309 research outputs found

    Unified Friction Formulation from Laminar to Fully Rough Turbulent Flow

    Get PDF
    This paper provides a new unified formula for Newtonian fluids valid for all pipe flow regimes from laminar to fully rough turbulent flow. This includes laminar flow; the unstable sharp jump from laminar to turbulent flow; and all types of turbulent regimes, including the smooth turbulent regime, the partial non-fully developed turbulent regime, and the fully developed rough turbulent regime. The new unified formula follows the inflectional form of curves suggested in Nikuradse's experiment rather than the monotonic shape proposed by Colebrook and White. The composition of the proposed unified formula uses switching functions and interchangeable formulas for the laminar, smooth turbulent, and fully rough turbulent flow regimes. Thus, the formulation presented below represents a coherent hydraulic model suitable for engineering use. This new flow friction model is more flexible than existing literature models and provides smooth and computationally cheap transitions between hydraulic regimes.Web of Science811art. no. 203

    Rational approximation for solving an implicitly given Colebrook flow friction equation

    Get PDF
    The empirical logarithmic Colebrook equation for hydraulic resistance in pipes implicitly considers the unknown flow friction factor. Its explicit approximations, used to avoid iterative computations, should be accurate but also computationally efficient. We present a rational approximate procedure that completely avoids the use of transcendental functions, such as logarithm or non-integer power, which require execution of the additional number of floating-point operations in computer processor units. Instead of these, we use only rational expressions that are executed directly in the processor unit. The rational approximation was found using a combination of a Pade approximant and artificial intelligence (symbolic regression). Numerical experiments in Matlab using 2 million quasi-Monte Carlo samples indicate that the relative error of this new rational approximation does not exceed 0.866%. Moreover, these numerical experiments show that the novel rational approximation is approximately two times faster than the exact solution given by the Wright omega function.Web of Science81art. no. 2

    Accurate and efficient explicit approximations of the Colebrook flow friction equation based on the Wright omega-function

    Get PDF
    The Colebrook equation is a popular model for estimating friction loss coefficients in water and gas pipes. The model is implicit in the unknown flow friction factor, f. To date, the captured flow friction factor, f, can be extracted from the logarithmic form analytically only in the term of the Lambert W-function. The purpose of this study is to find an accurate and computationally efficient solution based on the shifted Lambert W-function also known as the Wright omega-function. The Wright omega-function is more suitable because it overcomes the problem with the overflow error by switching the fast growing term, y = W (e(x)), of the Lambert W-function to series expansions that further can be easily evaluated in computers without causing overflow run-time errors. Although the Colebrook equation transformed through the Lambert W-function is identical to the original expression in terms of accuracy, a further evaluation of the Lambert W-function can be only approximate. Very accurate explicit approximations of the Colebrook equation that contain only one or two logarithms are shown. The final result is an accurate explicit approximation of the Colebrook equation with a relative error of no more than 0.0096%. The presented approximations are in a form suitable for everyday engineering use, and are both accurate and computationally efficient.Web of Science71art. no. 3

    An efficient iterative method for looped pipe network hydraulics free of flow-corrections

    Get PDF
    The original and improved versions of the Hardy Cross iterative method with related modifications are today widely used for the calculation of fluid flow through conduits in loop-like distribution networks of pipes with known node fluid consumptions. Fluid in these networks is usually natural gas for distribution in municipalities, water in waterworks or hot water in district heating systems, air in ventilation systems in buildings and mines, etc. Since the resistances in these networks depend on flow, the problem is not linear like in electrical circuits, and an iterative procedure must be used. In both versions of the Hardy Cross method, in the original and in the improved one, the initial result of calculations in the iteration procedure is not flow, but rather a correction of flow. Unfortunately, these corrections should be added to or subtracted from flow calculated in the previous iteration according to complicated algebraic rules. Unlike the Hardy Cross method, which requires complicated formulas for flow corrections, the new Node-loop method does not need these corrections, as flow is computed directly. This is the main advantage of the new Node-loop method, as the number of iterations is the same as in the modified Hardy Cross method. Consequently, a complex algebraic scheme for the sign of the flow correction is avoided, while the final results remain accurate.Web of Science42art. no. 7

    One-log call iterative solution of the Colebrook equation for flow friction based on Pade polynomials

    Get PDF
    The 80 year-old empirical Colebrook function zeta, widely used as an informal standard for hydraulic resistance, relates implicitly the unknown flow friction factor lambda, with the known Reynolds number Re and the known relative roughness of a pipe inner surface epsilon* ; lambda = zeta(Re, epsilon* ,lambda). It is based on logarithmic law in the form that captures the unknown flow friction factor l in a way that it cannot be extracted analytically. As an alternative to the explicit approximations or to the iterative procedures that require at least a few evaluations of computationally expensive logarithmic function or non-integer powers, this paper offers an accurate and computationally cheap iterative algorithm based on Pade polynomials with only one log-call in total for the whole procedure (expensive log-calls are substituted with Pade polynomials in each iteration with the exception of the first). The proposed modification is computationally less demanding compared with the standard approaches of engineering practice, but does not influence the accuracy or the number of iterations required to reach the final balanced solution.Web of Science117art. no. 182

    Symbolic regression-based genetic approximations of the Colebrook equation for flow friction

    Get PDF
    Widely used in hydraulics, the Colebrook equation for flow friction relates implicitly to the input parameters; the Reynolds number, Re and the relative roughness of an inner pipe surface, epsilon/D with an unknown output parameter; the flow friction factor, ; = f (, Re, epsilon/D). In this paper, a few explicit approximations to the Colebrook equation; approximate to f (Re, epsilon/D), are generated using the ability of artificial intelligence to make inner patterns to connect input and output parameters in an explicit way not knowing their nature or the physical law that connects them, but only knowing raw numbers, {Re, epsilon/D}{}. The fact that the used genetic programming tool does not know the structure of the Colebrook equation, which is based on computationally expensive logarithmic law, is used to obtain a better structure of the approximations, which is less demanding for calculation but also enough accurate. All generated approximations have low computational cost because they contain a limited number of logarithmic forms used for normalization of input parameters or for acceleration, but they are also sufficiently accurate. The relative error regarding the friction factor , in in the best case is up to 0.13% with only two logarithmic forms used. As the second logarithm can be accurately approximated by the Pade approximation, practically the same error is obtained also using only one logarithm.Web of Science109art. no. 117

    Short overview of early developments of the Hardy Cross type methods for computation of flow distribution in pipe networks

    Get PDF
    Hardy Cross originally proposed a method for analysis of flow in networks of conduits or conductors in 1936. His method was the first really useful engineering method in the field of pipe network calculation. Only electrical analogs of hydraulic networks were used before the Hardy Cross method. A problem with flow resistance versus electrical resistance makes these electrical analog methods obsolete. The method by Hardy Cross is taught extensively at faculties, and it remains an important tool for the analysis of looped pipe systems. Engineers today mostly use a modified Hardy Cross method that considers the whole looped network of pipes simultaneously (use of these methods without computers is practically impossible). A method from a Russian practice published during the 1930s, which is similar to the Hardy Cross method, is described, too. Some notes from the work of Hardy Cross are also presented. Finally, an improved version of the Hardy Cross method, which significantly reduces the number of iterations, is presented and discussed. We also tested multi-point iterative methods, which can be used as a substitution for the Newton-Raphson approach used by Hardy Cross, but in this case this approach did not reduce the number of iterations. Although many new models have been developed since the time of Hardy Cross, the main purpose of this paper is to illustrate the very beginning of modeling of gas and water pipe networks and ventilation systems. As a novelty, a new multi-point iterative solver is introduced and compared with the standard Newton-Raphson iterative method.Web of Science910art. no. 201

    Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow friction

    Get PDF
    The empirical Colebrook equation from 1939 is still accepted as an informal standard way to calculate the friction factor of turbulent flows (4000 0) to very rough (up to epsilon/D = 0.05). The Colebrook equation includes the flow friction factor lambda in an implicit logarithmic form, lambda being a function of the Reynolds number Re and the relative roughness of inner pipe surface epsilon/D: lambda = f(lambda, Re, epsilon/D). To evaluate the error introduced by the many available explicit approximations to the Colebrook equation, lambda approximate to f(Re, epsilon/D), it is necessary to determinate the value of the friction factor lambda from the Colebrook equation as accurately as possible. The most accurate way to achieve that is by using some kind of the iterative method. The most used iterative approach is the simple fixed-point method, which requires up to 10 iterations to achieve a good level of accuracy. The simple fixed-point method does not require derivatives of the Colebrook function, while the most of the other presented methods in this paper do require. The methods based on the accelerated Householder's approach (3rd order, 2nd order: Halley's and Schroder's method, and 1st order: Newton-Raphson) require few iterations less, while the three-point iterative methods require only 1 to 3 iterations to achieve the same level of accuracy. The paper also discusses strategies for finding the derivatives of the Colebrook function in symbolic form, for avoiding the use of the derivatives (secant method), and for choosing an optimal starting point for the iterative procedure. The Householder approach to the Colebrook' equations expressed through the Lambert W-function is also analyzed. Finally, it is presented one approximation to the Colebrook equation with an error of no more than 0.0617%.Web of Scienceart. no. 545103

    Colebrook’s flow friction explicit approximations based on fixed-point iterative cycles and symbolic regression

    Get PDF
    The logarithmic Colebrook flow friction equation is implicitly given in respect to an unknown flow friction factor. Traditionally, an explicit approximation of the Colebrook equation requires evaluation of computationally demanding transcendental functions, such as logarithmic, exponential, non-integer power, Lambert W and WrightΩ functions. Conversely, we herein present several computationally cheap explicit approximations of the Colebrook equation that require only one logarithmic function in the initial stage, whilst for the remaining iterations the cheap Padé approximant of the first order is used instead. Moreover, symbolic regression was used for the development of a novel starting point, which significantly reduces the error of internal iterations compared with the fixed value staring point. Despite the starting point using a simple rational function, it reduces the relative error of the approximation with one internal cycle from 1.81% to 0.156% (i.e., by a factor of 11.6), whereas the relative error of the approximation with two internal cycles is reduced from 0.317% to 0.0259% (i.e., by a factor of 12.24). This error analysis uses a sample with 2 million quasi-Monte Carlo points and the Sobol sequence

    What can students learn while solving Colebrook's flow friction equation?

    Get PDF
    Even a relatively simple equation such as Colebrook's offers a lot of possibilities to students to increase their computational skills. The Colebrook's equation is implicit in the flow friction factor and, therefore, it needs to be solved iteratively or using explicit approximations, which need to be developed using different approaches. Various procedures can be used for iterative methods, such as single the fixed-point iterative method, Newton-Raphson, and other types of multi-point iterative methods, iterative methods in a combination with Pade polynomials, special functions such as Lambert W, artificial intelligence such as neural networks, etc. In addition, to develop explicit approximations or to improve their accuracy, regression analysis, genetic algorithms, and curve fitting techniques can be used too. In this learning numerical exercise, a few numerical examples will be shown along with the explanation of the estimated pedagogical impact for university students. Students can see what the difference is between the classical vs. floating-point algebra used in computers.Web of Science43art. no. 11
    corecore