316 research outputs found

    Joint multi-baseline SAR interferometry

    Get PDF
    We propose a technique to provide interferometry by combining multiple images of the same area. This technique differs from the multi-baseline approach in literature as (a) it exploits all the images simultaneously, (b) it performs a spectral shift preprocessing to remove most of the decorrelation, and (c) it exploits distributed targets. The technique is mainly intended for DEM generation at centimetric accuracy, as well as for differential interferometry. The problem is framed in the contest of single-input multiple-output (SIMO) channel estimation via the cross-relations (CR) technique and the resulting algorithm provides significant improvements with respect to conventional approaches based either on independent analysis of single interferograms or multi-baselines phase analysis of single pixels of current literature, for those targets that are correlated in all the images, like for long-term coherent areas, or for acquisitions taken with a short revisit time (as those gathered with future satellite constellations)

    Non-cooperative bistatic SAR clock drift compensation for tomographic acquisitions

    Get PDF
    In the last years, an important amount of research has been headed towards the measurement of above-ground forest biomass with polarimetric Synthetic Aperture Radar (SAR) tomography techniques. This has motivated the proposal of future bistatic SAR missions, like the recent non-cooperative SAOCOM-CS and PARSIFAL from CONAE and ESA. It is well known that the quality of SAR tomography is directly related to the phase accuracy of the interferometer that, in the case of non-cooperative systems, can be particularly affected by the relative drift between onboard clocks. In this letter, we provide insight on the impact of the clock drift error on bistatic interferometry, as well as propose a correction algorithm to compensate its effect. The accuracy of the compensation is tested on simulated acquisitions over volumetric targets, estimating the final impact on tomographic profiles

    Estimation of Fatigue Limit of a A356-T6 Automotive Wheel in Presence of Defects

    Get PDF
    The automotive wheel is a critical safety component in the vehicle and, for such a reason, it has also to meet strict requirements about technological properties. This component is produced by low pressure die casting technique and the casting defects related to the process have to be properly considered having a high effect in decreasing both static and dynamic resistance of the component. Effectively, casting defects like porosities influence the fatigue crack initiation and strongly affect the fatigue life too. One of the most common problem in the real component is the mismatch between the experimental data and literature. In fact, many scientific researches were carried out on small samples produced in a controlled condition and therefore it is difficult to direct transfer the laboratory results to a real cast component with a well-defined shape and different thicknesses. In the present study, an aluminum alloy A356-T6 wheel was analyzed in order to correlate the fatigue performance taking in to account the casting defects. The fatigue limit of the component was studied by rotating bending fatigue tests executed on the whole wheels. Microfractographic analyses on the broken wheels were carried out on the fracture surfaces using a Scanning Electron Microscope in order to identify the crack initiation zone: it was recognized that the crack always started from shrinkage porosities. The statistical population of these defects was therefore investigated on samples taken from the wheel in crack nucleation positions of the spoke and the maximum expected defect size on the component was estimated by the statistics of extreme values. The experimental fatigue limit was finally compared with the theoretical value predicted with the Murakami’s method

    Las grandezas de el restaurador de los estados de la Yglesia ... Cardenal don Gil de Albornoz, ... [Texto impreso]

    Get PDF
    Sign.: A-B2, C4, D-N2, O4, P-Z2, 2A-B2Errores en la num. de las pág.Apostillas marginales en latínGrab. calc. en port.: "Il. Coriolano Fe.

    Cooperative Coherent Multistatic Imaging and Phase Synchronization in Networked Sensing

    Full text link
    Coherent multistatic radio imaging represents a pivotal opportunity for forthcoming wireless networks, which involves distributed nodes cooperating to achieve accurate sensing resolution and robustness. This paper delves into cooperative coherent imaging for vehicular radar networks. Herein, multiple radar-equipped vehicles cooperate to improve collective sensing capabilities and address the fundamental issue of distinguishing weak targets in close proximity to strong ones, a critical challenge for vulnerable road users protection. We prove the significant benefits of cooperative coherent imaging in the considered automotive scenario in terms of both probability of correct detection, evaluated considering several system parameters, as well as resolution capabilities, showcased by a dedicated experimental campaign wherein the collaboration between two vehicles enables the detection of the legs of a pedestrian close to a parked car. Moreover, as \textit{coherent} processing of several sensors' data requires very tight accuracy on clock synchronization and sensor's positioning -- referred to as \textit{phase synchronization} -- (such that to predict sensor-target distances up to a fraction of the carrier wavelength), we present a general three-step cooperative multistatic phase synchronization procedure, detailing the required information exchange among vehicles in the specific automotive radar context and assessing its feasibility and performance by hybrid Cram\'er-Rao bound.Comment: 13 page
    corecore