALSAR (L-band, HV, 15 m resolution). 

43 

Figure 3. Interferometric Synthetic Aperture Radar (InSAR) viewing geometry 

illustrating the acquisition from two satellites S1  and S2  acquiring radar signals 

separated by a baseline B and located at a height H and at range distances R1 and R2 

respectively from a target P which is situated at height h0 (Cloude, 2010). 

50 

Figure 4. SAR interferogram derived from TanDEM-X StripMap bistatic mode 

acquisitions over tropical forest in the Republic of Congo (processed using 

52 
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SARscape 5.0) (Sarmap, 2016). In bistatic mode one satellite (master) transmits and 

receives pulses, while the second satellite (slave) only receives (at a different 

incidence angle) pulses transmitted by the first satellite. In the interferogram image 

the phase difference (in radians) received by the two antennas at slightly different 

position is colour coded. Each colour circle (from black to red) represent a 2𝜋 cycle. 

The regular pattern of fringes correspond to the variation of phase per unit range 

distance over flat terrain. When this high frequency component is removed by a 

suitable processing step (flat earth removal) the phase will carry information on the 

terrain elevation. The absence of fringes are due to scattering from moving water 

with very low signal to noise ratio. TanDEM-X data acquisition parameters: 

baseline: 52 m, incidence angle: 47°, polarisation: HH. Data: TanDEM-X AO: 

VEGE6702 (DLR). 

Figure 5. TanDEM-X coherence over the Republic of Congo. Areas with low 

coherence (green) represent lowland tropical forest dominating the scene, while 

higher coherence illustrates areas where there is less volume decorrelation from lack 

of vegetation (e.g. bare soil and agricultural fields) (orange) as well as swamp forest 

(right). Lowest coherence (black and blue) is observed in water and roads due to the 

low signal to noise ratio. TanDEM-X data acquisition parameters: baseline: 52 m, 

incidence angle: 47°, polarisation: HH. Data: TanDEM-X AO VEGE6702 (DLR). 
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Figure 6. Phase centre (PC) dependence on the instrument frequency of acquisition 

(X-band in red; C-band in green; L-band in blue and P-band in yellow) and volume 

height (m) calculated using model with a uniform layer and an exponential profile 

(Cloude, 2010). Notice that at X-band the PC is located > 90% of the height for 

height > 20 m and at P-band the PC is still located > 50% of the height. 

58 

Figure 7. TanDEM-X height estimates standard deviation image derived from phase 

noise SD(hϕ) generated by SARScape 5.0 (Sarmap, 2016) in Central Kalimantan, 

Indonesian Borneo. Higher SD(hϕ)  values (m) indicate lower measurement 

precision. Areas of dense forest (red and green) in the top-centre of the image and 

water to the left of the image (red) present higher SD(hϕ) values (lower precision) 

while, areas of agriculture and bare fields (black and dark blue) have a higher 

precision. This is related to the degree of decorrelation; in areas where there is less 

volume scattering the precision is higher.areas where there is less volume scattering 

the precision is higher. 

60 

Figure 8. Typical shape of a wavelet. 62 

Figure 9. Mallat's wavelet frame chosen to undertake the textural analysis in the 

thesis. It consists of just 2 points when sampled at integer values (+0.5 and -0.5) and 

therefore acts as a differential operator. 
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Chapter 3  

Figure 1. (a) Study area within the extent of ENVISAT ASAR acquisitions (WGS84, 

UTM zone 33 N). (b) Location of all landcover samples (N = 80) selected based on 

VHR RapidEye imagery (27/12/2010) and Landsat 7 (18/01/2011 and 17/12/2010) 

used in the analysis overlaid on ENVISAT ASAR VV (WGS84, UTM projection-zone 

82 
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33N). The green shape outlines Deng Deng National Park. The red shape outlines a 

logging concession. Red squares mark samples of degraded forest (DF) within the 

concession (n= 20), green squares mark intact forest (IF) samples inside the National 

Park (n= 20), yellow squares mark samples within forest-savanna (FS) (n= 20) and 

blue squares mark samples within forest-agriculture mosaic (FAM) (n= 20) (see also 

Table ). Data source: World Resources Institute and European Space Agency. 

Figure 2. Mother wavelet (red line) and the dilated by 20.25 version (first and second 

voice) (green line). 
92 

Figure 3. Wavelet variance scaling signatures computed on single date ENVISAT 

ASAR VV backscatter (2010) for 4 classes of interest: forest-agriculture mosaic 

(FAM) (blue), degraded forest (DF) (red), intact forest (IF) (green) and forest-

savanna (FS) (black). The error bars correspond to the standard error of the wavelet 

variance estimator. Two parameters need to be considered for the interpretation of 

the figure. The correlation length (signature maxima) given in terms of scale (m) (x-

axis) indicates the point (scale) where the autocorrelation (two-point statistic) 

between the pixels belonging to a certain class within the window of choice decays 

to zero. The variance of the wavelet coefficients (y-axis) is a proxy of the process 

variance within a neighborhood of a given scale (one-point statistic) and thus 

indicates the “roughness” of the process at a given scale 

95 

Figure 4. (a) Wavelet scaling signature for two classes: intact forest (green cross) and 

degraded forest (red cross) and the fitted 3rd degree polynomial function (green and 

red solid lines for intact forest and degraded forest respectively); (b) first derivative 

of the intact forest (green) and degraded forest (red) fitted wavelet scaling 

signatures; (c) second derivative (inflection) of the intact forest (green) and 

degraded forest (red) fitted wavelet scaling signatures. The wavelet signature at 4 

dyadic scales was fitted using a 3rd degree polynomial to obtain a functional 

description of the signature. The first zero crossing of the first derivative 

corresponds to the signature maximum (correlation length of the process); the zero 

crossing of the second derivative indicates the onset of an inflection point in the 

signature; both indicators occur at different scales for intact and degraded forest and 

thus can be considered as a potential way to discriminate between the two forest 

classes. 

98 

Figure 5. Wavelet spectrum for a transect in (a) Forest-savanna (FS) (in the northing 

direction) and (b) Forest-agriculture mosaic (FAM) (easting direction) showing the 

different textural properties of each class in the space-scale domain. The spectrum 

is estimated in a 43 × 43 pixels window (equivalent to 645 × 645 m in the ENVISAT 

ASAR geocoded dataset). SAR backscatter within the corresponding windows 

(rendered in false color) is shown to the right of the spectra. These test cases 

highlight the capability of the wavelet space-scale representation to characterize 

radiometrically heterogeneous targets, such as a forest ribbon in (a) and the margin 

between bare soil and forest in (b). 

102 

Figure 6. Wavelet normalized covariance between ENVISAT ASAR scenes acquired 

in 2006 and 2010 for four landcover classes: degraded forest (red), forest-savanna 

(FS) (green), intact forest (IF) (blue), and forest-agriculture mosaic (FAM) (black). 

Wavelet normalized covariance values range from 0 to 1 with higher values 

104 
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indicating greater textural correlation between the two dates. There is a decreasing 

trend in wavelet covariance with increasing scale for all landcover classes but in 

particular for forest-agriculture mosaic, which can be linked to changes due to 

agricultural practices between the two dates. Decreasing wavelet covariance for IF, 

DF and FS classes could be due to phenological or moisture differences between the 

two dates. 

Figure 7. (a) ALOS PALSAR HH and (b) ALOS PALSAR HV wavelet variance 

scaling signatures (4 dyadic scales) for four classes of interest: forest-agriculture 

mosaic (FAM) (blue), degraded forest (DF) (red), intact forest (IF) (green) and forest-

savanna (FS) (black) with corresponding error bars (black). See Figure 3 for details 

on the interpretation of the signatures. 

106 

Figure 8. (a) Wavelet scaling signature for two classes: IF (green cross) and DF (red  

cross) and the fitted third-degree polynomial functions (green and red solid lines);  

(b) First derivative of the fitted polynomial and (c) Second derivative of the fitted  

polynomial. See Figure 4 for the interpretation of the functional representation of  

the signatures. 
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Chapter 4 
 

Figure 1. (a) Study site location and data extent overlaid on a land cover map 

provided by the Indonesian Ministry of Forestry (Indonesian Ministry of Forestry, 

2015). TanDEM-X data extent (black box, only partially covered in this image), 

LiDAR site A and B (red) and 315 sample plots (35 x 35 m2) (blue squares). LiDAR 

Site A is primarily covered by primary forest (PF) (undisturbed) while; Site B is 

dominated by secondary forest (SF) (disturbed), mixed scrub (MS) and grassland 

(GR); (b) Range of vegetation structures observed from high resolution aerial 

photography (0.5 m) (blue square: 35 x 35 m2 plot). 

130 

Figure 2. (a) TanDEM-X coherence modulus; (b) Aerial photo (0.5 m resolution); (c) 

Canopy Height Model (CHM) derived from airborne LiDAR (1 m resolution); (d) 

TanDEM-X DSM; and (e) TanDEM-X DSM subset. Boundary between primary 

forest (PF) and secondary forest (SF) (red line) according to the land cover map 

provided by the Indonesian Ministry of Forestry (Indonesian Ministry of Forestry, 

2015) is shown on the aerial photo (b); LiDAR CHM (c) and TanDEM-X DSM (e). 

132 

Figure 3. Sample classes derived from a LiDAR Canopy Height Model (CHM) (m) 

within 35 x 35 m2 plots illustrating vertical structure arrangement (height) in: 

primary forest (intact) (PF), secondary forest (disturbed) (SF), mixed scrub (MS) and 

grassland (GR). 

135 

Figure 4. Flowchart illustrating the application of 2D wavelet spectra to 3D datasets 

for the analysis of landscape heterogeneity across a disturbance gradient: (a) 3D 

input dataset; (b) generation of 2D wavelet spectra image with 16 fractional scales 

with 21/4 spacing between scales at four dyadic scales ( 𝑆1 , 𝑆2  …𝑆𝑛 ); (c) feature 

reduction to four wavelet polynomial coefficients (𝑃0, 𝑃1, 𝑃2 and 𝑃3) by fitting a 3rd 

order polynomial to the wavelet signature; (d) wavelet signature (wavelet variance 

as a function of scale); and (e) interpretation of the wavelet signature based on target 

structural characteristics. 
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Figure 5. (a) Wavelet variance as a function of 10 dyadic scales (2 m to 1000 m) 

computed over a 6.95 km transect in intact (PF) and disturbed secondary forest (SF). 

TanDEM-X DSM (green) and LiDAR derived datasets (DSM: black, CHM: blue and 

DTM: red). The figure indicates how the information related to canopy structure 

provided by the LiDAR CHM (apparent with higher wavelet variance at short scale 

≅ 10 m) is reflected onto the TanDEM-X DSM within the same scale range. Whereas, 

structure due to topography as provided by the LiDAR DTM are captured in the 

region around the wavelet variance maximum at longer scales (≅ 200 m), and are 

reflected onto the TanDEM-X DSM within the same scale range. Therefore, the 

TanDEM-X DSM contains both textural components due to forest canopy structure 

and elevation variation, these however appearing at largely different scale domains. 

(b) Wavelet co-variance providing information on pairwise textural correlation 

between datasets: LiDAR DTM, DSM and CHM versus TanDEM-X DSM. LiDAR 

DTM/LiDAR CHM (green); LiDAR DTM/LiDAR DSM (red) and LiDAR DTM/TDX 

DSM (black). The textural correlation between two datasets can be appreciated as 

being low at short scales and higher at long scales. Abbreviations: Canopy Height 

Model (CHM); Digital Surface Model (DSM) and Digital Terrain Model (DTM). 
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Figure 6. Wavelet signatures based on: (a) LiDAR CHM; and (b) TanDEM-X DSM 

based on one pixel taken in: primary forest (PF) (red), mixed-scrub (MS) (black), 

secondary forest (SF) (green) and grassland (GR) (blue). Colored squares within the 

LiDAR CHM or TanDEM-X DSM subsets indicate the pixel selected for the analysis: 

1 pixel (1 x 1 m2 in LiDAR CHM and 4.6 x 4.6 m2 in TanDEM-X DSM. Interpretation 

of the signature should take into account the location of the maxima (sill) or 

correlation length which indicates the point in terms of scale where the process 

autocorrelation decays to zero. The process “roughness” when considering the 

process smoothed at a given scale is indicated by the wavelet variance values at that 

scale, with higher wavelet variance indicating greater process roughness. Wavelet 

signature that do not present a correlation length (flat signature) is typical of a white 

noise processes which means that the process is self-similar at all scales indicating 

homogeneity. Similarities and differences between wavelet signatures must be 

considered in terms of correlation properties (correlation length), which are 

indicated by functional relations such as maxima and slope, and process variance as 

a function of scale, which is indicated by the wavelet variance magnitude. 
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Figure 9. LiDAR CHM, TanDEM-X DSM and corresponding 𝑃0  frequency 

distributions (FD) for primary forest (intact) (PF) (black line) and secondary forest 

(SF) (red line): (a) LiDAR CHM FD (23 x 23 pixels); (b) LiDAR CHM 𝑃0 FD (23 x 23 

pixels); (c) LiDAR CHM FD (351 x 351 pixels); (d) LiDAR CHM 𝑃0 FD (351 x 351 

pixels); (e) TanDEM-X DSM (m) FD (351 x 351 pixels); and (f) TanDEM-X DSM 𝑃0 
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(brown) corresponding to secondary forest. Sample plots used in the FD analysis 

reported in Figure 9: 23 x 23 pixel plots (black squares) and 351 x 351 pixel plots 
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Figure 1. (a) Study area covered by TanDEM-X (approximately 1000 km2) situated 

around the Sangha Department capital of Ouesso in the Republic of Congo (RoC) 

(UL: 15° 56’ 54.55” E, 1° 44’ 30.50” N) overlaid on a landcover classification map 

(FACET Atlas: Forêts d'Afrique Centrale Évaluées par Télédétection) at 60 m 

resolution (OSFAC, 2012) showing the main landcover classes and forest cover loss 

between 2000-2010 (Potapov, et al., 2012). (b) The study site is divided into 

community areas (0.6% of the study area), protection areas (3.4% of the study area) 

and production areas (10.8% of the study area). The study area hosts two logging 

concession (black outline) with logging activities within the Pokola and Ngombé 

concessions taking place between the 1980s until 2008 (World Resources Institute, 

2013). Control areas located within the protection area classified as lowland primary 

forest (black) and swamp forest (blue) were selected to provide no-change areas for 

the analysis. (c) TanDEM-X Digital Surface Model acquired on 05/12/2012 (𝑡1). 
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and refinement; error propagation estimates and object-based validation relying on 

VHR Pléiades imagery. 

Figure 3. Original trend profile (black), fitted trend line (red) (Equation 4) and 

corrected (de-trended) range profile (green) (Equation 5). The peak between 2000 

and 3000 pixels arises because of an area of very low precision in the DSM (river). 

This singularity does not influence the estimation of the trend. 
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noise (𝑆𝐷(ℎ𝜑) for two dates provided by SARScape 5.0 (Sarmap, 2016): (a) TDXt1: 

05/12/2012 and (b) TDXt2 : 25/12/2013. Higher 𝑆𝐷(ℎ𝜑)  values (m) indicate lower 

measurement precision. Notice that areas of lowland forest present higher 𝑆𝐷(ℎ𝜑) 

values (lower precision) while, areas of swamp forest, agriculture and bare fields 

(dark blue) have a higher precision. This is related to the sensitivity of the 

interferometer in areas where there is less volume decorrelation. The river presents 

the lowest precision in the scene (highest 𝑆𝐷(ℎ𝜑)) (red). Overall higher precision 

was achievable at 𝑇𝐷𝑋𝑡1 (B⊥= 95.3 m) compared to 𝑇𝐷𝑋𝑡2 (𝐵⊥=52 m). 
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1. Introduction 

1.1. Thesis Overview  

The thesis focuses on the use of Synthetic Aperture Radar (SAR) and 

Interferometric Synthetic Aperture Radar (InSAR) data for detecting the difference 

between undisturbed and disturbed tropical forests in three sites: Cameroon, the 

Republic of Congo and Indonesian Borneo. The research develops and uses a variety 

of techniques, and applies them to a number of datasets from different SAR sensors, 

in order to compare the utility of different approaches. 

In terms of methods the thesis focuses on the use of wavelet analysis (Chapter 3 

and 4) applied to radar backscatter (Chapter 3) or Digital Surface Models (DSMs) 

(Chapter 4); and object-based change detection applied to differences in DSMs 

(Chapter 5). The different study sites are chosen in order to investigate different 

mechanisms of forest disturbance, featuring selective logging in Cameroon (Chapter 

3), fire disturbance in Indonesian Borneo (Chapter 4), and shifting-cultivation in the 

Republic of Congo (Chapter 5). The analysis was undertaken by complementing the 

SAR and InSAR data with expert knowledge, ancillary datasets (optical satellite data, 

aerial photography and airborne LiDAR data), and novel methods, to understand 

canopy spatial structure variations. 

Three chapters in the thesis (3-5, herewith referred to as "results chapters") report 

on research results, two of which are almost unchanged versions of published peer-

reviewed articles. The three results chapters were developed independently, but 

taking into account, and building on, the challenges and limitations of previously 

achieved results. The first results chapter concerns SAR backscatter analysis, this 

being sensitive to upper canopy properties but less efficient at probing the forest 

vertical structure. The second results chapter calls into play interferometric phase and 

derived DSMs, and progresses to consider changes in the three-dimensional forest 

structure caused by forest disturbance. Finally, the third results chapter introduces a 
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temporal dimension, tackling change in time of the three-dimensional DSM 

information as a mechanism for detecting and characterising disturbance. 

The three results chapters mentioned above are framed by two introductory 

chapters and a final chapter. Chapter 1 presents the context of this research, Chapter 

2 provides a technical introduction to SAR and InSAR concepts and background 

related to wavelet analysis. Chapter 6 provides a synthesis of the findings, reports the 

implications of the PhD research and suggests improvements and future work. 

The thesis fits into the context required to improve understanding of the 

capabilities of SAR and InSAR to detect disturbed forests with potential implications 

for international initiatives that aim to reduce and eventually reverse deforestation 

and forest degradation in the attempt to curb greenhouse gas emissions (UNFCCC, 

2015). 

A synoptic view of the overall work development, including instruments, 

datasets and methods, and how it is reflected in the thesis structure is given in Figure 

1. 
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Figure 1. Thesis overview and interaction between the 3 results chapters (Chapter 

3, 4 and 5) illustrating (a) study site; (b) disturbance drivers; (c) sensors used and 

(d) methods tested. Chapter 3 and 4 are linked by the used wavelet space-scale 

analysis method, while Chapter 4 and 5 both made use of InSAR observations. All 

results chapters are based on statistical analysis: spatial statistics (Chapter 3 and 4) 

and temporal statistics (Chapter 5). 
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1.2. Tropical Forests 

1.2.1. Tropical Forests Carbon Storage and Carbon Cycle 

Tropical forests are defined as: ‘land with a tree canopy cover > 10%, 5 m (metres) 

tall, covering an area of more than 0.5 ha' (FAO, 2015) and situated between the 

tropics of Cancer and Capricorn (23.44° North and South). The tropics cover 

approximately 4.4 billion ha (30% of the global land surface) of which 1. 78 billion 

ha are covered by forests (FAO, 2011), this constitutes approximately 40% of the 

tropics land surface and 12% of the global land surface, making it the largest forest 

biome on the planet. Tropical forests can be broadly divided into: the Amazon 

Rainforest Basin (800 million ha); the Congo Basin (300 million ha) and South-East 

Asian forest (240 million ha) (FAO, 2011). Note that estimates reported in the 

literature by different sources are affected by a wide degree of variation) (Grace, et 

al., 2014). 

They store the greatest amount of above-ground carbon (a total of 180 - 210 Pg 

C) (Baccini, et al., 2012; Saatchi, et al., 2011), and are highly productive (Lewis, et al., 

2009) having the highest rate of gross primary production (GPP) of any ecosystem 

(Malhi, 2012) (~40 Pg C/year) (Beer, et al., 2010) as well as high net primary 

production (NPP) (21.9 Pg C/year) (Saugier, et al., 2001; Mahli, et al., 2004); host a 

high diversity of plants and animals (Montagnini & Jordan, 2005) (at least two-thirds 

of the world’s organisms and 3 million species) (Raven, 1988) and provide goods 

and services (Lewis, et al., 2015; Montagnini & Jordan, 2005) (including food, timber 

and medicines) supporting approximately between 1.2-1.5 billion people globally 

(including the supply of local to global markets for commodities) (Lewis, et al., 2015). 

Tropical forests are critical for climate system regulation (Maynard & Royer, 

2004) and play a substantial role in the global carbon budget as a carbon source, 

through deforestation, forest degradation practices, harvesting and peat fires (2.01 

± 1.1 Pg/annum) (Grace, et al., 2014) and contribute to about 6-17% of global 

anthropogenic emissions (van der Werf, et al., 2009). 
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They are also the largest terrestrial carbon sink (Gibbs, et al., 2007) with an 

estimated carbon sequestration, through forest regeneration and afforestation, 

equivalent to 1.8 ± 0.9 Pg C/annum (Grace, et al., 2014).  

As well as anthropogenic disturbance, future climatic changes pose a threat to 

tropical forests. This will lead to changes in rainfall patterns and predicted 

temperature increase (a 3-6°C increase in land surface temperature within this 

century) (Zelazowski, et al., 2011) are forecasted to affect Africa significantly given its 

high exposure and low capability to adapt (Niang, et al., 2014). 

Understanding the sensitivity of tropical forests to climate change has been 

mainly focused on the impacts in Amazonia (Malhi, et al., 2009) and is even less 

understood and researched in African rainforests (Malhi, et al., 2013; James, et al., 

2013). According to several models potential forest expansion will occur in the Congo 

Basin (Zelazowski, et al., 2011). Increased CO2 concentration in the atmosphere is set 

to undoubtedly affect forest productivity as this enhances photosynthesis (Cernusak, 

et al., 2013) and several model simulations indicated that CO2 is projected to enhance 

tropical forest biomass (Huntingford, et al., 2013). 

1.2.2. Deforestation and Forest Degradation  

Anthropogenic disturbance of forests can be divided into two types: 

deforestation and forest degradation. Deforestation is the complete loss of forest 

encompassing the conversion of forest to a different land cover for the purpose of, for 

instance, agriculture expansion. Forest degradation leads to the partial and persistent 

loss of forest properties such as carbon stocks (Herold, et al., 2011) and structure 

(Grainger, 1993), while still remaining 'forest', defined based on canopy cover above 

a set threshold, it does not constitute a land use conversion (Herold, et al., 2011). 

Deforestation drivers range from large scale clearing for cattle ranching (Garcia, 

et al., 2017) and agriculture (e.g. soybean production) in the Amazon (Barona, et al., 

2010), to clearing for palm oil and paper pulp plantation in South East Asia (Koh, et 

al., 2011), to forest degradation from widespread industrial scale selective logging of 

valuable tree species for global commodities in the Congo Basin (Laporte, et al., 2007), 
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fuel-wood collection (Specht, et al., 2015) and shifting cultivation (Molinario, et al., 

2015) spreading from urban settlements and road networks in Central Africa 

(LaPorte, et al., 2004) and South East Asia (Mukul & Herbohn, 2016). Anthropogenic 

forest fires are also commonly employed after initial clearing, in order to prepare land 

for shifting or commercial cultivation (Goldammer, 2015; Mukul & Herbohn, 2016), 

and can result in complete loss of forest or less severe damage that can be considered 

forest degradation.  

There is high uncertainty in measuring and monitoring carbon emissions from 

forest degradation (Mertz, et al., 2012). A recent study found that the contribution of 

forest degradation has been largely underestimated and has reported that, in the 

period 2005-2010, 2.1 billion tons of CO2  were emitted from forest degradation 

practices alone (consisting of selective timber harvest, woodfuel harvest and fire) 

which represents about 25% of the total emissions from deforestation and forest 

degradation, but there is high uncertainty on this estimate (Pearson, et al., 2017). In 

several, possibly many, countries forest degradation emissions even exceeded 

emissions from deforestation (Pearson, et al., 2017).  

Estimates related to the extent, rates and the associated carbon emissions from 

forest degradation are currently challenging to provide given the multitude of 

definitions, indicators reported in the literature (e.g. reduction in carbon stocks, 

provision of goods and services, canopy cover and forest structure alterations), 

drivers (e.g. selective logging or forest fires for instance) (Simula, 2009; Ghazoul, et 

al., 2015), and  limited capability to estimate any of these using optical remote sensing 

(due to lack of sensitivity to forest three-dimensional structure) (Lucas, et al., 2014) 

which means that there are no updated statistics related to the area affected by forest 

degradation derived from remote sensing, and only recent research has provided 

estimates of the contribution of forest degradation to GHG emissions between 2005-

2010 in 74 developing countries in the tropics and sub-tropics based on available field 

measurements, remote sensing products and various models (Pearson, et al., 2017). 

These findings have further highlighted the significant contribution of emissions due 

to forest degradation which, in some cases (28/74 countries), have even exceeded 
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emissions from deforestation. Furthermore, post-disturbance forest re-growth extent 

and the associated rates of carbon uptake are even more problematic to measure 

(Mitchard & Flintrop, 2013) thus, there are still significant challenges to overcome.  

Estimates from the World Resources Institute (WRI) suggest that 781 million ha 

of tropical forest have been degraded (30% of the total current tropical forest area), 

while 24% are still intact and 46% are considered fragmented (Mercer, 2015) (these 

are only approximations to give an idea of the scale of degradation in the tropics). 

Since then, widespread and dynamic forest degradation has taken place for instance 

from the 2015/2016 El Niño droughts in the Amazon (Jiménez-Muñoz, et al., 2016), 

forest fires in South-East Asia (Chisholm, et al., 2016) or through continued and 

pervasive selective logging in Central Africa (Potapov, et al., 2017) so the extent of 

degraded forests will have increased significantly. 

The most up to date estimates on 'intact forest' are provided by the Intact Forest 

Landscape (IFL), these include true 'primary forest' as well as ecosystems which have 

no sign of human activity (based on remote sensing observations) (Potapov, et al., 

2017). The total area covered by Intact Forest Landscape (IFL) stands at 1.19 billion ha 

(approximately 20.6% of the total forest zone area considering a tree canopy cover 

threshold equal to 25%, Figure 2) (Potapov, et al., 2017), and evidence suggests a 

reduction of IFL between 2000-2013 (Potapov, et al., 2017). This is exemplified by the 

2013 IFL area estimates in Africa which covered 99 million and 62 million ha in South 

East Asia, a 10.1% and 13.9% reduction compared to 2000 estimates respectively 

(Potapov, et al., 2017). 

The IFL decline has been driven by wildfire, timber harvesting, agriculture and 

pasture expansion and mining. Timber harvesting being the main cause of IFL 

reduction in Africa (7.75 million ha) and in South East Asia (7.56 million ha) (Potapov, 

et al., 2017). The intense pressure that has led to the reduction in primary forest as the 

decline reported for IFL (and the associated impacts on forest structure, AGB, carbon 

stocks and biodiversity) provide a key motivation for testing novel methods to 

improve forest disturbance monitoring especially in the tropics with particular 

attention directed towards degraded forest. 
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All this uncertainty means that numbers related to the total flux exchanged to 

and from the atmosphere is still considerable, such that we do not know if tropical 

forests are overall a net source or sink. A better understanding is a priority. This is 

especially true to enable better prediction of whether the current carbon sink in 

undisturbed and secondary forests could reverse to a significant source under climate 

change (Cox, et al., 2004). Recent evidence based on ground-based monitoring of 

mature Amazon forests suggests that these have acted as a very significant carbon 

sink thus mitigating climate change (Phillips & Brienen, 2017), and it has been 

reported that the carbon sink in African tropical forests is similar in magnitude to the 

emissions from deforestation in tropical Africa (0.1-0.3 Pg C/year over 1980-2000) 

(Lewis, et al., 2009). 

 
(a) 
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(b) 

 
 

Figure 2. (a) Central Africa and (b) South-East Asia Global Land Cover Map 

(GlobCover 2009) (Bontemps, et al., 2011) illustrating the main landcover types 

and the Intact Forest Landscape 2013 (IFL) dataset (red outline) (Potapov, et al., 

2017). The figure illustrates areas of remaining IFL in 2013 located around the 

tropics in Africa (99 million ha) and in South East Asia (62 million ha) (Potapov, 

et al., 2017). Note that IFLs are not the same as 'primary forest' but these are 

included in the IFL dataset. IFLs are defined as: 'a seamless mosaic of forests and 

associated natural treeless ecosystems that exhibit no remotely detected signs of 

human activity or habitat fragmentation and are large enough to maintain all 

native biological diversity, including viable populations of wide-ranging species') 

(Potapov, et al., 2017). 

 

1.2.3. REDD+ 

REDD+ (a term which stands for 'reducing emissions from deforestation and 

forest degradation and the role of conservation, sustainable management of forests 
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and enhancement of forest carbon stocks in developing countries') (UNFCCC, 2008) 

is a climate mitigation strategy that aims to reduce or reverse deforestation and forest 

degradation in order to provide about 20% of the reduction in GHG (van der Werf, et 

al., 2009) needed to keep warming well below 2 °C in the coming century in 

accordance with the Paris Agreement (UNFCCC, 2015; Rogelj, et al., 2016). 

Estimates of forest area change (loss and gain) and the change in carbon stocks 

are the two fundamental variables (Penman, et al., 2003; Gibbs, et al., 2007; Herold, et 

al., 2011) required to fulfil international initiatives aimed at curbing GHG emissions 

advocated by REDD+. The mechanism is centred around payments towards 

developing countries for their effort towards the conservation of forest and the 

reduction of forest related emission (Tegegne, et al., 2016), in response to meeting 

audited targets through Monitoring, Reporting and Verification (MRV) systems. Such 

MRV systems will be based on the IPCC Good Practice Guidelines (GPG) (Herold & 

Skutsch, 2011; Penman, et al., 2003), where satellite remote sensing is going to provide 

the consistent approach needed for national estimates. 

The capacity of countries to perform such MRV varies markedly between 

countries, with African countries in general having particularly low capacity (Romijn, 

et al., 2012). Bilateral deals, such as that between Norway and Indonesia involving 

the transfer of $1 billion to Indonesia in return for implementing a deforestation 

moratorium in some landcover classes, have by contrast seemed to lead to increased 

MRV capacity (Government of Norway, 2010), if questionable overall success in 

reducing the rate of deforestation. 

 Overall, it is very clear that the technological development to map and 

quantify degradation for MRV systems is far behind that for deforestation (Global 

Forest Observations Initiative, 2016). The next section will cover the main problems, 

current developments, and potential solutions for using satellite methods to map 

forest degradation, and this thesis will explore and test new methods that could be 

used in the future. 
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1.3. Monitoring Forest Degradation in the Tropics Using 

Remote Sensing: Overview and Challenges 

Forest degradation drivers, scale, magnitude and frequency partly determines 

the ability to which remote sensing can detect these processes. Forest degradation is 

determined by a multitude of drivers which can be either restricted to a limited area 

(e.g. selective logging of trees) or have widespread impacts (e.g. forest fires) (Global 

Forest Observations Initiative, 2016). In turn, different processes are characterised by 

different frequency (e.g. selective logging is a planned one-time event, while forest 

fires can affect a large area, and recur through time). It is therefore, difficult to agree 

on a standard procedure to map the multitude of facets of forest degradation and its 

effects on forest properties, even if consistent definitions are agreed (Ghazoul, et al., 

2015). 

Direct and indirect approaches are employed to detect forest degradation using 

remote sensing observations (Herold, et al., 2011). Direct methods involve the 

detection of canopy gaps (Deutscher, et al., 2013; Verhegghen, et al., 2015), canopy 

cover changes (Wang, et al., 2005), small clearings (e.g. Asner et al., 2005; Souza et al., 

2005), and forest structure changes (Hirschmugl, et al., 2014). In contrast, indirect 

methods are aimed at extracting proxy indicators that cause collateral damage (e.g. 

logging roads, skid trails, log landings and other infrastructural damage) (Matricardi, 

et al., 2007). These are only clearly detectable in the case of planned logging and are 

less visible in the case of illegal logging practices (Franke, et al., 2012). 

The majority of research has so far has been focused on the detection of proxy 

damage indicators of forest degradation (i.e. the most evident damage such as new 

logging roads), as directly mapping the process from an intact forest to a degraded 

forest condition has been more challenging since most of the drivers are restricted 

spatially and temporally affecting only a limited number of trees (e.g. removal of tree 

components such as branches for fuelwood, selective logging, and fire affecting the 

understory) with almost imperceptible effects on canopy cover and consequently on 

spectral reflectance from optical remote sensing (DeFries, et al., 2007). It is hard to 
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improve on current methods using optical remote sensing, as the data is severely 

limited due to cloud cover and the inability to penetrate into the forest canopy to 

detect the three-dimensional distribution of vegetation material (Lucas, et al., 2014). 

In order to test novel methods using radar data, two significant forest 

degradation hotspots with different drivers of forest degradation are considered in 

the thesis: 1) Congo Basin (section 1.3.1) and 2) South East Asia (section 1.3.2), with 

the drivers described in turn below. A review of forest degradation drivers and their 

importance in selected tropical countries was collated by Hosonuma et al. (2012) and 

the contribution to carbon emissions is reported for selected drivers (selective timber 

harvest, woodfuel harvest and fire) in 74 tropical and sub-tropical countries in 

Pearson et al. (2017). 

The following section gives an overview of selected forest degradation drivers, 

demonstrating their variety and different challenges related to their detection using 

remote sensing.  Further details related to the challenges in detecting these processes 

using remote sensing are reported in Chapter 3, 4 and 5.   

1.3.1.  Congo Basin Forests: Overview 

The tropical forest of Central Africa are the second largest contiguous block of 

tropical forests in the world after the Amazon (Fayolle, et al., 2014) covering 

approximately 170 million ha (Mayaux, et al., 1999). Rich biodiversity is characteristic 

of the Guineo-Congolian rainforest with an estimated 8000 plant species (more than 

80% being endemic) (White, 1983). Forest type is significantly influenced by rainfall 

(Fayolle, et al., 2014), geological substrates (Fayolle, et al., 2012), temperature, 

topography and fire regime (Bond, et al., 2005). 

As well as highly diverse, the tropical forests of Central Africa have extremely 

high above-ground-biomass (AGB) and act as a significant carbon sink and source 

through deforestation and forest degradation (Grace, et al., 2014). Mean AGB in 

Africa is estimated to be much higher than Amazonian forests, with particularly high 

AGB values (429 Mg/ha) found in the Congo Basin intact forest (similar to Bornean 

forest) (Lewis, et al., 2013). 
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However, in general the Congo Basin forests are to some degree degraded, and 

average carbon stocks in the Congo Basin  is 188 Mg/ha,  lower than the Amazon Basin 

(220.5 Mg/ha), but higher than South East Asia (157.8 Mg/ha) (2010 estimates) (FAO, 

2011). However, in turn, these estimates are affected by large uncertainties and it 

remains challenging to map and quantify these accurately and consistently (Mitchard, 

et al., 2014) as indicated by the marked divergence in AGB values from the available 

pan-tropical maps (Mitchard, et al., 2013). Further evidence of the uncertainty in the 

location and extent of AGB and carbon storage is provided by a recent discovery and 

mapping of the largest tropical peatland complex in the Congo Basin which stores up 

to 30.6 Pg/C belowground (Dargie, et al., 2017), similar in magnitude to the 

aboveground carbon storage of the whole Congo Basin forests, but covering only 

about 2% of their area. 

Population density in Central Africa Congo Basin is generally low (24 

inhabitants/ km2) (FAO, 2011), with non-city dwellers concentrated in small rural 

communities and settlements which drive deforestation and forest degradation by 

wood-fuel, charcoal extraction and small scale slash-burn agriculture (Joiris, 1997). 

Future population increase is projected for all the countries of the Congo Basin (e.g. 

3% annual increase in population forecasted for the Democratic Republic of Congo 

between 2015-2025) (World Bank, 2017) will greatly augment pressure on forest to 

accommodate the demand for forest resources at the local scale (e.g. agricultural 

products). 

Current estimates report that among the countries located in the Congo Basin, 

the Democratic Republic of Congo (DRC) ranks as the 5th country in the world in 

terms of forest cover loss and has undergone the highest forest cover loss among the 

Congo Basin countries between 2001-2014 (7.98 Mha) followed by Cameroon (657.06 

Kha) and the Central African Republic (CAR) (546.92 Kha) (Hansen, et al., 2013). 

However, the DRC has also been reported to have had highest forest cover gain 

among the Congo Basin countries (1.39 Mha) between 2001-2012 followed by the 

Republic of Congo (46.65 Kha) and the CAR (39.31 Kha) (Hansen, et al., 2013), 

probably representing recovery of previously cleared forest. 
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Securing biodiversity conservation through the creation of protected areas is a 

key priority (Convention on Biological Diversity, 2011; Doumenge, et al., 2015). 

Protected areas (PAs) cover approximately 45 million ha, this is less than the area 

granted for forest concessions, with the majority of PAs located in the Democratic 

Republic of Congo (51 out of a total of 143) (Marquant, et al., 2015). The remaining 

forest area located outside PAs that have not been allocated for industrial logging face 

extensive pressure (for instance due demand for woodfuel and charcoal by local 

population) and are not likely to remain intact in the next decade (Fayolle, et al., 2014).  

Encroachment into PAs has been long observed with consequences on biomass loss 

(e.g. for instance between 2000-2012 biomass loss was equivalent to approximately 

19,500 Mg/C year in the Odzala Kokoua National Park, Republic of Congo) (Collins 

& Mitchard, 2017). 

1.3.1.1. Forest Degradation in the Congo Basin 

The main forest degradation drivers which will be covered in the following 

section are: a) commercial selective logging; b) shifting cultivation; c) fuel-wood and 

charcoal extraction and d) forest fires. 

a) Commercial Selective logging  

Large scale commercial logging has been taking place in Central Africa since the 

end of WWII (Nasi, et al., 2012) with private logging companies being granted logging 

concession covering extensive areas (Marquant, et al., 2015). In the Congo Basin, a 

total of 403 forest concessions have been allocated covering over 49 million ha 

(Marquant, et al., 2015) as a result of the increasing demand for timber export for to 

national and international markets (Malhi, et al., 2014). A total area of over 8.8 million 

ha are certified concessions under either the Forest Stewardship Council (FSC) 

certification, the Origin and Legality of the Woods (OLB), Verification of Legal 

Compliance (VLC) or Controlled Wood certification (the majority situated in 

Cameroon followed by the Republic of Congo) (OSFAC, 2016). 

Selective logging in the Congo Basin is primarily characterised by the removal of 

a limited number of commercially valuable tree species (e.g. Entandrophragma spp.) 
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per hectare (e.g. 1-2 trees harvested/ha) with high AGB (Medjibe, et al., 2011). Whilst, 

in the Amazon this process has been observed to lead to deforestation (Asner, et al., 

2006), in the Congo Basin this is not the case (Mayaux, et al., 2013). 

Selective logging has significant negative impacts on ecosystem composition, 

biodiversity (Malcolm & Ray, 2000; Wilkie, et al., 2000) and AGB with the potential of 

these values to recover to a certain extent at different timescales (e.g. for instance, 

AGB recovery to similar pre-disturbance conditions occurred after an average of 24 

years, but biodiversity may take far longer to recover) (Gourlet-Fleury, et al., 2013). 

Reduced Impact Logging (RIL), a more sustainable form of logging to avoid long 

term forest damage (Durrieu de Madron, et al., 1998) is only sparsely employed in 

logging concessions (Putz, et al., 2008). RIL implementations have shown to 

substantially reduce impact on trees in certain cases (Bertault & Sist, 1997; Martin, et 

al., 2015). In certified logging concession, management plans involve a choice of RIL 

techniques. The most frequently employed technique is the planning of logging tracks 

(used in 79% of the 30 concessions considered in one study) (de Blas & Pérez, 2008). 

As well as the selective extraction of trees causing canopy openings, other 

impacts are more severe and long-lasting: for instance, logging roads are considered 

the most visible form of damage (Gullison & Hardner, 1993), skid trails and log-

loading areas persist longer in time compared to canopy openings (Kleinschroth, et 

al., 2015). 

From an optical remote sensing perspective, inactive logging roads are the most 

evident and persistent form of damage observed (Kleinschroth, et al., 2015) and thus 

more easily mapped. In some cases, it can take up to 20 years for old re-vegetating 

logging roads to disappear completely (Kleinschroth, et al., 2015). Instead, canopy 

damage is usually only detectable from optical sensors for 1-2 years at most (Souza, 

et al., 2005), as in most cases rapid recovery of canopy gaps has been observed based 

on optical data to occur within 50 days after disturbance (Verhegghen, et al., 2015). 

Hence, the majority of research has been focused on the Amazon (characterised by 

higher intensity logging practices) to detect indirect damage (Matricardi, et al., 2007) 

and there are currently no comparable studies focusing on the Congo Basin but 
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research is advancing towards the detection of canopy gaps resulting from selective 

logging activities using medium to high resolution optical remote sensing (e.g. SPOT4 

and Sentinel-2) by adopting spectral unmixing methods developed by INPE (e.g. 

Shimabukuro et al., 1998) and widely tested in the Amazon (Verhegghen, et al., 2015). 

The PhD provides the first step in addressing the detection of selective logging 

using InSAR derived DSMs (Chapter 5). 

b) Shifting cultivation  

Shifting agriculture is a well-established traditional practice (Ickowitz, 2006) 

employed by rural communities (Joiris, 1997) for providing food security for millions 

of people. This is generally undertaken at small scale with clearing that are globally 

on average ~1 ha (Aweto, 2012) (but clearing size can be as low as 0.25 ha in some 

areas of the Congo Basin) (Wilkie, et al., 1998) resulting in a so-called rural-complex 

(10–30% tree cover and more than 50% croplands as defined by Mayaux et al., 2013) 

which is a patch-work of degraded forest, forest at various successional stages 

interspersed with agricultural fields developing along the main roads and settlements 

(LaPorte, et al., 2004; Nasi, et al., 2012; Molinario, et al., 2015). Overall shifting 

cultivation is estimated to be the third largest land use in the Congo Basin (43.88 

million ha) after industrial logging (59.5 million ha) and protected areas (44.5 million 

ha) (Nasi, et al., 2009). 

Shifting cultivation consists of a long term cycle starting from clear felling (partial 

or complete) of forest for agriculture with fields that are commonly re-used multiple 

times for a few  years (1-3 years) (Zhang, et al., 2002) followed by a phase in which 

recovery of soil properties occurs (fallow phase) (Ewel, 1986). 

The first phase in the shifting cultivation cycle involves the removal of selected 

trees (degradation) while, a portion is not felled and some are left to decay (Kleinman, 

et al., 1995; Molinario, et al., 2015). After weeks (or months) the remaining vegetation 

is burned and therefore, there is a substantial time where the remaining forest exists 

in a degraded state that will be eventually cleared completely for cultivation. After 

the fields are cultivated for several years (e.g. up to 15 years) (Wilkie & Finn, 1988), 
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the fields are left to recover until they achieve suitable properties for re-cultivation 

based on a number of indicators (e.g. fallow age, vegetation composition, soil fertility, 

soil structure/hardness and texture) that indicate if the field is ready to be re-used 

(Norgrove & Hauser, 2016). 

Prevalently, fallow forests that are 10-15 years old are cleared as this is easier than 

clearing primary forest, however, in their absence, primary forest is used (Wilkie, et 

al., 1998). Fallows will generally not revert to the exact original conditions (e.g. in 

terms of biomass, forest structure and biodiversity for instance) but in some cases 

recovery of most botanical conservation parameters considered can be achieved after 

50-60 years, though the proportion of endemic species may remain depressed (Van 

Gemerden, et al., 2003). It was observed that forest structure is slower to recover after 

shifting cultivation (30-60 years) than after selective logging, elucidating the different 

recovery mechanisms between the two drivers (Van Gemerden, et al., 2003). 

One of the issues associated with shifting agriculture is the long term conversion 

to fallow fields which are re-used and thus, unable to recover back to similar original 

conditions leaving these as impoverished in the long term as soil and nutrient 

properties deteriorate over time (Molinario, et al., 2015), especially as rising 

population will lead to an increased demand for food which will require an 

intensification agricultural practices. On the other hand, fallow fields that are re-used 

for several years can take the pressure off primary forests which would otherwise be 

cleared (Molinario, et al., 2015). 

It is challenging to distinguish and classify each successional stage within the 

rural-complex using remote sensing. Notably, patches that are at an advanced stage 

of regeneration cannot be discriminated using optical sensors as these lack the 

capability to penetrate into the canopy and detect vertical structure (e.g. vegetation 

height differences). Studies using remote sensing have commonly been able to map 

the rural-complex (Mayaux, et al., 2000; Verhegghen, et al., 2012) rather than the 

proportion occupied by each successional stage, which would require a long and 

dense time-series to track the process since disturbance first occurred (Akkermans, et 

al., 2013). 
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InSAR may be suitable for the detection of changes in vegetation height based on 

time-series of three-dimensional information but this is relatively novel and will be 

explored in the PhD (Chapter 5). 

c) Woodfuel and Charcoal 

In the Congo Basin most of the total volume of wood harvested from peri-urban 

forests is used as woodfuel and charcoal which has increased (e.g. demand for 

charcoal  has increased by 20% between 1990-2009 and the future demand is set to 

increase as population increases) (Megevand, et al., 2013). Per capita consumption of 

firewood and charcoal is higher in Central Africa (0.99 m3/inhabitants) compared to 

other parts of Africa (e.g. lowest in North Africa with 0.25 m3/inhabitants) (Marien, 

2009). 

In drier forest ecosystems (e.g. African savannas and woodlands) where the 

productivity is lower, removal of wood for fuel as local use is a commonplace driver 

of forest degradation (DeFries, et al., 2007). Often, this process involves selective 

harvesting of trees with a reduction in woody biomass (forest degradation) to 

complete clearing (deforestation) (Chidumayo & Gumbo, 2013). 

Woodfuel collection causes almost imperceptible damage to the forest canopy, it 

is extremely spatially restricted, involves changes below canopy, it is not associated 

with any form of more evident damage such as is the case with  commercial selective 

logging (e.g. logging roads and log landings) and therefore is challenging to capture 

even using sub-meter resolution optical remote sensing. 

The process was not considered in the thesis as it is the most challenging driver 

to detect supposedly requiring very high resolution (< 1 m) and  time-series of radar 

data to be tested complemented by ground-data (in-situ carbon stock inventories) 

which were not available for our study sites and given that this process is more 

widespread in dry tropical forests and woodlands (e.g. in Mozambique) (Ryan, et al., 

2012; Ryan, et al., 2014) and is usually studied using biophysical data collected 

through ground surveys (Woollen, et al., 2016). 
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d) Fire  

Forest fires in Central African moist tropical forests rarely occur due to the wet 

conditions (Cochrane, 2009) while, they are commonly ignited by humans in 

savannas to suppress woody cover (Bucini & Hanan, 2007). During El Niño years fire 

events are exacerbated by dry conditions, whilst these events are well documented in 

the Amazon (Nepstad, et al., 1999) and in South-East Asia (Siegert, et al., 2001), the 

impact of fire during El Niño in Central African moist tropical forests is lacking 

(Verhegghen, et al., 2016) since the impact of these events have only recently (2015-

2016) been observed and recorded from remote sensing observations (Verhegghen, et 

al., 2016). 

Synergy between radar and optical (Sentinel-1 and 2) has enabled the mapping 

of the extent of fire damage, but this required acquisitions before and after the event 

occurred which will be increasingly possible thanks to the Sentinel missions higher 

revisit time (European Space Agency, 2013). 

Lessons can be drawn from South East Asia where previously logged areas were 

the most vulnerable to fire disturbance during the 1997/1998 El Niño (Siegert, et al., 

2001) and this could potentially pose fatal consequences in the Congo Basin given the 

vast proportion of forest allocated to logging concessions and the recent finding that 

much of the central Congo overlies peat (Dargie, et al., 2017). 

1.3.2. South-East Asia Forests Overview 

South-East Asia tree cover is approximately 210 Mha (maritime SE Asia tree 

cover considering forest using a 30% threshold) (Hansen, et al., 2013) and is 

characterised by high AGB (Slik, et al., 2009) but also by a significant rate of annual 

forest change (0.41%) (2000-2010) (FAO, 2011). Almost half of the total forest area is 

allocated for the production of wood and non-wood products (111 Mha) (FAO, 2011). 

A major concern is habitat loss in valuable conservation areas with high species 

richness and endemism (Sodhi, et al., 2004). 

South East Asian peatlands (approximately 56% of all tropical peatland) are also 

of fundamental importance as they store a huge amount of carbon (68.5 Pg C, 11–14% 
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of global peat carbon) (Page, et al., 2011) and have been undergoing intensive 

pressure from deforestation driven by the conversion to industrial oil palm and paper 

pulp plantations (Stibig, et al., 2014) and degradation practices from peatland 

draining and fires (Hoekman, 2016) which have contributed to GHG emissions 

(Siegert, et al., 2001). Whilst there are still considerable uncertainties and limited 

knowledge on the area, carbon stored and emissions from peatland degradation 

located in South East Asia are comparatively well studied, compared to African and 

South American peatlands, but mostly because of the high rate of exposure and 

destruction they have experienced in the past decades (Lawson, et al., 2015). 

Indonesia is a particularly critical country storing the highest amount of tropical 

peat carbon (57.4 Gt) (Page, et al., 2011) and one of the most affected countries during 

the recent El Niño fires. Most recent and severe El Niño events occurred 1997/1998 

when emissions from peat fires reached 0.95 Pg C in Indonesia alone (Page, et al., 2002) 

and more recently during the 2015 which resulted in the highest CO2 emissions since 

the 1997 El Niño event (11.3 Tg CO2 /day) (Huijnen, et al., 2016) and a total of 

approximately 1.1 Pg CO2 (July-November 2015) (Heymann, et al., 2017). 

As well as extensive areas of peatland, until the 1960s, South East Asia was 

dominated by high AGB intact primary lowland Dipterocarpaceae forests but the 

majority of these former old-growth forests are now considered disturbed (Mietten, 

et al., 2014). The average AGB in South East Asia is substantially higher 

(approximately 60% higher) than forest in Amazonia because of the dominance by 

large individuals of the dominant Dipterocarpaceae genus (Slik, et al., 2009). 

Within South East Asia, Indonesia is the country with the highest reported forest 

cover loss (18.51 Mha) (2001-2014) (Hansen, et al., 2013) primarily due to logging and 

for the conversion of forest for large scale oil palm and paper pulp plantations (Abood, 

et al., 2015). The area of forest with a management plan is 90.1 Mha (95% of the forest 

area) of which 54.7% is allocated to production (2010 estimates) and the area with 

Forest Stewardship Council Certificate (FSC) is approximately 1.9 Mha (2014 

estimates) (FAO, 2015). 
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As well as industrial scale disturbance, smallholder farmers play a role in 

degrading forest areas by practicing shifting agriculture in rural areas, but it is argued 

that government policies are shifting towards the intensification of agricultural 

practices (Ahrends, et al., 2015). 

Efforts to protect areas from anthropogenic disturbance include the creation of 

PAs, which cover 22.62 million ha (~11.9% of the total land area) (UNEP-WCMC, 

2016). Assigning the status of PAs does not necessarily ensure that these areas remain 

undisturbed (Collins & Mitchard, 2017) as the expansion of illegal logging within PAs 

is commonplace (Curran, et al., 2004). 

1.3.2.1. Forest Degradation in South-East Asia 

The forest degradation drivers prevalent in South East Asia considered here are: 

a) commercial logging; b) fire and c) shifting cultivation. These often occur in 

combination and some processes lead to deforestation (commercial logging and in 

some cases forest fires). 

a) Commercial Logging 

The scale at which commercial logging occurs is different compared to the Congo 

Basin. Logging intensity is much higher in South East Asia where approximately 10-

20 tree/ha are harvested compared to 1-2 trees/ha in the Congo Basin (Malhi, et al., 

2013). This process often causes near-complete deforestation as opposed to forest 

degradation. Forests are rarely left to recover after logging, but then converted into 

other land use: estimates indicate that extensive areas of forest were converted into 

oil palm plantations (2.1 Mha) and paper pulp plantation (Acacia, 0.85 Mha) in 2010 

alone, following previous logging (Mietten, et al., 2012). 

Within South East Asia, Indonesia is a critical country given that approximately 

33% of the total area of its territory is allocated to industrial concessions (57 Mha in 

total) subdivided into logging sector (24 Mha), followed by palm oil (12 Mha), fiber 

(10 Mha), mixed concession (5.8 Mha) and mining (4 Mha) (Abood, et al., 2015). 

Given the above-mentioned considerations, commercial logging in South-East 

Asia is not considered in the thesis, as this is primarily a driver of deforestation, 
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contrary to the degradation driver that is selective logging in the Congo Basin. Much 

research using remote sensing has been directed towards mapping large scale 

commercial logging and the expansion of palm oil and paper pulp plantations in 

South-East Asia (Koh, et al., 2011; Gaveau, et al., 2014; Cheng, et al., 2016). 

 

b) Fire 

Naturally occurring fires in humid tropical forests are rare thanks to the 

prevalently moist conditions and the availability of low-fuel loads which reduce the 

probability of fire spreading to neighbouring areas; indeed, most species are 

intolerant to fire, suggesting it has not been regularly present for millions of years 

(Cochrane, 2003). Instead, anthropogenic fire used in slash-burn practices is 

commonly used to clear fields before conversion into agriculture as this is the easiest 

and most efficient method to clear land (Goldammer, 2015). Fires that result in the 

conversion of forest into a different land cover type (e.g. grassland) lead to 

deforestation while, fires which only reduce canopy cover without complete 

clearance are considered drivers of forest degradation. 

Forest fires affect structure and species composition (Gerwin, 2002) and areas that 

are repeatedly disturbed can ultimately be converted into impoverished grassland 

(e.g. Imperata sp.) (Goldammer, 2015). 

Forest fires are often exacerbated by dry conditions during El Niño Southern 

Oscillation (ENSO) years and often expand uncontrollably due to increased forest 

flammability (Goldammer, 2015) to neighbouring areas (e.g. Frederiksson, et al., 2006). 

Moreover, fires can be exacerbated by previous anthropogenic disturbance (e.g. 

selective logging) (Siegert, et al., 2001; Gerwin, 2002; Cochrane, 2003) and draining of 

peatlands (Hooijer, et al., 2010). 

It is evident how forest degradation drivers are often interlinked and occur in 

combination with one another (Mietten, et al., 2014). Especially concerning, is the 

increase in frequency and magnitude of climatic anomalies such as ENSO which will 

increasingly threaten both lowland and peatland forest (Cai, et al., 2014). 
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 It was estimated that the 1997/1998 fires burned a total of over 5 million ha of 

land (Siegert, et al., 2001). Release of CO2 in the atmosphere is of great concern in 

particular after the greatest ENSO fires since the 1997/1998 event which took place in 

2015-2016 (Huijnen, et al., 2016). It was estimated that during September and October 

2015 the mean emission rate was 11.3 Tg CO2 per day (Huijnen, et al., 2016) (higher 

than the emission rate of the European Union countries: 8.9 Tg CO2 per day) (Huijnen, 

et al., 2016). 

The impact of fire leading to complete forest loss is comparatively easier to detect 

using remote sensing than detecting partial damage (forest degradation) and the 

subsequent recovery. This is especially true if the fire is a sub-canopy fire. Several 

researchers have mapped large scale forest damaged area from remote sensing 

(Siegert, et al., 2001; Mietten & Liew, 2009). However, partial forest structure changes 

and subsequent forest recovery remains challenging to detect. The PhD has 

contributed to address this challenge using InSAR data in Chapter 4. 

c) Shifting cultivation  

The cycle of shifting cultivation in South East Asia is similar to practices 

employed in the Congo Basin. This is practiced by broadly 14-34 million people 

(Mertz, et al., 2009) and has relatively lower impact compared to other more intensive 

types of land use (e.g. industrial scale monoculture) (Dressler, et al., 2015) and 

potential for vegetation recovery during the fallow phase. 

With time, its impact has however, become more damaging as the size of forest 

cleared has been increasing and the fallow periods have been reduced (Goldammer, 

2015) leading to environmental degradation (e.g. deterioration of soil fertility) (Bruun 

Beech, et al., 2009). 

Traditional shifting cultivation has been undergoing changes in terms of crops 

that are cultivated (Li, et al., 2014) and in terms of extent and intensity (van Vliet, et 

al., 2013). It has been observed that to some extent there has been a decline of shifting 

agriculture in mainland South-East Asia, with replacement by permanent, more 

intensive agriculture (Padoch, et al., 2007). However, the demise of shifting 
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cultivation is not agreed unequivocally and a study concludes that it will still persist 

for some time in the 21st century (van Vliet, et al., 2013). 

As with shifting agriculture in the Congo Basin this can be mapped from optical 

remote sensing broadly as "rural-complex", or has been mapped using low to medium 

resolution time-series tracking spatio-temporal dynamics which would otherwise not 

be possible to detect with a single image (Hurni, et al., 2013). SAR has not been used 

for this purpose (Li, et al., 2014) since the rural-complex is composed of vegetation at 

various stages as well as cropland and it is not a “radiometrically homogeneous class” 

because it includes variable backscatter values, these depending on different 

scattering mechanisms. Therefore, the class cannot be mapped based on a unique 

backscatter value.  

 

1.4. Aims and Objectives 

The thesis has a core of three chapters reporting results of experiments that 

explore how to detect several forest degradation processes using different approaches. 

The overall thesis aim is to establish the relative capabilities and limits of SAR 

and InSAR spatial statistics and change detection to generate indicators of forest 

disturbance. 

The main objective is partitioned for each chapter according to different thematic 

contexts: study site, disturbance driver, SAR observations (backscatter and 

interferometric phase) and methodology. These objectives are not disjoined, but 

threaded together by a common approach consisting of looking for textural patterns 

and their changes in radar observations, then connecting the patterns to forest 

condition through supporting evidence from expert knowledge and auxiliary remote 

sensing observations (e.g. high resolution optical or LiDAR). It is to be noted that 

these patterns are descriptors of the forest structural characteristics and their changes 

in a statistical sense, but are not direct estimates of physical properties, such as AGB 

or canopy height. 
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Chapter 3: Assesses the capability of retrieving information about landcover 

discrimination, in particular intact and degraded forest in a closed semi-deciduous 

forest in Cameroon by analysis based on the spatial statistic of SAR backscatter 

provided by wavelet frames. The chapter compares the relative capabilities of two 

spaceborne missions at different wavelengths (C-band ENVISAT ASAR and L-Band 

ALOS PALSAR). 

Chapter 4: Investigates statistical measures of three-dimensional information in 

TanDEM-X InSAR and LiDAR Digital Elevation Models (DEMs), testing their 

capability of detecting differences in vegetation heterogeneity through a disturbance 

gradient in Indonesia. 

Chapter 5: Exploits differences of InSAR Digital Surface Models acquired at two dates 

to detect independently from topography forest volume loss and gain that can be 

linked to deforestation/forest degradation and post-disturbance re-growth. 

1.5. Thesis Highlights and Novel Aspects  

The work presented in this thesis rests on the unifying principle that a connection 

can be established between the forest structure distribution in space and signal 

variation (spatial statistics) within backscatter and Digital Surface Models (DSMs) 

provided by SAR. In turn, forest structure spatial characteristics and changes are 

considered as mapping of forest state or disturbance. The main novel aspect consists 

therefore of looking at patterns (and changes thereof) within the SAR signal, these 

being considered as measures of forest structure, as opposed of considering absolute 

reflectivity or phase coherence values, these being considered as measures of some 

physical property of the natural target. 

Instrumental to the implementation of this line of research is the use of advanced 

statistical signal processing techniques (wavelet frames) and the most advanced 

observational instruments (e.g. single-pass interferometry). These assets are called 

into play to address challenges identified by the international community (e.g. 
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REDD+) to detect degraded forests, the process of forest degradation and post-

disturbance re-growth in tropical forests. 

Two main partitions can be defined along the overall methodological line are 

summarised below: 

1. Spatial statistics of SAR backscatter and InSAR Digital Surface Models: Testing 

advanced statistical methods based on wavelet space-scale analysis to detect 

difference in forest structure as a consequence of forest degradation. 

2. InSAR Digital Surface Model Temporal change detection: Exploiting 

differences between InSAR derived DSMs to detect a gradient of forest volume 

loss or gain. 
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2. Technical Background: Synthetic Aperture Radar 

(SAR) and Interferometric SAR (InSAR): Key Concepts, 

Sensors and Data Analysis Methods 

The chapter provides an overview of Synthetic Aperture Radar (SAR) and 

Interferometric SAR (InSAR) sensors and key concepts related to their remote 

sensing capabilities. It also outlines the methodological approaches that enable the 

link between forest properties and the SAR and InSAR signal. Detailed explanation 

of the methodological approaches related to the use of wavelet-based statistics is 

found in Chapter 3 and developed further in Chapter 4 while, the use of 

morphological algorithms and object-based change detection method is explained in 

Chapter 5. 

2.1. Synthetic Aperture Radar (SAR) Key Concepts and Sensors 

Synthetic Aperture Radar (SAR) are active sensors that operate in the 

microwave portion of the electromagnetic spectrum (cm to dm wavelength) (Bamler 

& Hartl, 1998) (Figure 1). As active sensors, they transmit their own signal, and thus 

are independent of solar illumination and are unaffected by most meteorological 

conditions, with longer wavelengths having the ability to fully penetrate cloud and 

haze (Oliver & Quegan, 2004; Woodhouse, 2005). This characteristic makes them 

highly suitable for use in the tropics, where almost constant cloud cover in places 

greatly hinders the acquisition of optical remote sensing data. Operational 

monitoring of tropical forests can, therefore, only be accomplished using SAR 

systems. One more advantage of spaceborne SAR systems is that they are able to 

view extensive areas.  

SAR systems send microwave pulses towards the Earth's surface looking 

sideways at an angle from the normal to the ground (incidence angle) (Figure 1). It 

is a ranging device, measuring the distance to an object by time of flight. Spatial 

resolution in range is dictated by the duration of the pulse. Each pulse illuminates in 
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the range direction a portion of the ground called the swath, while the satellite 

moves in a direction called cross-range or azimuth. For each pulse, a portion of the 

radiation is scattered back to the sensor where it is detected. In the cross-range 

direction the pulse footprint covers a portion of the ground, whose width is dictated 

by the geometric characteristics if the real antenna. As the satellite moves along its 

orbit, several pulses are returned while covering the same slice of the illuminated 

ground. These pulses are combined to construct the equivalent of an observation 

provided by a virtual antenna much longer than the real antenna. It is through this 

process, called synthetic aperture formation that much higher resolution in the 

azimuth direction can be obtained with respect to the resolution afforded by a single 

physical antenna. 

 

Figure 1. Side-looking Synthetic Aperture Radar (SAR) system imaging geometry 

(Bamler, 2000). The side-looking radar acquires images of the ground reflectivity 

at microwave frequency by measuring distances in the range direction by time of 

flight. This is performed by sending pulses of electromagnetic energy, while the 

satellite moves in the azimuth (cross-range or along-track) direction, that cover a 

portion of the ground called the swath. The ground range is the distance from the 

nadir position of the satellite to the first pulse return in the slant range geometry. 

Conversion from slant range to the ground geometry must be performed for 

mapping applications. 
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The SAR sensor in imaging mode measures the normalised radar cross section 

for each resolution element (backscattering coefficient usually expressed in dB). The 

backscattering coefficient can be higher if the energy is backscattered towards the 

radar (e.g. urban areas which appear white) while, it can be lower if the energy is 

directed away from the sensor (e.g. in the case of smooth surfaces like water which 

appears black) (Moreira, et al., 2013) (Figure 2). 

The amount of scatter depends on the physical and electrical properties of the 

target on the ground, as well as the wavelength and polarisation at which the SAR 

system is operating (Moreira, et al., 2013). 

SAR wavelengths have letter designations that herald from their military 

heritage (Moreira, et al., 2013). The range of wavelengths used spans from short 

wavelength X-band (λ = 2.5-4 cm) to the longest wavelength available for 

spaceborne SAR systems P-band (λ  = 60-120 cm) (Table 1). 

Microwave polarisation is defined as the direction in which the electric field 

vector oscillates in space. SAR systems emit, most commonly, polarised microwaves 

either in the vertical direction (V) or horizontal direction (H) (Lee & Pottier, 2009; 

Cloude, 2010). The returned signal is also a polarised microwave, but its properties 

are changed by the interaction with the target, and it can be, for instance, rotated 

and be neither purely in the linear horizontal or vertical configuration. 

The satellite receiver with the two antennae measures the returned wave in the 

H and V direction, thus producing a representation in an orthogonal basis (Lee & 

Pottier, 2009). To make this representation complete, that is, to allow for the 

reconstruction of any polarisation configuration, the amplitude and phases of all the 

combinations of the measurements in the two bases must be performed, and 

combined in a matrix called the scattering matrix.  

Complete measurement of the scattering matrix (called SAR fully polarimetric 

mode) affords the distinctive capability of polarimetric SAR to be sensitive to object 

shapes, symmetries and orientations (Lee & Pottier, 2009). When the information 

richness, and cost, of the full scattering matrix are dispensable, the returned power 
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in selected polarisation combinations is commonly used (e.g. HH, VV and HV) (Lee 

& Pottier, 2009).  

Interaction with vegetation components is similar to the SAR system 

wavelength thus, long wavelength P-band will interact with the largest vegetation 

components (e.g. trunk and large branches), while the shorter wavelength X-band 

will interact will the smallest vegetation components (e.g. twigs and small branches) 

and the orientation of the vegetation elements that are of similar orientation in 

comparison to the incoming signal polarisation (Fung, 1994). Details related to 

underlying theory, principles and concepts of SAR systems are outside the scope of 

this chapter and can be found in Woodhouse (2005) and Bamler (2000). 

Table 1. Most commonly used SAR systems frequency bands and related 

frequency (GHz) and wavelength (cm) at which they operate (Moreira, et al., 

2013). 

Frequency Band X C S L P 

Frequency (GHz) 12–7.5 7.5–3.75 3.75–2 2–1 0.5–0.25 

Wavelength (cm) 2.5–4 4–8 8–15 15–30 60–120 

 

Figure 2a and Figure 2b illustrate the different information that can be retrieved 

from SAR systems operating at different wavelengths (C-band ENVISAT ASAR and 

L-band ALOS PALSAR) and polarisation (VV and HV polarisation for ENVISAT 

ASAR and ALOS PALSAR respectively). Better discrimination can be noted 

between forest (grey) and bare soil/agriculture (black) using ALOS PALSAR (longer 

wavelength). This is because L-band penetrates deeper into the forest canopy and is 

more sensitive to taller vegetation through the interaction with the larger tree 

components (e.g. large branches), while smaller tree components, such as leaves, 

tend to become in the limit transparent to the radiation. Instead, at C-band 

backscatter saturates at lower biomass, which results in low contrast between forest 

and agriculture; while, hard point targets, as in the urban area (white), give higher 

return with respect to L-band. 
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Low backscatter 
 

High backscatter 

(a) C-band ENVISAT ASAR 

 (VV polarisation) 

(b) L-band ALOS PALSAR   

(HV polarisation) 

Figure 2. Example of SAR imagery acquired at different wavelength and 

polarisation over the city of Bertoua (Lom-et-Djerem, Cameroon) surrounded by 

agricultural fields, savanna and semi-deciduous forest. SAR image acquired by: (a) 

ENVISAT ASAR (C-band, VV polarisation, 15 m resolution) and (b) L-band ALOS 

PALSAR (L-band, HV, 15 m resolution).  

Table 2 summarises spaceborne SAR systems launched since the 1990s with 

wavelengths from X-band (λ≅ 3 cm) upwards. These instruments have provided a 

plethora of data through time, though it should be noted that most data is available 

at C-band, followed by the shorter wavelength X-band; the longer L-band has been 

collected least frequently, and the longer still P-band not yet launched in space 

(though a satellite is planned).  
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Table 2. List of spaceborne satellites launched since 1990 including current, 

future and proposed missions (World Meteorological Organization, 2017; 

European Space Agency, 2017). 

Satellite 

(Agency) 
Life Span 

Spatial 

resolution 

(m) 

Polarisation 
Repeat cycle 

(days) 

Past missions 

X-band 

SRTM (X-SAR) 

(NASA/DLR/ASI) 
2000 30  VV N/A 

C-Band 

ERS-1  (ESA) 1991-2000 30 VV 35  

ERS-2 (ESA) 1995-2011 30 VV 35 

ENVISAT/ASAR  

(ESA) 

2002-2012 30-1 km Single, Dual 35  

SIR-C (NASA) 1994- 10-40 HH, VV, HV 

(quad) 

1 

RADARSAT-1 (CSA) 1995-2013 10-100 HH 24  

RADARSAT-2 (CSA)  2007-

present 

3-100 Single, Dual, Quad 24  

SRTM (C-SAR) (NASA 

JPL) 

2000 30 HH, VV N/A 

L-Band 

Seasat (NASA) 1978- 1978 25 HH 17  

JERS-1 (JAXA) 1992-1998 18 HH 44  

ALOS PALSAR 1 (JAXA) 2002-2011 7-100 
Single, Dual, Quad 

pol 
46 

Current missions 

X-Band 

CosmoSkyMed 1 (ASI) 

CosmoSkyMed 2 (ASI) 

CosmoSkyMed 3 (ASI) 

CosmoSkyMed 4 (ASI) 

2007- ≥2017 

2007- ≥2017 

2008-  

≥2017 

2010 -≥2017 

1-100 Single or Dual pol 16  

RISAT- 2 (ISRO) 2009-2017 1-8 HH or VV or HV or 

VH 

14  

TerraSAR-X (DLR) 

TanDEM-X (DLR) 

2007-2017 

2010-2017 

1-16 Single, Dual 

HH or VV or HV or 

VH 

11  

C-Band 

Sentinel 1A/B (ESA) 2014-2021 

2016-2023 

4-80 Single, Dual, Quad 12 

RISAT-1 (ISRO) 

 

2012-

present 
1-50 

HH or VV or 

HH/HV or VV/VH 

25  

L-Band 

ALOS PALSAR-2 (JAXA) 2014-2019 1-100 Single, Dual 14  

Future and proposed missions 

X-band 

PAZ (CDTI/INTA) 
≥2017 1-15 HH or VV or HV or 

VH 

11 
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C-Band 

RADARSAT 3 (CSA) 2018 1-100   

RISAT-1A (ISRO) 2019-2023 

 

1-50 HH or VV or 

HH/HV or VV/VH 

12  

L-Band 

TanDEM-L (DLR) (proposed mission) 

SAOCOM-1A (CONAE) 

SAOCOM-2A(CONAE) 

SAOCOM -1B (CONAE) 

SAOCOM -2B (CONAE) 

≥2017- 
≥2022 

≥2019-

≥2024 

≥2018-

≥2023 

≥2020-

≥2025 

10-100 Single (HH or VV), 

Dual (VV/HH, 

HH/HV, VV/VH) 

16 days (one 

satellite) 

8 days with  

constellation 

NISAR (L-S-band) 

(NASA and ISRO) 

2020- 10 m 

(depends on 

polarisation 

mode) 

HH or VV (single 

pol); HH/HV or 

VV/VH (dual pol); 

RH/R (compact pol); 

HH/HV/VH/VV 

(quad pol) 

12  

P-Band 

BIOMASS (ESA) 2021 50-60 Fully polarimetric 17 

* highlighted in bold the sensors used in the thesis. 

Acronyms: European Space Agency (ESA), National Aeronautics and Space Administration (NASA), 

Agenzia Spaziale Italiana (ASI), Japanese Aerospace Exploration Agency (JAXA), German Aerospace Agency 

(DLR), Canadian Space Agency (CSA), Indian Space Research Organisation (ISRO), Argentine Space Agency 

(CONAE), Centro para el Desarrollo Tecnológico Industrial - Spain's Center for Development of Industrial 

Technology) (CDTI) and Instituto National de Técnica Aeroespacial (INTA). 

 

Notable recent technological advancements are provided by the C-Band 

Sentinel-1 mission developed by the European Space Agency (ESA). Sentinel-1 (A 

and B) satellites launched in 2014 and 2016 respectively (European Space Agency, 

2013) which are set to enhance the role of SAR in aid of tropical forest monitoring. 

Particular improvements, compared to ESA's previous missions, include the open 

data policy, and data quality in terms of temporal (up to 6 days revisit time) and 

spatial resolution (5 x 5 m spatial resolution in StripMap mode) (European Space 

Agency, 2013). These assets afford the ability to monitor natural processes 

frequently and at finer detail compared to its predecessor (ENVISAT ASAR) (30 m 

spatial resolution in StripMap mode) (World Meteorological Organization, 2017). 

Notable, future missions include the BIOMASS mission (Table 2) which is 

directed towards monitoring and quantifying changes in terrestrial forest above-

ground biomass globally and annually. BIOMASS is scheduled to be launched in 
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2021 and will be the first and longest wavelength spaceborne satellite operating at 

P-band (λ = 70 cm; frequency = 435 MHz) (Le Toan, et al., 2011). 

TanDEM-L is also a highly innovative mission concept proposed by DLR 

consisting of two satellites operating in formation for monitoring dynamic processes 

on the Earth's Surface with the aim to provide interferometric information once a 

week over the land mass (Moreira, et al., 2015). The mission is set to provide 

tomographic measures required to capture vegetation three-dimensional structure 

as well as other applications (e.g., glaciology and ground deformation) (Moreira, et 

al., 2015). 

The following sections describe in detail the satellite sensors used in the thesis. 

2.1.1. ALOS PALSAR 

The Advanced Land Observing Satellite (ALOS) was a satellite launched in 

2006 by the Japanese Space Exploration Agency (JAXA) and carried the Phased-

Array L-band Synthetic Aperture Radar (PALSAR). PALSAR, a successor of JERS-1 

SAR, acquired data at L-Band (λ = 23.6 cm) (Rosenqvist, et al., 2007). Compared to its 

predecessor, ALOS PALSAR could acquire data at higher resolution in all modes, 

better signal-to-noise ratios, and better polarimetric characteristics (it collected most 

data over land in the Fine Beam Dual polarisation mode, with HH and HV 

polarisations, whereas JERS-1 data provided HH polarisation only) (Table 2). 

JERS-1, had shown the value of SAR data for characterising forests and ALOS 

PALSAR was developed with the aim of providing a systematic acquisition plan in 

continuation with the JERS-1 strategy. In this context, data were acquired 

consistently over tropical regions and boreal zones in the framework of the Global 

Rain Forest Mapping (GRFM) (De Grandi, et al., 2000) and Global Boreal Forest 

Mapping (GBFM) (Rosenqvist, et al., 2004) initiatives. 

The dataset used in this thesis consists of twelve ALOS PALSAR Fine Beam 

Dual (FBD) scenes acquired between 2007 and 2010 at HH and HV polarizations in 

work described in Chapter 3. 
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2.1.2. ENVISAT ASAR 

The Advanced Synthetic Aperture Radar (ASAR) onboard ENVISAT was 

launched by the European Space Agency (ESA) in 2002 to acquire data at C-band (λ 

= 5.6 cm) until its failure in April 2012 (Miranda, et al., 2013). The ENVISAT ASAR 

mission follows the ERS-1/2 mission that was operating between 1991-2000 and 

1995-2011.  

One of the acquisitions modes, the Imaging Mode (IM) is a conventional 

StripMap mode whereby changes in the elevation beam permit the acquisition of 

data with decreased swath width. IM mode permitted the acquisition of single 

polarisation data (either HH or VV polarisation) as opposed to the dual-polarisation 

acquisition capability in Alternating Polarisation mode (HH/VV, HH/HV or 

VV/VH) (Miranda, et al., 2013). 

The focus of the mission was on ocean, land (including global vegetation 

monitoring), natural disasters and snow and ice applications. The ENVISAT ASAR 

mission was followed by the Sentinel-1 (A and B) constellation which aims to 

provide multi-temporal data at high revisit time (ESA, 2016). 

Nine ENVISAT ASAR IM scenes used in Chapter 3 were acquired between 2003 

and 2010 at 23° incidence angle and VV polarization. 

2.2. Interferometric Synthetic Aperture Radar (InSAR) 

The use of SAR interferometry took off later compared to SAR imaging systems. 

The first applications of InSAR to terrestrial monitoring were published in the 1980s 

(Bamler & Hartl, 1998) (e.g. Zebker & Goldstein, 1986). 

The field of SAR interferometry took longer to mature because it required 

sophisticated signal processing algorithms (time-frequency analysis, phase 

unwrapping), precision orbital mechanics for accurate baseline estimation, and 

novel understanding of the physics of wave propagation in the layer between the 

satellite and the Earth.  

Notably, the evolution of the interferometric SAR field has widened to explore 

entirely new possibilities beyond the generation of digital surface models. Among 
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these the capability of measuring target velocity provided by Along Track 

Interferometry (ATI) and the capability of measuring displacements of permanent 

targets of the order of magnitude of the wavelength by differential SAR 

interferometry (DInSAR). 

Nowadays, the methodology for processing InSAR data, at least for the 

generation of DEMs is highly advanced, with excellent software packages available 

such as SARscape (Sarmap, 2016) and GAMMA (GAMMA, 2006). 

The most significant advance in data availability occurred in 2011 with the 

launch of the TanDEM-X satellite system. TanDEM-X flies in formation with its twin 

satellite TerraSAR-X, in a helical orbit that keeps the satellite 10s to 100s of meters 

apart (Krieger, et al., 2007). Prior to this, all spaceborne InSAR data was acquired in 

repeat-pass mode, involving images captured at different times (usually several 

days) by the same satellite sensor from a slightly different position; the TanDEM-X 

system allows a single-pass whereby two images are captured simultaneously. 

2.2.1.  TanDEM-X 

TanDEM-X (with its twin satellite TerraSAR-X flying in formation) is the first 

single-pass spaceborne interferometer that acquires data at X-Band (λ = 0.031 m, 9.65 

GHz) with a high spatial resolution (1 m in SpotLight mode). Its main goal is to 

provide a consistent Digital Elevation Model (DEM) with global coverage 

(WorldDEMTM) (Airbus Defence and Space, 2014) and at high accuracy (HRTI-3 

specifications) (10 m absolute vertical accuracy, 10 m horizontal accuracy and 12 m 

spatial resolution) (Krieger, et al., 2007). A single bistatic scene usually covers 30 x 

50 km (range and azimuth respectively) (Martone, et al., 2016). How InSAR works 

and data acquired can be used to generate DEMs is detailed in the next section. 

TanDEM-X acquires data using an innovative technique called bistatic 

interferometry (bistatic mode), which involves the illumination of a common 

footprint simultaneously measured using two receivers, thus eliminating temporal 

decorrelation (Krieger, et al., 2007) (which is inherent in repeat-pass systems) 

(Martone, et al., 2016).  
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Single-pass interferometry has provided excellent potential for scientific 

research for the study of forest structure. TanDEM-X Single Look Complex (SLCs) 

data was provided on-demand to the scientific community, as part of 

announcements of opportunity. From this data, it is possible to generate a DEM, 

corresponding to approximately the 'top of the canopy', with a variance dependent 

on the forest type (e.g. density) and environmental conditions (Treuhaft, et al., 

2015). 

TanDEM-X data acquired in StripMap bistatic mode are used in Chapter 4 and 

5 of this thesis. In Chapter 4 data acquired in 2014, at HH polarisation, ascending 

mode at 41° incidence angle with an effective baseline equal to 223 m. In Chapter 5 

data were acquired at HH polarisation at 2 dates (2012 and 2013) at 47° incidence 

angle in descending mode with effective baselines equal to 52 m and 95.3 m. Data 

were processed from co-registered Single Look Complex (CoSSC) provided by DLR 

using ENVI/SARScape 5.0, as described in Chapter 4 and Chapter 5. 

2.3. InSAR Overview and Key Concepts 

SAR instruments acquire data by sending a number of electromagnetic pulses 

while the satellite moves along its orbit, and reconstructing a high resolution two-

dimensional map (image) of the energy backscattered from the terrain. In this 

acquisition mode, also called StripMap SAR, the instrument is restricted to two-

dimensional measurements (Rosen, et al., 2000). 

Instead, Interferometric Synthetic Aperture Radar (InSAR) involves the 

acquisition of two radar signals from two positions 𝑆1 and 𝑆2 with slightly different 

look angles, separated by a baseline 𝐵. The antennas are located at distance 𝑅1 and 

𝑅2 from a target located on the surface 𝑃 which is situated at height ℎ0 compared to 

the ground surface (Cloude, 2010) (Figure 3. 

The InSAR configuration affords the ability to derive a third dimension, the 

height of the target ℎ0, through measuring the phase difference of the returning 

waves (Gens & Van Genderen, 1996; Bamler & Hartl, 1998; Rosen, et al., 2000; 

Richards, 2006) (Figure 3). 
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Figure 3. Interferometric Synthetic Aperture Radar (InSAR) viewing geometry 

illustrating the acquisition from two satellites S1 and S2 acquiring radar signals 

separated by a baseline B and located at a height H and at range distances R1 and 

R2 respectively from a target P which is situated at height h0 (Cloude, 2010). 

 

A peculiar characteristic of radar systems (in particular interferometric and 

polarimetric SAR) is that they process radiation coherently, that is, both the 

amplitude and the phase of the transmitted and received waves are measured using 

a unique reference clock. It is this property that allows an interferometer to measure 

terrain height, and a polarimeter to detect object's shapes and symmetries (Lee & 

Pottier, 2009). 

Regarding InSAR the key variable is the complex conjugate product of the two 

coherent signals, also called the interferogram. The interferogram can be generated 

from two images that are acquired in two different ways: repeat-pass interferometry 

(the acquisition using one antenna over the same area at two different times) (e.g. 

acquisitions by ERS-1/2 or ENVISAT ASAR 1/2) or single-pass interferometry 

(acquisition using two antennas) (e.g. acquisitions from TanDEM-X) (Balzter, 2001). 

An important step to consider when generating an interferogram (Figure 4) involves 



Chapter 2- Technical Background 
 

51 

 

the accurate co-registration of the Single Look Complex (SLC) image pairs acquired 

by 𝑆1 and 𝑆2. 

Considering a single pulse and a single scatterer for a point 𝑃 centered at the 

origin of the 𝑥, 𝑦 coordinate system the interferogram is: 

𝑠1𝑠2
∗ = 𝐴1𝐴2𝑒𝑖(𝜙1−𝜙2) = 𝐴𝑒

𝑖
4𝜋∆𝑅

𝜆 ≅ 𝐴𝑒
𝑖
4𝜋∆𝜃

𝜆
𝑧𝑠𝑖𝑛𝜃

 Equation 1 

Where 𝐴1 and 𝐴2 are amplitudes, 𝜃 is the incidence angle, ∆𝜃 is the difference in 

look angle due to the antennae position, 𝜆 is the wavelenght, 𝑧 is the vertical 

coordinate of point 𝑃. Notice that in this formula and in the next derivations the 

dual-transmitter (or ping-pong mode is assumed). 

The simplified equation derived for a single point 𝑃 at height 𝑧 indicates how 

the phase of the interferogram bears information on the vertical position of a scatter, 

apart a scaling factor 
4𝜋∆𝑅𝜃

𝜆
, which is called the interferometric wavenumber. 

Importantly, the phase of the interferogram (𝜙), the key radar observable, is 2𝜋 

ambiguous (Cloude, 2010): 

𝜙 = 𝑎𝑟𝑔{𝑠1𝑠2
∗} = −

4𝜋

λ
∆𝑅 + 2𝜋𝑁 Equation 2 

where 𝑠1 is the radar signal from satellite 𝑆1; 𝑠2
∗ is the complex conjugate of the radar 

signal derived from satellite 𝑆2; λ is the wavelength and ∆𝑅= 𝑅1 − 𝑅2 gives the 

distance between the range distances. 

Because the range to terrain 𝑅 can be many times the radar wavelength the 

phase will be a large number of radians. This points to the problem that to convert 

the phase to terrain height the ambiguity of the values must be resolved by a 

process called phase unwrapping (Richards, 2006). 

The interferogram (Figure 4) contains fringes due to the rate of change of phase 

across a flat surface (height variation ∆𝑧 = 0). This high frequency phase term is 

removed by further processing called 'interferogram flattening', which means that a 

constant phase is generated for flat terrain, thus emphasising phase changes due to 
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topography (Cloude, 2010). This process requires the use of an external DEM to take 

into account of the topographic phase. Further details related to the complete 

processing workflow can be found in Sarmap (2016). 

 

Figure 4. SAR interferogram derived from TanDEM-X StripMap bistatic mode 

acquisitions over tropical forest in the Republic of Congo (processed using 

SARscape 5.0) (Sarmap, 2016). In bistatic mode one satellite (master) transmits and 

receives pulses, while the second satellite (slave) only receives (at a different 

incidence angle) pulses transmitted by the first satellite. In the interferogram image 

the phase difference (in radians) received by the two antennas at slightly different 

position is colour coded. Each colour circle (from black to red) represent a 2𝜋 cycle. 

The regular pattern of fringes correspond to the variation of phase per unit range 

distance over flat terrain. When this high frequency component is removed by a 

suitable processing step (flat earth removal) the phase will carry information on the 

terrain elevation. The absence of fringes are due to scattering from moving water 

with very low signal to noise ratio. TanDEM-X data acquisition parameters: 

baseline: 52 m, incidence angle: 47°, polarisation: HH. Data: TanDEM-X AO: 

VEGE6702 (DLR). 
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2.3.1. Interferometric Coherence 

Interferometric coherence is a statistical measure of the correlation between the 

two signals that form the interferogram, and has an important impact on the quality 

of the interferogram. The complex coherence (𝛾) (Figure 5) is the normalised 

complex correlation coefficient of 𝑆1 and 𝑆2 (master and slave signals) (Cloude, 

2010): 

𝛾 =
〈𝑆1𝑆2

∗〉

√〈𝑆1
2〉〈𝑆2

2〉

           0 ≤ |𝛾| ≤ 1 Equation 3 

Where 𝛾 is the complex coherence; 〈… 〉 indicates ensemble average and 𝑆1, 𝑆2 are the 

complex slant range signals acquired by the two instruments. 

The modulus of the coherence |𝛾| ranges between 0 (not coherent) and 1 

(completely coherent) (Woodhouse, 2005). Several phenomena affect the coherence 

magnitude in repeat-pass InSAR acquisitions such as temporal decorrelation (𝛾𝑇𝑒𝑚𝑝) 

(Hanssen, 2001), for instance in the case of the ERS-1/2, ENVISAT ASAR and ALOS 

PALSAR 1/2 missions. Further details related to repeat-pass InSAR can be found in 

(Bamler & Hartl, 1998). 

In the most general case, sources of coherence loss that need to be taken into 

account for repeat-pass InSAR are highlighted in Equation 4 (Martone, et al., 2012): 

𝛾 =  𝛾𝑆𝑁𝑅𝛾𝑉𝑜𝑙𝛾𝑄𝑢𝑎𝑛𝑡𝛾𝐴𝑚𝑏𝛾𝑅𝑎𝑛𝑔𝑒𝛾𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝛾𝑇𝑒𝑚𝑝 Equation 4 

where 𝛾𝑆𝑁𝑅 is the signal-to-noise ratio; 𝛾𝑉𝑜𝑙 is the volume decorrelation; 𝛾𝑄𝑢𝑎𝑛𝑡 is the 

quantization errors; 𝛾𝑅𝑎𝑛𝑔𝑒 is the baseline decorrelation and 𝛾𝐴𝑚𝑏 is the noise from 

ambiguities. 

The thesis only deals with single-pass interferometry acquisitions. For single-

pass interferometers, such as TanDEM-X, temporal decorrelation (changes in the 

scatterer structure over two acquisition times) can be considered negligible (i.e., 

𝛾𝑇𝑒𝑚𝑝= 1) (Equation 4) (Martone, et al., 2016). Signal decorrelation is primarily due 

to volume decorrelation (𝛾𝑉𝑜𝑙) from the vegetation layer, due to interference of the 

coherent sums of the returns from all the scattering centres (e.g. leaves and twigs) 
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distributed vertically across the vegetation layer (Treuhaft & Siqueira, 2000; Cloude, 

2010) (Equation 4).  

Another important source of decorrelation is geometric (or baseline) 

decorrelation (𝛾𝑅𝑎𝑛𝑔𝑒). This mechanism is similar to volume decorrelation, but now 

it is due to surface scattering and to the coherent sum of scatterers along the 𝑦 

coordinate in space, as opposed to the vertical 𝑧 coordinate. Since the surface is seen 

by two different antennae positions, the coherent sums will be slightly different in 

the two signals, and therefore decorrelation is generated. Contrary to volume 

decorrelation, baseline decorrelation can be corrected by suitable processing (called 

spectral shift) but up to a maximum separation of the baseline (Gatelli, et al., 1994).  

Figure 5 shows TanDEM-X coherence over tropical forest in the Republic of 

Congo. Coherence is low in lowland tropical forest (green), due to high volume 

decorrelation given by the heterogeneous density and vertical distribution of 

scatterers within the resolution cell while, high coherence is noticeable for areas 

such as bare soil and agricultural fields (orange), but also in swamp forest (orange), 

due to homogeneous and dense canopy structure, which pushes the effective 

vegetation volume towards the canopy top.  
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Figure 5. TanDEM-X coherence over the Republic of Congo. Areas with low 

coherence (green) represent lowland tropical forest dominating the scene, while 

higher coherence illustrates areas where there is less volume decorrelation from lack 

of vegetation (e.g. bare soil and agricultural fields) (orange) as well as swamp forest 

(right). Lowest coherence (black and blue) is observed in water and roads due to the 

low signal to noise ratio. TanDEM-X data acquisition parameters: baseline: 52 m, 

incidence angle: 47°, polarisation: HH. Data: TanDEM-X AO VEGE6702 (DLR). 

2.3.2. Height of Ambiguity 

The height of ambiguity (𝐻𝑜𝐴) is the elevation difference corresponding to a 

complete 2𝜋 cycle of the interferometric phase (Martone, et al., 2016). 𝐻𝑜𝐴 gives an 

indication of the phase-to-height sensitivity of the interferogram and is defined in 

Equation 5 (Martone, et al., 2012): 

𝐻𝑜𝐴 =
λr sin(𝜃𝑖)

𝐵⊥
 Equation 5 

Where λ is the radar wavelength, 𝑟 is the slant range, 𝜃𝑖 is the incidence angle and 

𝐵⊥ is the baseline perpendicular to the line of sight. 
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2.3.3. Phase-to-Height Conversion 

Conversion from phase to height of a point 𝑃 can be performed from the 

unwrapped and flattened phase of the coherence and the vertical wavenumber 

(rad/m): 

ℎ0 =
𝜙

𝛽𝑧
 

Equation 6 

For terrain mapping, the difference of interferometric phase from one pixel to 

the next is used to estimate a height change between two pixels. A height map is 

then formed using a reference point with known height ℎ𝑟𝑒𝑓, supplied by an 

auxiliary lower resolution DEM (e.g. SRTM): 

ℎ (𝑥, 𝑦) = ℎ𝑟𝑒𝑓 +
1

𝛽𝑧
(𝜙(𝑥, 𝑦) − 𝜙𝑟𝑒𝑓(𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓)) Equation 7 

where ℎ𝑟𝑒𝑓 is the reference height from the auxiliary DEM; 𝜙𝑟𝑒𝑓 is the phase 

from the auxiliary DEM and 𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 are the coordinates for the auxiliary DEM. 

If the point lies on a vegetated terrain, the height ℎ will be the sum of the 

topographic height and the position of the phase centre within the vegetation 

volume. The fractional phase centre height (PC), i.e. the position of the phase centre 

with respect to the vegetation volume height, is dictated by the amount of volume 

decorrelation, and is defined as (Equation 8) (Cloude, 2010): 

𝑃𝐶 =
𝜙

ℎ𝑣𝛽𝑧
 Equation 8 

Where is 𝜙 the interferometric phase; ℎ𝑣 is the height of the volume and 𝛽𝑧 is 

the vertical wavenumber. 

Therefore, PC is the ratio of the coherence phase (radians) resulting from 

decorrelation induced by volume scattering to the volume height measured in unit 

of the vertical wavenumber. 

Location of PC depends on the sensor's parameters (e.g. wavelength, incidence 

angle and baseline), the forest properties (e.g. density and presence of canopy gaps) 

(Treuhaft, et al., 2015) and attenuation from the canopy volume (Cloude, 2010).  
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At X-band, the PC is located close to the 'top of the canopy' (Izzawati, et al., 

2006), while with longer wavelength (e.g. L-band and P-band) this moves 

downwards (Figure 6). This means that X-band is able to provide an approximation 

of a Digitals Surface Model (DSM) over vegetated areas. 

Penetration depth also depends on environmental conditions (e.g. seasonality 

and recent rainfall), with dry and sparser forests characterised by the presence of 

canopy gaps (e.g. boreal forests or temperate or seasonal forests in the winter/dry 

season) allowing a greater penetration into the canopy volume compared to dense 

forest (Garestier, et al., 2008). Accordingly, the PC at X-band is located deeper 

within the canopy volume for sparser boreal forest (e.g. PC was found to be located 

at 75% of the canopy height in boreal forest) (Praks, et al., 2012).  

Currently, there is no spaceborne sensor which provides both the 'top of the 

canopy' (DSM) and ground topography (Digital Terrain Model). The Shuttle Radar 

Topographic Mission (SRTM, a C-band single-pass InSAR mission flown on the 

Space Shuttle in 2000) is the only mission that has so far provided a global DEM 

which approximates to ground topography, especially in areas with the absence of 

vegetation cover. However, its resolution is lower than that produced by TanDEM-

X (30 m compared to 12 m) (Farr, et al., 2007).  

To illustrate the location of the PC a model with a uniform layer and an 

exponential profile for the scattered power along the vertical coordinate can be used 

(Cloude, 2010): 

𝛾 = 𝑓( ℎ, 𝜎𝑒 ,  𝛽𝑧) =
𝑝(𝑒(𝑝+𝑖𝛽)ℎ − 1)

(𝑝 + 𝑖𝛽)(𝑒𝑝ℎ − 1)
  𝑝 = 2𝜎𝑠𝑒𝑐𝜗 

Equation 9 

 

where 𝛾 is the complex coherence, ℎ is the volume height, 𝜎 is the extinction 

coefficient, 𝜗 is the incidence angle, 𝛽𝑧 =
4𝜋𝐵⊥

𝜆𝑅 sin 𝜗
 is the vertical wavenumber, a 

parameter that summarises the interferometric sensitivity. 

 Figure 6 reports an example where the PC was computed as a function of the 

volume height (ℎ) and parameterised by increasing wavelength. 
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At X-band and C-band (high extinction) the PC will be moved up near the top 

of the canopy. At L-band and P-band (lower extinction) the PC will tend to settle at 

half the volume height. Volume decorrelation will always move up the PC even at 

P-band. Therefore, vegetation height estimation at P- or L-band will always be 

biased because PC is halfway up into the canopy. Only multi-frequency acquisitions 

will provide a better approximation of vegetation height (e.g. TanDEM-X and 

TanDEM-L). 

 

Figure 6. Phase centre (PC) dependence on the instrument frequency of acquisition 

(X-band in red; C-band in green; L-band in blue and P-band in yellow) and volume 

height (m) calculated using model with a uniform layer and an exponential profile 

(Cloude, 2010). Notice that at X-band the PC is located > 90% of the height for 

height > 20 m and at P-band the PC is still located > 50% of the height. 

2.3.4. Phase Error 

Each sample in the TanDEM-X DSM (height estimate) is affected by an error 

induced by phase noise whose standard deviation (𝑆𝐷𝜙) can be related to the 

coherence by a Cramer-Rao bound (Figure 7) (Cloude, 2010).  

 

𝑆𝐷𝜙 = √
1 − |𝛾|2

2|𝛾|2
 

Equation 10 
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Where 𝜙 is the phase and 𝛾 is the interferometric coherence. 

The standard deviation of the height estimate 𝑆𝐷(ℎ𝜙) is computed by SARscape 

for each pixel in the DSM dataset (Sarmap, 2016). Lower coherence values result in a 

lower measurement precision and vice versa (Sarmap, 2016). 

The phase error propagates to the height estimate error and it is dependent on 

the sensor's acquisition parameters, including the wavelength 𝜆, the slant range 

distance 𝑅, the local incidence angle 𝜗 and the effective baseline 𝐵⊥. For instance, 

TanDEM-X acquisitions will have a higher precision with long baselines.  

𝑆𝐷(ℎ𝜙) =  𝑆𝐷𝜙
𝜆𝑅 sin 𝜗

4𝜋𝐵⊥
 Equation 11 

 

Where 𝜆 is the wavelength,  𝑅 is the slant range distance, 𝜗 is the local incidence 

angle and 𝐵⊥ is the effective baseline. 
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High precision  Low precision 

Figure 7. TanDEM-X height estimates standard deviation image derived from phase 

noise SD(hϕ) generated by SARScape 5.0 (Sarmap, 2016) in Central Kalimantan, 

Indonesian Borneo. Higher SD(hϕ) values (m) indicate lower measurement 

precision. Areas of dense forest (red and green) in the top-centre of the image and 

water to the left of the image (red) present higher SD(hϕ) values (lower precision) 

while, areas of agriculture and bare fields (black and dark blue) have a higher 

precision. This is related to the degree of decorrelation; in areas where there is less 

volume scattering the precision is higher. 

2.4. Wavelets 

Much of the potential gain for improving our ability to use SAR data (both 

backscatter and InSAR coherence) to map forest characteristics can be made by 

calling into play texture. By considering the relationships between neighbouring 

pixels much more information about the surface structure and its scattering 
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mechanisms can be elucidated, enhancing the ability to detect differences between 

vegetation types in time and space.  

Wavelets emerged in the field of applied mathematics in the 1980s and rapidly 

gained interest and underwent great theoretical development is various application 

areas, such as geoscience. They are nowadays a well established tool both from the 

theoretical and the computational standpoint. In both Chapters 3 and 4 wavelets are 

used to analyse radar texture, building on earlier work (Simard, et al., 1998; De 

Grandi, et al., 2009) showing their potential for considerable utility in the analysis of 

SAR images.  

Given that wavelets are not a standard tool, an introduction is provided here to 

assist the reader in understanding the results presented in these chapters. 

Their merits with respect to other methods used in the past in the framework of 

statistical analysis in the combined space-scale domain are discussed in detail in 

Chapter 3; an overview is also given here. 

Wavelets are functions that oscillate and decay rapidly (Figure 8). They can be 

used to decompose a signal (field) in a complete way (without losing information) 

into more elementary building blocks (or oscillatory waveforms) (Mallat, 2008). A 

'mother' wavelet is the main function which is used to generate by dilation and 

translation a series of basis functions (Mallat, 2008). 

There are many other ways of building a basis aside from wavelets. For 

example, sine waves (functions which oscillate at a specific frequency) are widely 

used, for example in the well-known Fourier transform, but these are only suitable 

for stationary signals (Mallat, 2008) (signals whose statistical properties do not 

change with time) (Peebles, 1980). Wavelets are considered to have many 

advantaged over these for instance, the ability to keep optimal time and frequency 

resolution and to detect abrupt changes (Mallat & Zhong, 1992).  

Wavelets are able to adapt the space-frequency resolutions in such a way that 

their product is constant (Mallat, 2008). Frequency and space resolution cannot be 

made independently and arbitrarily better. For instance, the basic function of the 

Fourier transform (sine wave) presents zero spread in frequency (pure tone) while 
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infinite spread in space (it oscillates everywhere) (Mallat, 2008). What would be 

desirable is to have more resolution in time when dealing with smaller scale (higher 

frequency) analysis, and lower resolution in time when dealing with processes that 

are evolving slowly. Wavelets do exactly that, by adapting the space-frequency 

resolution. The capability is of importance when considerations that analyse the 

dynamics of the signal at specific points in time (or in space) through time-

frequency analysis (space-scale analysis) are of interest (Davis, et al., 1994). It was 

also the main reason for using wavelets for textural analysis rather than Fourier 

based techniques in the thesis work. 

 

Figure 8. Typical shape of a wavelet. 
 

Table 3. Space-scale (time-frequency) analysis. 

Atoms Time spread Frequency spread 
Time-frequency 

resolution 

Fourier Infinite Zero Undetermined 

Windowed Fourier 𝜎𝑡 𝜎𝜔 𝜎𝑡𝜎𝜔= constant 

Wavelet 𝑠𝜎𝑡 (adaptive) 
𝜎𝜔

𝑠
 (adaptive) 𝜎𝑡𝜎𝜔= constant 

Advantages of using as building blocks in a time-frequency transform wavelets 

compared to Fourier waveforms are summarised in Table 3. The waveforms in the 

linear time-frequency transform are called atoms. The Fourier atom is a sine wave 

oscillating at frequency𝜔. The windowed Fourier atom is obtained by limiting a sine 

wave oscillating at frequency 𝜔 in time by means of translations of a window 

function centered at time 𝑡. The wavelet atom, as explained above, is obtained by 



Chapter 2- Technical Background 
 

63 

 

translations and dilations of a unique primitive function, the mother wavelet. The 

relative merits of these decompositions are measured in terms of the capabilities of 

achieving combined resolution both in time and in the frequency domain. As 

explained in more detail in 3.4.2, resolution is measured by the atom spread in time 

or frequency (a measure similar to the variance in statistics: 

𝜎𝑡
2 = ∫ 𝑡2𝜓2𝑑𝑡

+ ∞

−∞

 
Equation 12 

 

𝜎𝜔
2 = ∫ (𝜔 − 𝜂)2�̂�2𝑑𝜔

+ ∞

−∞

 Equation 13 

Table 3 indicates that better performance is achieved in going from the pure 

Fourier atom (o resolution in time) to wavelets with adaptive resolution. Adaptive 

resolution means that in time the spread is proportional to scale and in frequency it 

is inversely proportional to scale. Therefore, when dealing with fast signals 

characterized by short scales the frequency support is widened, this assuring the 

correct representation of higher frequencies. Whilst, for slow signals (large scales) 

the frequency support is reduced, since the signal frequency content is smaller. 

The wavelet representation (Continuous Wavelet Transform, CTW) in the realm 

of continuous real functions can be defined as (Daubechies, 1992): 

𝑐(𝑏, 𝑠) =
1

√𝑠
∫ 𝑓(𝑥)𝜓 (

𝑥 − 𝑏

𝑠
) 𝑑𝑥 Equation 14 

where 𝑐(𝑏, 𝑠) are the wavelet coefficients at point 𝑏 in space and scale 𝑠, and are the 

fingerprints of the signal in the new representation. 

The representation can be inverted to reconstruct the signal (Daubechies, 1992): 

𝑓(𝑥) =
1

𝐶𝜓
∬

1

√𝑠
𝑐(𝑏, 𝑠) 𝜓 (

𝑥 − 𝑏

𝑠
)

𝑑𝑠𝑑𝑏

𝑠2
 Equation 15 

Where 𝐶𝜓 is a normalization factor that constrains the wavelet definition and 

assures the existence of the transform. 
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The representation in the wavelet basis is obtained by applying translations and 

dilations of the wavelet to the signal to be decomposed (Mallat, 2008). Considering a 

wavelet with dilation 𝑠 = 1 we move the function along the signal of interest. At 

each point in space (e.g. at 𝑥𝑛), the wavelet is multiplied with the signal. Given that 

the wavelet has short support (i.e. decays fast in space) it will capture the 

similarities (correlation) with the signal in a small neighbourhood of 𝑥𝑛 (Kumar & 

Foufoula-Georgiou, 1994). 

Since the wavelet at dilation 𝑠 = 1 oscillates fast around this point, it will even 

capture details of the signal that are also changing rapidly. The first wavelet 

coefficient will therefore capture information of rapidly changing features at each 

point in space. Using a dilated version of the wavelet (𝑠 = 2) slower evolving 

features will be captured given that these will resemble more the dilated wavelet. 

The wavelet coefficients will provide indication of where (in space) the signal 

presents dynamical features and how 'fast' they are (in term of frequency). 

The new representation will enable to detect features of the signal by their 

dynamical properties (oscillations, impulses) that would otherwise not be detected 

within overlapping unwanted features (e.g. noise) (Katul & Parlange, 1994). 

Wavelets are also commonly used in filtering techniques by modifying the wavelet 

coefficients that belong to unwanted features and by reconstructing an 

approximation of the signal (Argenti & Alparone, 2002). Filtering techniques are not 

the objective of the thesis work and will therefore not be considered further. 

The purpose of the research is to exploit the wavelet representation in the 

domain of space-frequency analysis, particularly to derive space-variant statistical 

measures of the signal from the statistics of the wavelet coefficients. 

Remote sensing imagery (signal) is composed of discrete variables and not 

continuous functions (Vetterli, et al., 2014). As a consequence, the Discrete Wavelet 

Transform (DWT) was used in the thesis. The DWT is derived by discretising the 

translation and scale parameters Equation 14 as follows (Daubechies, 1992): 
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𝑊(𝑚, 𝑛) =
1

√𝑎0
𝑚

∑ 𝑓𝑘

𝑘

(
𝑘 − 𝑛𝑏0𝑎0

𝑚

𝑎0
𝑚 ) Equation 16 

where 𝑎0 is the scale parameter, 𝑚 is an integer number and 𝑏0 is the translation 

parameter. 

The scale parameter 𝑎0 is usually set to 𝑎0 = 2 (dyadic scales) and the 

translation parameter 𝑏0𝑎0
𝑚 with 𝑏0 =1 (implementation used in Chapter 3 and 

Chapter 4) (Daubechies, 1992). 

Another important point needs to be taken into account when going from a 

Continuous Wavelet Transform (CWT) to a Discrete Wavelet Transform (DWT) to 

assure a complete and stable basis, special conditions must be verified (Daubechies, 

1992). A particular basis, the frame, is an optimal choice to ensure this. The frame 

used in this thesis work was designed by Mallat (2008) and can be obtained by 

discretizing a box spline function of order 3. The wavelet consists of only two points 

(Figure 9). 

 
Figure 9. Mallat's wavelet frame chosen to undertake the textural analysis in the 

thesis. It consists of just 2 points when sampled at integer values (+0.5 and -0.5) and 

therefore acts as a differential operator. 

2.4.1.  Statistical Characterisation of Random Signals 

Given the aims of this thesis, the main application of wavelet analysis was 

targeted at a statistical characterisation of the signal. This is achieved by considering 

the variance of the wavelet coefficients. When the non-dilated wavelet frame (Figure 
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9) is applied to the signal as in Equation 15, successive shifts of the wavelet will 

detect differences of the signal spaced by one pixel. The detected samples are 

squared (𝑊2), and a local average in the neighbourhood of a point 𝑗 is taken: 

〈𝑊2(𝑗)〉 = 〈(𝑠(𝑗 + 1) − 𝑠(𝑗)2〉 = 2〈𝑠2〉 − 2〈𝑠(𝑗 + 1)𝑠(𝑗)〉 Equation 17 

Where 𝑠 is the scale and 𝑗 is a point in the image. 

Equation 17 shows that the variance of the wavelet coefficients at scale 1 

captures the signal second moment (first term) and the auto-correlation of the signal 

at lag 1 pixel (second term), when estimated in the neighbourhood of a point 𝑗. 

When the wavelet is dilated by 2𝑚 the resulting variance of the wavelet 

coefficients will be: 

〈𝑊2
2𝑚(𝑗)〉 = 〈(𝑠(𝑗 + 2𝑚) − 𝑠(𝑗)2〉 = 2〈𝑠2〉 − 2〈𝑠(𝑗 + 2𝑚)𝑠(𝑗)〉 Equation 18 

 

In this case, the wavelet variance will capture the auto-correlation of the signal 

at lag 2𝑚 pixels when estimated in the neighbourhood of a point 𝑗. 

The wavelet variance will provide the auto-correlation function of the process 

for a stationary process. In the case of non-stationary processes, processes whose 

mean changes over time, the wavelet variance will give point-estimates of the 

process second moment 2〈𝑠2〉 and of the process correlations 2〈𝑠(𝑗 + 1)𝑠(𝑗)〉 at each 

position within the signal. From this ability, the derivation of the wavelet spectrum 

(𝑊𝑠𝑝𝑒𝑐𝑡𝑟) (Equation 19) is enabled, this being a statistical tool with the ability to 

map (in space) the structural properties of the natural target. 

𝑊𝑠𝑝𝑒𝑐𝑡𝑟 (𝑚, 𝑛) = ∑ 𝑊2(𝑚, 𝑡) × 𝑏(𝑛 − 𝑡)

𝑡

 Equation 19 

where 𝑊(𝑚, 𝑡) are the wavelet coefficients at scale 2𝑚 and position index 𝑛, 𝑏(𝑛) 

is an averaging low pass filter, and the summation over 𝑡 is performed over the 

width of the filter 𝑏. The wavelet spectrum provides therefore local estimates of the 

wavelet variance at scale 𝑚 and position 𝑛. 
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The algorithm is not part of the developments that are the objective of the 

thesis. An overview was given to enable understanding of the motivation for its use 

and to enable interpretation of experimental results, these being the main objective 

of the thesis. The application of this method to SAR and InSAR signals and 

experimental results related to the detection of degraded forest are reported in 

Chapter 3 and Chapter 4. 

A comparison of the method based on wavelet statistics with alternative 

methods for spatial random fields (SF) analysis is reported in Table 4. Among the 

methods, we consider the auto-correlation function (ACF), co-occurrence matrix, 

and the wavelet variance. Non-stationarity qualifiers refers to the capability of 

characterising scale invariant fields (fractals) and estimate the power law with 

respect to the scale parameter. Intermittency measures refers to the ability of 

quantifying the ratio of the presence of coherent structures in a field (e.g. spikes, 

clusters). Anisotropy refers to the capability of measuring directional effects in the 

field statistics. Two-point-statistic refers to the fact that the measure is based on a 

relationship between elements in the field. Speckle sensitivity refers to the capability 

of the method to produce correct estimation of the underlying signal statistic (e.g. 

texture) in presence of multiplicative noise (e.g. in the case of SAR backscatter). 

Underpinning statistical theory refers to the availability of a consolidated theory 

supporting the method, in such a way that the result’s interpretation can be based 

on a quantitative criteria (e.g. correlation length, process variance etc.).  

Table 4. Spatial random field measures. 

 ACF Co-occurrence matrix Wavelet variance 

Non-stationarity 

qualifiers 
No No Yes (structure function) 

Intermittency measures No No Yes (singular measures) 

Anisotropy No Yes Yes (gradient angle) 

Two-point statistics Yes No Yes 

Speckle sensitivity High High Low through normalisation 

Underpinning statistical 

theory 
Yes No Yes 
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2.5. Link between Forest Structure and SAR Signal Structure 

The basic principle underlying the thesis work is that distribution in space of 

structural forest properties, such as canopy height and density, is reflected onto 

signal variation (spatial statistic) within backscatter and DSMs provided by SAR. As 

a consequence, statistical measures of the SAR observation were proposed as means 

to characterise different forest structure or their dynamics (e.g. primary or degraded 

forest). Insight related to the link between forest structure and SAR signal structure 

can be provided by considering scattering physics, and by simple models. 

Firstly we consider the link between canopy height profile and the radar cross 

section fluctuations. A discrete imaging model is suggested by Williams (1997). The 

model consists in slicing the one-dimensional canopy profile into sections 

corresponding to the width of the SAR resolution element. In each independent 

section the radar reflectivity is modelled by a layer of Rayleigh scatterers within two 

regular surfaces, where the local incidence angle with respect to the top surface is 

dictated by the slope of the canopy profile. The model provides an estimate of the 

radar cross section as a function of local (within the slice) geometric parameters and 

dielectric properties of the medium (Williams, 1997): 

𝜎0 = 𝑓(𝜗𝑖, 𝑘𝑒 , ℎ, 𝜖) Equation 20 

 

Where 𝜗𝑖 is the local incidence angle, 𝑘𝑒 is the extinction coefficient, ℎ is the 

vegetation layer height and 𝜖 is the dielectric constant of the medium. 

In particular, at X-band and C-band the wave penetration is short with respect 

to the canopy height, volume scattering becomes less important, the model predicts 

that backscatter is dominated by a micro-topography effect, with the upper canopy 

surface slope being the main driver. Therefore, the coupling between the radar 

reflectivity and canopy structure is established mainly by the geometry of the 

canopy height development in space and, to a less extent, by other local forest 

physical properties affecting extinction, such as canopy density and closure. 
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For the influence of forest structure on InSAR DSMs a different physics needs to 

be considered. While for the backscatter case the main effect was due to geometry 

(local incidence angle) of a surface lying on the top canopy layer, now the volume 

that is responsible for decorrelation needs to be considered. Within the volume, the 

main drivers affecting the coherence are the distribution of the scattering elements 

and the their scattering and extinction coefficients along the vertical coordinate 

(vertical structure function 𝑓(𝑧)). Due to the heterogeneous composition of the 

forest, the structure function will also be a function of the space coordinates. The 

complex coherence for each resolution element at position 𝑥, 𝑦 will be the result of a 

coherent sum of all the returns from the volume weighted by the vertical structure 

function. Considering Equation 21 (Cloude, 2010): 

𝛾 =  
∫ 𝑓(�́�)𝑒𝑖𝛽�́�𝑑�́�

ℎ

0

∫ 𝑓(�́�)𝑑�́�
ℎ

0

= 𝐹(𝑓(𝑧, 𝑥, 𝑦), ℎ, 𝑧0, 𝛽)�́� = 𝑧 − 𝑧0 Equation 21 

 

Where 𝛾 is the complex coherence, 𝛽 is the vertical wavenumber, ℎ is the 

volume height, 𝑧0 is the topographic height of the vegetation volume, 𝑧 is the 

vertical coordinate and 𝑥, 𝑦 are the space coordinates of the resolution element. 

Equation 21 emphasises that the structure function is also a function of position. 

A model based on these principles, is developed by Varekamp & Hoekman (2002). 

Variation of the structure function in space, cause by variation of the forest 

structure, will affect coherence phase, and, as a consequence, the phase centre 

height within the volume. Therefore, spatial static of the InSAR DSM is expected to 

reflect forest structural properties (see Chapter 5). 

The wavelet space-scale analysis method outlined in this chapter sets the basis 

for deriving the results of the experiment described in the next chapter, where C-

band (ENVISAT ASAR) and L-band (ALOS PALSAR) observations were used to 

discriminate between landcover classes. In particular, the chapter demonstrates the 

use of wavelet signature and wavelet spectra to detect patterns derived from 

differences in forest structure due to forest disturbance (e.g. differences between 
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intact forest and degraded forest) and the presence of edges within forest-savanna 

and forest-agriculture mosaic landcover classes. The experimental study focuses on 

semi-deciduous forest in South-East Cameroon. 
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Abstract 

Forest degradation is an important issue in global environmental studies, albeit 

not yet well defined in quantitative terms. The present work attempts to address the 

problem, by starting with the assumption that forest spatial structure can provide 

an indication of the process of forest degradation, this being reflected in the spatial 

statistics of synthetic aperture radar (SAR) backscatter observations. The capability 

of characterizing landcover classes, such as intact and degraded forest (DF), is tested 

by supervised analysis of ENVISAT ASAR and ALOS PALSAR backscatter spatial 

statistics, provided by wavelet frames. The test is conducted in a closed 

semideciduous forest in Cameroon, Central Africa. Results showed that wavelet 

variance scaling signatures, which are measures of the SAR backscatter two-point 

statistics in the combined space-scale domain, are able to differentiate landcover 

classes by capturing their spatial distribution. Discrimination between intact and 

degraded forest was found to be enabled by functional analysis of the wavelet 

scaling signatures of C-band ENVISAT ASAR data. Analytic parameters, describing 

the functional form of the scaling signatures when fitted by a third-degree 

polynomial, resulted in a statistically significant difference between the signatures 

of intact and degraded forest (p < 0.05 , n= 20). The results with ALOS PALSAR, on 

the other hand, were not significant. The technique sets the stage for promising 

developments for tracking forest disturbance, especially with the future availability 

of C-band data provided by ESA Sentinel-1. 
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3.1. Introduction 

Forests play a fundamental role in the exchange of gases and energy between 

the atmosphere and biosphere. In particular, degraded forests (DFs) in tropical 

forest ecosystems are a large component of the global carbon balance, with the 

process of degradation representing a large but hard to quantify source of carbon, 

whereas regrowing degraded forests are also responsible for a significant carbon 

sink (Grace, et al., 2014). Recognition of the role of deforestation and forest 

degradation by the U.N. General Assembly has stressed the need for mapping the 

extent of deforested and degraded forests (Mertz, et al., 2012), in order to enable a 

successful system for reducing emission from deforestation and forest degradation 

(REDD+). The International Tropical Timber Organization estimated that there are 

up to 850 million ha of tropical forest which have already been degraded 

(Thompson, et al., 2013) due to intensive pressures such as logging, slash and burn 

agriculture, and shifting cultivation outside of protected areas. 

Forest degradation in a remote sensing context can be defined from the 

ecological standpoint and at a conceptual level as an environmental change process, 

where a disturbance causes the system to evolve from an initial state toward a final 

state with loss of valuable properties (e.g., canopy cover or carbon stocks) or 

capacities (e.g., provision of fuelwood and other ecosystem services). This initial 

state constituted a spatially contiguous and unmanaged old-growth forest [intact 

forest (IF)]. If some of its structural and physical properties are affected by a major 

disturbance (logging, fire, insect infestation, timber harvest, or windthrow), then the 

system will change to a final state, characterized by a different forest type (i.e., 

secondary forest or disturbed forest). 

A mapping between the ecological process of forest degradation and physical 

observables is needed to provide measures of its onset and extent. The basic tenet of 

the work presented in this paper is that the process of forest degradation will result 

in a change of the forest structure. As a consequence, the mapping was established 

by considering synthetic aperture radar (SAR) backscatter spatial statistics (texture) 

as a measure of forest structure, this in turn being one of the ecological variables 
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that can be assumed to be a fingerprint of the degradation process. Different stages 

of the degradation process will result in changes of the statistics. For instance, 

removal of part of an old-growth forest will correspond to the transition from some 

stationary regime due to backscattering from the irregular top layer of the canopy 

[e.g., K-distributed with an exponential cosine autocorrelation function (ACF)] 

(Oliver, 1986) to some nonstationary or intermittent regime. At the final stage of 

regrowth, when a secondary forest will have taken place, the statistics will revert 

back to stationary, albeit with different correlation properties due to the different 

horizontal structure. 

This starting assumption is tested by supervised statistical analysis of spatial 

random fields (SRFs) provided by SAR observations at C- and L-band, i.e., 

calculating statistics over areas of interest based on expert knowledge and the 

interpretation of other satellite. The spatial statistics are derived from a signal 

representation in a wavelet frame basis. The analysis seeks to assess the capability of 

these textural measures to discriminate between intact and degraded forest. 
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3.2. Background and Context 

Remote sensing plays a primary role for mapping and monitoring deforestation 

and forest degradation for REDD+ (Global Forest Observations Initiative, 2014). In 

particular, compared to deforestation, forest degradation is more difficult to detect 

using remote sensing (Ahrends, et al., 2010; Mon, et al., 2012). 

Mapping and monitoring of forest degradation has been the main focus of 

research efforts by employing optical remote sensing due to the availability of 

Landsat (Stone & Lefebvre, 1998; Hirschmugl, et al., 2014) and by using spectral 

mixture analysis methods to enhance canopy damage due to forest degradation 

(Souza, et al., 2005). Fine resolution optical data has been employed for mapping 

selective logging proxy indicators (e.g. log landings and logging roads), including 

IKONOS (Souza & Roberts, 2005) and RapidEye (Franke, et al., 2012); but to our 

knowledge, such methods have not been used to map actual forest degradation (as 

opposed to the presence of proxy indicators) in African forests.  

Limitations of optical sensors have given impetus to the use of sensors 

independent of atmospheric conditions, such as SAR, which allows observations 

regardless of cloud cover and illumination conditions, but most importantly is 

sensitive to both forest vertical structure (through interferometry) and horizontal 

structure (through backscatter and coherence). 

Five main aspects related to forest degradation have been the focus of research: 

1) above-ground biomass and carbon stock changes using SAR backscatter (e.g., 

Mitchard, et al., (2012); 2) classification of degraded forest and particularly the 

contribution of texture (focus of the present research); 3) detection of the removal of 

single trees using very high resolution SAR imagery (e.g., Kuntz, et al., 2011); 4) use 

of interferometric phase information to determine a change in the canopy structure 

which can be associated with removal of vegetation (e.g., Deutscher, et al., 2013; 

Global Forest Observations Initiative, 2014); and 5) use of coherence to provide 

information on canopy openness (Schlund, et al., 2014). 
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The future provision of Sentinel-1 (C-band) will enable to study forest 

degradation at increased revisit time leading to unprecedented levels of SAR data 

availability (Attema, et al., 2007).  

A further topic of interest is the classification of degraded forest, which can be 

accomplished with the addition of texture that provides complementary knowledge 

to intensity-only information (Benelcadi, et al., 2012). 

The main research that has been employed in the domain of texture analysis for 

landcover classification includes the use of Haralick parameters based on gray-level 

co-occurrence matrix (GLCM) (Haralick & Bryant, 1976) and spectral analysis (or 

ACF, these being techniques in the Fourier transform domain). Notice that the ACF 

provides a two-point statistics, while GLCM is a second-order one-point one. 

The limitations in using these methods for the classification of SAR data are 

twofold. First, direction constraints on GLCM and insensitivity to short-lived high 

frequencies in the Fourier transform limit the ability of these methods to quantify 

the evolution of statistical properties through scale (Sarker, et al., 2013). Second, by 

their nature, SAR sensors are affected by both multiplicative noise and correlated 

noise: this means that simple relationships among neighbouring pixels can either 

bear no information, being themselves just stationary white noise, or even provide 

false information; for instance, two constant reflectivity areas might be measured as 

two textured areas because of the presence of speckle. GLCM and ACFs are both 

highly sensitive to speckle noise. A way out suggested in related work such as in 

Beauchemin et al. (1996) to apply these statistics after transforming the input signal 

to the logarithmic domain. This transform makes the multiplicative noise additive. 

However, introduces side effects such as compressing high dynamics features and 

boosting low-level noise, such as thermal noise. 

Wavelet transforms provide a modern pathway to time frequency (space-scale) 

analysis with better resolution in the combined domain, and superior computational 

efficiency on the discrete setting. Moreover, wavelet statistics can be normalized in 

such a way as to be compatible with multiplicative noise without recurring to the 

logarithmic transform (see Section 3.4.3). 
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The field of wavelets developed in the mid-1980s with research by Daubechies 

(1998) originally, wavelet transform developed in the field of geophysics applied to 

time-series analysis of one dimensional (1-D) geophysical signals (Kumar & 

Foufoula-Georgiou, 1997); but since then have been applied in the field of remote 

sensing including landcover classification using SAR, which is becoming more 

popular (Cutler, et al., 2012). 

Techniques based on the use of wavelet transform with SAR imagery have 

seldom been used in the thematic context of forest degradation. However, wavelet 

statistics of SAR backscatter in connection with textural analysis was proposed in a 

different thematic context in Simard et al. (1998) and De Grandi et al. (2009) and in 

general, its utility in image processing have been long understood (Unser, 1995). 

3.3. Study Site 

We center our study in Cameroon, a country of great interest for forest 

monitoring, since it is the African country with the highest percentage of previously 

logged forests (Bellassen & Gitz, 2008). Over a third of its territory is covered by 

moist tropical forest, part of the Congo Basin, and the area covered by active or 

previously active logging concessions extends over 71 000 km2, about 40% of total 

forest area (Mertens, et al., 2012). Cameroon is also a significant hotspot of other 

forms of forest degradation, including those related to agricultural encroachment, 

fuelwood extraction, and illegal logging (Bellassen & Gitz, 2008): it is more affected 

by these than its Congo Basin neighbours as it has a significantly higher population 

density than neighbouring Gabon, Democratic Republic of the Congo, or the 

Republic of Congo.  

The study site encompasses semi-deciduous closed forest located in Deng Deng 

National Park and its surroundings in Lom et Djerem, Cameroon (13° 4' E, 5° 28' 39 

N). The study site extends for 100 × 100 km2 and is delimited by the Sanaga River to 

the west and the forest savanna transition zone to the east (Figure 1). The main 

urban centre in the area of study is the region’s capital Bertoua while, a high 

number of rural villages are distributed across the landscape contributing to the 
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highest rate of rural population exploiting forest resources mainly in the form of 

slash and burn agriculture at small to medium scales (Mertens, 2000). The forest in 

the area is a semi-deciduous closed forest dominated by Sterculiaceae and Ulmaceae 

and extends to the north of the moist evergreen forest (FAO, 1985). Human 

intervention is widespread in the area giving rise to several stages of degraded 

forest and areas of regenerating forest developing into secondary formations 

characterized by Musanga cecropioides and Albizia spp. (Tegechouang, 2010).  

Another driver of forest degradation is selective logging within the forest 

management units (UFAs). The logging industry has been present in the area and 

exploited forest resources through the selective removal of a limited number of 

high-value trees. Even though the UFA had been exploited long in the past, the 

presence of old logging roads was still clearly visible in the 2010 Landsat and 

RapidEye imagery (and less evident in radar imagery). 

The climate is classified as equatorial (Guinean type) with one major wet season 

(September–November) (monthly rainfall over 250 mm) and dry season with 

rainfall as low as 10 mm (December–February) (World Bank, 2014). Rainfall at the 

time of ENVISAT ASAR data acquisition (January 15, 2010) and ALOS PALSAR 

(August 3, 2010) can be considered negligible, since the data was acquired in the dry 

season. Topography in the study site is hilly to mountainous ranging from 597 to 

1060 m with areas of more pronounced topography located to the north of the study 

site in the forest-savanna  mosaic, whereas topography is more gentle in the areas of 

semi-deciduous forest (ranging between 597 and 700 m a.s.l.). 
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(a) 
(b) 

 

 
Figure 1. (a) Study area within the extent of ENVISAT ASAR acquisitions (WGS84, 

UTM zone 33 N). (b) Location of all landcover samples (N = 80) selected based on 

VHR RapidEye imagery (27/12/2010) and Landsat 7 (18/01/2011 and 17/12/2010) 

used in the analysis overlaid on ENVISAT ASAR VV (WGS84, UTM projection-zone 

33N). The green shape outlines Deng Deng National Park. The red shape outlines a 

logging concession. Red squares mark samples of degraded forest (DF) within the 

concession (n= 20), green squares mark intact forest (IF) samples inside the National 

Park (n= 20), yellow squares mark samples within forest-savanna (FS) (n= 20) and 

blue squares mark samples within forest-agriculture mosaic (FAM) (n= 20) (see also 

Table 1). Data source: World Resources Institute and European Space Agency. 

 

3.4. Methods 

Methods employed for the analysis of both ENVISAT ASAR (VV) and ALOS 

PALSAR (HH and HV) scenes comprise the following steps: 1) SAR data processing; 

2) thematic class definition and supervised selection of a spatial test set for SAR 

statistics estimation (43 x 43 pixels windows) for each class; and 3) wavelet 
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transform of the test set SRFs and wavelet coefficients statistics computation and 

interpretation. 

3.4.1. SAR Data Processing 

Nine ENVISAT ASAR IMS scenes were acquired between 2003 and 2010 at VV 

polarization, IS2 mode (23° incidence angle) over the study area. The datasets were 

processed using the basic processing module available with SARscape 5.0 software 

(Sarmap, 2012). The scenes were multi-looked, co-registered, radiometrically 

calibrated and radiometrically normalized (cosine correction) using a 90 m Shuttle 

Radar Topography Mission (SRTM) Digital Elevation Model (DEM), geocoded to 

WGS84, UTM projection (zone 33N) at 15 m pixel spacing. Importantly, the time-

series was speckle filtered using “De Grandi multitemporal filter” available in 

SARscape 5.0 and based on the principles proposed in De Grandi et al. (1997). This 

step enables the reconstruction of the radar cross-section (RCS) with good 

preservation of its two-point spatial statistics, whereas abating the strength of the 

high-frequency noise induced by the fading process to a level inversely proportional 

to the number of samples in the series. It is therefore fundamental with respect to 

the capability of retrieving textural properties of the imaged target. 

Most of the analysis presented here was then undertaken on a single ENVISAT 

ASAR scene (January 15, 2010), since it was acquired during the dry season with 

minimal influence from rainfall events and, correspondent with available ALOS 

PALSAR and RapidEye data. 

Twelve ALOS PALSAR fine beam dual (FBD) scenes were acquired between 

2007 and 2010 at HH and HV polarizations and 34° incidence angle. This dataset 

was processed using the same approach as above. 

Supplementary optical data for the interpretation of SAR imagery consisted of 

Landsat ETM+ (slc-off) at 30-m resolution acquired on January 18, 2011 covering the 

northernmost part of the study site and Landsat ETM+ (slc-on) data acquired on 

December 17, 2010 covering the southern part of the study area. The scenes were the 

only available which were not affected by extensive cloud cover and closest to the 
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data of the SAR data acquisition. RapidEye at 5-m resolution was also acquired on 

December 17, 2010 for training purposes covering a selected area of the Unité 

Forestière d'Aménagement (UFA 10 065) and part of Deng Deng National Park. 

Contextual data consisting of UFAs, logging roads (digitized with the aid of 

Landsat), location of protected areas (e.g., Deng Deng National Park) were provided 

by World Resources Institute (2014). The data were used to help with the selection 

of classes of interest through a supervised analysis. 

3.4.2. Spatial Test Set Preparation by Supervised Analysis 

A supervised analysis was chosen due to unavailability of ground truth data for 

2010, thus the use of optical imagery and contextual information was used for 

training purposes. The analysis uses a 43 × 43 pixel window (corresponding to 645 × 

645 m2) on ENVISAT ASAR and ALOS PALSAR geocoded scenes at 15 m pixel 

spacing. The window size was determined to include a sufficient number of pixels 

to enable computation of the scaling signature through 4 dyadic scales and also to 

ensure a significant number of samples within each window for statistical analysis. 

The classes selected correspond to the following: intact forest (IF), degraded forest 

(DF), forest-agriculture mosaic (FAM), and forest-savanna (FS). Four samples were 

used in parts of the analysis but twenty samples were selected for each class of 

interest to ensure a significant sample size for statistical analysis. 

Intact forest samples were selected based on contextual information including 

the extent of Deng Deng National Park and the absence of logging roads and urban 

centers in the areas chosen. The chosen areas are all located in the northern section 

of the Deng Deng National Park, which is known to be intact and has no sign of 

logging roads in any ancillary dataset. 

Degraded forest samples were identified based on the proximity of inactive 

logging roads (in 2010) inside UFA which were clearly visible in both Landsat and 

RapidEye data at the time of the analysis and were also noticeable back in the 1980s 

Landsat imagery, thus indicating the long term pattern of disturbance of forest 

inside the logging concession. Forest-agriculture mosaic could be clearly identified 
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in both Landsat and RapidEye scenes as the most complex and heterogeneous class 

among those selected due to the presence of a mixture of forest, bare soil, and 

agricultural fields. The pattern of anthropogenic disturbance was also very clear due 

to the proximity to rural settlements. Forest-savanna was clearly identifiable due to 

the presence of large patches surrounded by forest ribbons and presented lower and 

presented lower backscatter values in ENVISAT ASAR VV and ALOS PALSAR HH 

and HV scenes compared to dense forested areas. 

Table 1. Four landcover samples used in the analysis (WGS84, UTM 

projection - Zone 33 N). 

Class Center Pixel Coordinates 

Intact forest (IF) 329220 E, 586850 N 

Degraded forest (DF) 344085 E, 556755 N 

Forest-agriculture mosaic (FAM) 306510 E, 543045 N 

Forest-savanna (FS) 363405 E, 558060 N 

 

3.4.3. Spatial Statistics From a Wavelet Frame Basis Representation 

The spatial statistics of interest are derived from a signal (field) representation 

provided by a nonorthogonal oversampled discrete wavelet transform (DWT). The 

basis for this representation is generated by a wavelet frame (Daubechies, 1992). The 

advantage of such an approach in connection with texture (spatial statistic) analysis 

is proven in Unser (1995). In our case, the mother wavelet in the continuous scale-

space domain is the first derivative of a box spline of order 3 (Mallat, 1998) (see 

Figure 2), with Fourier transform. 
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𝜔

4
(
𝑠𝑖𝑛 (
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𝜔
2  Equation 1 

In the discrete case, the transform is implemented using a variant of the à trous 

algorithm (Shensa, 1992; Mallat, 1998), with four voices per octave. The design of the 

multivoice scheme entails the following steps. For each voice in the first octave, a 

fractionally dilated wavelet is computed in the frequency domain from (Equation 1): 
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Ψdil(𝜔) =
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Equation 2 

 

 

where the fractional dilation factor 𝑑 = 0.25 𝑘, 𝑘 = 0⋯3. The dilated wavelet is 

normalized by 
1

√2𝑑
 to preserve the norms, and shifted by 𝑒

−𝑖𝜔(
1

2
(2𝑑−1))

 in such a way 

so as to match the zero crossings of the original mother wavelet. 

Importantly, the multivoice scheme using the à trous algorithm can only be 

implemented with the 𝑠−1/2 normalisation to assure equal norms among the mother 

wavelets which sample the frequency lattice within one octave. In this way, wavelet 

coefficients corresponding to all voices and octaves carry comparable energy, and 

can be used in forming measures, e.g., two-point statistics of the signal. 

The à trous algorithm (Shensa, 1992; Mallat, 1998), calls for the approximation 

of the continuous space wavelet by means of an interpolating filter. This condition is 

expressed in the time and frequency domain by 

1

√2
𝜓 (
𝑡

2
) =∑ ℎ[𝑛]𝜙(𝑡 − 𝑛)

𝑛
 Equation 3 

 

2

√2
Ψdil(2𝜔) = 𝐻𝑗(𝜔)Φ(𝜔) Equation 4 

 

The high-pass filter coefficients for each fractionally dilated wavelet are 

computed from Equation 4 by inverse discrete Fourier transform (DFT): 

ℎ𝑗[𝑛] =
1

2𝜋
∫ 𝐻𝑗(𝜔)
+𝜋

−𝜋

𝑒𝑖𝜔𝑛𝑑𝜔 
Equation 5 

where 𝑗 is the voice index. 

Each dilated high pass filter ℎ𝑗 for each voice is finally used in a in a recursive à 

trous decomposition scheme to generate wavelet coefficients at the corresponding 

dyadic scales 2𝑑+𝑗, 𝑗 = 1…𝑛. 
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In case of analysis of a two-dimensional (2-D) field, the DWT is implemented by 

separable (row, columns) convolutions with a low-pass and a high-pass filter 

(Mallat, 1998) 

𝑓𝑠+1(𝑖, 𝑗) = 𝑔𝑠(𝑗)𝑔𝑠(𝑖)⨂𝑗⨂𝑖𝑓𝑠(𝑖, 𝑗)

𝑐𝑥,𝑠+1(𝑖, 𝑗, 𝑣) = ℎ𝑠(𝑗, 𝑣)⨂𝑗𝑓𝑠(𝑖, 𝑗)

𝑐𝑦,𝑠+1(𝑖, 𝑗, 𝑣) = ℎ𝑠(𝑖, 𝑣)⨂𝑖𝑓𝑠(𝑖, 𝑗)

 Equation 6 

where ⨂𝑗is the convolution operator over columns, and ⨂𝑖 is the convolution 

operator over lines, 𝑓1(𝑖, 𝑗) is the input signal, ℎ𝑠 is high pass filter at level 𝑠 and 

voice 𝑣, 𝑔𝑠 is low-pass filter (à trous filter) at level s, both filters being upsampled by 

dilation with s zeros. 

In a nutshell, the multivoice scheme for v voices is implemented by applying 

the à trous algorithm, valid for power of two scales, v times starting from each 

fractionally dilated mother wavelet. 

Importantly, the wavelet coefficients in Equation 6 are normalized by smooth 

approximations of the input fields 𝑓(𝑖, 𝑗)𝑠̿̿ ̿̿ ̿̿ ̿̿ ̿ at the corresponding scale𝑠. The smooth 

approximations are obtained by convolution with separable smoothing spline filters 

with unit norm (energy conserving) and dilated by a factor corresponding to the 

scale s. This position (as pointed out in (Simard, et al., 1998) is necessary to avoid 

influence on the wavelet statistics of the fading variable when multiplicative noise is 

developed, and to equalize the dynamic range of the variable of interest (RCS). 

Theoretical characterization (bias and variance) of estimators of normalized wavelet 

coefficients is given in De Grandi, et al., (2007). 

The mother wavelet (Figure 2) acts as a differential operator. It is this 

characteristic that establishes the bridge for reaching over to the spatial statistics of 

interest. Indeed, a wavelet which is a symmetric and odd function of the space 

coordinate (as the one considered here), when translated performs differences 

between averages of the signals around points whose distance is proportional to the 

dilation factor (scale). This leads to consider the following equivalence between 
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local averages of the wavelet coefficients squared and a two-point statistic known as 

structure function of order 2 

〈𝑐𝑥,𝑠
2〉 ≅ 〈(𝑓(𝑥 + 𝜏) − 𝑓(𝑥)2〉 where 𝑠

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝜏 Equation 7 

where 〈〉 is a spatial average operator. 

In turn, this statistic leads to the characterization of stationary random 

processes, as well as of nonstationary processes with stationary increments (e.g., 

fractals) (Davis, et al., 1994). The wavelet variance as a function of scale provides in 

the log–log variance/scale plane a characteristic signature of the process and 

measures of the process parameters, such as correlation structures in stationary 

processes and the scaling exponent in 1/f processes.  

Computationally, the wavelet scaling signature (WASS) is estimated from the 

wavelet coefficients of the 2-D DWT Equation 6 within a 43 × 43 pixels window of 

the backscatter image centered around points of interest (see Section 3.4.2 for the 

selection criteria). 

𝑊𝑆𝑥(𝑠) = 〈𝑐𝑥,𝑠(𝑖, 𝑗)
2〉

𝑊𝑆𝑦(𝑠) = 〈𝑐𝑦,𝑠(𝑖, 𝑗)
2〉

 Equation 8 

 

where the average is taken over the estimation window. The standard error of 

the wavelet variance estimator 𝑆2  (Equation 8) is 𝜎𝑆2 = 𝑆
2  √

2

𝑛−1
, where 𝑛  is the 

number of samples in the estimation window. 

When a second realization of the input random field is available, this being 

acquired at a different date or with different sensor’s configuration (e.g., 

polarization, incidence angle), a scaling signature can be constructed with the 

wavelet coefficients cross-correlation 

𝑊𝐶𝑅𝑆𝑥(𝑠) =
〈𝑐𝑥,𝑠

1(𝑖, 𝑗)𝑐𝑥,𝑠
2(𝑖, 𝑗)〉

(〈𝑐𝑥,𝑠
1(𝑖, 𝑗)2〉〈𝑐𝑥,𝑠

2(𝑖, 𝑗)2〉)
1/2

𝑊𝐶𝑅𝑆𝑦(𝑠) =
〈𝑐𝑦

1(𝑠, 𝑖, 𝑗)𝑐𝑦
2(𝑠, 𝑖, 𝑗)〉

(〈𝑐𝑦,𝑠
1(𝑖, 𝑗)2〉〈𝑐𝑦,𝑠

2(𝑖, 𝑗)2〉)
1/2

 Equation 9 
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In the case of spatial statistics, this signature provides an indicator of the 

textural difference of the observed random fields between acquisitions. For 

acquisitions at different dates, the wavelet cross-correlation extends the statistics to 

the time– space–frequency domain. 

A second point of view leads us to consider the generation of a scale-dependent 

gradient field ∈ (𝑠, 𝑥, 𝑦) from the wavelet coefficients, which in turn can be used as a 

random measure in intermittency analysis. Intermittency in our context can be 

generated in a random field by the presence of singularities such as edges and point 

targets. The normalized fourth moment of the gradient modulus (called the flatness 

factor) is taken in this case as an indicator of intermittency within the random field. 

Indeed, the fourth moment of a probability density function (pdf) (kurtosis) is 

related to the flatness of the distribution’s tails. Since the wavelet frame is a 

differential operator, thick tails of the distribution indicate the presence of spikes or 

events with high derivative. The wavelet flatness factor signature (dependence on 

scale) is computed in a way similar to the wavelet scaling signature (Equation 9): 

𝐹𝑙𝑆𝑥(𝑠) =
〈𝑐𝑥,𝑠(𝑖, 𝑗)

4〉

〈𝑐𝑥,𝑠(𝑖, 𝑗)
2〉2

𝐹𝑙𝑆𝑦(𝑠) =
〈𝑐𝑦,𝑠(𝑠, 𝑖, 𝑗)

4〉

〈𝑐𝑦,𝑠(𝑠, 𝑖, 𝑗)
2〉2

 
Equation 10 

 

 

Finally, the gradient field modulus squared can be interpreted as the signal 

energy captured at every point visited by the translated and dilated wavelet in the 

space-scale lattice and within the resolution cell at that point (Heisenberg box) 

(Mallat, 1998). Local estimates of the ∈ (𝑠, 𝑥, 𝑦)field through the related wavelet 

coefficients provide a space–frequency analysis of the input random field energy, 

which is called the wavelet spectrum. The wavelet spectrum is computed by 

convolution of the wavelet coefficients with a smoothing kernel (a cubic spline 𝛽𝑚, 

with support m= 25 pixels) 

𝑊𝑠𝑝𝑐𝑡𝑟(𝑠, 𝑖, 𝑗) = (𝑐𝑥,𝑠(𝑖, 𝑗)
2 + 〈𝑐𝑦,𝑠(𝑖, 𝑗)

2〉)⨂𝛽𝑚(𝑖, 𝑗) Equation 11 
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Since 𝑊 𝑠𝑝𝑒𝑐𝑡𝑟 (𝑠, 𝑖, 𝑗) is a function of three variables, a three-dimensional (3-D) 

graphic representation is obtained by averaging in one direction (columns or rows). 

The spectrum is then pictured in a 2-D density plot, with space, scale on the x-, y-

axis and a colour palette to represent power density. 

In space-scale (time-frequency) analysis, which underpins all the derived 

spatial statistics considered here, the most important factor is the combined 

resolution in the two dimensions of the domain. Wavelet provides adaptive 

resolution with increased frequency support and short-time spread at short scales, 

and decreased frequency support and wider time spread at long scales. It is 

important to quantify the combined resolutions and to put these measures in 

comparison with the order of magnitude of space variations expected in the 

physical phenomenon of interest (e.g., forest canopy horizontal distribution). The 

space and frequency spread of the wavelet was computed as follows. 

The wavelet 𝜓(𝑠, 𝑥) at each scale s is normalized in such a way that ‖𝜓‖ = 1 and 

shifted to be centered at x = 0. In this way, the spread in space and frequency is  

𝜎𝑥
2 = ∫ 𝑥2𝜓2

+∞

−∞

𝑑𝑡 
Equation 12 

 

 

𝜎𝜔
2 = ∫ (𝜔 − 𝜂)2�̂�2

+∞

−∞

𝑑𝜔 
Equation 13 

 

 

where �̂� is the Fourier Transform of 𝜓 and 𝜂 is the center frequency. 

The spread𝜎𝑥 and 𝜎𝜔 were computed for the first four voices (Table 2). In Table 

2, 𝜎𝑠𝑝𝑎𝑐𝑒 (𝑚)  is the resolution in space related to the reference system of the 

geocoded SAR imagery with a pixel spacing of 15 m. 𝜎𝑝𝑒𝑟𝑖𝑜𝑑  (𝑚) is the resolution if 

frequency given as period 𝑇 =
2𝜋

𝜔
, where 𝜔 is the frequency given as number of 

cycles within the estimation window length. 

Values in the table can be interpreted as follows. First, notice that resolutions in 

the space-scale (time–frequency) plane were computed for the continuous wavelet 
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transform, therefore, space is defined on the real numbers set, and the support of 

the mother wavelet at scale 1 is in 𝑑 = [−1,1]. Normalized values in the space 

domain are then converted in metric units with 𝑑 ∆ 𝑥 [𝑚] = [−15,15]. Values at the 

next dyadic scales can be computed simply by multiplication (division) by 2. 

Table 2. Wavelet resolution for the first four voices. 

Scale 𝝈𝒔𝒑𝒂𝒄𝒆[𝒎] 𝝈𝒑𝒆𝒓𝒊𝒐𝒅[𝒎] 𝝈𝒇𝒓𝒆𝒒[𝒄𝒚𝒄𝒍𝒆𝒔/𝒘𝒊𝒏𝒍] 

20 11.34 4.20 1513 

2 0.25 13.48 5.19 1227 

2 0.5 16.03 9.42 675 

2 0.75 19.07 19.76 322 

2 22.68 40.61 156 

 

With these figures in mind, let us imagine of considering a backscatter signal 

portraying intermittent hard targets (e.g., buildings) and periodic features (e.g., a 

forest canopy or ocean waves). Values 𝜎𝑠𝑝𝑎𝑐𝑒 (m) tell us that we could distinguish, 

by the wavelet multiscale representation, the impulsive features if they are spaced 

apart a distance greater than these values. Values 𝜎𝑝𝑒𝑟𝑖𝑜𝑑 (m) tell us that we could 

detect the periodic features if their period is greater than those values. Finally, the 

last column gives us an indication of how many oscillations of the periodic 

phenomena we could at most observe within an estimation window of 615 m. 

In our thematic context, we could conclude regarding space resolution: The first 

four voices do not provide useful information, being the resolution less than the 

sensor’s one; intermittency patterns with characteristic spacing of 2𝑗 × 23 m will be 

best detected at corresponding resonating scales 2𝑗. Regarding frequency resolution, 

the spatial frequency components of an homogeneous forest canopy, this 

developing with a characteristic period of some 2𝑗 × 40 m could be best measured at 

resonating scales 2𝑗. 
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Figure 2. Mother wavelet (red line) and the dilated by 20.25 version (first and second 

voice) (green line). 

 

3.4.4. Connection Between Wavelet Variance Analysis and Fourier 

Spectral Analysis 

Relevance of two-point statistics in connection with SAR imagery textural 

characterization, in particular of the Fourier spectral analysis and the ACF, was 

pointed out in a seminal work published in the late 1980s (Ulaby, et al., 1986). This 

work was targeted to supervised classification, where textural class parameters 

were estimated from SAR spatial statistics. Analysis was carried out based on 

stationary Rayleigh statistics for the envelope of the received field, and under the 

condition of a delta correlated fading component. In this framework, a method was 

derived for the estimation of the underlying RCS ACF from experimental data, 

whereas no specific model for the surface fluctuations was proposed. This line of 

research was extended by a theoretical model for non-Rayleigh SAR scattering 

statistics, covering the case of correlations between scatterers in the resolution cell 

(or fluctuating cross-section), and finite illumination window (Oliver, 1984; Oliver, 

1988). The surface fluctuations were described by a Gamma distribution and a 

Lorentzian spectrum (exponential ACF). This model is particularly relevant when 

imaging forest at the resolution afforded by instruments used in our experiments. 

These contributions were the springboard over which interest in space–frequency 

analysis of SAR backscatter took momentum (Sheen & Johnston, 1992; Collins & 

Huang, 1998; Kurvonen & Hallikainen, 1999; Bujor, et al., 2004). 
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Wavelet frame spatial statistical measures are rooted in the groundwork 

established by the classical Fourier ACF analysis adopted in those research works, 

but extend it in several respects: 1) by enabling space-scale analysis (through good 

localization in the space–frequency domain); 2) by the capability of dealing with 

nonstationary processes; and 3) providing statistically better and computationally 

more efficient estimators. The reader is referred to Percival & Walden (2000) for a 

discussion on this topic. It appears therefore interesting to establish, for those 

random processes described by the models mentioned above, the connection 

between the wavelet space-scale statistics (wavelet variance and covariance) and the 

ACF based characterization.  

For the purpose, analytical and numerical derivations were undertaken to 

illustrate the response of the wavelet scaling signatures to given correlation 

properties of the input SRF, including those assumed in the models in Oliver (1984). 

The gist of the analysis was based on the theory of linear filtering of random signals 

(Picinbono, 1993), which was exploited to link the spectral properties of the input 

signal to the statistics (variance) of the output process, this being filtered by the 

wavelet operator. Detailed analytical derivations and results would be outside the 

scope of the paper.  

Suffice here to mention that for fractal RCS (Stewart, et al., 1993; Wornell, 1993; 

Franceschetti, et al., 1999), the dependence of the wavelet variance on scale is linear 

in log-log scale, with the first derivative proportional to the spectral exponent. For a 

Gamma-distributed RCS with exponential ACF (Oliver, 1984), the wavelet variance 

increases nonlinearly with the derivative at scale 𝑠 = 1  linear in 𝛽  (the inverse 

correlation length). While, the asymptotic value is proportional to the second 

moment of intensity. 
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3.5. ENVISAT ASAR Results and Interpretation 

3.5.1. Wavelet Variance Signature 

The graph in Figure 3 shows the wavelet variance as a function of scale (four 

dyadic scales and four voices) for four classes of interest with corresponding 

estimation windows selected on ENVISAT ASAR VV backscatter geocoded data 

(Table 1). Notice that in this set of classes and with respect to SAR backscatter, there 

are two radiometrically pure cases (intact and DF) and two mixed cases (FAM and 

FS). However, in terms of textural analysis, these classes can be handled as pure 

classes, in the sense that they can be characterized by separable measures. 

The following observations can be made. Regarding the general trend with 

scale, signatures related to IF, DF and FAM all show the fingerprint of a stationary 

random process with loss of correlation at short scales, a first maximum (sill) in a 

range of intermediate scales (corresponding to the correlation length concept in 

Fourier analysis), and a final segment with flattening out (white noise DF, FAM) or 

the presence of further correlation (or anticorrelation) structures (IF). A striking 

difference is provided by the FS signature which presents persistent increase with 

scale, a sign of a nonstationary process. This situation is due to the presence of 

strong radiometric non homogeneities within the estimation area (mixture), due to 

the intertwining of grassland and taller vegetation, as it will be documented later by 

wavelet spectra analysis (see section 3.5.4). 
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Figure 3. Wavelet variance scaling signatures computed on single date ENVISAT 

ASAR VV backscatter (2010) for 4 classes of interest: forest-agriculture mosaic 

(FAM) (blue), degraded forest (DF) (red), intact forest (IF) (green) and forest-

savanna (FS) (black). The error bars correspond to the standard error of the wavelet 

variance estimator. Two parameters need to be considered for the interpretation of 

the figure. The correlation length (signature maxima) given in terms of scale (m) (x-

axis) indicates the point (scale) where the autocorrelation (two-point statistic) 

between the pixels belonging to a certain class within the window of choice decays 

to zero. The variance of the wavelet coefficients (y-axis) is a proxy of the process 

variance within a neighborhood of a given scale (one-point statistic) and thus 

indicates the “roughness” of the process at a given scale.  

Regarding the separation between signatures (in terms of point-wise distance 

between variance values at each scale with respect to the estimation error), it is clear 

that between scales 20 and 22, the two radiometrically mixed classes (forest-

agriculture mosaic and forest-savanna) are well separated between themselves and 

with respect to the union of more homogeneous classes (intact forest and degraded 

forest). However, separation between intact forest and degraded forest appears 

problematic, when based only on scale-by-scale differences between signature 
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values. Statistical analysis on the probability distribution of the signatures’ values 

for 20 samples of each class confirms these results. 

The key to the solution of the problem stems from considering the functional 

dependence on scale of the signatures, as opposed to their point by point 

differences. For this purpose, the difference between intact forest and degraded 

forest signatures were analyzed in more detail. The two functions (intact and 

degraded forest signatures) appear to have a very similar form in the range of scales 

20-22. However, the sill (first maximum) of the intact forest class occurs at shorter 

scale than the degraded forest one, or, in other words, there is a remarkable and 

consistent difference in the correlation length for the two classes (Figure 4a). 

Additionally, the intact forest signature shows persistent correlation/anticorrelation 

structures at longer scales, whereas the degraded forest signature tends to flatten 

out. 

A link between these two statistical correlation patterns and the underlying 

structure of the observed target can be conjectured in the following way. The intact 

forest structure is made up by layers of vegetation and in particular large emergent 

trees contribute to the signal. Instead, degraded forest has a relatively more 

homogeneous structure due to the removal of large emergent trees and the 

vegetation regrowth which has achieved a stage similar to the remnant vegetation 

from the intact stage. Let us remember that C-band radiation has a short penetration 

depth into a dense target, like this type of forest. Therefore, the RCS is spatially 

modulated by height changes and shadowing effects of a thin layer at top of canopy. 

Therefore, the intact forest return (which is more “rough”) will decorrelate at 

shorter scales than the more homogeneous degraded forest. On the other hand, the 

intact forest will retain some self-similar structures at longer scales, which will 

result in long scale memory as far as correlation is concerned. The results 

concerning the intact forest class are in line with the dense homogeneous forest 

model in Picinbono (1993), where K-distributed clutter with an exponential cosine 

ACF is assumed. These considerations suggested a computational approach for the 



Chapter 3 

97 
 

two-class pattern recognition problem based on signature functional analysis 

(described in Section 3.5.2). 

3.5.2. Wavelet Scaling Signatures Functional Analysis 

Functional analysis of the wavelet scaling signatures was undertaken by fitting 

a polynomial function to the wavelet variance values for two classes of interest: 

intact forest (green) and degraded forest (red) (Figure 4a). The wavelet scaling 

signatures points were fitted using a third-degree polynomial function of the form 

𝑦 = 𝑎𝑥3 + 𝑏𝑦2 + 𝑐𝑥 + 𝑑 . Two patterns can be noticed in the graph: the first 

maximum (sill) of the intact forest signature occurs at shorter scale than the 

degraded forest one; the presence of persistent correlations (anticorrelations) at long 

scales in the intact forest signature, whereas the degraded forest signature tends to 

level off (uncorrelated noise). These two different functional dependences of the 

wavelet variance on scale can be described by the first and second derivatives of the 

fitting polynomial, as shown in Figure 4b and Figure 4c. The zero crossing of the 

first derivative marks the onset of the sill point. The zero crossing of the second 

derivative marks the inflection point of the signature, this occurring always at 

longer scales for the degraded forest class.  

The combination of these functional parameters provides a consistent condition 

to discriminate between the two classes. This proposition was proven by a statistical 

hypothesis test of the difference of the parameters’ mean values using 20 samples 

for each class of interest (H0: �̅�𝐷𝐹 − �̅�𝐼𝐹 = 0). Concerning the first derivative zero 

crossings, the test resulted in one-sided p-value equal to 6.477 × 10−7; thus H0 was 

rejected indicating that there is a significant difference between the means at a 0.05 

significance level. As to the zero crossings of the second derivative, the test gave a 

one-sided p-value equal to 0.003 with H0 rejected. 
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(a) ENVISAT ASAR (VV) Fitted Signature 

 
(b) First derivative 
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(c) Second derivative 

Figure 4. (a) Wavelet scaling signature for two classes: intact forest (green cross) and 

degraded forest (red cross) and the fitted 3rd degree polynomial function (green and 

red solid lines for intact forest and degraded forest respectively); (b) first derivative 

of the intact forest (green) and degraded forest (red) fitted wavelet scaling 

signatures; (c) second derivative (inflection) of the intact forest (green) and 

degraded forest (red) fitted wavelet scaling signatures. The wavelet signature at 4 

dyadic scales was fitted using a 3rd degree polynomial to obtain a functional 

description of the signature. The first zero crossing of the first derivative 

corresponds to the signature maximum (correlation length of the process); the zero 

crossing of the second derivative indicates the onset of an inflection point in the 

signature; both indicators occur at different scales for intact and degraded forest and 

thus can be considered as a potential way to discriminate between the two forest 

classes. 

 

3.5.3. Flatness Factor 

The flatness factor (Equation 10) intuitively gives an indication of the relative 

variability of the wavelet variance within the data samples, and therefore can 
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indicate the presence of intermittency in the SAR signal, such as edges and point 

targets. As a guideline for the interpretation of the experimental data, we remind 

that for a wavelet frame that acts as a differentiator, and for Gaussian white noise as 

input, the flatness factor equals 3. 

Intact forest is the class which presents the lowest amount of intermittency at all 

scales, and less spread among samples, with flatness factor values around 3, thus 

pointing at a nearly Gaussian noise process (Table 3).  

Degraded forest reveals some intermittency at short scales, also with large 

spread among samples (Table III). This result seems to contrast the conclusion 

derived from the scaling signature, which indicates degraded forest as a more 

homogeneous process than intact forest. However, closer examination of the 

degraded forest areas reveals that these high intermittency values are due to 

topographic effects (shadow, layover) which are present in some of the areas. 

The forest-agriculture mosaic and forest-savanna classes both present 

intermittency of different importance, with the highest values and highest spread 

among samples for the forest-savanna (Table 3). In both these cases, the 

intermittency is due to the presence of edges between two homogeneous fields (e.g., 

soil and forest in forest-agriculture mosaic, and forest clusters in the forest-savanna). 

These singularities are of different strength, as a function of the related backscatter 

values, as indicated by higher flatness values with the forest-savanna class. The case 

of these nonstationary samples will be further analyzed using the wavelet spectrum 

in section 3.5.4. 
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Table 3. Flatness factor statistics for 20 samples of each of the four classes of 

interest. For Gaussian white noise the flatness factor would be equal to 3. Higher 

flatness factors indicate the onset of intermittency or non-stationarity. 

Scale DF IF FAM FS 

 Mean Stdev Mean Stdev Mean Stdev Mean Stdev 

20 6.01 4.58 3.54 0.18 6.20 7.94 5.84 3.29 
21 4.28 2.29 3.24 0.24 4.21 2.15 5.90 2.55 

22 3.58 0.86 3.31 0.28 3.77 0.79 6.7 5.26 

23 3.58 0.44 3.31 0.35 3.54 0.67 5.49 3.69 
24 4.12 1.41 3.74 0.46 3.56 0.82 4.57 2.85 

DF, degraded forest; IF, intact forest; FAM, forest agriculture mosaic; FS, forest-

savanna. 

 

3.5.4. Wavelet Space-Scale Signatures (Spectrum) 

Analysis by wavelet spectrum of the two heterogeneous classes forest-savanna 

and forest-agriculture mosaic illustrates well the ability of this technique for 

localizing features in the combined space–frequency domain. The forest-savanna 

spectrum is shown in Figure 5a, this being represented in the northing direction. 

The backscatter in the estimation window (43 × 43 pixels) for forest-savanna and 

forest-agriculture mosaic is shown in false colour in Figure 5. A singularity (ridge) 

due to a forest ribbon is present in the image (Figure 5a). This feature is mapped 

onto the triangular area of higher wavelet variance values spreading in scale and 

around pixel 30 in space. Changes of the wavelet variance trajectory with scale are 

due to the intersection of the translated wavelet with the feature. The forest-

agriculture mosaic case (Figure 5b) concerns an area with a diagonal edge marking 

the transition from bare soil to forest. In the spectrum (represented in the easting 

direction), the first segment (pixels 0–10) reveals a stationary signature (maximum 

at scale 2) that is due to the bare soil homogeneous region within this range, 

whereas the following spectrum values indicate a nonstationarity situation 

(increasing signature at all scale) corresponding to the presence of an edge.  
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(a) Forest-savanna (FS) 

 

 

 

 

(b) Forest-agriculture mosaic (FAM) 

 

 

 

 
 

 

 

 

 

Figure 5. Wavelet spectrum for a transect in (a) Forest-savanna (FS) (in the northing 

direction) and (b) Forest-agriculture mosaic (FAM) (easting direction) showing the 

different textural properties of each class in the space-scale domain. The spectrum is 

estimated in a 43 × 43 pixels window (equivalent to 645 × 645 m in the ENVISAT 
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ASAR geocoded dataset). SAR backscatter within the corresponding windows 

(rendered in false color) is shown to the right of the spectra. These test cases 

highlight the capability of the wavelet space-scale representation to characterize 

radiometrically heterogeneous targets, such as a forest ribbon in (a) and the margin 

between bare soil and forest in (b). 

 

3.5.5. Wavelet Covariance 

The normalized wavelet covariance (correlation) signature (Equation 9) 

provides a measure of how the SAR backscatter within the estimation window 

(related to a specific landcover class) changes texturally between two dates and as a 

function of scale. It is therefore a spatio-temporal fingerprint of the SAR statistics. 

An example is shown in Figure 6. The signature was computed with the same 

classes as the wavelet variance signature in Figure 3 and refers to changes between 

acquisitions in 2006 and 2010. It can be observed that the wavelet variance of all 

classes loses correlation between the two dates, with lower correlation at longer 

scales. The changes at short scales may be influenced by residual speckle noise, 

whereas as scale increases, variation of the RCS spatial distribution comes into play. 

The forest-agriculture mosaic class (black) shows the highest decorrelation (highest 

temporal change) at all scales. This pattern depends obviously by temporal changes 

in the agricultural practices and bare soil extent. At short scales (up to 23), the 

statistics of class forest-savanna (green) shows more decorrelation than the ones of 

intact forest and degraded forest. Again, this is the other class where changes in the 

target can be expected. For intact forest (blue), there appears to be more textural 

change in comparison with degraded forest. This feature must be further 

investigated to be able to connect it to vegetation changes. 
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Figure 6. Wavelet normalized covariance between ENVISAT ASAR scenes acquired 

in 2006 and 2010 for four landcover classes: degraded forest (red), forest-savanna 

(FS) (green), intact forest (IF) (blue), and forest-agriculture mosaic (FAM) (black). 

Wavelet normalized covariance values range from 0 to 1 with higher values 

indicating greater textural correlation between the two dates. There is a decreasing 

trend in wavelet covariance with increasing scale for all landcover classes but in 

particular for forest-agriculture mosaic, which can be linked to changes due to 

agricultural practices between the two dates. Decreasing wavelet covariance for IF, 

DF and FS classes could be due to phenological or moisture differences between the 

two dates. 
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3.6. ALOS PALSAR Results and Interpretation 

3.6.1. Wavelet Variance Signatures 

The wavelet statistics analysis was also applied to L-band ALOS PALSAR at 

HH and HV polarizations. The signatures for forest-savanna, intact forest, degraded 

forest, and forest-agriculture mosaic can be found in Figure 7a and Figure 7b. 

Differences of the wavelet statistics at HH and HV polarizations (in terms of 

absolute wavelet variance values and functional form) can be readily seen from the 

graphs. 

At HH polarization, the scaling functional form of the signatures is similar to 

the one of ENVISAT ASAR VV, with the degraded forest signature flattening out 

and the intact forest signature keeping memory of its structure (these trends are 

better highlighted with the fitted wavelet signatures in Figure 8a). While, at HV 

polarization, the signatures for the two classes reveal the onset of a white noise 

random process (no texture) and no significant difference between the two. We 

conclude that the HV return (volume scattering) does not provide spatial 

information that is useful to discriminate between degraded forest and intact forest. 

From another standpoint, differences in biomass within and between intact and 

degraded forest (if any) cannot be detected at this radiometric and spatial resolution 

by HV backscatter. On the other hand, the HH return is sensitive to the large 

scattering elements in the top layer of the canopy, and therefore, develops 

sensitivity to the forest structure in the same way as the C-band VV, although with 

less strength due to the increased penetration. The signatures of the two 

heterogeneous classes (forest-agriculture mosaic and forest-savanna), both at HH 

and HV, bear in a very strong way the tell-tale signs of nonstationarity, and even 

more so with respect to the ENVISAT ASAR case.  
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(a) ALOS PALSAR (HH) 
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(b) ALOS PALSAR (HV) 

Figure 7. (a) ALOS PALSAR HH and (b) ALOS PALSAR HV wavelet variance 

scaling signatures (4 dyadic scales) for four classes of interest: forest-agriculture 

mosaic (FAM) (blue), degraded forest (DF) (red), intact forest (IF) (green) and forest-

savanna (FS) (black) with corresponding error bars (black). See Figure 3 for details 

on the interpretation of the signatures.  

 

3.6.2. Wavelet Scaling Signatures Functional Analysis 

This analysis is carried out only for HH polarization in view of intact forest and 

degraded forest class separation, since the HV does not provide useful spatial 

information. The fitted wavelet signatures also confirm that the PALSAR HH is 

similar to the ASAR VV case in terms of functional form. However, the parameters 

that characterize univocally this dependence are different. Now, the two classes 

present the same correlation length (Figure 8a). Therefore, the first zero crossing of 
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the first derivative cannot be used as a marker (Figure 8b). On the other hand, now 

the second zero crossing is a good candidate, since it occurs at short scales for the 

intact forest, and at longer scales (if any) for the degraded forest (Figure 8c).  

The inflection point (zero of the second derivative) appears to have the same 

role as in the case of ASAR. The significance of these observations was checked 

using a hypothesis test at 0.05 significance level of the differences of the mean 

values of these parameters (second zero crossing of the first derivative and zero 

crossing of the second derivative) using 20 samples for each class of interest. 

The test reports that the H0 cannot be rejected in this case (p = 0.109). Therefore, 

functional analysis of wavelet signatures does not appear to be a viable solution for 

the textural discrimination of the two classes using ALOS PALSAR HH.  

 

(a) ALOS PALSAR (HH) Fitted Wavelet Signature 
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(b) First derivative 

 
(c) Second derivative 

Figure 8. (a) Wavelet scaling signature for two classes: IF (green cross) and DF (red 

cross) and the fitted third-degree polynomial functions (green and red solid lines); 

(b) First derivative of the fitted polynomial and (c) Second derivative of the fitted 

polynomial. See Figure 4 for the interpretation of the functional representation of 

the signatures.  
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3.7. Conclusion  

Supervised analysis of SAR backscatter spatial statistics, as provided by a 

wavelet frame representation, was undertaken with the goal of assessing the 

capability of retrieving information about landcover differentiation, in particular, 

the ability to differentiate intact and DF in a closed semi deciduous forest context. 

Test cases were developed using both C-band ENVISAT ASAR and L-band ALOS 

PALSAR datasets acquired on a site in Cameroon. 

Results have shown that wavelet variance scaling signatures, which are 

measures of the SAR backscatter two-point statistics in the combined space-scale 

domain, are able to differentiate landcover classes by capturing their spatial 

distribution. This sensitivity extends the possibility of class discrimination based on 

intensity values distance, which is effective only for radiometrically pure classes or 

homogeneous targets, to the case of heterogeneous targets, these giving rise to 

texturally pure classes. Along this line, wavelet spectra were proven to be effective 

in characterizing heterogeneous landcover, such as forest-agriculture mosaic, by 

capturing the onset and the spatial location of singularities, such as edges.  

Importantly, discrimination between intact forest and degraded forest which is 

an important focus for conservation science was found to be enabled by functional 

analysis of the wavelet scaling signatures of C-band ENVISAT ASAR data. Analytic 

parameters, describing the functional form of the scaling signatures when fitted by a 

third-degree polynomial, resulted in a statistically significant difference between the 

signatures of the two classes. On the other hand, this outcome could not be 

replicated using the L-band ALOS PALSAR data.  

Reasons for the inability to discriminate between intact and degraded forest 

using ALOS PALSAR could be explained by the fact that L-band penetrates more 

into the canopy, and therefore, the observed backscatter texture is influenced more 

by the distribution of large scattering elements, and by the ground return. By 

contrast, C-band ENVISAT ASAR penetration is lower, and thus, the backscatter 

return comes primarily from the top of the canopy components, which produce a 

micro-topography effect on the radar return due to their irregular vertical and 
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horizontal distribution (e.g., emergent trees, which may be missing in 

degraded/regenerating forests). Additionally, differences in incidence angle and 

environmental/seasonal conditions between the C-band and L-band acquisitions 

could have influenced the differences in observed results. 

The study area is characterized by degraded forest that was disturbed by 

selective logging at least 15 years in the past. It is therefore notable that a SAR 

sensor at 15 m resolution can still distinguish between this degraded forest stage 

and intact forest, based on textural features. Additional information could be 

retrieved from short wavelength and higher resolution sensors (e.g., Sentinel-1 or 

TanDEM-X). 

In this specific environmental setting, the ENVISAT ASAR VV outperforms the 

ALOS PALSAR at HH and HV polarizations in terms of distinguishing between 

intact and degraded forest. However, in a different environmental setting with other 

degradation patterns (e.g., more recent forest degradation patterns or in closed 

evergreen forest), the results could be different and therefore, testing the method in 

several areas will need to be undertaken in the future.  

The wavelet signatures cannot be generalised to discriminate degraded forest 

from intact forest when this transition is due to different forest degradation drivers, 

varying from selective logging to impact of fire, to degradation stage, this 

depending on the time gap between the scene used in the analysis and the time 

elapsed since degradation occurred. It would be expected that degraded forest 

observed just after disturbance would present different upper canopy structure 

compared to re-growing degraded forest and this would be appreciable in the 

corresponding signatures.  

In terms of location, the approach can be extended to other sites with 

limitations related to data availability (for instance the availability of a Sentinel-1 

StripMap mode mosaic over the whole tropical rainforest would enable a large scale 

assessment of degraded forest) and availability of supporting ancillary data for 

supervised training and validation of the analysis. This condition will need to be 

verified further in different sites. 
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In terms of SAR center frequency, it was demonstrated from the analysis that 

short wavelength (C-band) performs better than longer wavelength (X-band); 

therefore using datasets acquired at short wavelength is advised for this purpose. 

The performance of C-band ENVISAT ASAR for the purpose of discriminating 

between intact and degraded forest is a promising result given the increasing 

availability of C-band data provided by ESA Sentinel-1 mission and the possibility 

to extend the analysis using multi-temporal signatures which could in principle 

provide changes in backscatter texture given by the process of forest degradation 

between multiple dates. However, generalisation of the results to global scale and 

accounting for different forest degradation drivers or degradation stages has not so 

far been proved within the reach of this study. 

Moreover, the methods tested would not directly enable the estimation of bio-

physical parameters, such as above-ground biomass and associated changes in 

carbon stocks. However, the methods are able to provide a proxy indicator related 

to whether an area of forest, which has been degraded, is structurally different 

compared to intact forest based on backscatter texture as opposed to absolute 

backscatter values, which do not provide ways to distinguish between degraded 

forest and intact forest. 

The following chapter explores how the discrimination between primary forest 

and secondary forest can be improved using wavelet-based texture analysis by 

developing further the methodology presented in this chapter and by exploiting 

TanDEM-X Digital Surface Models, which afford measures of both vertical and 

horizontal structure. 
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Abstract 

Three-dimensional information provided by TanDEM-X interferometric phase and 

airborne Light Detection and Ranging (LiDAR) Digital Elevation Models (DEMs) 

were used to detect differences in vegetation heterogeneity through a disturbance 

gradient in Indonesia. The range of vegetation types developed as a consequence of 

fires during the 1997–1998 El Niño. Two-point statistic (wavelet variance and co-

variance) was used to assess the dominant spatial frequencies associated with either 

topographic features or canopy structure. DEMs wavelet spectra were found to be 

sensitive to canopy structure at short scales (up to 8 m) but increasingly influenced 

by topographic structures at longer scales. Analysis also indicates that, at short 

scale, canopy texture is driven by the distribution of heights. Thematic class 

separation using the Jeffries–Matusita distance (JM) was greater when using the full 

wavelet signature (LiDAR: 1.29 ≤ JM ≤ 1.39; TanDEM-X: 1.18 ≤ JM ≤ 1.39) compared 

to using each decomposition scale individually (LiDAR: 0.1 ≤ JM ≤ 1.26; TanDEM-X: 

0.1 ≤ JM ≤ 1.1). In some cases, separability with TanDEM-X was similar to the higher 

resolution LiDAR. The study highlights the potential of 3D information from 

TanDEM-X and LiDAR DEMs to explore vegetation disturbance history when 

analyzed using two-point statistics. 
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4.1. Introduction 

Tropical forests are the largest and most complex forest biome on the planet 

covering 16% of the global land surface where pressure exerted by anthropogenic 

activities is high and their role in the carbon budget is of great significance (Grace, et 

al., 2014). Forests are a substantial carbon sink sequestering 2.0 ± 0.4 Pg C/year 

globally (1990–2007 estimates) (Pan, et al., 2011) and simultaneously a large carbon 

source through deforestation and forest degradation by contributing to 

approximately 7%–15% of anthropogenic emissions since 2000s (Pan, et al., 2011). 

The combination of deforestation, degradation, harvesting and peat fires has been 

estimated as 2.01 ± 1.1 Pg/annum (Grace, et al., 2014). The uncertainty on these 

numbers, and thus the total flux to/from the atmosphere, is considerable. Indeed, 

the uncertainty on both these numbers may be underestimated as we struggle to 

map forest carbon stocks accurately, let alone subtle changes in these stocks 

(Mitchard, et al., 2014). The disturbance regime, and rate of recovery following 

disturbance determines their effectiveness in sequestering carbon: therefore, it is 

important to reduce these uncertainties to allow for global-scale monitoring of the 

effectiveness of pledges made under the UNFCCC Paris Agreement (2015). 

Degraded and secondary forests are a particular concern. They were estimated 

to make up 60% of the total area classified as forest in tropical regions covering 850 

million ha in the year 2000 (International Tropical Timber Organization, 2002), and 

this number has grown significantly since then. Most studies on changing biomass 

stocks are focused on intact forest and changes from intact forest to non-forest only 

(Harris, et al., 2012). These are very dynamic areas, suffering from anthropogenic 

degradation but also re-growing rapidly (regrowth may represent 1.8 ± 0.9 

Pg/annum) (Grace, et al., 2014). We currently lack the tools to map these subtle 

changes well from satellite data, leading to these large uncertainties. 

Secondary forests are now especially dominant in Southeast Asia. Until the 

1960s, Southeast Asia was dominated by extensive tracts of high above-ground 

biomass lowland Dipterocarp forests which acted as a significant carbon sink 
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(Kartawinata, et al., 1981). Estimates indicate that only 12% of the remaining forests 

in Southeast Asia remained “intact” in 2000 (Potapov, et al., 2008). The majority of 

natural old-growth forest areas are now considered disturbed due to different 

processes such as logging, conversion into degraded savanna and grassland or 

managed land (Giam, et al., 2011; Mietten, et al., 2014). The increased proportion of 

secondary forests (or successional communities) at the expenses of old-growth 

forests requires us to prioritize and re-focus conservation efforts on degraded forest 

(Lewis, et al., 2015). In fact, after disturbance, forests still retain conservation values 

(Berenguer, et al., 2014) and maintain appreciable biodiversity. In particular, tropical 

forests in Southeast Asia are considered some of the most valuable in this respect, 

since they host endangered species such as orangutans (MacKinnon, et al., 1997). 

A major forest degradation driver is fire, which has been extensively and 

increasingly used in slash and burn practices and to induce clearing for industrial 

palm oil and paper-pulp plantations as it is the most convenient and efficient 

conversion method (Mietten, et al., 2014; Goldammer, 2015; Chisholm, et al., 2016). 

Humid tropical forest flammability is often exacerbated by human intervention 

(e.g., selective logging) (Siegert, et al., 2001; Gerwin, 2002; Cochrane, 2003). Fire is 

mainly driven by moisture stress in dry conditions during El Niño Southern 

Oscillation (ENSO) events (Cochrane, 2003). These have occurred in the past 

(notably the strong 1997–1998 event) and more recently (2015–2016), causing the 

alteration and degradation of tropical lowland and peat swamp forest in Southeast 

Asia (Chisholm, et al., 2016). These climatic anomalies will continue to threaten 

tropical forests in the future as these events become more frequent and of increased 

magnitude (Cai, et al., 2014). 

Drought conditions during the 1997–1998 ENSO resulted in a total of 2.6 million 

ha of forest being burned (Siegert, et al., 2001) and the release of 2.97–9.42 Gt CO2 

(Page, et al., 2002), thus acting as a source of CO2, reducing above-ground biomass 

and diminishing the potential (at least in the early stages of regeneration) of the 

newly degraded forest to act as a carbon sink (Jordan & Farnworth, 1982). Most 
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significantly, the 1997–1998 fires affected more severely those areas which had 

previously been disturbed by selective logging (Siegert, et al., 2001). This indicates 

that previously disturbed forests (from logging or previous fires) are more 

susceptible to further disturbance and thus, it is important to locate these areas 

(Goldammer, 1999). Fire can result in the alteration of stands in terms of structure 

and composition (Gerwin, 2002) by converting them from areas that have achieved 

high diversity to areas dominated by a few pioneer species (Toma, et al., 2005). The 

resulting vegetation spatial structural alterations (e.g., height, canopy cover and 

biomass) and composition (e.g., species diversity) after fire are complex to 

characterize (Kennel, et al., 2013) and there is no “coherent pattern of forest 

regeneration” (Goldammer, 2015). Recovery to old-growth conditions is not always 

possible. The majority of degraded forests might not recover and potentially 

develop into scrubland or grassland dominated by Imperata cylindrica (Goldammer, 

1999; Goldammer, 2015) (often permanently due to recurring fire management 

practices). 

Given the above, techniques for wide area and spatial measures of vegetation 

structure and disturbance are evidently necessary. Remote sensing observations 

afford in principle a vehicle for providing such measures, but methods for doing 

this are still under development and there is space for considerable improvements 

to obtain the required information from satellite instruments. We give next a brief 

summary of the state of the art of remote sensing practices for vegetation spatial 

structure characterization. Finally, evidence for the potential in this context of 

wavelet based two-point statistics will be supplied using spatial Interferometric 

Synthetic Aperture Radar (InSAR) and airborne LiDAR observations of a fire-

affected site in Indonesian Borneo. 
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4.2. Forest Structural Heterogeneity Derived from Remote 

Sensing 

Undisturbed old-growth tropical forests are known to be complex, multi-

layered environments where heterogeneity is driven prevalently by species 

diversity assemblages (Malhi & Román-Cuesta, 2008). Further factors that influence 

heterogeneity are related to disturbance processes. For example the development of 

canopy gaps as large trees die and fall over, either naturally or due to extreme 

events or anthropogenic influence, and compositional alterations caused by 

changing climate or local conditions (Weishampel, et al., 2007). Spatial patterns in 

tropical forests are determined by the size, shape and the distribution of the single 

canopy components (branches and leaves), which have a varying pattern dependent 

on the scale of observation (Frazer, et al., 2005). Despite its importance in ecological 

processes, canopy spatial heterogeneity has not yet been fully quantified and lacks a 

standardized measurement approach given issues on the agreement of a definition 

(Frazer, et al., 2005). Approaches that are best suited for this include those that are 

able to take into account the scale-dependence of the processes and are 

consequently best observed using space-scale analysis derived from two-point 

statistical measures (wavelet space-scale analysis) of 3D datasets (Bradshaw & Spies, 

1992). 3D datasets suitable for such analysis, including Light Detection and Ranging 

(LiDAR) and Interferometric Synthetic Aperture Radar (InSAR) are now widely 

available from a range of airborne and spaceborne sources (e.g., the TanDEM-X 

satellite formation). 

Moreover, the nature of the ecological processes (derived from environmental 

conditions, composition and disturbance processes) results in many cases in 

statistical non-stationarity of the random fields associated with the instrumental 

observations. In essence, statistical stationarity (or homogeneity when the 

independent variable is space) means that the statistical measures are invariant 

under translation. Non-stationarity in nature includes intermittency and scale 

invariance (fractal process) (Davis, et al., 1994; Mallat, 2008). 
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Canopy structure is significantly affected by the scale of observation (Bongers, 

2001). At fine-scales, within a forest patch heterogeneity is visible while, at coarser 

scales, the clumping of canopies results in homogeneous patches with similar 

structure. In this case, heterogeneity between patches due to differences in structure 

can be appreciated (Lertzman & Fall, 1998). 

Increased availability of fine resolution data provided by commercial satellites 

(in particular optical sensors such as those publicized through the Google Earth 

platform (e.g.,QuickBird, WorldView and IKONOS) (Barbier, et al., 2010) have 

provided the increasing opportunity to explore canopy spatial arrangement and to 

resolve an unprecedented level of detail and the development of image processing 

algorithms that can extract single tree crowns (Palace, et al., 2008) as well as manual 

delineation of tree crowns (Asner, et al., 2002) but this has been more commonly 

done in the past using aerial photography (Wulder & Franklin, 2003). 

Compositional changes (e.g., species succession) and structural changes (e.g., 

small canopy openings) due to disturbance (e.g., fire or selective logging) can be 

measured using ground data with point estimates (e.g., gap fraction and canopy 

openness) at recurring intervals after the occurrence of the disturbance event (Slik, 

et al., 2002; van Nieuwstadt, 2002; Yeager, et al., 2003; Brearley, et al., 2004; 

Eichhorn, 2006; Slik, et al., 2008; Delang & Li, 2013). Accessibility limits the retrieval 

of such information in tropical forest and the ability to gather datasets spanning 

large areas (Barbier, et al., 2010). Remote sensing observations offer a valuable, 

complementary tool to explore canopy structure variations due to degradation 

processes at larger scales in extensive, complex, heterogeneous and multi-layered 

tracts of tropical forests (Roughgarden, et al., 1991; Bongers, 2001). 

Optical sensors are most commonly employed due to their widespread 

availability (e.g., LANDSAT), but these observations are severely limited in the 

tropics due to frequent cloud cover and haze, which precludes the acquisition of 

data (van der Sanden, 1999). Moreover, these observations provide only two-

dimensional information (projection of the structure from a volume onto a plane), 
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lacking sensitivity to vertical structure, which is an important parameters in multi-

layered tropical forests. Spectral properties provide limited sensitivity to 

differentiate successional stages given the rapid recovery of canopy cover after 

disturbance, which is reflected on the spectral signature of regenerating forest (De 

Sy, et al., 2012). 

Improved understanding and characterization of forest structural arrangement 

arising from different forest types and forest patches at different successional stages 

can be improved using geometrical and textural properties of spectral signal from 

high resolution optical data (Gallardo-Cruz, et al., 2012). Resolution <4 m has also 

been suggested as optimal for retrieving meaningful information related to canopy 

structure (Proisy, et al., 2007). While datasets with resolution lower than 4 m are 

readily available from optical and airborne LiDAR sensors, they have limited spatial 

coverage (Kaasalainen, et al., 2015). Canopy texture derived from high resolution 

optical imagery has been employed successfully for discrimination of forest types 

due to the ability to exploit the variation in illumination between crowns, this 

resulting in tonal variation between the sunlit and shadow canopy components 

using Fourier Transform Textural Ordination (FOTO) (Barbier, et al., 2010), 

(Couteron, et al., 2005; Proisy, et al., 2007). Lacunarity has also been explored for the 

analysis of spatial patterns derived from canopy arrangements in simulated LiDAR 

datasets (Frazer, et al., 2005) and in high resolution multi-spectral optical data 

(Malhi & Román-Cuesta, 2008). 

Requirements to capture the complex three-dimensional structure can be best 

matched by airborne Light Detection and Ranging (LiDAR) (Lim, et al., 2003) and 

Interferometric Synthetic Aperture Radar (InSAR) (Balzter, 2001). Forest spatial 

structure from LiDAR datasets has been extensively studied with the aim of 

characterizing forest types using texture metrics (Kennel, et al., 2013). Also forest 

disturbance has been addressed using these techniques (e.g., selective logging: 

(Kent, et al., 2015; Wedeux & Coomes, 2015). Canopy grain analysis from FOTO 

applied to LiDAR derived Canopy Height Model (CHM) and Digital Surface Model 
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(DSM) was also used to generate metrics related to structure and to ultimately 

improve above-ground biomass prediction (Barbier, et al., 2010; Véga, et al., 2015). 

The extraction of single crowns from LiDAR has also been explored (Garrity, et al., 

2012). 

InSAR is also sensitive to three-dimensional vegetation structure, with 

capability of mapping the vegetation spatial distribution by the coherence modulus 

and the vertical distribution by the interferogram phase. TanDEM-X (and the twin 

satellite is a single-pass interferometer acquiring data at X-band (λ = 0.031 m, 9.65 

GHz) and at high spatial resolution (approximately 5 m pixel spacing). Its unique 

configuration results in no temporal decorrelation (Krieger, et al., 2007), as this is 

typically high in multi-pass interferometers where acquisitions are normally at least 

days, if not longer apart. 

The availability of TanDEM-X data has spurred much research on forestry 

applications and in particular related to vegetation vertical structure (height) 

through interferometric phase and forest horizontal structure (canopy density) 

through backscatter and coherence. In this paper we concentrate on the first of 

these, as a Digital Surface Model (DSM) (WorldDEMTM) (Bräutigam, et al., 2015) is 

provided globally so it is the easiest TanDEM-X data product to access and use. 

Indeed, TanDEM-X provides the first DSM with global coverage, at high resolution 

(<5 m), which could provide information on canopy heterogeneity. The DSM 

potential to characterize structural heterogeneity through texture based methods in 

tropical forests has however, seldom been explored as far as we are aware. 

DSMs are produced from TanDEM-X data using the coherence phase 

information, which incorporates three-dimensional spatial information on 

vegetation height superimposed on topography (Balzter, 2001; Solberg, et al., 2015). 

Sensitivity to sensor’s parameters (e.g., polarization) and environmental conditions 

(e.g., rainfall events and seasonality) have also been noticed to influence the phase 

center height (PCH) but research has been predominantly focused on boreal or 

temperate forests. For instance, ground scattering is lower at VV polarization 
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compared to HH (Kugler & Hajnsek, 2011). Seasonality can also play a part in 

determining X-band penetration depth with deeper penetration occurring during 

leaf-off conditions (Praks, et al., 2012). Penetration depth decreases with increasing 

frequency, so at X-band penetration depth is lower compared to L-band (Balzter, 

2001). In tropical forest, phase height was found to be higher for shorter forest (early 

succession) compared to taller forest stands (Treuhaft, et al., 2015). 

Developing methods for the extraction of texture is a key priority to retrieve 

information on canopy conditions from forest structure (Barbier, et al., 2010). 

However, texture derived from 3D InSAR datasets has not yet been explored to 

obtain information related to canopy heterogeneity and in particular for the analysis 

of differences in structure between landscapes, which are characterized by a 

gradient of heterogeneity derived from anthropogenic disturbance. 

Spatial patterns, which from a cognitive point of view we can associate with 

forest heterogeneity, such as canopy clusters canopy closure and voids, canopy 

roughness, vegetation density, and emergent trees, appear in statistical measures of 

the 3D observations (vegetation height as a function of northing and easting) in, for 

instance, signal energy which is highly variable both in space and frequency. Their 

characterization requires therefore a signal representation, which affords local 

energy estimation. Wavelet frames, which feature an optimal time-frequency (space-

scale) resolution, are the ideal representation choice for the purpose (Mallat, 2008). 

4.2.1.  Rationale 

The full LiDAR waveform provide same measure of the forest vertical structure 

function, obtained by sampling in range time the returns from layers of elementary 

scattering elements which are distributed in height along the vegetation volume. 

When the full waveform is processed into a Canopy Height Model (CHM), the 

vertical structure measure is condensed in one value, namely the distance at each 

resolution point in space from the ground return to the top canopy return. It carries 

therefore a three-dimensional geometric characterization of the forest structure, one 
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dimension being the vegetation height, and the other two dimensions being the 

spatial distribution of the heights (the horizontal structure). 

The phase of the coherence can be exploited to derive a surface model (DSM), 

which incorporates spatial information on topography and vegetation height. This 

happens because on a vegetated surface the phase center height (PCH) moves up 

from the value corresponding to the ground, because of the contribution of the 

scattering elements in the vegetation volume (Praks, et al., 2012). When the DSM is 

located near the canopy surface, it carries information on those higher spatial 

frequencies that are generated by the forest horizontal structure, similarly to the 

LiDAR CHM and therefore can give an indication of canopy structure. 

An intuitive view of the phenomenon in case of the non-stationary and 

intermittent random field provided by the primary forest canopy height, can be 

obtained in this way. Moving from one resolution element to the next, the radar 

beam will intercept different structural patterns of the heterogeneous canopy. As a 

consequence, the scattering volume dimension will change, because the local 

incidence angle and the extinction will change (different number density of 

scattering elements). Reasoning in terms of a piecewise random volume model, the 

net result of all changing factors will be a corresponding spatial change of the 

complex coherence and of the phase center height, and in turn on the phase to 

height conversion (DSM). 

The aim of the work presented in this paper is to compare the information 

content of the spatial statistic (texture) of DEMs provided by two observational 

sensors, LiDAR and InSAR, these featuring complementary spatial resolution and 

mapping extent characteristics. The aim is pursued by providing a quantitative 

characterization of the mapping between observations (LiDAR and InSAR) and 

target spatial structure using two-point statistical measures. The approach is two-

fold: first, LiDAR and InSAR textural correlation is used to assess coupling of 

topographic and canopy structures. Subsequently, space frequency analysis (2D 

wavelet spectra) is applied to structure measures provided by LiDAR CHM and 
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TanDEM-X DSM to test congruency of the measures carried out by the two sensors. 

Finally, thematic class separability based on the wavelet statistical measures is 

performed. 

4.3. Study Site 

Sungai Wain Protection Forest (SWPF) is located to the North of Balikpapan 

(116°46’14.08”E, 0°59’57.91”S), East Kalimantan (Indonesia) (Figure 1). The study 

site encompassed intact lowland Dipterocarp forest within the core of the SWPF 

surrounded by disturbed forest dominated by Macaranga sp. which developed after 

the 1997–1998 fires (Hajnsek, et al., 2009). Cultivated areas are located to the North 

and to the East of the SWPF with mainly abandoned mixed rice fields, grassland 

which is dominated by the invasive Imperata cylindrica and scrub composed of a mix 

of vegetation at various stages of development. Intact lowland Dipterocarp forest in 

the SWPF reaches above-ground biomass up to 400 Mg/ha and heights up to 60 m 

(Kugler, et al., 2015) and on a large scale appears as homogeneous (Hajnsek, et al., 

2009). 

Elevation ranges between 30 and 140 m above sea level with an elevation 

gradient decreasing from North to South and terrain slope ranging from 0° to 30°. 

The soil type is classified as Alisols (van Nieuwstadt, 2002). The climate is 

categorized as Tropical Wet (Walsh, 1996), and is wet all year but has infrequent 

marked dry periods as a consequence of ENSO conditions. Its wet season, December 

to May, has peak rainfall in March (272 mm), with average annual precipitation 

equal to 2250 mm (Yassir, et al., 2010), and a rainfall minimum in July (147 mm 

during the dry season) (MacKinnon, et al., 1997). The 1997–1998 ENSO, which 

affected the study area, was characterized by a lack of precipitation for several 

months, leading to fire which caused damage to two thirds of the SWPF (van 

Nieuwstadt, 2002). As well as altering the species composition of the forest, there 

were noticeable changes in forest structure such as an increase in canopy openness 

(van Nieuwstadt, 2002). 
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Figure 1. (a) Study site location and data extent overlaid on a land cover map 

provided by the Indonesian Ministry of Forestry (Indonesian Ministry of Forestry, 

2015). TanDEM-X data extent (black box, only partially covered in this image), 

LiDAR site A and B (red) and 315 sample plots (35 x 35 m2) (blue squares). LiDAR 

Site A is primarily covered by primary forest (PF) (undisturbed) while; Site B is 

dominated by secondary forest (SF) (disturbed), mixed scrub (MS) and grassland 

(GR); (b) Range of vegetation structures observed from high resolution aerial 

photography (0.5 m) (blue square: 35 x 35 m2 plot). 

4.4. Methods 

4.4.1. TanDEM-X Data 

TanDEM-X data was acquired on 11 December 2014 in StripMap bistatic mode 

(single polarization HH) at 41° incidence angle supplied through AO VEGE6702 by 

DLR (Figure 2). The scene covers 32 km W-E x 25 km N-S (UL Geo: 116° 46' 14.08” E, 

0° 59'57.91” S). A summary of the TanDEM-X acquisition configuration is found in 
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Table 1. The data was processed using ENVI/SARScape 5.0 Interferometric module 

to generate coherence modulus and a Digital Surface Model (DSM) (Sarmap, 2012) 

and consists of the following steps: (a) interferogram generation (2 looks in azimuth 

and 2 looks in range); (b) retrieval of a subset of the SRTM-4 version DEM which 

covers the extent of the TanDEM-X acquisition; (c) interferogram flattening; (d) 

filtering using a Goldstein filter (Goldstein & Werner, 1998) and coherence 

generation; (e) phase unwrapping using the minimum cost flow algorithm; and (f) 

geocoding at 4.6 m resolution to WGS84 datum, Zone 50 South. A DSM was 

generated using the phase to height conversion by setting relaxed interpolation 

since the low coherence values meant that the phase was difficult to unwrap (Figure 

2). The derived DSM was also geocoded at 4.6 m pixel spacing to WGS84 datum, 

UTM Zone 50 South. The DSM derived from TanDEM-X corresponds to the 

superimposition of the bare earth (Digital Terrain Model- DTM) plus the vegetation 

and corresponds to the phase center height (PCH) which is located within the 

vertical structure of the target (Balzter, 2001). The location of the PCH depends on 

target parameters (e.g., vegetation spatial configuration such as volume density) 

and the sensor's parameters (e.g., frequency and polarization) (Balzter, et al., 2007). 

Table 1. TanDEM-X acquisition configuration parameters. 

Parameter Value 

Mode StripMap bistatic 

Acquisition Date 11/12/2014 

Polarization HH 

Incidence Angle (°) 41 

Resolution (azimuth, range) (m) 3.3 × 1.8  

Ground resolution (m) at 41° 3.3 × 2.74 

Effective Baseline (m) 223 

HoA (m) 30.2 

Orbit direction Ascending 

Look direction Right 
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Figure 2.(a) TanDEM-X coherence modulus; (b) Aerial photo (0.5 m resolution); (c) 

Canopy Height Model (CHM) derived from airborne LiDAR (1 m resolution); (d) 

TanDEM-X DSM; and (e) TanDEM-X DSM subset. Boundary between primary 

forest (PF) and secondary forest (SF) (red line) according to the land cover map 

provided by the Indonesian Ministry of Forestry (Indonesian Ministry of Forestry, 

2015) is shown on the aerial photo (b); LiDAR CHM (c) and TanDEM-X DSM (e). 

4.4.2.  Reference Data 

LiDAR data was acquired on 14 November 2014 using the Optech ORION 

M300 system (frequency: 55 Hz). The airborne LiDAR instrument was flown at an 

altitude of 700 m above ground level, scan angle of ~18°, swath width of 455 m with 
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an overlap of 227 m. The resulting point density was 5.75 points per m2 (excluding 

overlap). The vertical accuracy for all LiDAR returns on clear ground was 0.08 m 

(standard error at 1 sigma). The data covers 9.7 x 0.7 km2 (Site A) and 4.5 x 0.8 km2 

(Site B). The LiDAR products were geocoded to WGS84 datum, Zone 50 South. 

Lidar2dems open source software developed by Applied GeoSolutions was used to 

process the LiDAR data to provide the following: a Canopy Height Model (CHM) at 

1 m resolution was generated by subtracting a Digital Terrain Model (DTM) from a 

Digital Surface Model (DSM) (Figure 2). The general term Digital Elevation Model 

(DEM) is used to refer to DSM, DTM or CHM. 

A land cover map developed by the Indonesian Ministry of Forestry 

(Indonesian Ministry of Forestry, 2015) was also used to distinguish between broad 

vegetation classes with additional visual inspection of aerial photography (Figure 

1). 

Aerial photos (AP) (0.5 m resolution) were acquired at the same time as the 

LiDAR overpass using a Trimble 80 megapixel medium format digital aerial 

camera. The APs were used as reference data to aid in the supervised analysis for 

the selection of classes of interest, since ground truth data was not available. The 

APs were deemed suitable to aid the selection of structural classes since they were 

able to capture illumination variability giving rise to textural differences derived 

from the spatial arrangement of canopy components (combination of sunlit or 

shadow areas), and so could be used to locate areas with different structural 

properties through visual inspection. 

4.4.3.  Vegetation Structural Class Selection 

Analysis was performed in 315 virtual plots (35 x 35 m2 = 0.12 ha) located in 

primary lowland Dipterocarpaceae forest (intact) (PF), secondary forest (disturbed) 

(SF), mixed scrub (MS) and grassland (GR). Figure 3 shows a representative sample 

of virtual plots for each class visualized on a LiDAR CHM. A random sampling 

approach was devised within the extent covered by LiDAR, TanDEM-X and aerial 

photos datasets so that the number of non-overlapping plots of size 35 x 35 m2 could 
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be maximized without user interference. The choice of window size was determined 

from knowledge of the landscape taking into account the spatial arrangement and 

size of canopies so that the variability was appropriately captured. The choice was 

conditioned by the following criteria: a) it could not be smaller as the largest crown 

dimensions were in the range of 10–20 m in the intact primary forest (PF); and b) in 

connection with the random sampling approach, the size ensured that the plots 

were not selected by the user so that the window was not centered on a single 

emergent crown; c) any larger plots might have contained a mixture of forest types, 

and the resolution of any eventual product using windows of this size would be 

reduced. 

The random sampling was performed within landcover classes defined in a 

landcover map derived from Landsat developed by the Indonesian Ministry of 

Forestry (Indonesian Ministry of Forestry, 2015) and further verified by visual 

interpretation of high resolution aerial photography (0.5 m resolution). The virtual 

plots extracted were then checked by visual interpretation of aerial photos acquired 

at the same time as the LiDAR and TanDEM-X data acquisition to ensure that they 

effectively belonged to an appropriate landcover class.  

From visual interpretation it was evident that the class defined as “mixed 

agriculture and scrub” in the Indonesian Ministry of Forestry land cover map was 

broad and not representative of the condition in 2014 (as observed from aerial 

photography). Thus, it was deemed appropriate to partition the class into two 

separate classes: grassland (GR) and mixed scrub (MS) based on visual inspection. 

The MS class is composed of a combination of Imperata cylindrica and presents taller 

re-growing vegetation, such as shrubs and young trees which are not present in the 

grassland class (GR), this being prevalently colonized by Imperata cylindrica. 

The final training dataset consisted of a total of 315 virtual plots belonging to 

primary forest (n= 96), secondary forest (n= 126), mixed scrub (n= 44) and grassland 

(n= 49). 
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Landscape heterogeneity from 2D wavelet spectra was assessed based on 

randomly selected pixels which are representative of the chosen classes (PF, SF, MS 

and GR) to give insight into the target structure at four scales of decomposition 

based on a LiDAR CHM and TanDEM-X DSM (the figure in Section 4.5.2). The set of 

cases considered are as follows: (a) Emergent trees in a multi-layered heterogeneous 

(in terms of heights) matrix characteristic of old-growth forest (PF); (b) Relatively 

homogenous secondary forest patches composed by a carpet of crowns with high 

clumpiness. Absence of tall emergent trees but has reached full canopy cover (SF); 

(c) Early stage re-growth presenting smaller tree crowns (2–3 m) closely packed but 

discernible from LiDAR (MS); (d) Homogeneous grassland (Imperata cylindrica) 

presenting low height with scattered small shrubs (GR). 

 

Figure 3. Sample classes derived from a LiDAR Canopy Height Model (CHM) (m) 

within 35 x 35 m2 plots illustrating vertical structure arrangement (height) in: 

primary forest (intact) (PF), secondary forest (disturbed) (SF), mixed scrub (MS) and 

grassland (GR). 
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4.4.4.  LiDAR and TanDEM-X Texture Correlation Analysis to Assess 

Impact of Topographic and Canopy Structures 

Scaling (spectral) analysis of LiDAR and TanDEM-X datasets was performed in 

the wavelet domain along a profile covering 6.95 km in a north-south direction 

dominated by PF and SF. The aim of the analysis was to identify scales where 

textural patterns associated with topographic or canopy features develop within the 

different Digital Elevation Models (DEMs). The following two-point spatial statistics 

were computed in the wavelet domain (Chapter 3): (a) wavelet variance; and (b) 

wavelet co-variance (between LiDAR DTM/DSM, LiDAR DTM/CHM, and LiDAR 

DTM/TDX DSM). A wavelet representation is used instead of a Fourier one because 

the processes are multi-scale and non-stationary. The analysis provided an 

assessment of the relative influence on the signal texture of topographic structures 

and canopy structures, which is the main concern of the current study. 

4.4.5.  2D Wavelet Spectra 

Information on canopy structure is carried by datasets where vegetation height 

(or proxy) is mapped as a function of space (e.g., LiDAR CHM or TanDEM-X DSM) 

(Figure 4). This mapping provides a two-dimensional random field, whose spatial 

(two-point) statistics condenses measures of the horizontal and vertical distribution 

of the forest. These random fields are analyzed using two-point statistics provided 

by the variance of a wavelet frame that acts as a differential operator Equation 1). 

This statistics, analogous to the structure function lends to the characterization of 

stationary random processes, as well as of non-stationary processes with stationary 

increments (e.g., fractals) (Davis, et al., 1994). 

 

〈𝑊𝑆(𝑠, 𝑥)2〉  ≅ 〈(𝑓(𝑥 + 𝑠) − 𝑓(𝑥)2)〉 Equation 1 
 

In particular, we consider exploiting the well known properties of optimal 

space-frequency resolution of wavelets, and local (in space) estimates of the wavelet 

variance as a function of scale. 
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Figure 4. Flowchart illustrating the application of 2D wavelet spectra to 3D 

datasets for the analysis of landscape heterogeneity across a disturbance gradient: 

(a) 3D input dataset; (b) generation of 2D wavelet spectra image with 16 fractional 

scales with 21/4 spacing between scales at four dyadic scales (𝑆1, 𝑆2 …𝑆𝑛); (c) feature 

reduction to four wavelet polynomial coefficients (𝑃0, 𝑃1, 𝑃2 and 𝑃3) by fitting a 3rd 

order polynomial to the wavelet signature; (d) wavelet signature (wavelet variance 

as a function of scale); and (e) interpretation of the wavelet signature based on 

target structural characteristics. 

At each point in space (at each pixel location of the analyzed image), we obtain, 

in the log–log variance/scale place, a characteristic signature of the process, which 

reflects process parameters, such as field roughness, correlation structures and 

intermittency. This data structure is called “2D wavelet spectrum” (WS), and it is an 

extension of the method developed in Chapter 3. In more detail, the input field (e.g., 

vegetation height image) is decomposed in the wavelet frame basis using four 

dyadic scales. Local estimates of the wavelet variance are obtained by convolving 

the square of the wavelet coefficients with a B-spline smoothing function (Equation 

2). 

𝑊𝑆(𝑠, 𝑖, 𝑗)  =  (𝑐𝑥,𝑠(𝑖, 𝑗)
2 + 𝑐𝑦,𝑠(𝑖, 𝑗)

2)⨂𝛽𝑖,𝑗 
Equation 2 

 

Each signature log2WS  (LiDARCHMWS  or TDXDSMWS) is interpolated in scale 

with a step of 
1

4
 and fitted by a 3rd degree polynomial function. This function 

provides a good approximation to the wavelet signature (Chapter 3). Four 

polynomial coefficients for each pixel of the input field constitute finally the 
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dimensionally reduced features that describe the 2D wavelet spectrum. Two-point 

statistics was generated by deriving four polynomial coefficients: for LiDAR CHM 

(LiDARCHMP0 , LiDARCHMP1 , LiDARCHMP2  and LiDARCHMP3 ) and for TanDEM-X 

DSM (TDXDSMP0, TDXDSMP1, TDXDSMP2 and TDXDSMP3). Pixel based analysis was 

undertaken to explore sensitivity of 2D wavelet spectra to canopy structure 

heterogeneity through a gradient of varying vegetation structure (primary forest, 

secondary forest, mixed-scrub and grassland) (see Section 4.4.3). 

4.4.6. Separability 

To assess statistically the separability between four classes afforded by the 

wavelet spectra polynomial representation the Jeffries-Matusita (JM) distance. The 

JM distance of a pair of probabilistic distributions indicates the average distance 

between two classes density functions and it features a saturating behaviour with 

increasing separation (Alexander & Inggs, 1999). This fact makes it more suitable for 

dealing with a multi-class problem, because it avoids bias when taking averages due 

to an easily separable class. It is therefore suitable for the problem at hand, which 

has four features and four classes. The JM Equation 3) is derived from the 

Bhattacharyya distance (BD) Equation 4) (Alexander & Inggs, 1999). The JM distance 

ranges between 0 and √2 with highest values indicating greater class separability 

(Alexander & Inggs, 1999). 

𝐽𝑀𝑖𝑗  =  √2(1 − 𝑒
−𝐵𝐷) Equation 3 

 

where BD: 

𝐵𝐷 =  
1

8
(𝑀𝑖 −𝑀𝑗)

𝑇
[
𝐶𝑖 + 𝐶𝑗

−1

2
] (𝑀𝑖 −𝑀𝑗) +

1

2
𝑙𝑛

[
 
 
 |
𝐶𝑖 + 𝐶𝑗
2 |

√|𝐶𝑖||𝐶𝑗|]
 
 
 

 Equation 4 
 

Where 𝑖 is the class with mean vector 𝑀𝑖 and co-variance matrix 𝐶𝑖. 

Pairwise JM resulted in six JM distances, which are averaged and normalized 

by dividing the theoretical maximum JM distance of √2. The normalized average JM 
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distance was used as a parameter to indicate overall class separability (Alexander & 

Inggs, 1999). Upper and lower bounds of the probability of the classification error 

𝑃𝑒(𝑖, 𝑗) are given by Alexander & Inggs (1999) Equation 5). 

1

16
(2 − 𝐽𝑀𝑖,𝑗

2 )2  ≤  𝑃𝐸(𝑖, 𝑗)  ≤  1 −
1

2
(1 +

1

2
𝐽𝑀𝑖,𝑗

2 ) 
Equation 5 

The JM distances are computed for the six combination of class pairs among 

grassland, mixed-scrub, secondary forest, primary forest, and feature vectors 𝑣𝑥,𝑦⃗⃗ ⃗⃗ ⃗⃗  ⃗  =

 {𝑃0, 𝑃1, 𝑃2, 𝑃3 } , where 𝑃𝑖  are the polynomial coefficients of the wavelet spectra 

averaged over the training set plots, defined as described in Section 3.3. Morever, to 

investigate the dependence of class separability on scale, the JM distance is also 

computed for each scale of the signature separately 〈𝑊2〉 = 𝑓(𝑠𝑐𝑎𝑙𝑒) derived from 

the polynomial coefficients. In this case, the feature space is one-dimensional. 

4.5. Results and Interpretation 

4.5.1.  LiDAR and TanDEM-X Textural Correlation Analysis to 

Assess Coupling of Topographic and Canopy Structures 

Canopy structure (roughness) measures derived from 3D datasets can provide 

information on landscape disturbance and recovery (Weishampel, et al., 2007) but 

can be affected by environmental factors (Wedeux & Coomes, 2015) such as the 

underlying topography especially in steep terrain (Véga, et al., 2015). 

Understanding of topographic structure is important to gain a better insight on the 

processes that play a role and the extent to which they influence the 3D information 

provided by LiDAR and InSAR. This is especially relevant as only the LiDAR 

provides both a DSM and DTM, and thus the possibility to calculate a CHM; 

TanDEM-X only provides a DSM. 

The wavelet variance, being a two-point statistic proxy of the structure 

function, bears information on the dominant correlation patterns associated with 

either topographic or canopy structures, these happening at different scales and can 

also give insight into the impact of topography and canopy structure by comparison 
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with the available LiDAR DTM which carries information on ground topography 

(Figure 5a). To test this we performed an analysis over the 6.95 km transect in 

primary and disturbed forest, considering the LiDAR and TanDEM-X data.  

The LiDAR DTM (red) signature reveals the trend of a process with smooth 

texture at short scales and long memory (correlated patterns) up to 200 m (Figure 

5a). This scale corresponds to the onset of regular (almost periodic) patterns induced 

by the topography from the hilly terrain, which is reflected on the LiDAR DSM 

(black) and the TanDEM-X DSM (green), while the LiDAR DSM (black) carries 

strong information of short scale texture, with correlation length of tens of meters. 

Importantly, this texture patterns is also present (exactly overlaid) in the LiDAR 

CHM (blue) signature, revealing that within the short scale range (between 1 and 10 

m) the textural information is related to canopy structure and not to topography. 

The TanDEM-X DSM (green) is also sensitive to these short scales structures due to 

canopy variation (i.e., variance greater than LiDAR DTM) but with lower separation 

with respect to variance due to topography (LiDAR DTM). 

The wavelet co-variance holds information on the textural correlation between 

datasets, these being the LIDAR DTM, DSM and CHM and the TanDEM-X DSM 

(Figure 5b). The LiDAR DTM-DSM (red) confirms the presence of structures 

(periodic patterns) in the DTM texture at correlation length of 200 m (scale 28), 

which are reflected onto the DSM texture. At shorter scales, the texture correlation 

between LiDAR DTM and TanDEM-X DSM (black) is one order of magnitude 

lower, especially at scales typical of canopy width and gaps. This fact reinforces the 

point that although the TanDEM-X DSM is affected by the DTM noise, information 

on vegetation structure can still be detected as it happens at a different scale range. 

However, there is a striking feature in the LiDAR DTM/CHM co-variance (green) 

that reveals that there is also a textural reflection of topographic structures onto the 

LiDAR CHM, although at two orders of magnitude less important. Still, even if it is 

a weak coupling, this could mean that the LiDAR CHM has a component that 

follows the strong topographic features at scale of 200 m. This coupling could 
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confirm the fact that forest in valleys is higher than forest on ridges. This is due to 

several factors such as: (a) higher soil fertility and moisture availability in valleys; 

and (2) more need for forest in valleys to grow taller to reach light (light 

competition) (Eichhorn, 2006). 

 

 

Figure 5. (a) Wavelet variance as a function of 10 dyadic scales (2 m to 1000 m) 

computed over a 6.95 km transect in intact (PF) and disturbed secondary forest (SF). 

TanDEM-X DSM (green) and LiDAR derived datasets (DSM: black, CHM: blue and 

DTM: red). The figure indicates how the information related to canopy structure 

provided by the LiDAR CHM (apparent with higher wavelet variance at short scale 

≅ 10 m) is reflected onto the TanDEM-X DSM within the same scale range. Whereas, 

structure due to topography as provided by the LiDAR DTM are captured in the 

region around the wavelet variance maximum at longer scales (≅ 200 m), and are 

reflected onto the TanDEM-X DSM within the same scale range. Therefore, the 

TanDEM-X DSM contains both textural components due to forest canopy structure 

and elevation variation, these however appearing at largely different scale domains. 

(b) Wavelet co-variance providing information on pairwise textural correlation 

between datasets: LiDAR DTM, DSM and CHM versus TanDEM-X DSM. LiDAR 

DTM/LiDAR CHM (green); LiDAR DTM/LiDAR DSM (red) and LiDAR DTM/TDX 

DSM (black). The textural correlation between two datasets can be appreciated as 

being low at short scales and higher at long scales. Abbreviations: Canopy Height 

Model (CHM); Digital Surface Model (DSM) and Digital Terrain Model (DTM).  
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The results is key to determine the potential of TanDEM-X DSM for detecting 

canopy heterogeneity over larger areas compared to airborne LiDAR since 

TanDEM-X provides global coverage (Bräutigam, et al., 2015). Moreover, as 

opposed to a CHM the characterization of canopy heterogeneity does not depend on 

the availability of ground topography (DTM) but relies on the canopy roughness 

information provided from a DSM which does not penetrate deep enough into the 

canopy to reach the ground (in the presence of dense tropical forest) and therefore is 

restricted to a layer located somewhere within the upper canopy (Kugler, et al., 

2010). Limitations due to resolution are to be taken into account since this is lower 

for TanDEM-X and it does not enable to resolve single crowns as in the high 

resolution airborne LiDAR. The results have implications on the utility of LiDAR 

CHM but most importantly the potential of TanDEM-X DSM, which can provide 

complementary information on canopy roughness. 

Further analysis was undertaken at short scales (between scale 20 and 24). 

Longer scales were not considered since the ground topography was found to play 

an increasingly important role in affecting the process. Future research which aims 

to link textural variations to forest parameters (e.g., crown dimensions, height and 

above-ground biomass) should take into account the influence of topography to 

avoid bias in the estimation of these parameters which could be caused by the 

underlying relief rather than structural parameters (Proisy, et al., 2012). 

4.5.2.  Canopy Structural Heterogeneity Based on 2D Wavelet 

Spectra 

Airborne LiDAR CHM is optimal to gain understanding of the processes 

driving the wavelet signature due to the high resolution (1 m) and thus, the ability 

to resolve single crowns. Individual spectrum data points, one in each of the four 

land cover types (each corresponding to the local wavelet variance as a function of 

scale, i.e., a wavelet signature) were considered in order to help in the interpretation 

of wavelet spectra of a LiDAR CHM. Each spectrum sample corresponds to a local 

wavelet variance estimate at one point in space and for all scales (i.e., a wavelet 
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signature). The interpretation of the wavelet signatures is based on two main 

considerations: (a) extent to which the process presents self-similarity (correlation 

length); and (b) wavelet variance absolute values for a set of landscape 

heterogeneity cases is illustrated in Figure 6. 

 

Figure 6. Wavelet signatures based on: (a) LiDAR CHM; and (b) TanDEM-X DSM 

based on one pixel taken in: primary forest (PF) (red), mixed-scrub (MS) (black), 

secondary forest (SF) (green) and grassland (GR) (blue). Colored squares within the 

LiDAR CHM or TanDEM-X DSM subsets indicate the pixel selected for the 
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analysis: 1 pixel (1 x 1 m2 in LiDAR CHM and 4.6 x 4.6 m2 in TanDEM-X DSM. 

Interpretation of the signature should take into account the location of the maxima 

(sill) or correlation length which indicates the point in terms of scale where the 

process autocorrelation decays to zero. The process “roughness” when considering 

the process smoothed at a given scale is indicated by the wavelet variance values at 

that scale, with higher wavelet variance indicating greater process roughness. 

Wavelet signature that do not present a correlation length (flat signature) is typical 

of a white noise processes which means that the process is self-similar at all scales 

indicating homogeneity. Similarities and differences between wavelet signatures 

must be considered in terms of correlation properties (correlation length), which 

are indicated by functional relations such as maxima and slope, and process 

variance as a function of scale, which is indicated by the wavelet variance 

magnitude.  

Wavelet signatures for a multi-layered, complex old-growth forest patch (PF) 

(red line) dominated by a large emergent crown (crown diameter in the range of 18 

m) show the typical trend of stationary noise with an exponential autocorrelation 

function (increasing variance with scale, asymptotically converging to the process 

variance). Wavelet variance for primary forest ranges between 1.5 and 5.4 with a 

maxima (correlation length) around scale 23 (8 m). Of course, this figure must not be 

interpreted as a crown width measure, but as the neighborhood within the crown 

where the canopy height variations are still correlated. This can be verified by 

interpretation of inset (Figure 6a(i)) showing the presence of a large emergent crown 

surrounded by coalescing large crowns. 

The flat wavelet signature for a pixel selected in secondary forest (Figure 6a(iii) 

composed of interlocking crowns of similar height (homogeneous structure) with a 

lack of emergent trees is markedly different from that of the heterogeneous primary 

forest. The signature is typical of a white noise process meaning that the process is 

scale invariant and also presents no correlation length meaning that the process is 

self-similar at all scales considered and this is due to the homogeneity of the forest 
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patch, it does not present correlated features. The wavelet variance (in this case 

proportional to the scale variance) is lower compared to that of primary forest 

(range between 0.06 and 1.2). 

The mixed-scrub class signature (black line) reveals the presence of non-

stationarity with full multi-scale correlation patterns (decreasing variance with 

increasing scale), and a first correlation length at short scale (2 m). This is because 

the size of crowns located in mixed-scrub (as seen in Figure 6a(ii)) is much lower (1–

2 m) compared to the size of emergent tree crowns in primary forest (Figure 6a(i)). 

The grassland class wavelet signature also presents a white noise process, with 

the lowest process variance. The corresponding LiDAR CHM pixel selected is 

shown in (Figure 6a(vi)) and is clearly dominated by a layer that is texturally 

homogeneous and featureless. 

The corresponding TanDEM-X DSM analysis does not match with the LiDAR 

CHM analysis. This highlights the fact that the sensor resolution is of key 

importance in textural measures. The two forest classes (primary forest and 

secondary forest) (red and green line) behave in a similar way, with the signatures 

revealing white noise processes (no correlation length) however in terms of wavelet 

variance values the primary forest class presents always higher values compared to 

secondary forest. The similarity between the wavelet signatures for these two 

classes is due to the fact that now single canopies cannot be resolved, and the 

correlated patterns appearing at 1 m resolution in the LiDAR CHM signatures are 

now not visible. 

Nonetheless, the primary forest process features a higher process variance 

(Figure 6b(i)), meaning that still some discrimination between primary forest and 

secondary forest is possible with the one-point statistic. The mixed-scrub signature 

(Figure 6b(ii)) is again white noise and presents the lowest process variance. Again, 

this is due to the fact that smaller crowns cannot be resolved. Importantly, the 

grassland signature (Figure 6b(vi)) reveals a stationary correlated process, with a sill 

(signature maximum) around 8 m (scale 23). This is ascribed to the influence of 
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topography. Indeed, as these areas are dominated by surface scattering, from the 

spatial statistic (texture) point of view, the main dependence comes from the terrain 

height variations, whereas, in forested areas, volume scattering moves the PCH 

upwards towards the canopy upper layer and limits penetration capabilities. 

4.5.3.  Interpretation of Wavelet Measures of Structural 

Heterogeneity Based on Height Variance 

4.5.3.1. Wavelet Signatures Polynomial Fit 

Probability distributions (PDF) for the first wavelet polynomial coefficient (𝑃0) 

derived from the 3rd order fitted polynomial are found in Figure 7. 𝑃0 is the intercept 

with the y-axis in the log–log variance–scale plot, therefore it is a good 

approximation to the variance at short scale. From Section 4.1 we assume that most 

of the variation due to canopy structures occurs at short scale and thus, 𝑃0 holds 

more information compared to the other polynomial coefficients (𝑃1, 𝑃2 and 𝑃3). 

By visual inspection of Figure 7, the following comments can be made. Overlap 

between classes is evident both in the LiDAR and in the TanDEM-X especially for 

the two forest classes. In the LiDAR CHM case, primary forest PDF presents a 

bimodal distribution, both modes having high means but low variance. The primary 

forest looks therefore texturally rough but more homogeneous. The secondary forest 

PDF is also bi-modal, but with higher variance in the two modes, these being 

heavily merged. The first mode presents lower 𝑃0 values. Therefore, the secondary 

forest looks in some instance texturally less rough, but highly non-homogeneous. 

The PDF of the MS class presents similar characteristics (bi-model, high 

variance) but with increasing textural non-homogeneity. Grassland PDF is also bi-

modal with distinct low mean, this being the most texturally flat class. It is 

noticeable how in all cases the LiDAR CHM, due to high resolution, manages to 

split texturally each class into two characteristic components. Similar considerations 

can be made in the TanDEM-X case, with the following differences although the 

variances of the PF and SF PDFs are almost equal. Therefore, the two classes appear 



Chapter 4 

 

147 
 

with the same degree of textural homogeneity. The first mode of the MS PDF is 

strongly shifted towards low mean value. The MS class is again texturally split. But 

due to lower resolution, the lower mode overlaps part of the smoother GR class. 

 

Figure 7. Probability distribution (PDF) of the first coefficient 𝑃0  in the polynomial 

approximation of the wavelet signature by class (grassland- GR, mixed-scrub- MS, 

primary forest- PF and secondary forest- SF): (a) LiDAR CHM 𝑃0  PDF; and (b) 

TanDEM-X DSM 𝑃0  PDF. Greater information was observed using one-point 

statistic of 𝑃0 compared to using one point-statistic of each 𝑃1, 𝑃2 and 𝑃3. 𝑃0  is the 

intercept  with the y-axis in the log-log wavelet variance-scale plot, therefore it is a 

good approximation of the wavelet variance at short scale.  

4.5.3.2. Regression Analysis 

In order to gain insight into the measures provided by the wavelet spectra and 

their mapping onto the physical characteristics of the observed random field (forest 

structural heterogeneity), a regression analysis was performed between the LiDAR 

CHM standard deviation and the LiDAR CHM 𝑃0. 𝑃0 is the constant term of the 

wavelet variance polynomial approximation. Therefore, it provides a figure of the 



Chapter 4 

 

148 
 

overall variance (energy) carried by the wavelet representation. 𝑃0  is also the 

intercept with the y-axis in the log–log variance–scale plot, therefore it is a good 

approximation to the variance at short scale. 

We found that the LIDAR CHM 𝑃0 is well correlated with the standard 

deviation of the LiDAR CHM (R2 = 0.78, N = 315) (Figure 8a) and the TanDEM-X 

DSM 𝑃0 is also well correlated with the standard deviation of the TanDEM-X DSM 

(R2 = 0.72, N = 315) (Figure 8b). This means that the two-point statistic (𝑃0) at short 

scale of the process carries the same information as the one-point statistic (standard 

deviation) of the same process. Moreover, the one-point statistic of the TanDEM-X 

DSM is also equivalent to the CHM two-point statistic. This point confirms that, at 

least at first order, the properties of the CHM process are reflected onto the 

TanDEM-X DSM process. 

On the other hand, the LiDAR CHM standard deviation was weakly correlated 

with TanDEM-X 𝑃0 (R2 = 0.34, N = 315). This case indicates that the TanDEM-X DSM 

process is not related in a simple way to the CHM process, but it is the result of the 

superposition of several random processes, such as terrain topography and InSAR 

phase signal to noise ratio. Therefore, the textural dependency of the DSM cannot be 

measured only by a simple one-point statistic, or a one-scale two point statistic, but 

the full multi-scale measures (wavelet spectra) must be called into play. 
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Figure 8. Logarithmic relationship between: (a) LiDAR CHM standard deviation 

(m) and LiDAR CHM 𝑃0 (red cross) (R2 = 0.78, N = 315), and LiDAR CHM standard 

deviation (m) and TanDEM-X DSM𝑃0  (black circle) (R2 = 0.34, N = 315). (b) 

TanDEM-X DSM standard deviation (m) and TanDEM-X 𝑃0 (R2 = 0.72, N = 315). 

Finally, notice that the correlation between the two-point statistic 𝑃0 and the 

one-point statistic (standard deviation) of the same process (Figure 8a) is in line 

with the claim that the wavelet variance is an asymptotic unbiased estimator of the 

process variance (Percival & Walden, 2000). Indeed, given the wavelet frame of 

choice that acts a differential operator, the wavelet variance is tantamount to 

Equation 6): 

〈𝑊(𝑥, 𝜏)2〉  =  〈(𝑓(𝑥) − 𝑓(𝑥 + 𝜏))2〉 𝜏 → ∞
𝑦𝑖𝑒𝑙𝑑𝑠
→    2(〈𝑓2〉 − 〈𝑓〉2)  

=  2𝑉𝐴𝑅(𝑓) 
Equation 6 
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Often in old-growth tropical forest height differences between individual trees 

is significant as a result of the presence of emergent trees (Hoekman & Varekamp, 

2001). The results are in line with findings based on optical sensors that indicate that 

texture is driven by the variation in vertical structure (presence of emergent trees) of 

the canopy and gives rise to canopy texture (Ouma, et al., 2008). Stands with a high 

variance in tree height have a rougher upper canopy compared to those with lower 

variance (Ouma, et al., 2008). However, in DEMs provided by ranging or 

interferometric sensors (e.g., from LiDAR or InSAR), texture is not related to 

shadowing effects but to the gradient of height information. The area covered by 

large emergent trees (> 35 m) in secondary forest (burned) plots is significantly 

different from primary forest (p < 0.01, N = 222). This is a good indicator to explain 

why secondary forest presents a lower canopy roughness compared to primary 

forest. 

4.5.3.3. LiDAR CHM and TanDEM-X Polynomial Coefficients and 

Standard Deviation Frequency Distributions 

LiDAR CHM (height) frequency distribution (FD) in a 23 x 23 pixels (0.05 ha) 

area presenting low LiDAR CHM 𝑃0 (0.12 ± 0.65) (mean ± standard deviation) (SF) 

was compared with an area presenting high 𝑃0 (5.6 ± 1.2) (PF) (Figure 9b). Indeed, 

the area with lowest 𝑃0  (SF) presents a more homogeneous height distribution, 

ranging between 21.1 and 27.9 m (mean ± standard deviation) (25.9 m ± 1.1 m) 

(Figure 9). Conversely, higher 𝑃0  (black line) (Figure 9b) corresponds to a more 

heterogeneous structure comprising tree heights ranging between 11.8 m and 48.3 m 

(34.6 m ± 10.7 m) (Figure 9a). 
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Figure 9. LiDAR CHM, TanDEM-X DSM and corresponding 𝑃0 frequency 

distributions (FD) for primary forest (intact) (PF) (black line) and secondary forest 

(SF) (red line): (a) LiDAR CHM FD (23 x 23 pixels); (b) LiDAR CHM 𝑃0 FD (23 x 23 

pixels); (c) LiDAR CHM FD (351 x 351 pixels); (d) LiDAR CHM 𝑃0 FD (351 x 351 

pixels); (e) TanDEM-X DSM (m) FD (351 x 351 pixels); and (f) TanDEM-X DSM 𝑃0 

FD (351 x 351 pixels). 

Lower tree height standard deviation (in this case provided by LiDAR CHM) 

observed in SF is often associated with young even aged stands of mono-dominant 

species (Ouma, et al., 2008). Another independent dataset such as field data would 
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be required to confirm this assumption. The forest successional gradient ranging 

from intact to burnt and ultimately regrowth and the variance of the CHM has been 

observed in other studies based on optical remote sensing, whereby the presence of 

emergent crowns caused a significant shadowing effect on the lower vegetation in 

PF influencing texture from spectral information (Ouma, et al., 2008). 

Analysis taking into account 351 x 351 pixels plots of PF and SF was explored 

(Figure 9c-f). At this scale the LiDAR CHM FD indicates that the SF heights are no 

more restricted to the 21–27 m range like in the sub-hectare case (Figure 9a). 

However, there is a clear predominance around 22 m in the SF (Figure 9c). The SF 

also presents a long tail (not present in the sub-hectare case), which corresponds to 

patches that have not been burned within the burned matrix. Instead, homogeneous 

patches are areas where forest was affected by fire, and, after 17 years, a forest 

successional stage with a more uniform structure replaced heterogeneous old-

growth formations. Because of the complex composition unburned small forest 

islands patches surrounded by burned forest, they will be more prone to fire 

disturbance since future fires will be facilitated by the more open canopy (Cochrane, 

2003). Instead the PF presents a distribution ranging from 0 to 59 m (mean ± 

standard deviation: 27 ± 9.5 m) (Figure 9c). At hectare scales the PF is still very 

heterogeneous and multi-layered, a characteristics observed in many tropical forests 

studies due to the high diversity of species (Malhi & Román-Cuesta, 2008). 

Similar, effects can be noticed in the TanDEM-X DSM (Figure 9f) where SF 𝑃0 

ranges between -0.02 and 6.5 (mean ± standard deviation: 2.9 ± 1.0), while PF 𝑃0 

ranges between 1.3 and 6.3 (mean ± standard deviation: 4.2 ± 0.8). In this case, the 

one-point statistical separation between PF and SF is less evident due to two 

reasons: coarser resolution (4.6 m); approximation of the top canopy spatial 

variation provided by location of the coherence PCH, this in turn depending on the 

canopy volume density and the sensor’s parameters (Balzter, et al., 2007). However, 

notice that the distribution based on TanDEM-X DSM 𝑃0  still bears information 

related to structural differences between PF and SF. 
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We can conclude that textural variation between SF and PF, as measured by 

one-point statistic (LiDAR CHM height FD) depends on the scale of observation and 

the disturbance conditions (e.g., presence of unburned forest patches within a 

burned forest matrix). This process has been observed in other tropical forest 

settings where, unburned forest patches were still present within the burned forest 

(Cochrane & Schultze, 1998; Cochrane & Schultze, 1999). In this particular case, they 

formed connected ribbons of old-growth forest along streams (Eichhorn, 2006) and 

they were not burned since the flammability in the presence of higher moisture is 

lower compared to those areas further away from water sources (Cochrane, 2003). 

LiDAR CHM wavelet spectrum image (𝑃0) (Figure 10b) visual interpretation 

confirms the results from the FDs. Figure 10a shows a false colour image of the 

LiDAR CHM, where the red line marks the boundary between PF and SF to 

illustrate how forest height varies across the LiDAR extent. Figure 10b shows the 

corresponding LiDAR CHM 𝑃0 . Lower LiDAR CHM 𝑃0  (brown) indicates more 

homogeneous, even height forest patches while, high 𝑃0 is represented in yellow. 

The onset of the more homogeneous forest patches is clearly dominant in the region 

designated as the burned SF area of the SWPF to the North of the red line boundary. 

The TanDEM-X DSM (m) is shown in (Figure 10c) and the corresponding 𝑃0  is 

illustrated in (Figure 10d) with low values in brown and high values in dark green. 

The results are further confirmed by class separability in the feature space of the 

wavelet spectra descriptors (Section 4.5.4). 
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Figure 10. (a) LiDAR CHM; (b) LiDAR CHM wavelet spectrum image (𝑃0); (c) 

TanDEM-X DSM; and (d) TanDEM-X DSM wavelet spectrum image (𝑃0). The red 

line marks the boundary between secondary forest (SF) and primary forest (PF) 

according to data supplied by the Indonesian Ministry of Forestry (Indonesian 

Ministry of Forestry, 2015). The onset of homogeneous (in terms of height 

distribution) forest patches, characteristics of the burnt secondary forest, is clearly 

visible in the LIDAR CHM (a) to the North of the boundary line, and it is well 



Chapter 4 

 

155 
 

detected by areas of lower LiDAR CHM 𝑃0 (brown) in (b) and lower TanDEM-X 𝑃0 

(brown) corresponding to secondary forest. Sample plots used in the FD analysis 

reported in Figure 9: 23 x 23 pixel plots (black squares) and 351 x 351 pixel plots 

(yellow squares). 

4.5.4.  LiDAR CHM and TanDEM-X DSM 2D Wavelet Spectra Class 

Separability 

Jeffries-Matusita (JM) distance was performed based on the maximum number 

of common samples for each class pairs: grassland/mixed-scrub (GR/MS: 44), 

grassland/secondary forest (GR/SF: 44), grassland/primary forest (GR/PF: 44), 

mixed-scrub/secondary forest (MS/SF: 49), mixed scrub/primary forest (MS/PF: 49), 

and secondary forest/primary forest (SF/PF: 96). 

4.5.4.1. Scale by Scale Class Separability 

LiDARCHM Wavelet Signature (LiDARCHMWS) separability (see Section 4.4.5 for 

WS definition) at different scales was performed on pairwise JM to assess the scale 

at which class separability was greater (Figure 11a). The JM distance ranges between 

0 and √2 with highest values indicating greater class separability. Best separability 

between GR/MS (𝐽𝑀GR/MS = 0.82), GR/SF (𝐽𝑀GR/SF = 1.0) and GR/PF (𝐽𝑀GR/PF = 1.26) 

was achieved at 2.4 m (scale 21.25), while the best separability between class pairs 

MS/SF (𝐽𝑀MS/SF = 0.49) and SF/PF (𝐽𝑀SF/PF = 0.81) was achieved at 2.8 m (scale 21.5). 

Best separability between MS/PF occurred at 1.4 m (scale 20.5) (𝐽𝑀MS/PF= 0.78). 
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Figure 11. Scale by scale pairwise Jeffries Matusita (JM) distance trend for primary 

forest (PF), secondary forest (SF), mixed scrub (MS) and GR (grassland) at four 

dyadic scales: (a) LiDARCHMWS; (b) TDXDSMWS (𝑛GR/MS  = 44; 𝑛𝐺𝑅/𝑆𝐹 = 44; 𝑛𝐺𝑅/𝑃𝐹 = 

44, 𝑛𝑀𝑆/𝑆𝐹 = 49, 𝑛𝑀𝑆/𝑃𝐹 = 49 and 𝑛𝑆𝐹/𝑃𝐹 = 96); (c) LiDARCHMWS average JM; and (d) 

TDXDSMWS average JM with associated error bounds (𝑃𝑒 lower and 𝑃𝑒 upper). 

Separability results considering TDXDSMWS scale by scale (Figure 11b) indicate 

that the highest separability between class pairs is achieved at 4.6 m (scale 20) for 

class pairs GR/SF (𝐽𝑀GR/SF  = 0.91), GR/PF (𝐽𝑀GR/PF  = 1.1), MS/PF (𝐽𝑀MS/PF  = 0.80) 

and SF/PF ( 𝐽𝑀SF/PF  = 0.41), while the highest separability between class pairs 

GR/MS (𝐽𝑀GR/MS  = 0.61) is achieved at 13 m (scale 21.5) and at 9.2 m (scale 21) for 

class pair MS/SF (𝐽𝑀MS/SF  = 0.70). 

LiDARCHMWS  outperforms the TDXDSMWS  due to its higher resolution. 

Nonetheless, textural information derived from the TDXDSMWS can still provide a 

certain degree of separability. Results also confirm that information at higher scales 

does not bear significant information on class separability and even the first few 
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scales contain limited information when taken singularly. Analysis of the full WS is 

therefore essential to achieve improved separability. 

4.5.4.2.  Full Wavelet Signature (WS) Class Separability 

Class separability results based on the full LiDARCHMWS and TDXCHMWS 

using the JM distance are found in Table 2. 

Table 2. JM distance separability between four classes considering full WS: 

TDXDSMWS; and LiDARCHMWS. Range between 0 and √2 (𝑛𝐺𝑅/𝑀𝑆  = 44; 

𝑛𝐺𝑅/𝑆𝐹 = 44; 𝑛𝐺𝑅/𝑃𝐹44, 𝑛𝑀𝑆/𝑆𝐹 = 49, 𝑛𝑀𝑆/𝑃𝐹 = 49 and 𝑛𝑆𝐹/𝑃𝐹 = 96). 

 Class GR MS SF PF 

TDXDSMWS 

GR  1.29 1.35 1.39 

MS 1.29  1.23 1.26 

SF 1.35 1.23  1.18 

PF 1.39 1.26 1.18  

LiDARCHMWS 

GR  1.29 1.35 1.39 

MS 1.29  1.31 1.32 

SF 1.35 1.31  1.36 

PF 1.39 1.32 1.36  

Class separability based on LiDARCHMWS is high between all classes. Highest 

separability is achieved between GR and PF (𝐽𝑀GR/PF  = 1.39) and lowest separability 

between GR and MS (𝐽𝑀GR/MS  = 1.29). Results indicate that the separability between 

SF and PF (𝐽𝑀SF/PF  = 1.36) is higher compared to the separability between MS and 

SF (𝐽𝑀MS/SF  = 1.31). Instead the spatial configuration for GR is markedly separable 

from both SF and PF and this is reflected in the JM (𝐽𝑀GR/SF  = 1.35 and 𝐽𝑀GR/PF  = 

1.39). 

TDXDSMWS achieves highest separation between GR and PF as well (𝐽𝑀GR/PF  = 

1.39) and lowest separation between SF and PF (𝐽𝑀SF/PF  = 1.18). Compared to the 

LiDARCHMWS, the separability using TDXDSMWS is lower for the pairs MS/SF, MS/PF, 

SF/PF, and PF/MS, while identical separability was found between GR and all other 

classes. The analysis highlights the lower JM separability results considering a scale 

by scale analysis (0.1 ≤ JM ≤ 1.26 for LiDAR CHM; 0.1 ≤ JM ≤ 1.1 for TanDEM-X 
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DSM) (Section 4.5.4.1), compared to separability considering the full wavelet 

signature (1.29≤ JM ≤ 1.39 for LiDAR CHM; 1.18 ≤ JM ≤ 1.39 for TanDEM-X DSM). 

Statistical evaluation based on TDXDSMWS and LiDARCHMWS is found in Table 3. 

The results for TDXDSMWS are reported as follows: 𝑃e lower bound 𝑃e upper bound 

(%), where 𝑃e is the expected classification error. The lowest 𝑃e is achieved between 

GR/PF and between MS/PF (0.06%–2.47%), while the highest 𝑃ewas found between 

GR/MS (2.13%–17.68%) followed by SF/PF (2.32%–15.22%). LiDARCHMWS  results 

achieved indicate the lowest 𝑃e between classes GR/PF (0.02-1.23%), while highest 𝑃e 

between MS/SF (1.31%–11.46%) followed by GR/MS (0.65%–8.07%). 

Table 3. Class separability statistical evaluation based on pairwise JM 

distance: 𝑃𝑒  lower bound;  𝑃𝑒  upper bound (%) (N = 176, n = 44). 

Metric 𝑷𝒆 (%) Class Pair 

  GR/MS GR/SF GR/PF MS/SF MS/PF SF/PF 

𝐓𝐃𝐗𝐃𝐒𝐌𝐖𝐒 
Lower 3.13 0.18 0.06 0.18 0.06 2.32 

Upper 17.68 4.29 2.47 4.29 2.47 15.22 

𝐋𝐢𝐃𝐀𝐑𝐂𝐇𝐌𝐖𝐒 
Lower 0.65 0.23 0.02 1.31 0.44 0.38 

Upper 8.07 4.77 1.23 11.46 6.60 6.18 

 

Figure 12 highlights results using LiDARCHMWS  and TDXDSMWS  representing 

wavelet signature (WS) averaged for 16 sample plots for each of the four classes 

considered. SF LiDARCHMWS shows consistently lower wavelet variance (smoother 

spatial distribution), compared to PF with separation increasing at longer scales (>4 

m). The increasing separation between the two classes at longer scales is an 

indication that the heterogeneity of PF is best detected when considering a larger 

area, since in this case the texture related patterns are the separate crowns. 

Correlation length is similar for both PF and SF (8 m) which indicates that the 

averaging of the signatures for 35 x 35 m2 plots leads to the loss of information in 

terms of correlation length. This is possibly because the areas of SF within a 35 x 35 

m2 plot are composed of a mix of burned and unburned forest and, in particular, the 

unburned forest patches are similar in structure to the old growth PF. 
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GR, which is effectively a homogeneous layer of grass, exhibits the lowest 

wavelet variance among all classes and a longer correlation length (4 m). This is 

because GR is dominated by surface scattering (proven by high coherence values). 

While, MS, being a composite of surface and volume scattering, shows lower 

wavelet variance compared to SF but higher than GR. Both these low energy 

processes tend to a flat scale-independent functional relationship, which is 

indicative of a white noise process. 

 

Figure 12. Average wavelet signatures for four classes: primary forest (PF) (red), 

secondary forest (SF (green), grassland (GR) (blue) and mixed-scrub (MS) (black) (n 

= 16, N = 64): (a) X̅LiDARCHMWS (scale: 20 = 1 m; 21 = 2 m; 22 = 4 m; 23 = 8 m; 24 = 16 m); 

and (b) X̅TDXDSMWS (scale: 20 = 4.6 m; 21 = 9.2 m; 22 = 18.4 m; 23 = 36.8 m; 24 = 73.6 m). 

 

TDXDSMWS  (Figure 12b) indicates that wavelet variance is highest for PF 

followed by SF, GR and MS. This is in accordance with results derived from 

LiDARCHMWS aside for the wavelet variance between GR, which is higher than for 

MS (the opposite compared to the LIDAR CHM case). Therefore, it is the lack of 

volume (tree canopies) contributes to the higher penetration of TanDEM-X in 

grassland areas. Intuitively, the penetration of TanDEM-X to derive ground 

topography in lower vegetation or bare areas is greater because of lack of 

attenuation due the presence of volume. SF TDXDSMWS  is consistently lower 

compared to PF but the difference is reduced at longer scales, where SF and PF 

separation is reduced significantly. 
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Discrepancies are related to the difference in penetration depth of the two 

instruments and thus, the information that they provide. TanDEM-X DSM perceives 

the upper canopy roughness penetrating into the volume by several m (depending 

on the vegetation density and sensor configuration) but not reaching the ground 

surface in dense tropical forest. This assumption was confirmed in our context by 

estimating the fractional phase center height 𝑓𝑐ℎ =  
𝜑

𝛽ℎ
(where 𝛽 is the vertical wave 

number of the interferometer) from the vegetation height h provided by the LiDAR 

CHM along a 6.95 km transect in intact (PF) and disturbed secondary forest (SF) (see 

also Section 4.5.1). The PDF of the 𝑓𝑐ℎ reveals the presence of two peaks, the first 

holding the majority of the population located at 0.8, and the second at 0.5. It has 

been found in some cases that a rather surprising penetration depth was achieved 

even in tropical forest due to clumpiness of canopy where gaps allow more 

penetration even at short wavelength (X-band) (Treuhaft, et al., 2015). Higher 

penetration from LiDAR compared to TanDEM-X has been observed in dense 

tropical forest in the Amazon (Treuhaft, et al., 2015). TanDEM-X phase conversion 

to a DSM is limited by the penetration depth at X-band, with the availability of 

future missions such as TanDEM-L (Krieger, et al., 2009), penetration depth into the 

canopy will be greater as this increases with wavelength (Balzter, 2001). This will 

provide a similar kind of information on ground topography similarly to a DTM 

generated from LiDAR returns and the possibility to generate CHMs using a 

combination of TanDEM-X/L over a wide area coverage (Eineder, et al., 2014). 

4.6. Discussion 

The understanding of forest canopy heterogeneity has impact on several 

ecological process including productivity and nutrient cycling (Wedeux & Coomes, 

2015). Relationship between forest structure and textural properties is still not 

clearly understood (Sun & Ranson, 1998; Malhi & Román-Cuesta, 2008). This study 

provides increased understanding in canopy heterogeneity arising from fire 
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disturbance and, in particular, the ability to detect areas of SF based on their 

structural arrangement. 

Tropical forests structural heterogeneity is driven by a combination of 

processes: underlying topographic structure and canopy structure (Véga, et al., 

2015). De-coupling the two processes to gain a better understanding of variations in 

canopy structure alone was considered by analysis of wavelet variance and wavelet 

co-variance. This was achievable since the two processes are characterized by 

different dominant frequencies: high frequency components for canopy structure 

and low frequency components for topographic structure. Both the LiDAR CHM 

and the TanDEM-X DSM were affected by topographic features but only at longer 

scales (>23), while, at shorter scales (20–23), the dominant process was linked to 

canopy structure alone. 

Secondly, height standard deviation (derived from high resolution LiDAR 

CHM) was found by regression analysis to be the main driver affecting wavelet 

based texture, as measured by the first coefficient of the signature polynomial 

approximation (𝑃0 ). Analysis reveals a logarithmic relationship between height 

standard deviation and 𝑃0 for LiDAR CHM (R2 = 0.77) and, with lower correlation 

(R2 = 0.34), for TanDEM-X DSM. Results were visually confirmed from aerial 

photography showing areas with low LiDAR CHM 𝑃0  corresponding to 

homogeneous patches with lack of tall (or limited) emergent trees, a condition 

stemming from the lower amount of shadowing cast by these. 

LiDAR CHM standard deviation can be linked to successional stage, with more 

complex PF presenting higher height standard deviation compared to disturbed SF 

due to the presence of tall emergent trees. Results are in accordance with research 

indicating that height difference between individual trees can be significant, due to 

the presence of emergent trees, especially in old-growth tropical forests (Hoekman 

& Varekamp, 2001) and that disturbed secondary forests are less structurally 

complex compared to old-growth forest (Brown & Lugo, 1990). The addition of 
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ground data information (e.g., fire history) on the forest condition could help the 

interpretation in term of the processes that generate such heterogeneity. 

Potential of the wavelet signatures and wavelet spectra (WS) space-scale 

analysis was exemplified by selecting test cases on a high resolution dataset 

(airborne LiDAR CHM) to gain a better understanding as to the reasons behind 

wavelet variance values and their connection with statistical properties of the 

underlying process, such as correlation length. The interpretation of 1 m resolution 

LiDAR CHM was advantageous as the single crowns were resolvable thus 

increasing the level of detail compared to the lower resolution TanDEM-X DSM 

(approximately 4.6 m resolution). Visual interpretation indicates that wavelet 

variance is sensitive to target heterogeneity while correlation length is linked to the 

process self-similarity, with the limiting case of white noise with no correlation 

beyond zero lag. 

LiDARCHMWS  and TDXDSMWS  two-point statistic was successful to separate 

thematic classes. LiDARCHMWS JM distance (with asymptotic value of √2) ranged 

within 1.29 ≤ JM ≤1.39 (lowest between MS/GR) and generally (apart from 

separability between GR and all other classes) lower separability was achieved with 

TDXDSMWS (1.18 ≤ JM ≤ 1.39) (lowest between SF/PF). 

Scale by scale separability analysis indicates that short scales (between scales 1.4 

m and 2.8 m) are best for discriminating classes using LiDARCHMWS  with 

increasingly reduced separability at longer scales. In the case of TDXDSMWS, scale by 

scale separability is highest between 4.6 m and 13 m. The reduced separability using 

TDXDSMWS  is related to two main factors: lower spatial resolution of radar 

compared to LiDAR; difference in information provision of the vertical forest 

structure due to the lower penetration depth into the canopy (higher attenuation) of 

TanDEM-X compared to LiDAR in tropical forests (Treuhaft, et al., 2015). TanDEM-

X observations offer the major advantage of global coverage (Bräutigam, et al., 2015) 

as opposed to a restricted spatial coverage available from airborne LiDAR 

instruments. Therefore, despite the reduced resolution at the expenses of spatial 
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coverage, 2D wavelet spectra derived from TanDEM-X DSM are still able (to a 

certain extent) to provide some information on vegetation structure. 

The method also provided evidence of the potential and limitation of 3D 

information provided by sensors with different characteristics. Moreover, regarding 

structural information extraction the improved performance of using two-point 

statistics as opposed to one-point statistics was demonstrated. 3D information is 

more suitable for the characterization of areas that cannot be discriminated by two-

dimensional datasets (e.g., backscatter). Requirement for 3D information is therefore 

suggested for the characterization of vegetation structure, in particular in view of 

the potential to discriminate between PF and SF. Furthermore, provision of a higher 

resolution DSM derived from InSAR (e.g., TanDEM-X in SpotLight mode at 

approximately 2 m resolution) could provide significant improvements in the 

characterization of canopy structure. 

4.7. Conclusions 

We found that two-point statistic applied to both TanDEM-X InSAR and LiDAR 

observations was effective for the discrimination of a range of thematic classes 

based on the Jeffries–Matusita (JM) distance. In particular, increased separability 

performance was found by employing the full wavelet signature (WS) compared to 

using each decomposition scale individually. This points to the importance of the 

use of multi-scale texture metrics such as these for extracting as much information 

from the data as possible. Of particular interest is the significant separability 

between PF and SF, even 17 years after the fire event. 

Remote sensing instruments that provide 3D information such as TanDEM-X 

InSAR and LiDAR observations can be used to extract information on canopy 

structure. In particular, we highlight the potential of TanDEM-X DSM, which will be 

available globally (WorldDEMTM) (but at a lower resolution of 12 m) (Airbus 

Defence and Space, 2014) as opposed to airborne LiDAR acquisitions. These 

acquisitions, albeit they provide finer details, are limited in terms of area coverage, 

and currently less widely available and relatively costly (De Sy, et al., 2012).  
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The limitations of the method are not dictated by the statistical estimation, 

algorithmic or computational approach, but lie in the instrumental area, i.e. the 

spatial resolution of the dataset available, with higher resolution performing better 

to characterise different forest structures. TanDEM-X provides enough resolution as 

to potentially warrant the application of the approach over hotspots of forest 

disturbance. A global DEM product (WorldDEMTM) is available; however, this will 

probably not be sufficient to provide information related to different forest 

structure. Instead, constrains on the LiDAR are related to the sensor coverage in 

terms of area which in our case only covers a portion of the site and is seldom 

available for large areas (e.g. comparable to a TanDEM-X scene).  

Efforts to monitor global-scale degraded forest were not directly considered as 

the aim of the research, this concerning the test of novel methods for pattern 

recognition by exploiting available datasets. Augmenting the outreach of the 

approaches to global level would require further tests in other sites with different 

characteristics. The approach, as noted in Chapter 3, was not focused on providing 

an operational nor an automated framework for monitoring degradation, while only 

by taking further steps in the research this could potentially be achieved. 

Requirements to monitor the increase in areas of degraded forest at the expense 

of primary forests due to fires, a process that will be exacerbated by ENSO in the 

future, call for novel methods and datasets to characterize canopy structure. The test 

case undertaken in this work highlights the suitability of two-point spatial statistics, 

based on a wavelet space-scale analysis, using DEMs derived from LiDAR or InSAR 

observations as a tool for detecting and mapping landscape-level vegetation 

heterogeneity. 

The following chapter adds a temporal dimension to the analysis by using more 

than one data acquisition and by focusing on changes in structure (forest volume) 

due to forest disturbance. 
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5. Object-Based Structural Change Detection from 

TanDEM-X Digital Surface Models to Map 

Tropical Forest Disturbance and Re-Growth: A 

Case Study in the Republic of Congo 
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Abstract 

TanDEM-X Digital Surface Models (DSMs) are sensitive to the forest vertical 

structure function, and therefore have considerable potential for mapping 

deforestation, forest degradation and re-growth. The capability to detect forest loss 

and gain was assessed by acquiring two TanDEM-X datasets during the dry season 

(December) separated by 1 year (2012-2013) in tropical forest located in the Republic 

of Congo. From the interferometric phase the relative height difference (∆𝐷𝑆𝑀) was 

computed. An object-based change detection algorithm was then used to extract 

deforestation/degradation objects (negative changes or ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) and re-growth 

objects (positive changes or ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). Each object is characterised by its sample 

mean and standard error of the mean, thus providing a better signal to noise ration 

with respect to a pixel-based change detection algorithm. Change magnitude of all 

detected  ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects is on average -7.1 ± 1.4 m with an average area equal 

to 0.28 ± 0.61 ha. While, ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects are on average 2.4 ± 0.3 m, with an 

average area equal to 7.51 ± 14.32 ha. The statistical significance of the changes was 

assessed by the effect size index (𝐸𝑠𝑖𝑧𝑒), which measures the distance of the object 

sample mean in comparison with no-change objects, given by undisturbed lowland 

and swamp forest control plots. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects magnitude is highly 

significant (98% of changes with 𝐸𝑠𝑖𝑧𝑒≥ 1.5). For ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects the statistic also 

indicates that the changes are highly significant (98% changes with 𝐸𝑠𝑖𝑧𝑒 ≥ 1.5), but 

on average 𝐸𝑠𝑖𝑧𝑒 values are smaller and more outliers are present with respect to the 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects. This can be explained by the abrupt dynamics of 

deforestation/degradation events compared to the slower post-disturbance re-

growth within 1 year. Further criteria based on object change magnitude and area 

were set to maximise the probability that ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects were true 

deforestation/forest degradation and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects were post-disturbance re-

growth. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  objects were validated using two Pléiades scenes by manual 

delineation and two-users expert knowledge achieving a 87.6% hit rate (12.3% miss 
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rate) (N= 89). Validation of post-disturbance re-growth still requires further 

research. We conclude that TanDEM-X DSM differencing holds great potential for 

forest structural changes for several reasons: (a) it provides change magnitude (both 

positive and negative) which is not directly related to tree height change but can be 

considered a proxy measure of disturbance intensity; and (b) small-scale 

disturbance can be detected (< 1 ha) and (c) the method is sensitive to forest height 

change but independent from terrain elevation.  

5.1. Introduction 

Africa is of great importance since it hosts approximately 7.45 million km2 of 

tropical forest (Grace, et al., 2014) (approximately 20% of the total global rainforest 

area) (Mayaux, et al., 2013). The largest portion of contiguous moist lowland humid 

and swamp forest (1.78 million km2) (Mayaux, et al., 2013) and the second largest 

tract after the Amazon Rainforest (Laporte, et al., 1998; Malhi, et al., 2013) is located 

in Central Africa. 

Moreover, it hosts rich biodiversity, supporting livelihoods by providing 

resources such as timber, goods and medicines (Megevand, et al., 2013), playing an 

important role in governing the global climatic system (Maynard & Royer, 2004; 

OSFAC, 2015), acting as an important carbon store and source (Grace, et al., 2014). 

Carbon stocks in the Congo Basin are significant and account for about 25% of 

the total tropical carbon stocks (Saatchi, et al., 2011). As an important carbon sink 

and source, the Congo Basin is a priority area in international agreements such as 

Reducing Emissions from Deforestation and Forest Degradation initiatives (REDD+) 

set up under the UN Framework Convention on Climate Change (UNFCCC) that 

aims to curb climate change (UNFCCC, 2015). 

 Future climatic changes could pose major challenges for vulnerable African 

rainforests as models predict 3-4°C temperature increase, major changes in 

precipitation amount and patterning through the year, and a direct effect from the 

increase in CO2 concentrations (which might enable an increased forest productivity 

and enhance photosynthesis) leading to potential forest expansion in the Congo 
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Basin (Cernusak, et al., 2013), but exactly how tropical forests will respond to these 

changes is still unclear (Malhi, et al., 2013). 

Rapid deforestation and forest degradation driven by agricultural expansion, 

commercial logging, plantation development, mining, industrialization and 

urbanization is widespread across these areas (Duveiller, et al., 2008). Recent 

estimates indicate a tree cover loss equal to 471.38 kha between 2001-2014 (the 

highest loss occurred in 2014) and a tree cover gain reaching 559.82 kha (2001-2012) 

(considering a 30% canopy density threshold) (Hansen, et al., 2013). The rate of 

annual forest change for the period 1990-2015 was comparatively low for countries 

in the Congo Basin. For instance, the rate of annual forest changes was lower for the 

Republic of Congo (-0.1%) in comparison to Indonesia (-1.1%) and Brazil (-0.4%) 

(FAO, 2015).  

Forest degradation, which is considered an anthropogenically driven change in 

carbon stocks (Herold, et al., 2011) and structure (Grainger, 1993), while still 

remaining “forest” and maintaining canopy cover above a threshold which is 

attributable to forest but does not imply a land use conversion (Herold, et al., 2011), 

is more challenging to detect and there are limited approaches to derive it in 

comparison to deforestation which makes this process vastly unaccounted for 

(Houghton, 2010). Recent estimates indicate that between 2005-2010 forest 

degradation made up 25% of the combined emissions from deforestation and forest 

degradation (Pearson, et al., 2017). 

In some countries forest degradation has been identified as a predecessor of 

deforestation (Ahrends, et al., 2010) but there has been limited evidence for this in 

Africa (Mayaux, et al., 2013) and thus, this indicates that degraded forest are not 

necessarily converted to non-forest. This is widely observed in location where small 

scale disturbance due to selective logging or shifting cultivation is the prevalent 

form of forest disturbance (e.g.; in the Congo Basin). 

Remote sensing provides the most suitable, cost effective approach for 

providing forest disturbance estimates in vast and inaccessible tracts of tropical 

forests in developing countries (Herold & Johns, 2007). 
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Deforestation mapping is prevalently accomplished using space-borne optical 

sensors (e.g. LANDSAT), with the ever increasing recognition and successful 

provision of the ability of radar instruments to provide forest area change estimates 

(deforestation) (Shimada, et al., 2014) independently from cloud cover, haze and 

daylight conditions (Lillesand, et al., 2008) especially in equatorial South America, 

the Congo River basin, and Southeast Asia where cloud cover annual frequency is > 

80% (Wilson & Jetz, 2016) a fact that decreases the probability of cloud free 

acquisitions from optical sensors. 

Despite the striking advantages over optical remote sensing, REDD+ initiatives 

have made comparatively limited use of Synthetic Aperture Radar (SAR) remote 

sensing to extract deforestation and forest degradation estimates (De Sy, et al., 2012) 

due to lack of consistent, freely available data acquired at time intervals which 

enable the detection of rapidly occurring phenomena (e.g. forest degradation) and 

slow vegetation re-growth. 

Notably, Interferometric Synthetic Aperture Radar (InSAR) has been far less 

exploited due to data availability limitations, cost, methodological and 

computational complexity. In particular forestry applications are penalised by lack 

of consistent multi-temporal datasets which enable to track changes at regular 

intervals and the lack of suitable single-pass, fully-polarimetric, multi-baseline 

interferometric spaceborne sensors (e.g. before the TanDEM-X mission) which 

would be able to acquire data without the limitation of temporal decorrelation that 

affects repeat-pass acquisitions (Hanssen, 2001). 

The use of single-pass InSAR is set to provide a valuable contribution to 

mapping and monitoring deforestation but particular focus should be directed to 

assess its potential for monitoring forest degradation. 

5.1.1. Background: Interferometric Synthetic Aperture Radar (InSAR) 

for Forest Monitoring 

InSAR exploits the ability to acquire two SAR images from two slightly 

different position and by measuring the phase difference between the two images to 
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provide a third dimension (Bamler & Hartl, 1998; Rosen, et al., 2000) and the 

generation of Digital Elevation Models (DEMs), these being highly suitable for the 

detection of forest structure changes (e.g. removal of vegetation). 

DEMs from InSAR provide a relative height (or phase centre height- PCH) 

located somewhat within the vegetation volume (Balzter, 2001) depending on the 

sensor’s frequency (deeper within vegetation volume for lower frequency); 

acquisition geometry and the temporal interval between acquisitions (in the case of 

repeat-pass interferometry) (Balzter, 2001). 

The shift in the PCH is also dependent on environmental factors (e.g. rainfall 

and seasonality) (Praks, et al., 2012), and the target properties (e.g. canopy density 

and presence of canopy gaps) (Treuhaft, et al., 2015) which influence signal 

attenuation and the scattering mechanisms (Balzter, et al., 2007). 

Dual-wavelength airborne SAR airborne systems have been employed to 

provide Digital Terrain Models (DTMs) (from P-band or L-Band) (Mura, et al., 2001; 

Neef, et al., 2005) and Digital Surface Models (DSMs) (from X-band) (Balzter, 2001; 

Neef, et al., 2005) to estimate tree height (or Canopy Height Models) (Balzter, et al., 

2007) or to discriminate between landcover classes (Mura, et al., 2001). 

DTMs are not as readily available (Balzter, et al., 2007) especially for large areas 

covering tropical forest. Other sources to provide DTMs (e.g. LiDAR) (Sadeghi, et 

al., 2016) are not widely acquired in tropical environments due to prohibitive costs 

in contrast to the more well studied boreal and temperate forests which are 

sometimes covered by national LiDAR surveys. 

DEMs derived from spaceborne sensors at different wavelength (Shuttle Radar 

Topographic Mission at C-band and TanDEM-X or CosmoSkyMed at X-Band) have 

been used to delineate clear cuts in boreal forests (Solberg, et al., 2013), to detect 

canopy gaps due to forest degradation in tropical forest using the difference 

between Cosmo Sky-Med and SRTM DEMs (Deutscher, et al., 2013) and to map 

deforestation/forest degradation and re-growth in woodlands in Tanzania (Solberg, 

et al., 2014), in Australia and peat swamp forest in Indonesia (Tanase, et al., 2015) 

using a combination of SRTM and TanDEM-X. 
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 In the absence of a dual-wavelength (long and short) spaceborne system with 

similar capabilities to airborne instruments, exploitation of multiple DSMs 

acquisitions over the same area can be exploited to detect relative height changes 

(deforestation, forest degradation and re-growth) in support of REDD+ initiatives 

(Solberg, et al., 2015) . 

Particularly important in this context is the TanDEM-X (TerraSAR-X add-on for 

Digital Elevation Measurement) mission which acquires data at X-band (λ = 0.031 m, 

9.65 GHz) and is currently the only available single-pass spaceborne interferometer 

to provide three-dimensional information (DEMs) without the limitation of 

temporal decorrelation between acquisitions. This is achieved by two-twin satellites 

flying in formation, that acquire data simultaneously (Kugler, et al., 2014; Martone, 

et al., 2012) and at high spatial resolution (< 5 m). 

The physics behind the exploitation of X-band interferometric DSMs for forest 

monitoring hinges on the concept of penetration depth, which is a measure of the 

amount of vertical layer where the wave propagates before extinction (Cloude, 

2010). For forest types that are less dense (e.g. boreal forests) and in dry conditions 

penetration depth is usually high (Garestier, et al., 2008; Hajnsek, et al., 2009). 

Instead, in denser tropical forests, at X-band, the low penetration results in the PCH 

being located closer to the top of the canopy (Izzawati, et al., 2006) and this can be 

exploited to provide a more accurate DSM.  

Although, in some cases deeper penetration has been observed in tropical forest 

and this might have been linked to the clumpiness of the canopy and the 

development of gaps in the neighbouring clustered canopies (Treuhaft, et al., 2015). 

In the context of dense tropical forest (assuming low penetration of the signal), 

since the PCH is located very close to the top of the canopy, the removal of forest 

through disturbance will lead to the PCH moving lower within the vertical profile 

thus, revealing processes such as deforestation (and forest degradation) given by a 

change in the target structure. Consequently, differences between two InSAR 

derived DSMs can provide estimates of the relative change in height. 
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Instead, for less dense forests, higher penetration of the signal into the canopy 

leads to the location of the PCH closer to the ground. Consequently, the shift in the 

phase centre will be less marked compared to a denser tropical forest. 

The sensitivity of InSAR to structure is optimal for the detection of forest 

degradation since the change in forest structure caused by degradation cannot often 

be detected by optical sensors or SAR backscatter. In the case of optical instruments, 

saturation of the optical signal occurs due to fast re-growth of vegetation with 

canopy gaps closure occurring within 50 days after disturbance (Verhegghen, et al., 

2015). In the case of microwave instruments the changes in backscatter are limited in 

magnitude and often masked by speckle and effects related to ground moisture 

(especially at longer wavelength due to increased penetration into the canopy) 

(Liesenberg, et al., 2016). 

 Most importantly, SAR backscatter and optical data, even if they do detect 

degradation, will very rarely have sufficient sensitivity to estimate its magnitude; 

comparison of InSAR datasets from multiple dates however, can provide a relative 

change in height, which is an indicator of the magnitude of disturbance. 

The size of disturbance patches from small scale agriculture and selective 

logging of trees means that some of these changes can be missed by the most 

commonly available medium scale products (e.g. Hansen Forest Cover Loss (HFCL) 

with a 30 m resolution (MMU = 0.09 ha) (Hansen, et al., 2013).  

Moreover, in optical remote sensing imagery subtle loss of canopy cover cannot 

be detected as it involves changes that are related to three-dimensional forest 

structure (Lucas, et al., 2014). This dimension is not accessible to optical sensors, 

since the radiation does not penetrate past the upper canopy.  

TanDEM-X high resolution (< 5 m) affords increased probability of detection of 

small scale forest disturbance in the Congo Basin where, this process is often limited 

in size (~0.25 ha) (Wilkie, et al., 1998), in contrast with large scale commercial forest 

conversion occurring in the Brazilian Amazon (e.g. for cattle pasture and soya 

cultivation) (Fearnside, 2001) or in South-East Asia (e.g. palm oil and paper pulp 

plantations) (Mietten, et al., 2014). Case in point is the detection of canopy gaps (e.g. 
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removal of large trees may cause canopy gaps on average 719 m2   (equal to 0.07 ha = 

34 TanDEM-X pixels when geocoded with 4.6 m pixel spacing) (Pearson, et al., 2014) 

and small-scale disturbance (e.g. due to shifting cultivation). However, small 

canopy gaps are considered challenging to detect because of intrinsic noise (e.g. 

phase noise in the case of InSAR). 

In summary, TanDEM-X provides several advantages that are well suited for 

mapping deforestation and, most importantly, forest degradation as well as forest 

re-growth: (a) Penetrate cloud cover and haze; (b) Limited penetration at X-band in 

dense tropical forest to provide accurate “top of canopy” estimates (DSM); (c) Detect 

small-scale disturbances (< 1 ha) due to high spatial resolution; (d) Magnitude of 

forest structure changes (forest degradation and re-growth) as well as land use 

conversion (deforestation). 

Considering the aforementioned research gaps and requirements, we propose 

and demonstrate the potential of an object-based change detection approach using 

multiple TanDEM-X DSM acquisitions to map changes (and potentially to provide 

support for REDD+ initiatives) due to small scale disturbance in the tropical forests 

of the Congo Basin. In this setting persistent cloud cover severely restricts the 

availability of optical datasets and SAR backscatter is unable to detect three-

dimensional changes (vertical structure as a function of space coordinates).  

The following assumptions were made: 

(a) Areas of no change exhibit similar DSM height between two dates. 

(b) Changes due to deforestation, forest degradation and re-growth exhibit a 

change in DSM height between two dates. 

5.2. Study Site 

The study area is located around the town of Ouesso, Republic of Congo (UL: 

15° 56’20.02’’ E, 1° 44’42.83” N) covering 25 x 40 km2 (Figure 1a). The area is 

dominated by dense humid semi-evergreen forest from the Guinean-Congolese 

region (White, 1983) (primary and logged) and extensive swamp forest around the 

Sangha River, a major tributary of the Congo River. The study site is partitioned 
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into community development areas, production (logging concessions) and 

protection areas which occupy respectively 0.6%, 10.8% and 3.4% of the study area 

(Figure 1b) (World Resources Institute, 2013). 

The site has historically been prone to a high level of forest degradation from 

selective logging for commercial purposes and currently from extensive shifting 

cultivation that started in the 1990s (La Porte et al. 2004). Clearings are reported to 

be on average no greater than 1 ha and are concentrated in proximity of Ouesso 

(department capital and a centre for bushmeat trade) and Mboko, along the N2 road 

network and the Sangha River. 

The Ngombé and Pokola logging concessions (Laporte, et al., 2004) are also 

situated within the study site where, selective logging of valuable tree species has 

been undertaken on rotation between 1985 and 2008 (Figure 1b). 

Whilst, the long legacy of forest disturbance is still appreciable, this has created 

a mosaic landscape composed of areas of secondary and degraded forest spreading 

outwards from the main road networks which developed into a rural complex 

mosaic composed of old clearings, cropland, degraded forest and re-growth. The 

impact is still detectable visually by the presence of abandoned logging roads and 

primary road networks in some areas but rapid forest recovery makes it difficult to 

identify areas where selective logging occurred in the past. 

The climate is classified as Tropical Wet Climate (Am) (Peel, et al., 2007) 

reaching peak precipitation in November (208 mm) and the lowest precipitation 

during July (45.9 mm) (World Bank, 2016). Total annual precipitation is 1597 mm 

(World Bank, 2016). Average yearly temperature is 24.8 °C and it is relatively 

constant throughout the year with highest temperature occurring in March (25.9 °C) 

and lowest temperature in July (23.5 °C) (World Bank, 2016). Soil type ranges from 

Haplic Ferralsols (FRha or FRX) to Umbric Gleysols (GLum) which is dominant in 

swamp forest (Jones, et al., 2013). Elevation in the study area varies between 320 m 

and 540 m asl with areas of higher elevation located towards the south-west of the 

study site inside the Ngombé logging concession while, swamp forest is located in 

areas with lowest elevation around the Sangha River (Figure 1a). 
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Figure 1. (a) Study area covered by TanDEM-X (approximately 1000 km2) situated 

around the Sangha Department capital of Ouesso in the Republic of Congo (RoC) 

(UL: 15° 56’ 54.55” E, 1° 44’ 30.50” N) overlaid on a landcover classification map 

(FACET Atlas: Forêts d'Afrique Centrale Évaluées par Télédétection) at 60 m 

resolution (OSFAC, 2012) showing the main landcover classes and forest cover loss 

between 2000-2010 (Potapov, et al., 2012). (b) The study site is divided into 

community areas (0.6% of the study area), protection areas (3.4% of the study area) 

and production areas (10.8% of the study area). The study area hosts two logging 

concession (black outline) with logging activities within the Pokola and Ngombé 

concessions taking place between the 1980s until 2008 (World Resources Institute, 

2013). Control areas located within the protection area classified as lowland 
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primary forest (black) and swamp forest (blue) were selected to provide no-change 

areas for the analysis. (c) TanDEM-X Digital Surface Model acquired on 05/12/2012 

(𝑡1). 

 

5.3. Datasets 

5.3.1. TanDEM-X  

Two single polarisation TanDEM-X scenes in bistatic/StripMap mode (supplied 

by DLR through the VEGE03030 Announcement of Opportunity) were acquired on 

05/12/2012 and on 25/12/2013, at HH polarization, 47° incidence angle in descending 

mode (Table 1). The effective baselines (𝐵⊥) ranged from 52 m (𝑡2) to 95.3 m (𝑡1) 

(corresponding to height of ambiguity between 164 m and 88.6 m respectively).  

Data processing was undertaken using ENVI/SARScape software 5.0 

interferometric module (Sarmap, 2016) from co-registered Single Look Complex 

(CoSSC) data and included the following steps: (a) importing; (b) multi-looking (2 

range and 2 azimuth looks, corresponding to a slant range pixel size of 3.69 x 3.73 

m); (c) interferometric workflow (interferogram generation and flattening, adaptive 

local frequency filter using the Goldstein filter (Goldstein & Werner, 1998) and 

coherence generation) and (d) geocoding to Geo-Global Lat/Lon with 3.33 10-5 

degree pixel size (approximately 4.6 m). 

Processing to obtain a DSM was also undertaken using the interferometric 

workflow implemented in SARScape 5.0 (Sarmap, 2016) following the procedure 

outlined: (a) phase unwrapping using the Minimum Cost Flow algorithm which 

enables to resolve the 2𝜋 ambiguity (Costantini, 1998); (b) phase to height 

conversion and (d) geocoding to Geo-Global Lat/Lon, Datum WGS 84 at 4.2 10-5 

degrees pixel spacing (equivalent to 4.6 m pixel spacing in WGS84, UTM Zone 33 

N). The DSM generated corresponds to the superimposition of the bare earth 

topography (DTM) and vegetation volume (PCH) which represents an 

approximation of the “top of the canopy” (or DSM) and is located within the top 

layer of the forest volume (Balzter, 2001). The resulting processed TanDEM-X DSM  

acquired on 05/12/2012 is shown in Figure 1c. 
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Accumulated precipitation data from the Tropical Rainfall Measuring Mission 

(TRMM) was used as reference data to ensure no influence of rainfall (Table 1). 

 

Table 1. TanDEM-X StripMap mode configuration for 2 dates acquired at HH 

polarisation, descending orbit direction and right look direction. Tropical Rainfall 

Measuring Mission (TRMM) precipitation data for a period of 48 h before the 

acquisition date (GIOVANNI, 2016). 

Acquisition Date 𝑩⊥ (m) 

Inc. 

Angle 

(°) 

𝐇𝐨𝐀 

(m) 
Range (km) 

Rainfall 

(mm)* 

𝒕𝟏 05/12/2012    95.3 48.05 88.6 718.59 0 

𝒕𝟐 25/12/2013    52 47.68 164 718.51 7.6 

* based on TRMM accumulated rainfall for a period of 48 h before the acquisition 

date. 𝐵⊥: effective baseline, 𝐻𝑜𝐴: Height of Ambiguity. 

 

5.3.2. Optical Data 

Very High Resolution (VHR) optical data acquired by the Pléiades satellite 

sensor on 22/02/2013 (4 bands pan-sharpened at 0.5 m resolution) (Astrium, 2012) 

and on 17/12/2013 (available from Google Earth at 2 m resolution) (Table 2). Pléiades 

Standard Ortho data was corrected for viewing angle and ground effects by Airbus 

Space and Defence and geocoded to WGS84/ UTM Zone 33 N (Astrium, 2012). 

Employing Google Earth (GE) as a source for validation has been highlighted in 

Dorais & Cardille (2011) given that high resolution imagery enables clear 

interpretation of landcover and disturbance (Mermoz & Le Toan, 2016) and can be 

an effective tool when ground data is not available. High resolution optical imagery 

has clear advantages since it can cover a larger area compared to point estimates 

which are often not representative and more subjective compared to visual 

interpretation of high resolution optical data. Moreover, ground-based repeat 

survey to track forest disturbance (especially degradation) are rarely undertaken 

and often do not match well with the remote sensing data acquisitions. 
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A limitation for the use of GE is the availability of only a single date high 

resolution image which is not appropriate for change detection validation (Dorais & 

Cardille, 2011). 

Table 2. Ancillary VHR optical Pléiades data used for validation of the 

TanDEM-X change map (Astrium, 2012; Google Earth , 2016). 

Time Sensor Date Resolution (m) TanDEM-X Date 

𝒕𝟏 Pléiades 22/02/2013 0.5 05/12/2012 

𝒕𝟐 Pléiades (GE)  17/12/2013 2 25/12/2013 

 

5.4. Methods  

5.4.1. Method Outline 

Figure 2 outlines the methodological approach. The approach departs from the 

classical statistical decision theory where the detector is driven by knowledge of the 

signal and noise characteristics in terms of their Probability Density Functions 

(PDFs). In other words, the detector works on random samples and tries to decide to 

which population (one or many) the sample belongs to. For instance, in the case of a 

simple two hypothesis testing framework for random signal in noise, the likelihood 

ratio test (Neyman Pearson theorem) (Neyman & Pearson, 1933) affords a detector 

where the probability of detection is maximized for a given probability of false 

alarm (Kay, 1998). Implementation of these types of detectors calls for the estimation 

of the relevant PDFs using a training dataset. 

Instead of single samples (pixels) we consider objects, these being defined by 

the spatial relationship (continuity) of their constituent samples, i.e. by their 

morphological properties. Once an object is identified and labelled, then the 

detection step (the assignment to signal or noise, in our case change/no-change) is 

provided by the mean of the constituent samples (𝐸) and the mean of control plots 

(𝐶) and related standard errors.  

Whereas, in the statistical detection theory the distribution of the sample is of 

importance, here the distribution of the mean value estimates plays a role. The 
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advantage of dealing with an object-oriented approach is therefore that the variance 

of the estimates used for detection, due to propagation of error and the intrinsic 

variance of the samples in the object, is much smaller than the one related to the 

samples in the object. 

 
Figure 2. Methodology flowchart including DSM difference processing; DSM 

difference calibration; morphological algorithm implementation; post-processing 

and refinement; error propagation estimates and object-based validation relying on 

VHR Pléiades imagery. 
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5.4.2. TanDEM-X Digital Surface Model Difference Generation and 

Calibration  

The object-based change detection method uses two dates: 05/12/2012 (𝑇𝐷𝑋𝑡1) 

and 25/12/2013 (𝑇𝐷𝑋𝑡2) separated by approximately 1 year and acquired in the same 

season (December) with the aim to minimise seasonality and rainfall influences 

(Table 1). The difference dataset (∆𝐷𝑆𝑀) is obtained by differencing between two co-

registered DSMs in slant range geometry at 𝑇𝐷𝑋𝑡1 and 𝑇𝐷𝑋𝑡2 (Figure 2).  

The ∆𝐷𝑆𝑀 dataset presents a tilt between far and near range, which was 

estimated with a tilt angle 𝜑𝑡𝑖𝑙𝑡= 5.76 × 10-4 degrees and resulting in a height 

difference over the swath of 7.1 cm. The tilt is due to the propagation of small errors 

in the line of sight baseline determination combined with different effective 

baselines (𝐵⊥) in the two data takes. Theoretically, the 𝜑𝑡𝑖𝑙𝑡 in a DSM can be 

estimated from Equation 1 (Wermuth, et al., 2014): 

𝜑𝑡𝑖𝑙𝑡 =
∆𝐵𝑙𝑜𝑠
𝐵⊥

 Equation 1 

 

For the ∆𝐷𝑆𝑀 dataset: 

𝜑𝑡𝑖𝑙𝑡 = ∆𝐵𝑙𝑜𝑠  (
1

𝐵1⊥
−

1

𝐵2⊥
) 

Equation 2 

 

Where ∆𝐵𝑙𝑜𝑠 is the baseline error in line of sight; 𝐵1⊥ is the effective baseline at 

𝑇𝐷𝑋𝑡1and 𝐵2⊥ is the effective baseline at 𝑇𝐷𝑋𝑡2. 

Considering the effective baseline values for the TanDEM-X dataset (𝐵1⊥= 52 m 

and 𝐵2⊥= 95.3 m) and assuming an error of the line of sight baseline of 1 mm (in line 

with the results in (Wermuth, et al., 2014) we have: 𝜑𝑡𝑖𝑙𝑡= 0.00059°, matching the 

estimated value from measurement. 

To correct the tilt, the DSM difference as a function of range pixel coordinate 𝑗, 

∆𝐷𝑆𝑀(𝑗) is modelled as a zero mean random process ∆ℎ̂ affected by a systematic 

error (trend), which is linear in the range coordinate 𝑗: 

∆𝐷𝑆𝑀(𝑗) =  ∆ℎ̂(𝑗) + 𝑚𝑗 + 𝑞 Equation 3 
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The trend is first estimated taking the average of N realisations of the ∆𝐷𝑆𝑀 

profile in the cross-range direction over a small neighbourhood where the statistic is 

stationary. The average profile is then fitted by a trend line (Equation 4) (Figure 3): 

𝑦(𝑗) = 𝑚𝑗 + 𝑞 
Equation 4 

The dataset is then de-trended (brought to zero mean) line by line by 

subtracting to each pixel the trend line (Equation 5): 

𝑝𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑(𝑖, 𝑗) = 𝑝(𝑖, 𝑗) − 𝑚 𝑗 − 𝑞 Equation 5 

 

Where 𝑝(𝑗) is the pixel at position 𝑗 in line 𝑖. 

 

Figure 3. Original trend profile (black), fitted trend line (red) (Equation 4) and 

corrected (de-trended) range profile (green) (Equation 5). The peak between 2000 

and 3000 pixels arises because of an area of very low precision in the DSM (river). 

This singularity does not influence the estimation of the trend.  
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5.4.3. Object-Based Change Detection Using a Morphological 

Algorithm 

The calibrated ∆𝐷𝑆𝑀 was used as the starting point for an object-based change 

detection. Note that ∆𝐷𝑆𝑀 does not indicate the “true” vegetation height difference 

but the difference of the PCH, which are somewhere within the vegetation volume 

(Balzter, 2001) and closer to the true “top of canopy” at X-band for dense tropical 

forest.  

Object-based change detection was sub-divided into two phases: (a) detection of 

negative changes, these being ascribed to loss of vegetation volume over ground 

(deforestation/forest degradation) and (b) detection of positive changes, these being 

ascribed due to gain in vegetation volume (re-growth).  

The calibrated ∆𝐷𝑆𝑀 was converted into an image maintaining all negative 

values and masking all positive values (∆𝐷𝑆𝑀𝑚𝑎𝑠𝑘_𝑛𝑒𝑔) while, a second image was 

generated by masking all negative values and keeping only the positive changes 

(∆𝐷𝑆𝑀𝑚𝑎𝑠𝑘_𝑝𝑜𝑠). 

A morphological segmentation algorithm implemented in Wolfram 

Mathematica 10 (Wolfram, 2016), was applied to each ∆𝐷𝑆𝑀𝑚𝑎𝑠𝑘 image. The output 

is an array where each pixel in the image is labelled by an integer index 

representing the connected foreground image component in which the pixel lies 

(Wolfram, 2016). Morphological algorithms are well suited for extracting the spatial 

relationships between groups of pixels rather than the information for a single pixel 

(Soille & Pesaresi, 2002). 

 An area threshold (40 ≤T1AREA ≤ 10000 pixels equivalent to 0.08 ha ≤T1AREA≤ 

21.16 ha) was set to the ∆𝐷𝑆𝑀𝑚𝑎𝑠𝑘_𝑛𝑒𝑔 output to extract negative change objects 

(∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒). In this case, the Minimum Mapping Unit (MMU) ≅ 0.08 ha (40 

TanDEM-X pixels) was chosen to maximise the detection of small-scale changes and 

based on the following considerations: a) clearings size which are usually < 1 ha 

(lower threshold in the range 0.2-0.3 ha) as a result of shifting agriculture in the 

Congo Basin (Aweto, 2012) and b) size of selective logging gaps due to the removal 
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of a limited number of trees per hectare . In summary, the threshold was selected as 

a compromise to fully make use of the high resolution and knowledge related to the 

process scale based on published literature. 

The morphological algorithm was run again on the ∆𝐷𝑆𝑀𝑚𝑎𝑠𝑘_𝑝𝑜𝑠 output to 

extract positive changes. An area threshold (500 ≤T2AREA≤ 100000 pixels equivalent 

to 1.06 ≤T2AREA≤ 211.6 ha). This setting was reached by successive approximations 

by testing several upper and lower area thresholds and running the algorithm 

iteratively to identify the most suitable one to extract positive change objects 

(∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒). 

The upper area threshold was set to 100000 pixels since it was evident from 

visual inspection of VHR optical imagery that areas of re-growth tended to form 

large clusters. Setting a lower value of the upper threshold would have made the 

algorithm miss most of the positive change areas.  

5.4.3.1. Objects Refinement 

Objects refinement was essential to: a) remove objects inside water bodies; b) 

remove objects detected due to co-registration miss-matches. 

a) A mask was extracted from LANDSAT 8 OLI (01/11/2013) by setting a threshold 

to the SWIR 1 (Band 6) which enabled a satisfactory delineation of the river 

system. The river mask was buffered by setting a 20 m threshold and change 

objects located within the buffered zone, were removed from the analysis since 

they did not constitute actual vegetation changes but were linked to problems 

with phase unwrapping over low coherence (𝛾) areas at both acquisition dates 

(𝛾(𝑡 1) = 0.47 ± 0.17; 𝛾(𝑡 2) = 0.49 ± 0.19) and low DSM precision at both dates 

𝑆𝐷(ℎ𝜑)(𝑡 1) = 26.02 ± 7.19 m; 𝑆𝐷(ℎ𝜑) (𝑡 2) = 46.34 ± 13.61 m) (Figure 4). 

b) Objects located within a 10 m buffer from the margin of the output ∆𝐷𝑆𝑀 image 

were also removed since they were not considered “true” changes but were 

related to possible co-registration miss-matches between the two TanDEM-X 

DSMs. 
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5.4.4. Standard Error of the Mean Height Difference 

We consider the variance of the mean estimator (SEOM) in a set of height 

difference samples being the result of two components: (1) phase noise and (2) 

variance of the samples. Other sources of error, such as phase unwrapping errors, 

are supposed to be second order effects and are not accounted for. 

Each sample in the set (height estimate) is affected by an error induced by phase 

noise whose standard deviation (𝑆𝐷𝜑) can be related to the coherence by a Cramer-

Rao bound (Cloude, 2010) (Figure 4) (Equation 6): 

𝑆𝐷𝜑 = √
1 − |𝛾|2

2|𝛾|2
 Equation 6 

Where 𝜑 is the phase and 𝛾 is the interferometric coherence. 

 

The standard deviation of the height estimate 𝑆𝐷(ℎ𝜑) is computed by SARscape 

for each pixel in the DSM dataset (Sarmap, 2016). The phase error propagates to the 

height estimate error as: 

 

𝑆𝐷(ℎ𝜑) =  𝑆𝐷𝜑
𝜆𝑅 sin𝜗

4𝜋𝐵⊥
 Equation 7 

 

Where 𝜆 is the wavelength,  𝑅 is the slant range distance, 𝜗 is the local incidence 

angle and 𝐵⊥ is the effective baseline. 

Lower coherence values result in a lower measurement precision and vice versa 

(Sarmap, 2016). 

With 𝑁 independent samples in an object of the DSM at one date (ℎ𝑖) with 

variance 𝑉𝐴𝑅(ℎ𝑖), each with additive white Gaussian noise with variance 𝑉𝐴𝑅(ℎ𝜑𝑖), 

the variance of the samples and the noise propagate to the variance of the mean 

estimator (ℎ̂) in the following way: 

The sample mean is: 

ℎ̂ = 〈ℎ〉 =
∑ℎ𝑖
𝑁

 Equation 8 
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The variance of the samples propagates to the variance of the sample mean as: 

𝑉𝐴𝑅(ℎ̂1) = 𝑉𝐴𝑅 (
∑ℎ𝑖
𝑁
) =

∑𝑉𝐴𝑅(ℎ𝑖)

𝑁2
=
𝑉𝐴𝑅(ℎ𝑖)

𝑁
 

Equation 9 

 

For additive noise: 

𝑉𝐴𝑅(ℎ̂2) =
∑𝑉𝐴𝑅(ℎ𝜑𝑖)

𝑁2
 Equation 10 

Therefore, the overall variance 𝑉𝐴𝑅(ℎ̂) of the mean estimator is: 

𝑉𝐴𝑅(ℎ̂) = (
∑𝑉𝐴𝑅(ℎ𝜑𝑖)

𝑁2
+
𝑉𝐴𝑅(ℎ)

𝑁
) 

 

Equation 11 

 

Where 𝑉𝐴𝑅(ℎ𝜑𝑖) is the phase variance of the single sample 𝑖 and 𝑉𝐴𝑅(ℎ) is the 

variance of the samples in the object. 

For the difference of the DSMs at two dates (𝑡1 and 𝑡2), the Standard Error of the 

Mean height difference (SEOM) is: 

𝑆𝐷(∆ℎ)̂ =  √𝑉𝐴𝑅(ℎ̂1) + 𝑉𝐴𝑅(ℎ̂2) Equation 12 

Where ∆ℎ =  ℎ1 − ℎ2 with ℎ1 and ℎ2 being DSM height at 𝑡1 and 𝑡2 respectively. 

5.4.5. Accuracy of DSM Difference Estimates 

Accuracy of the DSM difference estimates is reported by confidence limits of 

the mean ℎ̂ ± 𝛿 , with 𝛿 = t SEOM (𝑆𝐷(∆ℎ)̂), with Student’s t =1 for 68% confidence 

level (CL) and 𝑡 = 1.96 for 95% CL (degrees of freedom greater than 200). The 

confidence limits characterise the accuracy of the ∆𝐷𝑆𝑀 estimates within the 

detected objects achievable by the proposed method. 
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Figure 4. TanDEM-X standard deviation of height estimates derived from phase 

noise (𝑆𝐷(ℎ𝜑)) for two dates provided by SARScape 5.0 (Sarmap, 2016): (a) TDXt1: 

05/12/2012 and (b) TDXt2: 25/12/2013. Higher 𝑆𝐷(ℎ𝜑) values (m) indicate lower 

measurement precision. Notice that areas of lowland forest present higher 𝑆𝐷(ℎ𝜑) 

values (lower precision) while, areas of swamp forest, agriculture and bare fields 

(dark blue) have a higher precision. This is related to the sensitivity of the 

interferometer in areas where there is less volume decorrelation. The river presents 

the lowest precision in the scene (highest 𝑆𝐷(ℎ𝜑)) (red). Overall higher precision 

was achievable at TDXt1 (B⊥= 95.3 m) compared to TDXt2 (B⊥= 52 m). 

 

5.4.6. Effect size and Confidence Intervals 

The effect size (𝐸𝑠𝑖𝑧𝑒) is the magnitude of the difference between groups 

(Sullivan & Fein, 2012) and is a true measure of the significance of the difference. 

𝐸𝑠𝑖𝑧𝑒 is used instead of p- values as it reports the size of the effect. Moreover, the p-

value when considering a large number of samples (in the experimental and/or 

control groups) will usually always produce a significant difference and therefore, is 

not suitable in our case. 𝐸𝑠𝑖𝑧𝑒 was computed between two groups: experimental 
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group (𝐸) which corresponds to either ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 or ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and a control 

group (𝐶) corresponding to either a primary lowland forest control plot (𝑃𝐹𝐶) or 

swamp control plot (𝑆𝑊𝐶) (Cohen, 1992) (Equation 13): 

𝐸𝑠𝑖𝑧𝑒 =
𝜇𝐸 − 𝜇𝐶
𝜎𝑝𝑜𝑜𝑙𝑒𝑑

 Equation 13 

Where: 𝜇𝐸 is the mean of the change polygons in the experimental group, 𝜇𝐶 is the 

mean of the control plots and 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 is the pooled standard deviation between the 

experimental and the control groups (Nakagawa & Cuthill, 2007) (Equation 14): 

𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = √
(𝑁𝐸 − 1)𝑆𝐷𝐸

2 + (𝑁𝑐 − 1)𝑆𝐷𝐶
2

𝑁𝐸 +𝑁𝐶 − 2
 

Equation 14 

 

Where: 𝑁𝐸  is the number of samples in the experimental group; 𝑁𝐶  is the 

number of samples in the control group; 𝑆𝐷𝐸 is the standard deviation in the 

experimental group and 𝑆𝐷𝐶 is the standard deviation in the control group. 

The 𝐸𝑠𝑖𝑧𝑒 measures the distance between the sample mean values in the 

experimental group with respect to the sample mean value in a control group, in 

units of their pooled standard deviation. One way to interpret the 𝐸𝑠𝑖𝑧𝑒 is to 

consider the statistic of the difference of two sample means 𝑑 = 𝜇𝐸 − 𝜇𝐶, these being 

normally distributed and independent. Their difference will also be normally 

distributed with a standard deviation 𝜎𝑑 = √
𝜎𝐸
2+𝜎𝐶

2

2
 and mean value �̂�. Shifting 𝑑 to 

zero mean and normalising by 𝜎𝑑, the probability to have 𝑃(𝜇𝐸 − 𝜇𝐶) > 0 can be 

computed as a function of 𝐸𝑠𝑖𝑧𝑒 (Moore & McCabe, 2005): 

𝑃(𝜇𝐸 − 𝜇𝐶) > 0 = 𝑃 (
𝜇𝐸 − 𝜇𝐶 − �̂�

𝜎𝑑
) >  

−�̂�

𝜎𝑑
= −𝐸𝑠𝑖𝑧𝑒 Equation 15 

From Equation 15 the probability that a new sample in the experimental 

population will be above the mean of the control population is: 

𝑃(𝜇𝐸 − 𝜇𝐶) > 0 = 1 − 𝐶𝐷𝐹 (ℵ(0,1, −𝐸𝑠𝑖𝑧𝑒) Equation 16 
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where CDF is the cumulative distribution function and (ℵ(0,1) is the standard 

normal distribution. 

For example, 𝐸𝑠𝑖𝑧𝑒= 1.45 indicates that in 93% of cases in a new experiment the 

mean value will be above the mean value of the control group. 

The interpretation reported in the literature as Cohen's 𝑈3 (Cohen, 1988) does 

not indicate how distant in the new sample from the control mean. Therefore, in the 

context of our detection problem it is more appropriate to consider the relationship 

between 𝐸𝑠𝑖𝑧𝑒 and the probability that a new sample is assumed to be in the 

experimental population when indeed it is a control value (a Type I error). Given 

the normal distribution with equal variance of the two populations, a threshold was 

set within the overlap area at the intersection point of the PDFs. The error is given 

by integrating the PDF of the control population up to the intersect point (𝑥): 

ℵ(𝜇𝐸 , 𝜎, 𝑥) =  ℵ(𝜇𝐸 , 𝜎, 𝑥)
𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑥 =

𝜇𝐸 + 𝜇𝐶
2

 Equation 17 

 

𝑃( 𝑇𝑦𝑝𝑒 𝐼 𝑒𝑟𝑟𝑜𝑟) = (1 − 𝐶𝐷𝐹 (ℵ (𝜇𝐶 , 𝜎,
𝜇𝐸 + 𝜇𝐶
2

))

=
1

2
(2 − 𝐸𝑟𝑐𝑓 (

𝜇𝐶 − 𝜇𝐸

2√2𝜎
) 

Equation 18 

 

where 𝐸𝑟𝑐𝑓 is the complementary error function. 

This relationship allows us to compute the probability of Type I error for a 

range of 𝐸𝑠𝑖𝑧𝑒 values (Figure 5). 
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Figure 5. Probability of Type I error as a function of effect size. 

For 𝐸𝑠𝑖𝑧𝑒= 1.5 the probability of Type I error is 6.6% (detecting as true change a 

sample that is noise). Based on this interpretation, a threshold 𝐸𝑠𝑖𝑧𝑒= 1.5 was set in 

the development of the change detection. 

The margin of error (or confidence interval) (𝐶𝐼) on the effect size was used to 

estimate the amount of variation with respect to the “true” value and indicates the 

estimate resulting in case of repeatedly taking samples of the same size (Equation 

19) (Hedges & Olkin, 1985): 

𝜎[𝐸𝑠𝑖𝑧𝑒] = √
𝑁𝐸 +𝑁𝐶
𝑁𝐸 × 𝑁𝐶

+
𝐸𝑠𝑖𝑧𝑒

2

2(𝑁𝐸 +𝑁𝐶)
 Equation 19 

 
Considering a 95% confidence interval (95% CI) 𝑬𝒔𝒊𝒛𝒆 ranges between 

𝑬𝒔𝒊𝒛𝒆𝒍𝒐𝒘𝒆𝒓/𝒖𝒑𝒑𝒆𝒓 (Equation 20) (Nakagawa & Cuthill, 2007): 

𝐸𝑠𝑖𝑧𝑒𝑙𝑜𝑤𝑒𝑟/𝑢𝑝𝑝𝑒𝑟 = 𝐸𝑠𝑖𝑧𝑒 ± 1.96 × 𝜎[𝐸𝑠𝑖𝑧𝑒] Equation 20 

 

5.4.7. Object refinement based on magnitude, area and location 

The statistics computed for all objects were used to choose a criteria for 

discarding objects which were not likely to be "true" disturbance events and for 

keeping for further analysis a subset that maximised the link between 
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∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects. The resulting subsets were used further 

in the analysis. 

 

1. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects: ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects refinement was undertaken by: a) 

defining a threshold related to the size of the objects by choice of the 3rd 

quartile of the distribution (representing the upper 75th of the distribution) 

(𝑄3= 100 pixels); b) the magnitude of change threshold was based on the 3rd 

quartile (𝑄3= -7 m). Discarded objects (subset A) were defined as objects 

which satisfied both area ≤ 100 pixels AND |∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒| ≤ 7. Subset B was 

considered for further analysis and included objects that satisfied the area 

threshold (> 100 pixels) but not necessarily the magnitude threshold. Effect 

size ≥ 1.5 was set as explained in section 5.4.6. 

2. ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects: the spatial location of ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects with respect 

to ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 was considered. It was assumed that areas of post-

disturbance re-growth were more likely to be located in proximity to 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects and consequently, we set a minimum distance from the 

centroid of each ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 object to the ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects centroid to < 

500 m (subset B) and discarded objects located ≥ 500 m from ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

objects (subset A). Effect size ≥ 1.5 was set as explained in section 5.4.6. 

 

5.4.8. Validation  

a) False positives were assessed using two control plots (𝐶) to verify that the 

changes that were detected from TanDEM-X were “true” changes and not due to 

noise. We considered an area of undisturbed primary lowland forest (𝑃𝐹𝐶) (77 ha) 

and undisturbed swamp forest (𝑆𝑊𝐶) (302 ha) (Figure 1). The areas were 

“undisturbed” within the time-frame of the analysis, it was challenging to delineate 

an area of “true” primary forest (as defined in the “Intact Forest Landscape” 

definition) (Potapov, et al., 2008), as there were no protected areas in the study site 

and most of the site was occupied by logging concessions. The reliability of this 
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assumption is also constrained by the lack of ground data covering the area at the 

time of data acquisition. Two independent datasets supported our assumption: 1) 

no forest cover loss was identified by Hansen et al. (2013) for the period 2000-2013 

inside the control plots and b) no forest loss took place according to the FACET 

Atlas (2000-2010)(OSFAC, 2012). 

b) An object-based oriented validation approach using an independent dataset 

was chosen, this being in line with the object-based change detection method 

(Elrajubi et al., 2014). An object-based validation implies that the validity criterion is 

the miss-hit matching of a spatial geometrical property, this being the intersection of 

the digitised contour (objects) delineating the test object (area of change detected by 

the radar analysis) and a reference object (area of change in the independent 

Pléiades dataset). 

The hit rate (%) is the percentage of objects that are interpreted by the Pléiades 

scenes as changes and that geometrically intersect the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects; while 

the miss rate (%) is the proportion of objects with no intersection between the 

Pléiades validation dataset and the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  objects (Ryan, et al., 2012). Objects 

intersection was calculated using the “intersect” function available in ArcGIS 10.1 

(ESRI, 2016). 

No attempt is made to compare other pixel-based properties, such as total 

change area, or statistic of the forest height distribution. An object-based validation 

was deemed appropriate since it would enable us to assess the performance of our 

method.  

Validation dataset selection relied on a combination of expert knowledge for the 

interpretation of remote sensing optical imagery (Pléiades) and manual delineation 

of changes by two users (Elsa De Grandi and Edward Mitchard). Validation was 

restricted to a 9500 ha section of the study site located around the town of Mboko 

due to limitations in data availability (Figure 6). 

A validation dataset (DEF/DEG) was generated by delineating disturbance 

events (N = 89) occurring between February 2013 (22/02/2013) (3 months after 
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𝑇𝐷𝑋𝑡1) and December 2013 (27/12/2012) (a few days after 𝑇𝐷𝑋𝑡2) based on two 

Pléiades scenes corresponding as closely as possible to the TanDEM-X acquisitions. 

We delineated sub-hectare clearings as well as larger clearings (> 1 ha) (total 

area delineated: 67.72 ha, mean ± standard deviation: 0.75 ± 1.02 ha) to develop a 

dataset that took into account of the area threshold set for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (40 

pixels ≅ 0.08 ha) (section 5.4.3). The validation was undertaken only for 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects. 

The delineation of new deforestation/degradation events was challenging since: 

1) clearings edges were not well defined and they were often overlapping with older 

clearings; 2) clearings were occupied by remnant vegetation before complete 

vegetation removal was undertaken. Once the objects were validated those that 

were “true” changes (intersected with both TanDEM-X and Pléiades or hit rate). 

This provided an independent check which could enable us to verify whether the 

TanDEM-X miss rate was due to: 1) omission from the analysis; 2) incorrect 

interpretation of the change occurring between the two Pléiades scenes; 3) due to 

the time elapsed between the TanDEM-X difference and the two Pléiades scenes. 

No ground data was collected for the validation. Given the extent of the area to 

validate, the forest temporal dynamics, which would call for historical data, and the 

type of detection method, which is not based on physical properties (e.g. forest 

height), it was deemed that such an effort could have only marginally improved the 

accuracy, albeit providing one more independent assessment piece of information, 

since it would not be based on remote sensing imagery (Desclée, et al., 2006). 
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Figure 6. Pléiades data (22/02/2013) with overlaid deforestation/degradation 

validation objects (DEF/DEG) (red outline) delineated from visual interpretation 

and expert knowledge captured between two Pléiades scenes (date 1: 22/02/2013 

and date 2: 17/12/2013). 

5.4.9. Dependence of DSM Difference Estimates on Sensor's 

Parameters 

We analyse from a theoretical (modelling) point of view the difference of 

two estimates of DSM of the same natural target, provided by two InSAR 

observations with slightly different instrumental parameters, these being the 

effective baseline, incidence angles, and range distances (Table 1). The effective 

baseline is the instrument’s parameter that could affect more the DSM 

difference, and its impact needs to be considered. 

Two scattering scenarios were considered in the analysis: 

1) A dense forest, featuring high extinction at X-band and that can therefore 

be modelled as a random volume with no return from the ground. This situation 

will correspond to the no-change case represented by the lowland primary forest 

and the swamp forest control plots.  
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The fractional phase centre height is computed assuming a simple Random 

Volume model (RV) with exponential vertical structure function (Cloude, 2010): 

𝛾𝑣𝑜𝑙 =
𝑃1(𝑒

𝑃2ℎ − 1)

𝑃2(𝑒
𝑃1ℎ − 1)

 
Equation 21 

 

 

Where: 𝑃1 =
2𝜎𝑒

𝑐𝑜𝑠𝜗
 and 𝑃2 = 𝑃1 + 𝑖𝛽𝑧 and 𝛽𝑧 = 

4𝜋𝐵⊥

𝜆𝑅 sin𝜗
 

𝛾𝑣𝑜𝑙 is the complex coherence; ℎ is the volume height; 𝜎𝑒 is the extinction; 𝛽𝑧 

is the vertical wavenumber; 𝐵⊥ is the effective baseline;  𝜗 is the incidence angle 

and 𝑅 is the range distance. 

 

The fractional phase centre height is computed from the phase of the 

complex coherence and it is a function of extinction, volume height and vertical 

wavenumber (Cloude, 2010): 

 

𝜙𝑐𝑒𝑛𝑡𝑒𝑟 =
𝐴𝑟𝑔[𝛾𝑣𝑜𝑙]

ℎ𝛽𝑧
 Equation 22 

The DSM difference (∆𝐷𝑆𝑀) is computed from 𝜙𝑐𝑒𝑛𝑡𝑒𝑟 and it is a function of 

volume height ℎ𝑣, extinction 𝜎𝑒 (assumed constant between the two data takes) 

and vertical wavenumbers 𝛽1, 𝛽2 that include the instrument’s parameters of the 

two observations, (i.e. baseline, range distance and incidence angle): 

 

∆𝐷𝑆𝑀 = 𝜙𝑐(ℎ𝑣 , 𝜎𝑒 , 𝛽1)ℎ𝑣 − 𝜙𝑐(ℎ𝑣 , 𝜎𝑒 , 𝛽2)ℎ𝑣 Equation 23 

2) A less dense forest which could represent the case of degraded forest or 

forest re-growth, can be modelled to include a return from the ground. In this 

case, the Random Volume over Ground (RVoG) model was used (Cloude, 2010). 

For the purpose, Equation 21 is modified to include the return from the 

ground in the form of the effective volume to ground scattering ratio (𝜇) 

(Cloude, 2010): 

𝛾 =
𝛾𝑣𝑜𝑙 + 𝜇

1 + 𝜇
  Equation 24 
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5.5. Results 

5.5.1. DSM Difference 

Figure 7 illustrates an example of forest dynamics mapped by the ∆𝐷𝑆𝑀 

along a transect including a gradient from undisturbed lowland forest (1) to 

forest volume loss (2) followed by forest volume gain (3) and forest volume loss 

(4). Notice that the fluctuations within each segment are due to forest structure 

variability and signal noise while relative differences between deforestation and 

re-growth and stable segments are due to the intensity of the forest change 

event. Forest change magnitude in (2) and (4) can be associated to a different 

degree of forest volume loss.  

 
Figure 7. (a) Three-dimensional TanDEM-X ∆𝐷𝑆𝑀 representation showing changes 

along a 950 m transect across (1) undisturbed lowland forest, (2) forest volume loss, 

(3) forest volume gain and (4) forest volume loss. (b) Corresponding transect 

showing the magnitude of changes and (c) ∆𝐷𝑆𝑀 image illustrating the transect 

location. 
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The algorithm successfully extracted positive (green outline) and negative 

change objects (red outline) (Figure 8). Preliminary assessment shows that generally, 

negative change magnitude is higher compared to positive change and more clearly 

appreciable in high resolution optical imagery (Figure 8i and Figure 8ii). 

 
Figure 8. (i) ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 object (red) and (ii) ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 object (green) overlaid on 

the image and on two Pléiades scenes taken at 𝑡1(22/02/2013) and 𝑡2 (17/12/2013). 

5.5.2. DSM Difference Magnitude and Area Statistics 

The ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects magnitude distribution is very distinct from both the 

control areas (undisturbed lowland primary forest (𝑃𝐹𝐶) and swamp forest (𝑆𝑊𝐶) 

(Table 3). This indicates that the detected changes are caused by anthropogenic 
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disturbance. The magnitude distribution presents a thick tail (high kurtosis) (𝑘= 

10.9) and low median (�̃�= -6.8 m) (Table 3), but with values beyond the lower 

quartile (𝑄3) extending to -19.7 m. This pattern arises from the fact that these 

changes are due to continuous smooth transition from one forest state to the next, 

and only in a some cases (the extreme values in the distribution) by a single abrupt 

event indicating complete removal of vegetation (forest to non-forest conversion). 

The continuous transition can be given by the remnant forest patches or partial re-

growth at 𝑡2, and/or onset of forest disturbance at 𝑡1. These different natural drivers 

of DSM change call for further investigation of the change statistic of related object 

properties, such as area. 

The ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 magnitude distribution is less distinct from the control plots 

than ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects. However, the median (�̃�= 2.4) and the quartiles (𝑄1= 2.2 

and 𝑄3= 2.6) are well separated from the respective values in the control plots 

distributions (𝑃𝐹𝐶𝑄1= 0.9; 𝑆𝑊𝐶𝑄1= 0.8 and 𝑃𝐹𝐶𝑄3= 1.9; 𝑆𝑊𝐶𝑄3= 1.6). 

The distribution of magnitude values is much wider for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects 

(n= 4168) (deforestation/forest degradation) than for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (re-

growth) (n= 772) (Figure 9). Overlap exists between the median of the changes and 

the values in the tails of the control distributions. Kurtosis for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects 

(𝑘 = 2.5) is much lower compared to ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (𝑘 = 10.9), which indicates 

that the distribution is more homogeneous given the presence of a lower amount of 

outliers. 

Figure 9b and Figure 9c show boxplots presenting ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (red) 

and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (green) by 10 area categories. The area distribution shows 

that the larger ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects have a higher change magnitude and smaller 

objects present a lower change magnitude. Instead for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects there is 

no link between the magnitude of change and the object area. 

For ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects the distribution in terms of area presents a much lower 

median (�̃�= 0.16 ha) compared to ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (�̃�= 3.65 ha) and the mean 

object size is similarly smaller for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (0.28 ± 0.61 ha) compared to 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (7.51 ± 14.32 ha). 



205 
 

Data in Table 3 reports kurtosis of the area distribution, which indicates the 

presence of a large number of outliers (thick tails) in the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 area 

distribution (𝑘= 272.34) compared to the relatively more evenly distributed areas for 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (𝑘= 63.01). The ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 area distribution is characterised 

by a high number of outliers, these being the result of two distinct processes: 

selective logging and shifting cultivation. Instead, the relatively more even-size 

distribution of ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects indicates that many areas can be associated with 

clusters of re-growth which are generally large in size. Small ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects 

down to 0.08 ha were detected as well as some very large scale clearing events (up 

to 14.85 ha), which are more likely to be deforestation. 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (re-growth) are more challenging to detect since the height 

variation range is narrower due to slow vegetation growth within 1 year (1.6 m 

≤∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒≤ 4.4 m) (Table 3). Moreover, there is less separation with the 

surrounding areas (lowland primary forest and swamp forest) (as shown by the 

comparison of magnitude values and the control plots in Table 3). It was therefore 

key to consider the spatial relationship (neighbourhood distance) between 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects to improve post-disturbance re-

growth detection (section 5.5.7). 

The control areas can be considered stable (especially old growth forests which 

have reached climax indicating a biological steady state) (Hartshorn, 1980) but 

present a natural variability due to canopy unevenness and due to the presence of 

treefall gaps or seasonality (leaf on/leaf off).  
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Figure 9. (a) Mean ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects boxplots (red) (n= 4168) and mean 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects boxplots (green) (n= 772). (b) Mean ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects by 10 

area categories  and (c) mean ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (green) by 10 area categories. 

 

Table 3. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (n= 4168), ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (n= 772), lowland 

primary forest (𝑃𝐹𝐶) (n= 510) and swamp forest (𝑆𝑊𝐶) (n= 1161) magnitude and 

area statistics (mean ± standard deviation: 𝜇 ± 𝜎; median: �̃�; kurtosis: 𝑘; minimum: 

Min; maximum: Max; lower quartile: 𝑄1 and upper quartile: 𝑄3. 

∆𝑫𝑺𝑴 magnitude (m) 

Object 𝝁 ± 𝝈 �̃� 𝒌 Min Max 𝑸𝟏 𝑸𝟑 

𝑷𝑭𝑪 1.5 ± 0.8 1.3 0.6 0.05 4.6 0.9 1.9 

𝑺𝑾𝑪 1.2 ± 0.6 1.2 2.7 0.02 4.8 0.8 1.6 
∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 -7.1 ± 1.4 -6.8 10.9 -19.7 -5.2 -7.5 -6.3 
∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 2.4 ± 0.3 2.4 2.5 1.6 4.4 2.2 2.6 

∆𝑫𝑺𝑴 Area (ha) 

∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 0.28 ± 0.61 0.16 272.34 0.08 14.85 0.12 0.23 
∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 7.51 ± 14.32 3.65 63.01 2.05 185.8 2.66 6.38 

 

5.5.3. Accuracy of DSM Difference Estimates 

Estimates of the mean ∆𝐷𝑆𝑀 objects, sorted by increasing value and associated 

confidence limits at 95% and 68% confidence level (CL) are shown in Figure 10. The 

confidence limits are defined as ± t × Standard Error of the Mean (SEOM), with 

Student t-test (t= 1 for 68% CL and t= 0.96 for 95% CL), since the degrees of freedom 

are greater than 200. 
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The confidence limits characterise the accuracy of the ∆𝐷𝑆𝑀 estimates within 

the detected objects achieved by the proposed method. However, it is important to 

notice that these estimates do not correspond to a measure of vegetation physical 

properties, such as tree heights. They correspond to a change of the scattering 

physical phenomena, these being, for instance, a decrease or increase in the PCH, or 

the combined influence of the volume and surface scattering. Therefore, in the 

perspective of change detection, the importance of the confidence limits should be 

considered more in connection with the possibility of achieving enough accuracy in 

order to be able to separate true changes from noise. This is further assessed by an 

effect size index (section 5.5.4). 

Analysis of the SEOM indicates that, in the case of ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects, the 

SEOM is linearly dependent on the mean values, with a coefficient of 

proportionality equal to 0.4 and a maximum deviation of 10 m (Figure 10). Instead, 

for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects the SEOM is fairly constant with respect to the mean values, 

this being related to lower range of the mean ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 values (from 1.6 m to 4.4 

m) and the higher homogeneity of the samples within the objects (Table 3).  

SEOM statistics are reported in Table 4. SEOM for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 shows greater 

variability with several outliers (high kurtosis) (𝑘= 30.41) (Table 4). This is due to the 

DSM variability within objects depending on two processes: complete removal of 

vegetation (deforestation) and partial loss of forest cover (forest degradation) where 

the former results in a larger change compared to the latter. Instead, lower SEOM 

variability is observed for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (𝑘= 14.39). 
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Figure 10. (a) Mean ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects magnitude (red) and associated confidence 

intervals (CI) ± 68% (blue) and ± 95% (black). (b) Mean ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects 

magnitude (green) and associated confidence intervals (CI) ± 68% (blue) and ± 95% 

(black). 

 

Table 4. Standard error of the mean (SEOM (𝑆𝐷(ℎ̂)) 

statistics (mean ± standard deviation: 𝜇 ± 𝜎  (m); median: �̃� 

(m); lower quartile: 𝑄1; upper quartile: 𝑄3 and kurtosis: 𝑘 for 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (N= 4168) and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (N= 

772).  

Class 𝝁 ± 𝝈 �̃� 𝑸𝟏 𝑸𝟑 𝒌 

∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆  1.74 ± 0.72 1.55 1.3 1.97 30.41 
∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆  1.19 ± 0.27 1.14 1.02 1.31 14.39 

 

5.5.4. Effect Size  

Effect size (𝐸𝑠𝑖𝑧𝑒) indices, based on the standardised difference of means, were 

calculated to assess the significance of the changes in comparison to two stable 

areas: undisturbed lowland primary forest (𝑃𝐹𝐶) and swamp forest (𝑆𝑊𝐶). 𝐸𝑠𝑖𝑧𝑒 

statistics are reported in Figure 11 and Table 5. 

𝐸𝑠𝑖𝑧𝑒 between ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects and 𝑃𝐹𝐶 ranges from 0.84 to 7.26 (𝜇 ± 𝜎: 5.2 ± 

0.69) and for 𝑆𝑊𝐶 ranges from 0.86 to 7.99 (𝜇 ± 𝜎: 5.58 ± 0.84). The results indicate 

that deforestation/degradation changes are highly significant (98% changes with 
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𝐸𝑠𝑖𝑧𝑒 ≥ 1.5) and can be considered well above the intrinsic noise within the two 

control areas representing natural forest variability. It is to be noted that there is one 

outlier with 𝐸𝑠𝑖𝑧𝑒  < 1.5 in the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 dataset. 

𝐸𝑠𝑖𝑧𝑒 for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects compared to 𝑃𝐹𝐶 ranges from 0.73 to 3.41 (𝜇 ± 𝜎: 

2.53 ± 0.4) and from 0.67 to 3.16 (𝜇 ± 𝜎: 2.36 ± 0.38) compared to 𝑆𝑊𝐶. This statistic 

also indicates that changes are highly significant (98% change with 𝐸𝑠𝑖𝑧𝑒 ≥ 1.5) but 

on average 𝐸𝑠𝑖𝑧𝑒  values are smaller and more outliers are present with respect to 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒. Notice that outliers (𝐸𝑠𝑖𝑧𝑒 < 1.5) were removed from ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

objects (n= 1) and from ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (n= 17) for further analysis.  

𝐸𝑠𝑖𝑧𝑒 sorted by increasing values is reported in Figure 12. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects 

and the associated 95% confidence interval (CI) is shown in Figure 12a (compared to 

𝑃𝐹𝐶) and in Figure 12b (compared to 𝑆𝑊𝐶). While, 𝐸𝑠𝑖𝑧𝑒 for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects and 

the associated ± 95% CI is shown in Figure 12c and Figure 12d. Table 6 reports 

statistics (mean, minimum and maximum) of the resulting 95% CI values for 𝑃𝐹𝐶 

(∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒: 𝜇= 0.67 and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒: 𝜇= 0.085). Comparison with the swamp 

forest control plot (𝑆𝑊𝐶) is similar (∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒: 𝜇= 0.71 and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒: 𝜇= 0.083). 
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Figure 11. Effect size of objects ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (red shades) and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects 

(green shades) with respect to two control plots: lowland primary forest (𝑃𝐹𝑐) and 

swamp forest (𝑆𝑊𝐶). 

 

Table 5. Effect size (𝐸𝑠𝑖𝑧𝑒) statistics for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (N= 4168) against 

control plots and for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (N= 772) against control plots (𝑃𝐹𝐶 

and 𝑆𝑊𝐶). 

∆𝐃𝐒𝐌 𝝁 ± 𝝈 �̃� Min Max 𝑸𝟏 𝑸𝟑 

𝑷𝑭𝑪            
∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆  5.2 ± 0.69 5.26 0.84 7.26 4.79 5.68 
∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆  2.53 ± 0.4 2.60 0.73 3.41  2.3 2.82 

𝑺𝑾𝑪       
∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆  5.58 ± 0.84 5.63 0.86 7.99 5.05 6.16 
∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 2.36 ± 0.38 2.44 0.67 3.16 2.14 2.63 
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Figure 12. Mean effect size (red) ± 95% confidence interval (black) for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

objects compared to (a) lowland primary forest control plot (𝑃𝐹𝑐) and (b) swamp 

forest control plot (𝑆𝑊𝐶). Mean effect size (red) ± 95% confidence interval (black) for 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects compared to (c) lowland primary forest control plot (𝑃𝐹𝐶) and 

(d) swamp forest control plot (𝑆𝑊𝐶).  

 
 

Table 6. Statistics of the ± 95% confidence interval (𝐶𝐼) for 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (N= 4168) and control plots and for 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (N= 772) and two control plots (𝑃𝐹𝐶 

and 𝑆𝑊𝐶). 

 𝝁 Min Max 

∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 (𝑷𝑭𝑪) 0.67 0.06 1.18 
∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 (𝑺𝑾𝑪) 0.71 0.06 1.27 

∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑷𝑭𝑪) 0.085 0.01 0.14 
∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (𝑺𝑾𝑪) 0.083 0.01 0.13 
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5.5.5. Dependence of ∆𝑫𝑺𝑴 Estimates on Sensor's Parameters  

Based on the modelling approach outlined in section 5.4.9, estimate of the 

impact on ∆𝐷𝑆𝑀 of different baselines between the two acquisitions is reported 

here. 

In the case of the random volume only, ∆𝐷𝑆𝑀 was computed from Equation 23 

as a function of extinction and parameterised by random volume height (Figure 13). 

The maximum difference is in the order of -1 m (decrease in PCH), and occurs for 

low extinction and 50 m volume height (red line in Figure 13). The -1 m difference 

corresponds to the mean of the distribution of samples taken within the primary 

lowland forest control area. Therefore, ∆𝐷𝑆𝑀 within a stable forest area can be 

affected in this order of magnitude by difference in instrumental parameters. 

For increasing extinction, the PCH moves towards the top of the volume, and 

the dependence on interferometers sensitivity (𝛽𝑧) decreases, resulting in lower or 

negligible ∆𝐷𝑆𝑀. The same effect occurs for a lower volume height (30 m) (green 

line in Figure 13), where for all extinction values the range of ∆𝐷𝑆𝑀 is reduced to 

only a fraction of meter. 

 

Figure 13. DSM height difference (m) between two observations as a function of 

extinction (dB) for a volume height of 30 m (green) and 50 m (red). 

In the case of the RVoG model, ∆𝐷𝑆𝑀 height difference was computed from 

Equation 23 (but using the model in Equation 24) as a function of the surface to 
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volume scattering ratio (𝜇), for a volume height equal to 30 m and parameterised by 

two extinction values: 0.05 dB (red) and 0.3 dB (green) (Figure 14). 

With lower extinction (0.05 dB), the PCH is set around the middle of the volume 

(15 m), and there is low dependence on 𝛽𝑧 for small surface scattering component 

(small negative DSM difference). However, when the surface component weighs in 

more, the DSM difference becomes positive and increases. This indicates that for a 

sparser forest an increase in DSM can be due to the influence of ground return, and 

it is proportional to this return. 

For higher extinction, when the PCH is pushed towards the top of canopy, the 

DSM difference becomes larger and negative (up to - 1 m) when the surface 

contribution is small. However, it is pushed to positive values when the surface 

component starts to weigh in, reaching an asymptotic difference of approximately 

1.5 m. 

We can conclude from the analysis that the range of DSM differences related to 

instrumental parameters is of the order of ± 1 m, with the positive values due to the 

influence of surface return. 

 

Figure 14. DSM height difference as a function of the surface to volume scattering 

ratio and parameterised by extinction: 0.05 dB (red) and 0.3 dB (green).  
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5.5.6. Negative Change Objects Refinement Based on Magnitude and 

Area Properties  

Investigation related to the magnitude of change and size of objects was carried 

out by partitioning the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 dataset into two subsets (A and B) by setting 

specific thresholds in term of ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects magnitude and area properties.  

The reason behind this was to improve the likelihood of detecting "true" 

changes due to small scale shifting agriculture and separate them from possible 

changes due to selective logging.  

A noticeably large proportion of the objects detected were ≤ 100 TanDEM-X 

pixels (≤ 0.2 ha), these being located primarily inside a logging concession.  

Threshold choice was based on statistical evaluation of randomly selected 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (n= 382) located within the Ngombé logging concession. A 

threshold related to the size of the object was selected by choice of the 3rd quartile of 

the distribution (representing the upper 75th of the distribution) (𝑄3= 100 TanDEM-X 

pixels) and the magnitude threshold was similarly based on the 3rd quartile (𝑄3= -7 

m). 

Subset A was defined as objects which satisfied both area ≤ 100 TanDEM-X 

pixels AND |∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒| ≤ 7 (Figure 15). While, subset B consisted of objects that 

satisfied the area threshold (> 100 TanDEM-X pixels) but not necessarily the change 

magnitude threshold. The reason behind the criteria chosen is that the larger objects 

(> 100 pixels) are more likely to be "true" anthropogenic clearings even if |∆𝐷𝑆𝑀| is ≤ 

7 m. This is because a large area, if only partially cleared, will present a lower 

change magnitude compared to an area which is completely deforested. This effect 

was also verified by visual inspection of VHR optical imagery, where a set of 

disturbance objects corresponded to complete clearing and others where vegetation 

was only partially removed hence the lower mean magnitude change. 

 Figure 15 reports boxplots for subset A and B and Table 7 reports the 

associated magnitude and area statistics. Further analysis was undertaken by 

considering only subset B, since these objects were more likely to be due to 

anthropogenic deforestation/forest degradation linked to shifting cultivation (rather 
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than due to selective logging, noise, shadowing effect or linked to seasonality). 

These objects were also more suitable for the analysis aimed at extracting post-

disturbance re-growth (see section 5.5.7). Subset A objects were considered "true" 

changes compared to the control plots (see section 5.5.4), but the origin of these 

changes requires further investigation. 

 

 Figure 15. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset A (n= 2030) (white) and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset B (n= 

2137) (grey) boxplots illustrating (a) ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 magnitude (m); (b) ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

subset A binned into 10 area categories and (c) ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset B binned into 10 

area categories.  

 

Table 7. ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset A (n= 2030) and B (n= 2137) magnitude (m) and 

area (ha) statistics (mean ± standard deviation: 𝜇 ± 𝜎; median: �̃�; minimum: 

Min; maximum: Max; upper quartile: 𝑄1; lower quartile: 𝑄3 and kurtosis: 𝑘. 

 ∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 magnitude (m) 

Subset 𝝁 ± 𝝈  �̃� Min Max 𝑸𝟏 𝑸𝟑 𝒌 

A -6.3 ± 0.4 -6.3 -7 -5.2 -6.6 -6 -0.8 

B -7.9 ± 1.5 -7.5 -19.7 -5.7 -8.3 -7.1 8.8 

∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 area (ha) 

Subset  𝝁 ± 𝝈  �̃� min max 𝑸𝟏 𝑸𝟑 𝒌 

A 0.14 ± 0.03 0.13 0.08 0.21 0.11 0.16 -0.49 

B 0.41 ± 0.83 0.23 0.08 14.85 0.15 0.35 146.49 
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5.5.7. Distance between Positive and Negative Objects 

 The spatial location of ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects can be used to infer probability of 

false detection. ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects located in areas of swamp forest as indicated by 

visual inspection of the FACET map (OSFAC, 2012), or located in relatively isolated 

areas not in proximity of road networks or logging roads, were deemed likely to be 

false detections and not related to re-growth after disturbance. The distance 

between ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset B was taken as a condition to 

confirm the onset of post-disturbance re-growth following shifting cultivation.  

The distribution of minimum distance between ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (n= 755) 

and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset B (n= 2137) is shown in Figure 16 and ranges from 34 m to 

2544 m (742 ± 542 m) (blue distribution).  

The threshold selection is based on the minimum distance distribution shown 

in Figure 16 (blue). The distribution (estimated by a smoothed histogram) is multi-

modal (blue). Fitting a Gaussian function around the first mode (short distance) 

gives a mean value of 300 m and standard deviation of 200 m (red). Objects with a 

distance below the 3rd quartile of the normal distribution (𝑑< 500 m) are retained as 

post-disturbance re-growth (∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 subset B). 

The summary statistics from the two subsets corresponding to 𝑑 ≥ 500 m (subset 

A) and 𝑑 < 500 m (subset B) are shown in Table 8. Subset A (n= 428) minimum 

distance ranged from 501 m to 2544 m (mean ± standard deviation: 1095 ± 467 m). 

While, subset B (n= 327) minimum distance ranged from 34 m to 497 m (mean ± 

standard deviation: 278 ± 119 m). Further analysis was undertaken by considering 

only subset B. Subset B magnitude changes ranged from 1.6 m to 4.4 m (mean ± 

standard deviation: 2.6 ± 0.4 m) and  area ranging from  2.07 ha to 185.8 ha (8.88 ± 

18.11 ha). Figure 17 shows the final change map after the analysis refinement based 

on magnitude, area and distance thresholds. 
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Figure 16. Minimum distance (m) between ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

objects multi-modal distribution (blue) (estimated by a smoothed histogram) 

(dataset A+B). A normal distribution (red) is fitted around the first mode at 300 m. 

Objects with a distance within the 3rd quartile of the normal distribution (𝑑< 500 m) 

are considered further as post-disturbance re-growth while objects with 𝑑≥  500 m 

are discarded. 

 

Table 8. Minimum distance (m) statistics between ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects 

centroids (N= 755) and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects centroids (N= 2137) for 

subset A (n= 428) and subset B (n= 327). 

Dataset Min 𝑸𝟏 �̃� 𝝁 ± 𝝈  𝑸𝟑 Max 

A+ B 34 304 610 742 ± 542 1052 2544 

A  501 712 988 1095 ± 467 1342 2544 

B  34 182 265 278 ± 119 385 497 
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Figure 17. Change map showing TanDEM-X ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects 

(deforestation/forest degradation) (red) (subset B) and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects 

(post-disturbance re-growth) (subset B) (green). 

 

5.6. Validation  

Validation of ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects by comparison with optical imagery is 

detailed below. For validation we used the refined ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 subset B. 78 out of 

the 89 disturbed areas delineated manually (DEF/DEG) using two Pléiades imagery 

intersected (some only partially) the TanDEM-X change objects (87.6%) while, 11 
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objects (12.3%) were not intersected. A sample of DEF/DEG objects ranging from 0.2 

ha to 2.1 ha that were detected by both TanDEM-X and Pléiades imagery (red) are 

shown in Figure 18.  

 
Figure 18. Sample of manually delineated deforestation/forest degradation 

objects (DEF/DEG) (red) detected by both TanDEM-X change detection and 

Pléiades overlaid on (a) ∆𝐷𝑆𝑀 image (extracted changes outlined in black); (b) 

Pléiades at 𝑡1 (22/02/2012) and (c) Pléiades at 𝑡2 (17/12/2013). 

 

5.7. Discussion and Interpretation 

5.7.1. Negative and Positive Change Objects Magnitude and Area  

Our approach was not aimed at quantifying the absolute vegetation height 

changes because a PCH shift cannot be directly linked to a change of vegetation 

height since it is influenced by a range of variables (e.g. vegetation horizontal 

structure or canopy density) and it is not a one-to-one relationship with a single bio-

physical parameter. The estimation of forest height by InSAR phase requires the 

availability of a DTM (seldom available in tropical forest) in combination with the 

TanDEM-X DSM. In principle, height could be estimated using P-band SAR 

tomography, a technique that exploits multi-baseline data to slice the volume and 
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estimate the vertical structure function (Papathanassiou, et al., 2016). This technique 

could also provide estimates of AGB based on the sliced HV backscatter (Minh, et 

al., 2014). However, these approaches are at the moment still limited to ad-hoc 

experiments using airborne Pol-InSAR instruments. 

Our approach seeks to give a relative estimate of change within 1 year and to 

spatially map areas of change without the use of an auxiliary DTM which was not 

available and would have only covered a fraction of the study site. The advantage of 

the approach is that it is computationally simple, requires only single-polarisation, 

single-baseline InSAR acquisitions, but at the same time it is statistically robust. 

Issues related to the findings are discussed next. 

The PCH shift between two dates are much lower (mean ± standard deviation: 

2.4 ± 0.3 m) for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (re-growth) in comparison to abrupt 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 events (deforestation/forest degradation) (mean ± standard deviation: 

-7.1 ± 1.4 m) (Table 3) and consequently, more challenging to detect.  

In terms of species composition following disturbance, the Congo Basin is often 

dominated by monospecific Musanga cecropides appearing as a continuous and 

homogeneous layer (Lebrun & Gilbert, 1954) with growth rates in the range of up to 

15 m in 3 years (Mayaux, et al., 1999). Considering a scenario dominated by 

monospecific Musanga cecropides post-disturbance re-growth, we would expect plots 

with maximum tree height increase in the range of 5 m/year. Our analysis shows 

average ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 magnitude about half those values (2.4 ± 0.3 m). This apparent 

discrepancy is due to the fact that the ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 magnitude estimates provided 

by TanDEM-X do not correspond to single tree height differences but to phase 

center differences, these being dependent on penetration depth at X-band in sparser 

vegetation (hence lower PCH sensitivity to forest volume for sparser vegetation) 

and on sensor’s parameters.  

Mean ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects magnitude ranges from -19.7 m to -5.2 m (Table 3) 

which suggests a gradient of vegetation removal. A possible reason for this can be 

linked to short fallow cycle within slash-and-burn agriculture, and frequent use of 
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the same areas, which means that vegetation is usually not able to recover to pre-

disturbance levels (Chazdon, 2003) and hence trees do not reach significant height. 

Large ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects that present high magnitude change can be 

undoubtedly linked to primary forest conversion to non-forest (deforestation) for 

agriculture. While, smaller and lower magnitude ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (subset A) 

(between -7 and 0 m and area below 100 pixels) are more likely to be the result of 

other disturbance drivers (e.g. selective logging). 98% of all ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects 

extracted (including those < 100 TanDEM-X pixels) were significantly different from 

the control areas (as shown by the effect size index results) (section 5.5.4) indicating 

that they are in all likelihood genuine deforestation/forest degradation events and 

not false detections. Even small-scale disturbance (down to 0.08 ha) (subset A) 

(Table 7) were significant but these could not be validated using Pléiades data. 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (subset B) were considered most likely 

deforestation/degradation due to shifting agriculture. The area was 0.41 ± 0.83 ha 

(mean ± standard deviation) (N= 2137) with validated objects area by comparison 

with Pléiades data equal to 0.75 ± 1.04 ha (mean ± standard deviation) (Figure 18) 

proving unambiguous evidence.  

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects area (subset B) associated with post-disturbance re-growth 

was 8.88 ± 18.11 ha (mean ± standard deviation) (N= 327) consisting of multiple 

vegetation successional growth stages clustered together (Figure 8). 

The larger area for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects is due to the fact that areas that were 

identified as a single re-growth event are effectively a combination of more re-

growth stages which have developed, for instance at different times (e.g. over many 

years of shifting cultivation practices); but because of the limited changes in growth 

within 1 year these events are clustered into a single object by the morphological 

algorithm since it aims to group together pixels which present similar spatially 

contiguous values (Wolfram, 2016). The ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects extracted can be 

defined as  rural-complex, an area where a mix of secondary forest, degraded forest 

and fallow fields have been re-growing for a significant amount of time already 

(Laporte, et al., 2004).Considerations on the area extent of post-disturbance re-
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growth events and how the different successional stages can be separated requires 

further investigation. At this stage we can predict that a DSM time-series combined 

with textural (structural) analysis within each object (multi-temporal spatial 

statistics) could provide means to partition re-growth stages that in our 

implementation are merged into a single object. 

The standard error of the mean (SEOM) and associated confidence limits 

characterise the accuracy of the ∆𝐷𝑆𝑀 estimates within the detected objects 

achievable by our method. However, it is important to notice that these estimates do 

not correspond to measures of vegetation physical properties, such as tree height. 

These correspond to a change in the physics of the scattering phenomena, these 

being for instance a decrease or increase in the PCH, or the combined influence of 

the volume and surface scattering. Therefore, the importance of these confidence 

limits should be considered related to the possibility of achieving sufficient accuracy 

to be able to separate true change from noise. This was further assessed by an effect 

size index (see section 5.5.4). 

Effect size (𝐸𝑠𝑖𝑧𝑒) was used to assess the significance of change objects with 

respect to two no-change control plots. The choice of an effect size index as opposed 

to a significance t-test was advantageous since this index reports the magnitude of 

difference between two groups (change and no-change) (Sullivan & Fein, 2012) as 

opposed to a test of significance that only checks the hypothesis of a mean value 

being greater. In the context of change detection, the effect size can be interpreted in 

terms of Type I error, as explained in section 5.4.6.  

The average 𝐸𝑠𝑖𝑧𝑒 for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects is 5.2 ± 0.69 (𝑃𝐹𝐶); 5.58 ± 0.84 (𝑆𝑊𝐶) 

and 2.53 ± 0.4 (𝑃𝐹𝐶), 2.36 ± 0.38 (𝑆𝑊𝐶) for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects. 𝐸𝑠𝑖𝑧𝑒 was ≥ 1.5 for 98% 

of ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects and for 98% of ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects. 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects effect size values are lower than those from the 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 case because of the time elapsed between the two TanDEM-X dates (1 

year) is short with respect to the time-scale at which vegetation re-growth occurs. 

This process would take several decades to achieve changes comparable 

deforestation/forest degradation in terms of magnitude (e.g. in the range of 10-20 m 
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for clear cuts for instance). This is confirmed by the statistics of the ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

objects which have a lower magnitude (on average half the magnitude of 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒) as reported in Table 3.  

This does not imply that all objects detected are either deforestation/forest 

degradation or re-growth but it suggests that detected objects are statistically 

separable compared to stable forest areas. The link behind the change was 

established by validating a sample of ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects using high-resolution 

Pléiades imagery while the ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects were not validated. 

5.7.2. Factors Influencing DSM Change Magnitude 

The estimated DSM changes are inevitably influenced by various errors (noise), 

in addition to changes in the characteristics of the forest (deforestation/forest 

degradation or re-growth). More precisely, we address here the problem of 

identifying sources of PCH changes occurring even if the forest is stationary (i.e. 

within the boundaries of natural variability). We can summarise parameters 

affecting the PCH into four categories: (a) forest vertical structure and spatial 

distribution when in a stationary situation within the sampling time; (b) 

environmental conditions (seasonality and rainfall); (c) instrument related (baseline, 

incidence angle and range distances differences between acquisitions) and (d) phase 

noise. 

a) Forest vertical structure and spatial distribution (forest density):  

PCH location is dependent on the forest density, which in turn is related to 

extinction for wave scattering. PCH moves closer to the ground for sparser 

forest due to canopy gaps or if the canopy is clumped together leaving gaps 

enabling greater signal penetration (Treuhaft, et al., 2015) and increased 

contribution from surface scattering. In the present work, forest density was 

considered high (highest density and homogeneity is found in swamp forest) 

but decreasing for degraded forest. Vegetation density and gaps might have also 

influenced the DSM (and as a consequence ∆𝐷𝑆𝑀) since, in particular in old-

growth primary forest the presence of large emergent trees cast shadows on the 
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surrounding vegetation, thus modulating the local extinction and incidence 

angle. Shadowing effects were noticed in interferometric coherence derived 

from airborne sensors over tropical forest (Hoekman & Varekamp, 2001).  

b) Environmental conditions (seasonality and rainfall):  

Seasonality effects can be considered negligible in the tropical evergreen 

forests of the Congo Basin (as opposed to temperate and boreal forest where 

leaf-off condition leads to higher penetration within the canopy and 

consequently lowers the PCH) (Praks, et al., 2012).  

We also hypothesise that smaller changes (change magnitude between 0 

and -7 m and area ≤ 100 pixels) (subset A in could be linked to disturbance due 

to damage from selective logging or to seasonality (e.g. transition from leaf 

on/leaf off conditions) which have been observed in the study area (Gond, et al., 

2013). The study area falls within the so-called Sangha River Interval (located 

between 14-18° E covering a 400 km wide area) which is reported to host semi-

deciduous forest presenting high photosynthetic activity and low endemism 

(Maley, 2002; Gond, et al., 2013). In this area, some trees at least could have more 

leaves at one date - through both scenes were captured in the same season (dry 

season, both December). 

The effect of rainfall was considered minimal in the study since both the 

datasets were acquired in December (dry season) (Philippon, et al., 2016; World 

Bank, 2016) which in the Congo Basin is relatively weak. Rainfall 48 h before the 

data acquisition was low (𝑡1= 0 mm and 𝑡2= 7.6 mm) (GIOVANNI, 2016) (Table 

1).  

The exact reason and influence of the above-mentioned parameters on the 

changes detected cannot be fully explained nor validated with a high degree of 

confidence using VHR optical data and requires further information related to 

logging operations in the area. We do not exclude the link to natural die-back of 

trees damaged during past logging operations or recent legal/illegal logging 

especially as these changes are mostly located inside the Pokola and Ngombé 
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logging concessions (supposedly currently inactive) exploited in the past 

between 1960-1999 (and in some areas between 2000-2008) (Mertens, et al., 2011) 

so usually in proximity to old logging roads. There are currently no studies in 

semi-deciduous tropical forests similar to those in the Congo Basin using 

TanDEM-X so this does not enable a clear conclusion to be drawn to support the 

influence of seasonality. 

c) Sensor's parameters (baseline, incidence angles and range distances):  

Baseline differences could have affected the resulting changes and this can 

be attributable to the sensitivity of the interferometer. Baselines from the 

TanDEM-X acquisitions used for the analysis were 95.3 m (𝑇𝐷𝑋𝑡1) and 52 m 

(𝑇𝐷𝑋𝑡2) resulting in higher precision for the former dataset. The acquisitions 

were chosen among those provided by DLR to ensure the most similar 

acquisitions based on seasonality (dry season) and similarity between 

acquisition parameters (incidence angle).  

A modelling approach (see section 5.5.5) was used to assess the impact of 

different baseline choice, incidence angles and range distance on the resulting 

change estimates of the same natural targets. The maximum difference is of the 

order of 1 m (decrease in PCH), and occurs for lower extinction and 50 m 

volume height. Notice that a -1 m difference corresponds to the mean of the 

distribution of samples taken within the primary forest control area. Therefore, 

DSM changes within a stable forest area can be ascribed to differences in 

instrumental parameters.  

d) Phase noise:  

Phase noise, estimated from the absolute volume of the coherence, was 

accounted for as one component in the error propagation affecting the estimate 

of the SEOM (section 5.5.3). 
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5.7.3. Deforestation, Forest Degradation and Re-growth Spatial 

Patterns  

TanDEM-X DSM object-based change detection enables both positive and 

negative PCH shifts to be mapped and consequently the spatial relationship 

between the two processes can be inferred. This capability was exploited to 

increase the likelihood of the ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects to effectively belong to post-

disturbance re-growth occurring after shifting cultivation. ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects 

which were < 500 m from ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects (subset B) were considered more 

likely to be post-disturbance re-growth. 

The minimum distance between the two processes was variable and ranged 

from 34 m to 497 m (mean ± standard deviation: 278 ± 119 m) (subset B in Table 

8). We believe that this is related to the fact that the analysis spanned only 1 year 

with only 2 acquisitions available. In other words, correlation in space of the two 

categorical events (deforestation/forest degradation and re-growth) may only be 

achieved by proper sampling in time. However, this could not be verified due to 

lack of a dense time-series.  

A possible influence on the estimation of the minimum distance concerns 

the method used. The distance between ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 and ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects 

was calculated by considering the minimum distance between the objects 

centroids. ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects shape was not as regular as ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects; 

for instance objects along road networks were elongated as they followed a 

linear feature. This pattern would have introduced a bias in the distance 

calculation. Other approaches should be tested in the future. 

Given the process dynamics arising from clearing, abandonment and re-

clearing with a close coupling between deforestation and post-disturbance forest 

re-growth (Skole, et al., 2004) denser time-series spanning several years would 

provide finer detailed information on the spatial patterns and enable a better 

understanding of whether deforestation/forest degradation is expanding from 

road networks towards primary forest or whether old clearings are primarily re-
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used (and how long is the time elapsed between field abandonment and re-

clearing). 

Forest changes can be classified as “diffuse” or “corridor” patterns 

according to (Mayaux, et al., 2013). The “diffuse” pattern of disturbance consist 

of isolated small openings (traditional shifting cultivation) while, the “corridor” 

pattern of disturbance is characterised by contiguous patches along road 

networks (either old logging roads or forest clearings). 

Visual interpretation of the final change map shows “corridor” patterns 

associated with ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 objects (post-disturbance re-growth) in accordance 

with Mayaux et al. (2013) mainly located along road networks, which link the 

main rural communities (Sessions, 2007), within abandoned logging roads and 

also within the logging concessions (Figure 17). Instead, the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

objects, were often isolated within the lowland forest within currently inactive 

logging concessions and can be classified as having a “diffuse” pattern (Figure 

17). 

In the Northern Congo selective logging is one of the major forest 

degradation drivers with the most visually perceptible damage related to 

logging roads (Gullison & Hardner, 1993). Here logging roads construction rates 

have increased dramatically through time (from 156 km/year between 1976-1990 

and 660 km/year from 2000 onwards) (Laporte, et al., 2007). The legacy derived 

from the presence of old inactive logging roads (often re-vegetating) is still 

visually appreciable in the TanDEM-X ∆𝐷𝑆𝑀 image. A study based on optical 

data found that median persistence of logging roads was 4 years and after 20 

years complete disappearance was observed in the Northern Republic of Congo 

(Kleinschroth, et al., 2015). 

Extracting re-growing vegetation developing on abandoned road networks 

was challenging. Old logging re-vegetating roads were visually identified in the 

∆𝐷𝑆𝑀 image but it was not possible to extract most of these areas using the 

morphological algorithm since growth was often limited in terms of magnitude 

and fragmented within 1 year. However, the dataset and the approach used 
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holds potential for extracting these features by considering a longer time-frame 

(e.g. > 1 year). This will provide higher change magnitude that would be better 

segmented thanks to the increased contrast with the surrounding stable areas. 

On the contrary, canopy gaps closure observed by optical remote sensing 

can occur within 50 days after disturbance (Verhegghen, et al., 2015); in this case, 

canopy gaps due to selective logging might have been detected (subset A in 

Table 7) but there is no way to validate this assumption using the available data. 

The combination of ancillary information related to previous selective logging 

operations inside the logging concessions might help to validate these changes 

but this is rarely made available from logging companies. We therefore, 

partitioned the detected changes into changes that have a higher chance of being 

"true" and due to shifting agriculture (subset B in Table 7) and changes that 

could be related to other drivers including selective logging (magnitude 

between -7 and 0 m and area ≤ 100 TanDEM-X pixels) (subset A in Table 7) (see 

section 5.5.6). 

5.7.4. Validation Using High Resolution Optical Data 

High resolution optical imagery has become the norm for validating other 

remote sensing studies (Mermoz & Le Toan, 2016) and in particular the use of 

freely available Google Earth imagery (Dorais & Cardille, 2011). This is often 

preferred due to reasons related to area coverage and lack of possibility to 

collect ground data in remote and inaccessible tropical forest. 

 

a) ∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 (deforestation/forest degradation) subset B (n= 2137):  

 78 (87.6%) out of the 89 disturbed areas delineated manually (DEF/DEG) using 

two Pléiades imagery intersected (some only partially) the TanDEM-X change 

objects. This proves a good performance of the method. 

 11 out of 89 (12.3% miss rate) DEF/DEG objects detected in the optical dataset 

were missed by the TanDEM-X change map. This can be explained either by an 
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omission error in the detection algorithm or a commission error during the 

visual interpretation of the optical data. 

 Visual interpretation of the ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 objects indicates that these were both 

non-forest (or young secondary forest or degraded forest) in both Pléiades 

acquisitions. The reason for the TanDEM-X detecting these was because the 

acquisition of the first TanDEM-X scene occurred about 3 months before the first 

Pléiades acquisition. We verified this using an independent data product. We 

used the Hansen et al. (2013) forest loss dataset and verified visually that some 

of the change areas that were detect by TanDEM-X are not visible between the 

two Pléiades dates. 

 Changes detected by TanDEM-X were generally larger in size compared those 

observed by comparison of two Pléiades images and this can be attributed to 

two distinct approaches affected by a different set of errors: a computational 

automatic change detection algorithm using TanDEM-X DSMs against the user 

defined manual delineation of deforestation events using Pléiades. The 

validation method was aimed at assessing the performance of the TanDEM-X 

change detection; other validation methods should be used to compare change 

properties such as area or change magnitude. 

 

b) ∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 (post-disturbance re-growth):  

 Pléiades imagery was not sufficient for the validation of forest re-growth since 

the spectral properties of re-growth at various stages are visually similar after 1 

year. The only way to validate these should involve height change estimates that 

are only available from three-dimensional remote sensing datasets (e.g. repeat 

LiDAR surveys or repeat drone based digital elevation models) and/or through 

repeat ground-based height estimates, detailed visual assessment and 

knowledge of species composition changes.  
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5.8. Conclusion and Future Work 

Technological advancement in spaceborne SAR and InSAR satellites now 

enables the provision of unprecedented datasets in terms of: (a) increased 

resolution; (b) revisit time and (c) 3D (height as a function of space coordinates) 

information. The TanDEM-X mission encapsulates these advantages (high 

resolution 3D information at 11 days revisit time). Albeit, the 11 day revisit is 

possible only if the acquisitions are ordered in advance, systematic revisit times are 

far lower. 

 We highlight the potential of using an object-based approach as an alternative 

to a pixel-based approach, which provides objects encapsulating either negative or 

positive DSM changes occurring between two TanDEM-X acquisitions.  

The approach provided significant information in terms of: (a) forest structure 

change magnitude and (b) area changes linked to deforestation, forest degradation 

and to a certain extent post-disturbance re-growth at high resolution (< 5 m) in 

tropical forest where optical remote sensing is hindered by cloud cover. This is a 

significant step forward compared to SAR backscatter pixel-based change detection, 

which is limited by the ability of scattering physics to sense the forest vertical 

structure function, and by speckle noise precluding the detection of subtle processes 

(e.g. degradation and re-growth).  

Of particular significance is the potential for detection of post-disturbance re-

growth (on a yearly basis), which we appear to have been detected to a certain 

extent despite having only a single year of data but this could not be  validated due 

to lack of appropriate validation datasets. This ability to map and assign a 

magnitude value to re-growth will need further investigation by employing longer 

DSM time-series, as the changes in PCH will increase with time and will be outside 

of the noise level and greater compared to no-change areas.  

The potential of InSAR for tropical forest monitoring has relatively been little 

researched given the limited availability of operating spaceborne satellite missions 

(even less so single-pass interferometers such as TanDEM-X, as this is the first such 
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satellite mission) and in particular for the detection of changes that are spatially and 

temporally limited (e.g. forest degradation).  

Understanding PCH modulation with target properties (e.g. density) and the 

impact of external influences (seasonality and meteorological conditions) remains 

currently still vastly unexplored. Currently, there is still a significant gap in 

understanding new datasets and thus, methods are being developed rapidly but are 

not yet operational. 

It is widely suggested to the remote sensing community to incorporate 3D 

information from InSAR to support international restoration/conservation initiatives 

for the provision of activity data (e.g. REDD+), in particular in areas where cloud 

cover and rapid spectral reflectance recovery is an issue for optical sensors and as 

SAR backscatter is not sensitive enough to detect 3D structural changes, such as 

more subtle degradation and re-growth patterns (Global Forest Observations 

Initiative, 2016).  

The approach can be applied to pairs of InSAR DSMs (or a longer time-series) 

which can currently only be provided by TanDEM-X with sufficient spatial 

resolution and phase noise variance to afford the results obtained in the present 

study. Testing the approach on Sentinel-1 InSAR (repeat pass interferometry) is of 

great interest, but performance would be limited by the interferometer 

configurations (baselines), and the ability to have enough coherence due to temporal 

decorrelation. On the other hand, increased data availability would lay the 

possibility of covering a larger area of the tropics. Denser and longer TanDEM-X 

DSMs time-series could in principle provide improved mapping of the events 

dynamics in future work. 

For this purpose, Sentinel-1 Interferometric Wide Swath mode (IWS) data (at a 

reduced spatial resolution 5 x 20 m) is also foreseen to provide interferometric data 

with advancements in forest monitoring, although restricted to repeat-pass 

acquisitions (European Space Agency, 2013). 

The future launch of TanDEM-L aims to provide a global DEM (closer to 

ground topography by operating at longer wavelength) (Moreira, et al., 2015). 
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Synergy between TanDEM-X and TanDEM-L holds great potential for the 

generation of a global vegetation height (Eineder, et al., 2014).  

Finally, the DSM differencing approach by InSAR could be extended by 

incorporating ground-based above-ground biomass estimates that would allow 

conversion from forest volume change to biomass change and thus used for REDD+ 

sampling schemes to estimate carbon stock loss.  
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6. Summary and Implications 

6.1.  Summary 

The chapter summarises the findings from Chapter 3, 4 and 5. Implications and 

suggestions for future research developments for mapping and monitoring 

degraded forests through the structural information provided by SAR and InSAR 

observations are reported.  

6.1.1. Chapter 3 

Spatial statistic of SAR backscatter at C- and L-band was extracted using a 

wavelet analysis technique. The analysis sought to assess the capability of these 

textural measures to discriminate between intact forest (IF) and degraded forest 

(DF) as well as other landcover types including forest-agriculture mosaic (FAM) and 

forest-savanna (FS). These classes were mapped independently using ancillary 

datasets and expert knowledge to provide a ‘ground truth’ dataset against which to 

develop the statistics. 

There were two specific sets of analyses to address the objectives of Chapter 3, 

these are covered separately below, followed in each case by a summary of what 

was found: 

1. Qualitative interpretation of the wavelet statistics related to landcover classes 

(IF, DF, FAM and FS) 

ENVISAT ASAR backscatter findings: 

 IF, DF and FAM signatures reveal correlated stationary random processes 

with correlation length at short scales (~ 42 m for IF and DF and ~ 60 m for 

FAM) 

 FS signature indicates non-stationarity with increasing variance with scale, 

due to the presence of intermittency (trees within grassland). 
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 In terms of separability based on scale by scale distance between signatures, 

IF and DF are well separated from FAM and FS at scales up to 22. However, 

separation between IF and DF appears weak at all scales. 

 

ALOS PALSAR backscatter findings: 

 At HH polarization the signature functional form is similar to the ENVISAT 

ASAR signatures, although with reduced wavelet variance magnitude. This 

feature indicates that L-band HH scattering is influenced by the upper 

canopy layer variations, in the same way as C-band, only less so due to 

deeper penetration into the forest volume. 

 At HV polarization the signatures of IF and DF reveal the onset of a white 

noise process (no textural features). This happens because depolarization is 

caused by volume scattering and therefore the sensitivity to upper surface 

variation is lost. HV polarization is therefore not useful in the present 

context, and is not analyzed further. 

 

2. Functional analysis by means of polynomial approximations of the wavelet 

signatures to improve separability between IF and DF 

Findings: 

 The two main functional forms that were useful for differentiating IF and DF 

are the signature sill (first maximum) and the inflection point, these 

corresponding to correlation length and the onset of anti-correlations. These 

two forms are identified numerically by the zero-crossings of the first and 

second derivative of a polynomial approximation. 

 For, ENVISAT ASAR backscatter, the two functional parameters (first and 

second derivative) of the IF and DF signatures are both statistically different 

at 0.05 confidence level. 

 In contrast, for ALOS PALSAR backscatter (L-band, HH polarization), the 

difference between IF and DF signatures was not statistically significant.  
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 ALOS PALSAR backscatter (HH polarization) is sensitive to the large 

scattering elements in the top layer of the canopy, and therefore, develops 

sensitivity to the forest structure in a similar way to C-band VV, although 

with less strength due to the increased penetration. 

 It is hypothesized that the success of C-band is due to the low penetration 

into the canopy, the backscatter return comes primarily from the top of the 

canopy components, and it is modulated by local incidence angle variation 

and extinction (micro-topography effect). In this environment the roughness 

of the upper canopy is a good indicator of the level of disturbance. The L-

band penetration is too high to capture the upper canopy roughness alone 

and is also influenced by the ground return. 

6.1.2. Chapter 4  

This chapter aimed to assess the capability of DSMs derived from TanDEM-X 

data to detect the difference between primary forest (PF), secondary forest (SF), 

mixed-scrub (MS) and grassland (GR) which developed from a well-mapped large 

forest fire in Indonesian Borneo. The link between forest canopy structure, 

measured by LiDAR CHM and TanDEM-X DSM spatial statistic provided by 

wavelet spectra in the space-scale domain was analysed. Ways of de-coupling the 

dependence on forest structure and topography were sought with the goal of 

arriving at estimates of thematic class separability based on TanDEM-X DSM 

wavelet spectra. 

Four main analysis were performed: 

1. TanDEM-X DSM dependence on forest structure and topography  

The adopted wavelet acts as a differential operator. Therefore, at the scales 

where (locally) variation of topographic height is negligible, the wavelet 

variance will only be sensitive to the variation of forest canopy height. The 

topographic component will not depend on the absolute value of topographic 

height within the range of scales where the signal can be modelled by the sum of 

a constant (topography) and of a random process (canopy height). 
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Findings: 

 Topographic features are characterized by wavelet variance analysis 

(wavelet signatures) of LiDAR DTM, revealing smooth texture patterns up to 

200 m with regular (almost periodic patterns) arising beyond 200 m (low 

frequencies). These patterns are also visible in the LiDAR DSM and the 

TanDEM-X DSM wavelet signatures, as expected since these data include the 

DTM information. 

 Forest canopy structural features are characterized by wavelet signature of 

LiDAR CHM, revealing that these features are reflected in short scale 

(between 1-10 m) (high frequencies) textural information. Importantly, these 

high frequency textural patterns are also appreciable in LiDAR DSM and 

TanDEM-X DSMs, this setting the stage for forest structural measures also 

based on this data.  

 Wavelet co-variance provides indication on the textural correlation between 

LiDAR and TanDEM-X datasets. At shorter scales, the texture correlation 

between LiDAR DTM and TanDEM-XDSM is one order of magnitude lower, 

especially at scales typical of canopy width and gaps. This fact reinforces the 

point that although the TanDEM-X DSM is affected by the DTM noise, 

information on vegetation structure can still be detected as it happens at a 

different scale range. 

 

2. Connection between the spectrum polynomial approximation at short scale 

and the forest height variance. 

The variance of the LiDAR CHM and TanDEM-X DSM observations is 

estimated locally (in space) by the first polynomial coefficient (𝑃0) of the 

fitted wavelet spectrum. From 𝑃0 statistics consideration were derived about 

the link between the natural process (forest height) variance and the wavelet 

measures. 

 



Chapter 6- Summary and Implications 

 

245 

 

Findings: 

 LiDAR CHM 𝑃0 is well correlated with the process standard deviation (R2 = 

0.77, N = 315). 

 TanDEM-X DSM 𝑃0 is well correlated with the process standard deviation 

(R2 = 0.72, N = 315). 

 LiDAR CHM standard deviation was weakly correlated with TanDEM-X 𝑃0 

(R2 = 0.34, N = 315). This case reinforces the fact that the TanDEM-X DSM 

process is not related in a simple way to the CHM process, but it is the result 

of the superposition of several random processes, such as terrain topography 

and InSAR phase signal to noise ratio. 

 The area occupied by large emergent trees (> 35 m) is a good indicator to 

explain why SF presents a lower canopy roughness compared to PF and to 

explain the resulting texture appreciable in LiDAR and TanDEM-X 

observations. It was found that, the area occupied by large emergent trees 

(>35 m) in SF plots is significantly different from PF (p < 0.01, N = 222).  

 

3. Class separability provided by 2D wavelet spectra 

LiDAR Wavelet Spectrum (LiDARCHMWS) and TanDEM-X Wavelet 

Spectrum (TDXDSMWS) separability at 4 scales of decomposition was performed 

based on pairwise Jeffries-Matusita (JM) distance and expected classification 

error (𝑃𝑒) was calculated. 

Findings: 

 Separability by considering each decomposition scale individually indicates 

that information at all scales when taken singularly do not bear significant 

information to discriminate landcover classes. 

 Analysis of the full wavelet spectrum (i.e. either all dyadic scales or the 

spectrum polynomial functional representation) was essential to improve 

separability. 
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 Higher JM separability was found using the full wavelet spectrum (LiDAR: 

1.29 ≤JM≤ 1.39; TanDEM-X: 1.18 ≤JM≤ 1.39) compared to using each 

decomposition scale individually (LiDAR: 0.1 ≤JM≤ 1.26; TanDEM-X: 0.1 

≤JM≤ 1.1). 

 Class separability based on the full LiDARCHMWS is high between all class 

pairs (most importantly, JM distance= 1.36 between PF and SF). 

 Class separability based on the full TDXDSMWS is high between all class pairs 

(most importantly, JM distance= 1.18 between PF and SF). 

 The JM separability difference between pairs MS/PF, MS/SF and SF/PF for 

LiDAR and TanDEM-X was 0.06, 0.08 and 0.18 respectively.  

 Expected classification error (𝑃𝑒) between PF and SF ranged between 2.32%-

15.22% (TanDEM-X) and 0.38%-6.18% (LiDAR). 

 The highest 𝑃𝑒using TDXDSMWS was found between the class pair GR/MS (𝑃𝑒 

lower bound: 3.13% and 𝑃𝑒 upper bound: 17.68%). 

 The highest 𝑃𝑒 using LiDARCHMWS was found between the class pair MS/SF 

(𝑃𝑒 lower bound: 1.31% and 𝑃𝑒 upper bound: 11.46%). 

6.1.3.  Chapter 5  

Chapters 3 and 4 considered the texture of single time acquisitions to 

distinguish disturbed forest, undisturbed forest and other landcover types. Chapter 

5 took a different approach, using InSAR DSMs as in Chapter 4, but using two 

acquisitions a year apart to map negative and positive DSM changes (∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 

and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒) which could be related to deforestation/forest degradation and re-

growth.  

A crucial point is that ∆𝐷𝑆𝑀 depend only on shifts of the phase center height 

(PCH) due to changes of the vegetation volume, while the component due to 

ground return is a constant. Therefore, influence of terrain elevation on the change 

estimates is minimized (residuals are due to instrument configuration). Objects 

within the ∆𝐷𝑆𝑀 data are searched and labeled using a neighboring point similarity 

criterion. Object changes are detected by comparison of first order statistic with 
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control areas of no change. The object-based algorithm performed well in terms of 

improved signal to noise ratio, and for the capability of affording measures, such as 

object areas. The approach allowed to identify vegetation loss events, estimate their 

size and strength and to validation them. Gain events were also mapped, although 

with less statistical evidence due to much smaller dynamics, and their validation 

could not be performed due to lack of reference data. 

Six main analyses were performed: 

1. A shift in TanDEM-X PCH (∆𝑫𝑺𝑴) provides estimates of forest loss (complete 

or partial loss associated with deforestation and forest degradation 

respectively) and forest gain (forest re-growth) between 2012-2013. 

Findings: 

 Mean ∆𝐷𝑆𝑀 loss ranged from -19.7 to -5.2 m (-7.1 ± 1.4 m). 

 Mean ∆𝐷𝑆𝑀 gain ranged from 1.6 to 4.4 m (2.4 ± 0.3 m). 

 Small scale ∆𝐷𝑆𝑀 loss (< 1 ha) was detected successfully due to high 

resolution (∆𝐷𝑆𝑀 loss area was 0.28 ± 0.61 ha). 

 Average size of ∆𝐷𝑆𝑀 gain objects was 7.51 ± 14.32 ha. 

 Deforestation/forest degradatation statistics (subset B) (mean ± standard 

deviation): -7.9 ± 1.5 m (magnitude); 0.41 ± 0.83 ha (area). 

 Post-disturbance re-growth statistics (subset B) (mean ± standard deviation): 

2.6 ± 0.4 (magnitude); 8.88 ± 18.11 ha (area). 

 

2. Accuracy of the ∆𝑫𝑺𝑴 estimates using Standard Error of the Mean (SEOM). 

Findings: 

 SEOM (mean ± standard deviation) was 1.74 ± 0.72 for ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and 1.19 

± 0.27 for ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒. 

 

3. Effect size (𝑬𝒔𝒊𝒛𝒆) index, based on the standardised difference of means, was 

calculated to assess the significance of the ∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 and ∆𝑫𝑺𝑴𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 
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objects in comparison to two stable areas: undisturbed lowland primary forest 

(𝑷𝑭𝑪) and swamp forest (𝑺𝑾𝑪). 

Findings: 

 𝐸𝑠𝑖𝑧𝑒 statistics (∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝐹𝐶) (mean ± standard deviation): 5.2 ± 0.69 and 

∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑊𝐶 statistic: 5.58 ± 0.84. 

 𝐸𝑠𝑖𝑧𝑒 statistics (∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝐹𝐶) (mean ± standard deviation): 2.53 ± 0.4 and 

∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑊𝐶 statistic: 2.36 ± 0.38.  

 For 𝐸𝑠𝑖𝑧𝑒= 1.5 the probability of Type I error is 6.6% (detecting as true change 

a sample that is noise). 

 Based on this interpretation, a threshold 𝐸𝑠𝑖𝑧𝑒= 1.5 was set in the 

development of the change detection for both ∆𝐷𝑆𝑀𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 and ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

objects. 

 

4. DSM changes dependence on sensor’s parameters (baseline, incidence angle, 

and range distances).  

Findings: 

 Modelling results indicate that the maximum difference is of the order of 1 m 

(decrease in PCH), and occurs for lower extinction and 50 m volume height. 

Notice that a -1 m difference correspond to the mean of the distribution of 

samples taken within the control area. Therefore, DSM changes within a 

stable forest area can be ascribed to differences in instrumental parameters. 

 

5. Visual interpretation of the change map. 

Findings: 

 Positive changes (post-disturbance re-growth) distribution can be classified 

as “corridor” patterns (Mayaux, et al., 2013) clustered around road networks 

and urban areas. 

 Negative changes (deforestation/forest degradation) detected can be visually 

interpreted as having a “diffuse” pattern (Mayaux, et al., 2013) located inside 
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logging concessions but in some cases located around post-disturbance re-

growth areas.  

 Old logging re-vegetating roads were visually identified in the ∆𝐷𝑆𝑀 image 

but it was not possible to extract them using the morphological algorithm 

since re-growth magnitude was often relatively low and fragmented within 

a 1 year period. 

 

6. Validation of the ∆𝑫𝑺𝑴𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 objects was undertaken by manually 

delineating deforestation/degradation change objects (DEG/DEF) using two 

very high resolution Pléiades scenes. 

Findings: 

 78 out of 89 (87.6% hit rate) DEG/DEF objects were detected by the TanDEM-

X change map. 

 11 out of 89 (12.3% miss rate) DEF/DEG objects detected in the optical 

dataset were missed in the TanDEM-X change map. This can be explained 

either by an omission error in the detection algorithm or a commission error 

during the visual interpretation of the optical data. 

 Changes detected by TanDEM-X were generally larger in size compared 

those observed by comparison of two Pléiades images and this can be 

attributed to two distinct approaches affected by a different set of errors: a 

computational automatic change detection algorithm using TanDEM-X 

DSMs against the user defined manual delineation of deforestation/forest 

degradation events using Pléiades scenes.  

 ∆𝐷𝑆𝑀𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  objects validation was not undertaken and it requires further 

research including ancillary remote sensing datasets (e.g. LiDAR). 
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6.2. Implications 

The implications from the results can be partitioned as follows: a) 

methodological implications for future remote sensing research and b) implications 

for mapping and monitoring forests. 

6.2.1. Methodological Implications  

a) Wavelet based spatial statistic measures of SAR backscatter and InSAR DSMs 

to distinguish intact forest from degraded/secondary forest:  

 Discrimination between intact and degraded forest using optical remote 

sensing is known to be challenging due the inability to detect the three-dimensional 

distribution of plant material (Lucas, et al., 2014). It is also challenging using one-

point statistic of SAR backscatter data due to speckle noise (Oliver & Quegan, 2004), 

signal saturation and moisture influence (e.g. Liesenberg, et al., 2016). 

This thesis is based on the principle that a connection can be established by 

physical considerations from the forest structural characteristics and the spatial 

statistic of the SAR signal, this being not only the backscatter, but more importantly, 

also the InSAR DSM. Grounded on this principle, space-frequency analysis 

provided by a wavelet representation was adopted as the tool that could provide 

the best numerical results in terms of signal processing quality factors.  

In the specific thematic context, the passage from one-point to two-point 

statistic, and from 2D intensity data to 3D elevation data has confirmed that 

considerable improvements could be achieved for discrimination between intact 

forest and disturbed forest compared to one-point measures of backscatter alone 

(Luckman, et al., 1997; van der Sanden & Hoekman, 1999). 

It is to be noted that the proposed method for deriving measures of forest 

spatial distributional properties, which on a perceptive standpoint could be called 

“textures”, rests on a solid mathematical ground provided by the theory of random 

processes, and on a solid physics ground, provided by wave scattering theory. In 

this sense, it departs considerably from other approaches for spatial measures, such 

as edge density, shape grammars, Boolean models or co-occurrence matrices (Petrou 
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& García Sevilla, 2006). As for all methods based on physical-mathematical 

principles, as opposed to empirical solutions, the implication is that interpretation of 

the results can be guided by known statistical concepts (i.e. process variance and co-

variance, correlation). The rigorous underlying statistical theory also implies that 

the method be extensible either to different thematic contexts, or to different (future) 

remote sensing observations (e.g. Sentinel-1 or CosmoSkyMed). 

Techniques based on wavelet spectra with SAR imagery and in particular with 

InSAR DSMs have, to the best of our knowledge, never been used in the thematic 

context of detecting degraded forest (or secondary forest). Chapter 3 and Chapter 4 

have contributed to testing these techniques on SAR backscatter and InSAR DSMs 

respectively. 

Chapter 3 showed greater discrimination based on spatial statistical measures 

at shorter wavelength (ENVISAT ASAR C-band VV backscatter) compared to longer 

wavelength (ALOS PALSAR L-band HH backscatter). This suggests that the 

relevant structural properties are better captured by textural measures at shorter 

wavelength because of lower penetration within the canopy and consequently 

improved ability to characterise upper canopy roughness. The result has 

implications for future application using other short wavelength SAR sensors, for 

instance ESA C-Band Sentinel-1 or X-band SAR (e.g. TerraSAR-X or TanDEM-X 

backscatter). Notice that, on the contrary, when considering one-point statistic of 

intensity that longer wavelengths are better for forest/non-forest mapping (van der 

Sanden, 1997). A combination of C-band texture and L-band backscatter could 

improve classification accuracy. 

Furthermore, wavelet signature cross-correlation techniques used in Chapter 3 

can be applied to Sentinel-1 backscatter time-series to track canopy structure 

changes through time. The same technique can be in principle tested on multiple 

TanDEM-X DSM acquisitions as well. 

Chapter 4 also employed wavelet-based textural measures to capture 

information on the upper canopy structure (roughness) to discriminate between a 

structurally complex primary forest and forest recovering after the 1997/1998 El 
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Niño driven forest fires as well as other landcover classes (mixed-scrub and 

grassland).  

The main limiting factor for mapping disturbed forest by InSAR DMS spatial 

statistic is resolution in range-azimuth, rather than in height. This point is confirmed 

by comparison with spatial statistic afforded by the higher resolution LiDAR CHM 

data (1 m). This obstacle implies that future research should exploit higher 

resolution TanDEM-X imaging modes (such as SpotLight), super-resolution 

techniques based on multi-temporal data, or future spaceborne interferometers 

acquiring higher resolution data. However, this will inevitably result in a reduced 

extent covered. 

b) TanDEM-X DSM differencing method to map deforestation and forest 

degradation 

The use of an object-based change detection approach has major implications 

for the detection of forest changes. The approach enables us to extract contiguous 

objects characterised by a decrease in Phase Centre Height (PCH) based on the 

mean values estimates as opposed to a pixel-based approach which would consider 

the distribution of samples. The advantage of dealing with an object-oriented 

approach is that the variance of the estimates used for detection, due to propagation 

of error and the intrinsic variance of the samples in the object, is much smaller than 

the one related to the samples in the object.  

The magnitude of changes within the object reflects disturbance intensity 

whereby, a higher ∆𝐷𝑆𝑀 decrease can be linked to deforestation and a lower 

magnitude can be associated with forest degradation. Finding the appropriate 

threshold to distinguish between complete deforestation and degradation requires 

further work based on coherence analysis. 

 

c) TanDEM-X DSM differencing method to map forest re-growth  

Forest re-growth changes were more challenging to detect compared to forest 

loss. This can be explained by (a) forest re-growth is a much slower processes, and 
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we only had one year of difference; (b) spatial and phase resolution of the sensor 

does not match single tree growth; (c) the measured DSM difference is only a proxy 

to forest volume change. It does not follow linearly an increase in forest volume, 

because it does not depend only on height, but on other variables, mainly the 

vertical structure function (demonstrated in Chapter 5). Tracking significant, long-

term forest recovery requires high accuracy, high resolution and approximately a 

minimum 1 year time-lag between two acquisitions to be detected. 

The results have major implications and are promising since forest re-growth is 

usually not detectable using optical spectral reflectance as the three-dimensional 

distribution of the plant material cannot be observed (Lucas, et al., 2014) and SAR 

backscatter is not sensitive enough to subtle changes due to removal of plant 

material and attaining similar values to undisturbed forest at the wavelengths 

available currently (e.g. Mitchard, et al., 2011). Moreover, the approach is promising 

as a changes in PCH is proportional to a change in forest biophysical parameters. 

The approach developed in Chapter 5 provides an initial step to detect and map 

post-disturbance re-growth and given the important implications it requires further 

work, refining the methods and testing it using denser time-series involving more 

than two steps. 

 

d) TanDEM-X DSM differencing method to provide carbon stock changes 

The method could be used for REDD+ projects sampling schemes to provide 

carbon stock loss due to degradation, an area of considerable interest as no current 

satellite systems provide such data. 

 IPCC Good Practice Guidance states that emissions need to be reported as the 

activity area by the emission factor (Penman, et al., 2003). TanDEM-X difference 

approaches would be able to provide the emission factor per unit of ∆𝐷𝑆𝑀 (m) 

instead of per unit area (ha) (Solberg, et al., 2015). A pre-requisite for this is that the 

InSAR height needs to be proportional to AGB and stable over time (Solberg, et al., 

2015). A linear relationship between InSAR height and AGB was found for a boreal 

forest site (Solberg, et al., 2014) and for miombo woodland (Solberg, et al., 2015) but 
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this approach has not yet been tested in more structurally diverse tropical forest 

(e.g. in the Congo Basin tropical forests), a priority area for REDD+ projects to be 

developed. However, the scope of the PhD was not to assess the relationship 

between AGB and InSAR height since this would require ground-based AGB 

estimates which were not available for the site. This should be considered in future 

research. 

 

e) Independence of forest height changes from terrain elevation in the TanDEM-

X DSM differencing method 

Chapter 5 demonstrated that using a pair of multiple TanDEM-X observations 

we could map (spatially) and measure the magnitude of changes in forest height in 

the resolution element (forest volume) independently from the stable topographic 

component. This has implications for extraction of the signal due to canopy volume 

(as terrain elevation contributes to the DSM, albeit at low spatial frequency, as 

demonstrated in Chapter 4).  

Removing the terrain elevation component from a DSM without the use of an 

external DTM has implications for the extraction of canopy height variation alone 

which could only otherwise be accomplished using an auxiliary DTM (e.g. from 

LiDAR). Given that there are currently no high resolution DTMs available from 

spaceborne radar (aside from a low resolution 90 m C-band DEM provided by the 

Shuttle Radar Topographic Mission) or spaceborne LiDAR which are able to 

provide topography information, the approach used in Chapter 5 is a key outcome 

with major implications to study vegetation structure.  

The forthcoming launch of NASA's Global Ecosystem Dynamics Investigation 

(GEDI) mission will provide topography information (Qi & Dubayah, 2016) which 

could potentially be used in combination with TanDEM-X but currently removal of 

terrain elevation through TanDEM-X differences is the only available option. 

Currently, TanDEM-X is also the only available single-pass spaceborne 

interferometer (Krieger, et al., 2007) and source of radar based DSMs.  
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Given the promising research findings there is great potential for mapping 

those changes that are due to complete or partial forest loss (deforestation/forest 

degradation) and gain (forest re-growth) using three-dimensional spaceborne radar 

so planning future missions that acquire data in single-pass interferometric mode 

should be considered a priority as well as using the current data provided by 

TanDEM-X. 

6.2.2. Implications for Forest Mapping and Monitoring  

The UN Framework Convention on Climate Change (UNFCCC) has recognised 

the contribution of forest degradation (in addition to deforestation) as an important 

part in global carbon emissions by including it into the Reducing Emissions from 

Deforestation and Forest Degradation scheme (REDD+) (UNFCCC, 2008; UNFCCC, 

2015). Forest degradation emissions are reported to have contributed to 25% of the 

total emission from deforestation and forest degradation (2005-2010 estimates) 

(Pearson, et al., 2017). Efforts to reduce and eventually reverse deforestation and 

forest degradation to provide about 20% of the reduction in greenhouse gases are 

crucial but the capacity to estimate these operationally is still lacking with 

methodologies lagging behind data availability. 

So far, optical sensors capabilities have been extensively researched and are 

routinely used to support deforestation mapping (e.g. PRODES from INPE using 

Landsat) (Souza, et al., 2013) and globally (Hansen, et al., 2013). Attempts have also 

been made to use optical data to map forest degradation (Stone & Lefebvre, 1998; 

Souza, et al., 2005; Hirschmugl, et al., 2014), but with mixed results so far. 

Fundamentally, optical data cannot see through the top layer of the canopy, so sub-

canopy degradation will remain invisible unless accompanied by secondary features 

such as logging roads (see Chapter 1). 

SAR is not currently used much for operational forest monitoring despite its 

many well established advantages. Its use is likely to be further enhanced by the 

large amount of freely available data from ESA Sentinel-1 (European Space Agency, 

2013), increase in commercial data availability (e.g. TanDEM-X), increased 
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automated processing and as algorithms will be further developed (Global Forest 

Observations Initiative, 2014). 

The use of InSAR to support REDD+ projects is even less developed (especially 

as TanDEM-X, the only spaceborne single-pass interferometer has only been 

available since 2010) (Krieger, et al., 2007) and requires much research. In this 

context, Chapter 4 and Chapter 5 provide important developments and increased 

understanding of the role of InSAR for this purpose. 

Whilst, the PhD thesis was not set up to directly contribute to REDD+ 

initiatives, it seeks to improve understanding of how canopy structure changes are 

reflected in spatial statistics of SAR backscatter and InSAR DSM and the potential of 

InSAR DSM change detection. This has implication for the future use of SAR and 

InSAR approaches that can be fed into international initiatives once these 

approaches can be considered robust enough to be used operationally.  

 As well, as for international initiatives such as REDD+ projects, local scale 

conservation projects could also benefit from the use of SAR and InSAR remote 

sensing to provide estimates of deforestation as well as forest degradation and re-

growth.  

Conservation and restoration practices have been primarily targeted towards 

the conservation of intact forests (Lewis, et al., 2015) but as the proportion of these is 

set to be decrease in the future due increased pressure, for instance, impacts of 

forest fires due to El Niño patterns that are forecasted to become more frequent and 

of increased magnitude (Cai, et al., 2014), timber extraction from extensive areas of 

forest granted to logging concessions (e.g. in the Congo logging concessions occupy 

42.9% of the land area) (Nasi, et al., 2012) there is a need for conservation and 

restoration efforts to target these areas too. Moreover, the combination of multiple 

degradation drivers affecting the same area (e.g. selective logging followed by fire 

disturbance) exacerbates the vulnerability to future disturbance events (Siegert, et 

al., 2001). This has also been recently observed in the Congo Basin, where dry 

conditions driven by El Niño have increased forest flammability leading fires to 

spread from logging concessions (Verhegghen, et al., 2016).  
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Knowledge on the location and extent (as well as changes in carbon stocks) of 

degraded forest is crucial to inform forest management (e.g. it can provide estimates 

of the ability of forests to recover after disturbance), conservation (e.g. provide 

information on conservation value based on the magnitude of degradation) 

(Chapter 5) and to prioritise areas suitable for restoration projects (Chapter 3, 4 and 

5). 

More specifically, Chapter 5 has shown the potential of high resolution InSAR 

(< 5 m resolution) for detecting shifting cultivation and the magnitude of change in 

areas where this is undertaken by small holders at sub-hectare scales primarily (~ 

0.25 ha in certain areas of the Congo Basin) (Wilkie, et al., 1998) to hectare scales 

(Brown & Lugo, 1990). The higher resolution of TanDEM-X (4.6 m) makes it suitable 

to detect small scale changes (1 TanDEM-X pixel = 0.002 ha) which is much lower 

compared to changes detected by the 30 m resolution (0.09 ha) Hansen's Global 

Forest Cover product (Hansen, et al., 2013).  

In principle, TanDEM-X is able to detect canopy gaps from selective logging of 

trees which are reported to be on average 719 m2 (0.07 ha) in the Congo Basin 

(Pearson, et al., 2014) (gaps can be larger if a set of commercially valuable trees are 

clustered together) (Van Gemerden, et al., 2003) (if the acquisitions are taken at 

appropriate time before and after the event). Furthermore, areas with increased 

number of samples in higher resolution imagery are more likely to belong to a ‘true 

change’ rather than attributed to instrument noise. Whilst, smaller changes (< 100 

TanDEM-X pixels) were detected in Chapter 5 these could not be validated using 

the auxiliary data (provision of data related to logging would be required for this 

purpose).  

Our approach also detects and validates (using VHR optical data and ensures 

significance of changes compared to no-change areas) much smaller changes (≅ 100 

TanDEM-X pixels = 0.2 ha) compared to the PRODES products for instance 

(minimum mapping unit = 6.25 ha) (Shimabukuro, et al., 2012). The advantage of the 

approach used in Chapter 5 consists in detecting the magnitude of change which is 

not reported by the Hansen’s Global Forest Cover Loss dataset for instance (this 
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only provides a yearly binary change/no change product). It is important to note 

that our approach has been tested only for a selected site while Hansen's product is 

available globally. 

Chapter 3 and Chapter 5 focused on the Congo Basin tropical forests which are 

reportedly not as well studied compared to other tropical forest areas (Malhi, et al., 

2013). In the Congo Basin, small scale processes (e.g. selective logging and shifting 

cultivation) are widespread (e.g. a total of over 49 million ha have been allocated to 

forest concessions) (Marquant, et al., 2015) so monitoring these processes needs to 

be urgently addressed (Verhegghen, et al., 2016) using novel remote sensing 

approaches.  

Two of the countries considered in the PhD thesis host extensive logging 

concessions and are dominated by shifting agriculture. For instance, in Cameroon 

the area allocated to forest concessions (e.g. a total of 87 Forest Management Units) 

covered 5.5 million ha (Mertens, et al., 2011) and in the Republic of Congo this is 

19.9 million ha (2011 estimates) (Mertens, et al., 2011). Shifting cultivation in the 

Congo Basin is considered the third largest land use (438,801 km2) (Nasi, et al., 

2009).  

Here, there is comparatively less research undertaken related to detecting 

degraded and regenerating forest especially using SAR and InSAR as forest 

degradation drivers are more challenging to detect compared to the better studied 

Brazilian Amazon (e.g. operational mapping undertaken by INPE) (Souza, et al., 

2013) where the majority of disturbance is related to deforestation for industrial 

purposes as opposed to smaller-scale degradation occurring in Africa (e.g. selective 

logging consists in the extraction of ~1 stem/ha) (Hall, et al., 2003) and small scale 

shifting agriculture (Laporte, et al., 2004). Therefore, the work has implications and 

benefits for improved mapping and monitoring of African tropical forest 

disturbance from SAR and InSAR. Chapter 3 and Chapter 4 have implications as a 

starting point for improved classification of degraded forest based on wavelet 

signatures and wavelet spectra, these providing two-point statistic of either 
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backscatter or DSM. Moreover, Chapter 3 highlights that one-point statistic 

(variance) of SAR backscatter alone is not sufficient for this detection.  

Chapter 5 demonstrated the use of an object-based change detection approach 

to map negative and positive forest changes exploiting DSM differences between 

two acquisitions. Single-pass acquisitions limits the effect of temporal decorrelation 

with the main source of decorrelation due to forest volume (Martone, et al., 2016) 

which enabled changes to be linked primarily to forest loss (deforestation or forest 

degradation) and forest gain (forest re-growth). The future provision of 

classifications including the extent of degraded forests will be beneficial to forest 

managers and the provision of maps related to forest re-growth will be useful to 

assess the ability (and the rate) of forests recovery after deforestation or degradation 

events. Provision of such products requires further research. 

The research was not aimed at providing AGB or carbon stocks changes for 

tropical forests, which is still considered a major challenge due to SAR backscatter 

saturation at 60–100 Mg/ha  at L-Band (Carreiras, et al., 2012) (depending on 

sensor’s parameters and forest type primarily). This saturation point is much lower 

than the mean AGB estimated in tropical forests (e.g. mean AGB equal to 429 Mg/ha 

and in the intact forest of the Congo Basin) (Lewis, et al., 2013).  

The approach suggested in Chapter 5 does open up a method for detecting 

height changes, which could be related to AGB. However, the method provides only 

a starting point to the solution of the problem. Indeed, the differential DSM 

provides changes of the phase centre height (PCH) within the forest volume, this 

being a fractional measure, not true forest height. To arrive at true height change 

estimates the PCH must be related to at least true height at time zero. However, 

difficulties remain in retrieving forest height from spaceborne X-band InSAR in 

tropical forests since penetration is not enough to estimate the phase ground return 

(Kugler, et al., 2014). Moreover, conversion from height to AGB would still be 

needed. All in all, but the problem of detecting AGB changes would call for more 

field data and potentially multi-date aircraft LiDAR data. 
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Other problems arise from the fact that SAR backscatter is not directly related to 

AGB (Woodhouse, et al., 2012), and the non one-to-one mapping of InSAR derived 

forest height to AGB. The BIOMASS mission (P-band, 𝜆= 69 cm) (Le Toan, et al., 

2011) will provide increased AGB dynamic range retrieved from SAR thanks to the 

higher sensitivity of P-band to larger tree components (e.g. trunk and large 

branches) as sensitivity to AGB increases with wavelength (Dobson, et al., 1992), 

and will thus represent a real step forward for SAR mapping of AGB change. 

6.3.  Future Research and Improvements  

a) Disturbed forest classification using spatial statistic of SAR backscatter or 

InSAR DSMs 

 The use of SAR backscatter and interferometric phase wavelet spectra 

spatial statistic was successful (with associated limitations and external factors 

influences taken into consideration) for the discrimination between intact and 

disturbed forest (degraded forest through selective logging or after a fire event). 

Classification itself was not performed as the ability to use all the information 

derived from wavelet-based approaches requires new classification methods to 

be developed and should be considered for future work (Chapter 3 and Chapter 

4). It is however to be noted that the wavelet spectrum provides local estimates 

of the two-point SAR statistic for each pixel in the dataset. This feature would 

enable a pathway to the implementation of classical classification algorithms. 

 

b) Forest degradation and re-growth mapping improvements  

Employing a longer time-lag between acquisitions (more than one year 

tested in Chapter 5) could in principle be a way to assess the stage of forest 

recovery. If over a large area forest gain matches a magnitude equal to forest 

loss, as measured in the case of deforestation, then it will have achieved a 

similar structure to undisturbed forest in terms of PCH and can be used to give 

an approximation of the time taken for forest to recover relative to a pre-

disturbance baseline. However, this can only be achieved from 2010 when 
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TanDEM-X was launched until present, which is a relatively short time-frame 

for significant forest recovery to have occurred. 

While, a long time-series with a shorter sampling (e.g. 5 months) might be 

effective to detect shorter term re-growth. This is however, restricted by the fact 

that, according to our analysis, ∆𝐷𝑆𝑀 gain between 0-1 m will be within the 

sensor noise level and therefore cannot be considered a significant change. This 

figure might be different using other TanDEM-X configurations (e.g. much 

longer baselines to improve the interferometer sensitivity).  

The possibility to detect individual successional stages within the post 

disturbance re-growth objects (rural-complex) will also need to be tested by 

employing for instance a pixel-based approach or by using texture within the 

objects extracted.  

Considering the significant potential of InSAR to map two significantly 

challenging processes (forest degradation and forest re-growth) there is a need 

for future missions to be able to acquire InSAR data providing three-

dimensional information over large, continuous areas, a considerable advantage 

over current LiDAR based three-dimensional datasets from either aircraft or 

satellites.  

 

c) Digital Surface Model time-series 

 TanDEM-X DSM provides interferometric data time-series (dependent on 

data availability and acquisition parameters for the location of choice) acquired 

since the first acquisition phase in 2010 (Martone, et al., 2012). Future work, 

should seek to test the change detection algorithm using more data takes to 

provide yearly (or monthly depending on availability and algorithm 

performance) estimates of deforestation, forest degradation and re-growth for a 

set of locations. These data are highly suitable for test sites for national or sub-

national scale REDD+ degradation monitoring, or Verified Carbon Standard 

style voluntary carbon projects: we hope a collaboration between such projects 

and researchers take up this opportunity. There has been much talk of using 
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repeat LiDAR for these purposes, but TanDEM-X DSMs may provide a much 

cheaper option providing less high resolution, but still suitable data. 
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