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I. INTRODUCTION

1.1. Background

Remote sensing as a term was formally defined by the American Society for Pho-
togrammetry and Remote Sensing (ASPRS) in 1983, but long before that humans
were making measurements without being in direct contact with the object under
study. The capability to observe and record a sizeable geographic area at one point
in time evolved after the capability to make photographs and to fly with an aircraft
(Khorram et al., 2012). The first remotely sensed image of Paris was taken by Gas-
pard Felix Tournachon from a balloon in 1858 (Jensen, 2014). Jensen (2014) have
stated that currently remote sensing is in the phase of exponential growth. The
spatial, spectral and radiometric resolution of Earth observation (EO) satellites
are increasing and the revisit times are shortening. EO is used to gain information
about atmosphere, vegetation, soil, water, ice, minerals and urban infrastructure.
The aim is to take full advantage from the daily use of EO data in various fields:
weather forecasting, crop monitoring, ice mapping, etc.

Some of the fields of research that the EO community has recently focused
on are: object-based image analysis (Blaschke, 2010; Chen et al., 2012; Cheng
and Han, 2016; Hussain et al., 2013), machine learning methods (Ball et al.,
2017; Belgiu and Dragut, 2016; Mas and Flores, 2008; Maxwell et al., 2018;
Mountrakis et al., 2011), geospatial big data (Li et al., 2016; Yang et al., 2017),
unmanned aerial systems (UAS) (Bhardwaj et al., 2016; Colomina and Molina,
2014; Wallace et al., 2016), land cover change (Chen et al., 2012; Gomez et al.,
2016; Hansen and Loveland, 2012; Hussain et al., 2013), climate change (Kang
et al., 2010) and land surface temperature (Li et al., 2013). Recent developments
in remote sensing of agriculture and forestry are briefly summarised in sections
1.1.2 and 1.1.1.

Spatial resolution of remote sensing imagery has improved for decades. This
allows nowadays to have more than one measurement/pixel per target object. This
in turn has lead to rapid developments of geographic object-based image anal-
ysis (GEOBIA). Blaschke (2010) described GEOBIA as a significant trend in
remote sensing and Geographic Information Science (GIScience) and it has de-
veloped into new and evolving paradigm (Blaschke et al., 2014). Cheng and
Han (2016) surveyed four types of image object detection methods: template
matching-based, knowledge-based, object-based image analysis (OBIA)-based
and machine learning-based. They propose that deep learning-based feature repre-
sentation and weakly supervised learning-based geospatial object detection are the
two promising research directions. One example of a weakly supervised learning-
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based geospatial object detection methodology has been described by Han et al.
(2015).

Remotely sensed data rarely have normal distribution in the scene. This has
lead to a wide use of non-parametric supervised classifiers like classification and
regression tree (CART), support vector machine (SVM), artificial neural network
(ANN) and also ensemble classifiers like random forest (RF) that uses set of
CARTs for classifying remote sensing data (Belgiu and Dragut, 2016). Belgiu
and Dragut (2016) has concluded that classification results achieved with RF com-
pared to decision trees and ANN are better when hyperspectral or multi-source
data are used, and RF is faster than SVM or other ensemble classifiers like Ad-
aBoost. However, Ball et al. (2017) concluded that deep learning, a rebranding of
ANN, and feature learning are hot and emerging topics in remote sensing.

Besides classification or estimation tasks machine learning is used in many
other remote sensing tasks, such as dimensionality reduction, segmentation, change
detection, object recognition and detection (Ball et al., 2017). For example, Romero
et al. (2016) have introduced the use of single-layer and deep convolution net-
works for remote sensing data analysis. For feature extraction, they proposed an
approach of a greedy layer-wise unsupervised pre-training coupled with a highly
efficient algorithm for unsupervised learning of sparse features and illustrated the
expressive power of these features for classification tasks, e.g. land-cover classi-
fication from multi- and hyperspectral images.

Many different types of new sensors, messaging systems and social networks
with more traditional measurement and observation systems are creating the rapidly
growing flow of big data (Li et al., 2016). Li et al. (2016) concluded that these
massive data flows characterised by four V-s – Volume, Velocity, Variety and Ve-
racity – cannot be handled with traditional approaches and methods. They pro-
posed that further research and development must be carried out in the following
areas: spatial indexing and algorithms for real-time data streaming and topol-
ogy support; conceptual and methodological approaches to explore casual and ex-
planatory relationships; methods to display 3D spatial data with continuous time;
assessment of data quality with novel error propagation approaches. One of the
main challenges is making the query processing faster with novel spatial indexing.
The question is how to organise geospatial data in optimal tiles and find efficient
paths (space-filling curves) through these tiles, so that the access to n-dimensional
data is done efficiently by referencing to the location of the tile along that path (Li
et al., 2016). Working on this challenge Hughes et al. (2015) have described a
distributed architecture called GeoMesa for spatio-temporal fusion.

The free and open data policy initiatives by the Copernicus programme, Na-
tional Aeronautics and Space Administration (NASA), United States Geological
Survey (USGS) and other institutions are expected to expand the EO applications
sector (Begue et al., 2018; Dong and Xiao, 2016; Jeppesen et al., 2018; Steele-
Dunne et al., 2017; Turner et al., 2015). The Group on Earth Observation (GEO)
and Global Earth Observation System of Systems (GEOSS) initiative started in
2005 and are examples of administrative efforts for making EO data more easily
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accessible (Lautenbacher, 2006; Nativi et al., 2015). Grainger (2017) states that
the Copernicus programme vision of seamless chain from remote sensing data to
usable information is still largely unrealised and finds that the constraints are not
solely technical.

Toth and Jozkow (2016) compiled a review of remote sensing technologies, in-
cluding platforms and sensors. New sensors and other hardware are being rapidly
created. These together with crowdsensing by social media will provide an in-
creasing flood of sensor data. They concluded that algorithmic research and soft-
ware developments are generally behind so that the full potential of remote sens-
ing data is not exploited. One of the great examples of remote sensing big data
applications is cloud-based platform Google Earth Engine. It has been used to
conduct various global analyses on societal issues e.g. deforestation and drought
(Gorelick et al., 2017). One of the pioneering frameworks of truly global and
multidisciplinary data sharing is the GEOSS and its central infrastructure that has
been facing several challenges of big data (Nativi et al., 2015). This has lead to
rapid developments in the use of machine learning and object-based image analy-
ses techniques in remote sensing. In addition, processing is moving closer to data
with the rise of EO community platforms for more efficient processing.

1.1.1. Remote sensing of agricultural areas

To meet future food security needs food production must grow substantially, while
agriculture’s environmental footprint must decrease drastically (Atzberger, 2013).
Agricultural policies need unbiased information as input. Likely the best way
to get this information is using satellite-based remote sensing (Atzberger, 2013).
Considering recent trends in scientific literature some of the main domains of
research in remote sensing of agriculture are: soil moisture estimations, (Chan
et al., 2016; Hassan-Esfahani et al., 2015; Kornelsen and Coulibaly, 2013; Mo-
hanty et al., 2017; Peng et al., 2017), precision agriculture (PA) (Gago et al.,
2015; Khanal et al., 2017; Mulla, 2013; Salami et al., 2014; Schellberg et al.,
2008; Zhang and Kovacs, 2012), UAS (Gago et al., 2015; Huang et al., 2013;
Salami et al., 2014; Zhang and Kovacs, 2012), assessment of paddy rice culti-
vation (Dong and Xiao, 2016; Kuenzer and Knauer, 2013), evapotranspiration
(Glenn et al., 2010; Gowda et al., 2008), detection and characterisation of agricul-
tural practices (Begue et al., 2018).

Soil moisture estimation has been investigated from global to parcel scale.
The Soil Moisture Active Passive (SMAP) mission was planned to provide high-
accuracy global maps of soil moisture and freeze/thaw state with temporal resolu-
tion of two to three days, that could, for instance, be directly applicable to drought
monitoring (Entekhabi et al., 2010). Despite the hardware failure of SMAP radar
the soil moisture product from the operational radiometer has been shown to meet
the accuracy requirement of the mission (Chan et al., 2016). But the coarser 40 km
spatial resolution of the radiometer, that cannot be combined with the finer 1-3 km
resolution of the radar measurements does not allow to achieve the combined res-
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olution of 10 km and limits missions data products use for many applications
(Entekhabi et al., 2010).

Peng et al. (2017) have reviewed various spatial downscaling methods of re-
motely sensed soil moisture estimations, namely satellite-based, geoinformation-
based and model-based. They conclude that there is a need for synthesis of all
available data sources. For regional agricultural applications at least daily fre-
quency is needed, which requires the use of time extrapolation methods. There is
potential to retrieve soil moisture at 1 km spatial resolution and 6 day temporal
resolution using Sentinel-1 data with change detection approach (Hornacek et al.,
2012). At parcel scale, Hassan-Esfahani et al. (2015) have evaluated a UAS-based
soil moisture estimation using optical, near-infrared and infrared data. Steele-
Dunne et al. (2017) have concluded that to develop drought/water stress applica-
tions it is essential to improve the depiction of vegetation phenology and water
dynamics. They described that the capability to quantitatively use the data of
advanced scatterometer (ASCAT) on MetOp could lead to a better soil moisture
retrieval and vegetation phenology monitoring.

Zhang and Kovacs (2012) have defined PA as the application of geospatial
techniques and sensors to identify variations in the field and deal with them us-
ing alternative strategies. In the early days (middle of 1980’s) of PA the sen-
sors had few visible or near infrared bands. Whereas, nowadays a wide range of
wavelengths are used enabling advanced applications as light detection and rang-
ing (LIDAR), fluorescence spectroscopy, thermal spectroscopy and hyperspectral
sensors (Mulla, 2013). The aim is to allow near real time soil, crop and pest
management.

The use of UAS for PA applications allow an alternative with lower cost and
higher spatial resolution to the use of high and very high resolution satellite im-
agery (Zhang and Kovacs, 2012). Zhang and Kovacs (2012) suggested that the
farmer should be directly participating in the set up, operation and interpretation
phases of UAS-based applications. They concluded that the application of UAS in
PA is still in its infancy and the main shortcomings are high initial cost, platform
reliability, sensor capability, lack of standardised procedures, and strict aviation
regulations.

Traditionally visible light and near-infrared sensors have been used in PA to
estimate the stress levels of crops but thermal sensors have been found to give
promising results by indicating crop stress symptoms before their visual appear-
ance (Khanal et al., 2017). The rapid development of UAS has made it possible
to acquire high resolution thermal images with reasonable costs. Furthermore,
Khanal et al. (2017) have described that there are many application areas of ther-
mal remote sensing in agriculture: e.g. drought monitoring, crop disease detec-
tion, crop maturity and yield. Gago et al. (2015) summarised that the retrieval
of chlorophyll fluorescence with UAS should be a priority research topic as it is
shown to be a good indicator of photosynthesis and water use efficiency under
water stress. They conclude that UAS are surely beneficial and adapted tools for
PA and water irrigation management.
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Paddy rice mapping on regional to global scale has been an active research
topic. Dong and Xiao (2016) have reviewed paddy rice mapping methods and
described four categories of algorithms: image-statistic-based approaches, vegeta-
tion index data and enhanced image-statistic-based approaches, temporal-analysis-
based approaches and phenology-based approaches. Remote sensing can also
contribute to various topics related to paddy rice cultivation areas: e.g. harvest
prediction modelling, plant disease analyses, and assessment of rice-based green-
house gas emission (Kuenzer and Knauer, 2013).

1.1.2. Remote sensing of forests

Remotely-sensed data have numerous applications in the field of forest monitor-
ing: e.g. delineating the damaged areas, mapping canopy extent and structure,
timber inventory, deforestation (Khorram et al., 2012). The main topics that have
recently been investigated by the scientific community are: using airborne and
terrestrial LIDAR data to retrieve forest structural parameters (Dassot et al., 2011;
Hyyppa et al., 2008; Montaghi et al., 2013; van Leeuwen and Nieuwenhuis, 2010;
Wallace et al., 2016; Wulder et al., 2012), extraction of forest inventory data
(Hyyppa et al., 2008; McRoberts et al., 2010; White et al., 2016), forest stand
biomass estimation (Gleason and Im, 2011; Le Toan et al., 2011; Sinha et al.,
2015; Wulder et al., 2008), tree species classification (Fassnacht et al., 2016; Ko-
rpela et al., 2010), estimation of forest cover change (Hansen et al., 2013).

The suitability of LIDAR data for forest inventory has been established but
monitoring of large areas remains challenging due to high costs and complicated
logistics (Wulder et al., 2012). Wulder et al. (2012) described a framework to
use LIDAR as a sampling tool for large-area estimations. The main goal for us-
ing LIDAR sampling was to imitate ground plots, recognising that independent
ground data is still needed to calibrate the LIDAR measures. They presented that
transect-based applications of LIDAR can be used to timely and cost effectively
cover large regions for estimating forest characteristics.

Liang et al. (2016) concluded that terrestrial laser scanning (TLS) can be prac-
tically used characterising sample plots in forest, but it has not been accepted as
an operational tool. The main reasons for that are lack of automatic and accurate
methods for detection of some important tree attributes, e.g. tree species. Fur-
thermore, the cost of the instrument is high. Mobile/personal laser scanning and
image-based techniques are capable to provide similar 3D point cloud data with
lower cost and high efficiency, whereas the added value of using TLS needs to be
demonstrated (Liang et al., 2016).

Wallace et al. (2016) tested two remote sensing techniques: airborne laser
scanning (ALS) and structure from motion (SfM) to estimate structural proper-
ties of forest using UAS. In denser canopy cover SfM-based estimations of terrain
surface produced larger errors than ALS. These errors propagated into the estima-
tion of canopy properties. Nevertheless Wallace et al. (2016) concluded that SfM
is still adequate low-cost alternative for forest stand surveys.
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White et al. (2016) reviewed the potential of four remote sensing techniques for
forest inventory: ALS, TLS, digital aerial photogrammetry and high or very high
spatial resolution satellite optical imagery. They concluded that integrated use
of digital aerial photogrammetry and ALS is a remote sensing technique that will
likely have the greatest impact on forest inventory practices, providing broader set
of attributes and enabling the monitoring of growth of forest stands. McRoberts
et al. (2010) emphasise that use of LIDAR will lead to greater efficiency and more
useful estimates.

Synthetic aperture radar (SAR) is not widely used in the data collection rou-
tines of national forest inventory (NFI). Gleason and Im (2011) showed that only
7 % of the selected biomass estimation works used radar as the primary data
source. Discrete-return LIDAR (25 %) and multispectral (20 %) sensor types
were the most preferred data sources. They concluded that spaceborne/airborne
LIDAR will continue to be one of the most important data sources for the estima-
tions of forest biomass.

A later study by Sinha et al. (2015) has concluded that SAR can effectively
asses forest biomass and overcome important limitations of optical remote sens-
ing, especially in tropical forests. Longer wavelength and cross-polarisation make
SAR more sensitive to biomass than optical sensors. Le Toan et al. (2011) has
stated that BIOMASS P-band radar might be the only sensor to provide global
knowledge about forest biomass and its changes. The feasibility study of the mis-
sion started at 2009 and currently the envisaged launch year is around 2020. Still,
interferometric and polarimetric techniques used for biomass estimations need
further studies (Sinha et al., 2015).

The relative growth of trees within one vegetation season is rather small, com-
pared to, for example, cereals, which allows the revisit times of remote-sensing-
based monitoring of forests in many cases to be quite long. This gives one expla-
nation to the wide use of airborne sensors (64 %) for forest biomass estimation
reported by Gleason and Im (2011). Spaceborne sensors have more potential for
region-, continental-wide or global estimations and where short revisit times are
needed e.g. for delineating the damaged areas caused by forest fires or forest
pests.

1.1.3. Local statistics in remote sensing of vegetation

The use of locally computed statistics has been attractive field of research for
many years. Boots and Okabe (2007) stated that in the fields of geography, geo-
graphic information systems (GIS) and remote sensing there has been an exten-
sive development of indicators that describe the properties of spatial subsets also
named as windows, neighbourhoods, masks or kernels. In this thesis the term lo-
cal statistics is defined as statistical measures computed inside the local area of
interest from a remotely sensed image. The local area of interest can be defined
by a kernel (e.g circular, rectangular, etc.) surrounding the point of interest or by
a polygon representing the area as vector layer of geospatial data set or segmented
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portions of an image. LSTATS software presented in Ref. II supported both types
of local areas of interest for calculating local spatial statistics.

Following, some examples where local statistics were used in remote sensing
are listed. For instance, Haralick et al. (1973) considered eight nearest-neighbour
resolution cells to extract textural features for image classification. Lee (1980)
used local mean and variance in a 3 × 3 to 7 × 7 window for image enhancement
and noise filtering. Dutra and Huber (1999) extracted local statistics from ERS-1
and ERS-2 SAR data and compared with other features for land cover estima-
tion. Getis and Aldstadt (2004) described a local statistics model for constructing
spatial weights matrices for spatial regression models. Mercier et al. (2008) used
local statistics for change detection using significantly different (e.g. different
sensors) acquisitions. Johnson and Xie (2011) proposed a multi-scale segmenta-
tion approach that used local statistics to refine under- and over-segmented regions
and showed that it can improve the creation of image objects.

The main difficulty in multitemporal SAR-image-based change detection is the
speckle noise. A classical approach to handle this issue is the use of the ratio of
the local means in the neighbourhood of each pair of colocated pixels (Inglada
and Mercier, 2007). To consider also the changes that take place at the structural
texture level, possibly not changing the mean value, Inglada and Mercier (2007)
proposed a similarity measure which depends on the four first statistical moments
of the pixels inside the analysis window.

When the target object is much larger than the pixel of an image, the value
of one pixel can be quite random in relation to target property being estimated.
Preferably all pixels within the target object should be considered when conduct-
ing a remote sensing estimation. Besides statistical attributes, also structural prop-
erties of the image should be exploited. In many cases the geometric shape of the
target object is defined with the spatial data already available, for example the
borders of a forest stand or agricultural parcel. If the geometric shape is not avail-
able the delineation of the target object from the remote sensing data can be a
challenging task.

1.2. Objectives and progress of this work

The aim of current thesis is to analyse approaches for remote sensing of grasslands
and forests that are based on local statistics. More precisely, the objectives are:

1. to introduce SAR variables for monitoring of mowing events on grasslands
based on temporal interferometric coherence;

2. to demonstrate the applicability of local statistics in remote sensing of forests
based on true colour orthophotos;

3. to complement the existing forest remote sensing methodologies with a
case study describing feature reduction technique and machine learning ap-
proach for the estimation of NFI data.

One of the obligations set by the European Union Common Agricultural Policy
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(CAP) is to maintain grasslands by mowing or grazing on a yearly basis. National
paying agencies (NPA) validate the mowing requirement usually with on-site field
inspections in limited areas. Considering the need for more automatic solutions
the following hypothesis was formed: C-band SAR 12-day repeat pass interfer-
ometric coherence rises after a mowing event. The article Ref. I in this thesis
analysed the relationship between the C-band SAR 12-day repeat pass interfer-
ometric coherence and mowing events of grasslands. In this study average as a
local statistic was calculated using pixels inside parcel polygons. It was shown in
the paper that VH (vertical transmit, horizontal receive) and VV (vertical trans-
mit, vertical receive) polarisation coherence values after the mowing event were
statistically significantly higher than those from before the mowing event.

There are many applications and programming packages that can be used to
calculate local statistics, for instance presented by Pebesma (2004); Rosenberg
and Anderson (2011); Unwin (1996). The motivation to write the article Ref. II
was the claim that one can find not widely used local statistics that could be useful
in forest remote sensing based on true colour orthophotos. The LSTATS software
developed by Kalle Remm in the Department of Geography, University of Tartu
was introduced in the article Ref. II to promote the field of spatial statistics.
Kernel-based local statistics were reviewed in the context of forest remote sensing.
Results indicated that local statistics investigated in this study can be most useful
for distinguishing shadowed management passages, spruce canopies, groups of
tree crowns and clearings in forest.

Large amount of NFI data is collected with on-site field works. Plenty of re-
search has investigated the use of remote sensing techniques to optimise the data
collection process, e.g. (Beaudoin et al., 2014; Hyyppa et al., 2008; Tomppo and
Katila, 1991). To contribute to this field of research the following hypotheses
were formed: first cluster analyses can be used for reduction of remote sensing
features; second remote sensing approach that is based on machine learning can
give estimates with high accuracy using large NFI data set, Landsat 7 images
and true colour orthophotos. A study Ref. III for evaluating the estimation of
parameters of NFI stands in Estonia was conducted using a machine learning ap-
plication on Landsat 7 ETM+, chromatic orthophotos and auxiliary vector data
from basic and soil maps. Circular kernel radii ranging from 10 m to 120 m were
used to calculate local statistics based on remote sensing images. The developed
methodology proved to give estimations with moderate accuracy reaching 36 %
root mean square error (RMSE) for stand volume. Locally computed average was
the most useful feature when compared to different statistical and structural tex-
ture indicators. It was suggested to use cluster analysis as pre-selection method of
features because it could be used for both nominal and continues variables.
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II. MONITORING OF GRASSLANDS WITH SAR

Analysing 12 years (2000-2011) of daily 1 km resolution MODIS Terra and 10
years (2002-2011) MODIS Aqua data Whitcraft et al. (2015) showed that many
important agricultural areas are so persistently and pervasively covered by clouds
that less than half of their modelled 8 day composites would be even 70 % clear of
cloud cover. Authors also concluded that in these areas and time periods, optical
polar-orbiting imaging is not likely to be a viable option for operational monitor-
ing of agricultural areas. This leads us to the main motivation for using SAR in
remote sensing of grasslands — the ability of spaceborne SAR signal to penetrate
clouds in all but extreme weather conditions and thereby to acquire continuous
data in space and time for large areas.

There are various technical approaches that have been studied to use SAR data
for grasslands monitoring. The most natural and simplest way is to use radar
backscatter values. More complex techniques use polarimetric properties of SAR
signal (polarimetric SAR (PolSAR)) and also amplitude and phase difference
from a pair of images (Interferometric SAR (InSAR)). Speckle in SAR images
makes it hard to interpret one single SAR pixel value as a measurement for natu-
ral scatterers. To overcome this issue local statistics are widely used in SAR data
processing and analyses. The following paragraphs give a short summary of these
SAR techniques in the context of grasslands monitoring.

For monitoring grassland parcels with spaceborne SAR the most widely spread
approach is to use backscatter intensity values as independent variables. Follow-
ing are some examples of this approach. Based on ERS-1 C-band SAR vertical
transmit, vertical receive (VV) polarisation backscatter and ground-truth measure-
ments Dobson et al. (1992) suggest that grass-covered surfaces are distinguishable
from forested areas and near-surface soil moisture retrieval is possible for grass-
covered soil. Further, using backscatter measurements from the same remote sens-
ing instrument Moreau and Le Toan (2003) reported that for water-saturated An-
dean grasslands (bofedal) biomass values up to 2 kg/m2 can be estimated with
acceptable accuracy RMSE = 0.3 kg/m2.

Mowing as one of the most common management practices on grasslands has
also been in focus of many studies. Schuster et al. (2011) results indicate that
TerraSAR-X horizontal transmit, horizontal receive (HH) polarisation temporal
signature profiles of backscatter values could be used to detect mowing events on
semi-natural grasslands. The relationship of COSMO-SkyMed, Envisat ASAR
and ALOS PALSAR backscatter values to the Normalized Differential Vegetation
Index (NDVI), Normalised Difference Water Index (NDWI), and soil moisture
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index (MI) values was analysed by Wang, Ge, and Li Wang et al. (2013). Without
ground truth measurements they concluded that during peak season and on non-
rainy dates X-band HH-polarisation backscatter values could be useful to detect
grazing or mowing activities on pastures at paddock scale. Also Schuster et al.
(2015) suggest that intra-annual TerraSAR-X HH-polarisation backscatter time
series can be used for the detection of mowing events and even for direct pixel-
based mapping purposes. In contrast, Dusseux et al. (2014) concluded that the
longer wavelength Radarsat-2 C-band HH/VV intensity ratio could not be used to
discriminate mowing on grasslands.

The estimation of grasslands habitat types using spaceborne SAR backscat-
ter data has also been in the interest of many researchers. Schuster et al. (2015)
demonstrated that mapping of seven semi-natural grasslands habitat types is achiev-
able (Kappa coefficient (κ) = 0.89) with using intra-annual dense time series of
high spatial resolution X-band TerraSAR-X HH-polarisation backscatter values.
They also showed that TerraSAR-X ensures the creation of appropriate time series
more reliably compared to RapidEye. Similarly Barrett et al. (2014) reported very
high accuracies for classifying five types of grasslands among other land cover
types using machine learning methods and Envisat ASAR, ERS-2 C-band SAR
VV (κ = 0.98) and ALOS PALSAR L-band HH backscatter and HH/VV ratio
data (κ = 0.95). However, the use of backscatter from one channel (e.g., VV or
HH) is problematic, due to changes caused by different vegetation orientation ef-
fects and meteorological conditions, which change the backscatter greatly even if
the vegetation itself does not change (Bouman and van Kasteren, 1990).

As mentioned above PolSAR techniques have also been used in the studies of
grasslands remote sensing. Applying new polarimetric approach with Air-SAR
C-, L- and P-band fully polarimetric measurements from July 3, 1991 Hoekman
and Vissers (2003) reported good results for classification of 14 agricultural land
cover types (including grasslands): overall accuracy 90.4 % using C-band data.
Voormansik et al. (2013) and Voormansik et al. (2016) demonstrated that several
C-band and X-band polarimetric parameters are sensitive to mowing events on
grasslands in cases where the grass was left on the ground after the event. The
main drawback of PolSAR techniques to became commonly used is the need for
fully polarimetric or dual polarimetric co-pol data. There are no sensors available
yet that can provide such data at global scale and with dense regular time series.
For instance, Sentinel-1 can offer only dual polarisation modes that are not co-pol:
VV + VH (vertical transmit, horizontal receive (VH)) or HH + HV (horizontal
transmit, vertical receive (HV)).

InSAR-based approaches have also shown potential for remote sensing of grass-
lands. The detection of mowing events on grasslands has been studied by Zalite
et al. (2016, 2014), where it was described that COSMO-SkyMed 1-day X-band
HH-polarisation interferometric coherence is much higher after a mowing event
on grasslands. However, meteorological conditions have an important influence
on backscatter and interferometric coherence of vegetation (Askne et al., 1997;
Santoro et al., 2002). Rainfall right before one or both of the images in the pair of
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two interferometric acquisitions probably causes temporal decorrelation.
Copernicus program and its open data policy has created an opportunity to use

dense time series of C-band SAR measurements for change detection and tem-
poral signatures-based retrieval techniques. The research results summarised in
this section indicate that InSAR-based mowing detection might have more po-
tential compared to backscatter and PolSAR-based techniques. Based on these
considerations the hypothesis that C-band SAR 12-day repeat pass interferomet-
ric coherence rises after a mowing event was tested analysing Sentinel-1 C-band
SAR interferometric coherence in Ref. I.

2.1. SAR interferometric temporal coherence

Coherence is the amplitude of the complex correlation coefficient. Given two
complex SAR images s1 and s2 (e.g., Sentinel-1A single look complex (SLC)
products), coherence is defined as:

γ =
|〈s1s∗2〉|√
〈s1s∗1〉〈s2s∗2〉

, 0≤ γ ≤ 1 (2.1)

where |..| label the absolute value, 〈..〉 label the operation of spatial averaging,
and ∗ labels the complex conjugate product.

In the theoretical situation when the positions and physical properties of the
scatterers within the averaging window 〈..〉 are the same for both images s1 and
s2, the coherence amplitude extends to the maximum value of 1. While change
in the positions or properties of the scatterers lead to the decrease of coherence
values. In addition, a decrease of the coherence value can be caused by a mismatch
in the imaging properties of the two acquisitions caused by volume scattering,
processing errors, and other reasons — an exhaustive description is presented in
Hanssen (2001). Local statistics, specifically spatial averaging, has the central role
in the computation of complex correlation coefficient. Due to the relatively small
(∼150 m) baselines between two Sentinel-1 interferometric acquisitions volume
decorrelation is negligible in the context of this study.

On the other hand, temporal decorrelation is caused by changes in the scat-
terers, properties and positions between the acquisitions times. Regions covered
by vegetation are typically more changing in time having thus higher temporal
decorrelation and lower coherence than non-vegetated areas. To estimate the tem-
poral decorrelation term one needs to consider additional decorrelation sources.
The estimated coherence γtotal can be defined as:

γtotal = γtemporalγSNRγbiasγother (2.2)

where γtotal is the calculated coherence from Equation (2.1), γtemporal is the tem-
poral decorrelation, γSNR is decorrelation due to sensor noise (signal-to-noise ratio
(SNR)), γbias is influenced by the size of the averaging window, and γother are the
other terms mentioned before as being negligible in the case of Sentinel-1A. The
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evaluation of γSNR and γbias decorrelation terms are given in the following subsec-
tions.

2.1.1. SNR Decorrelation

γSNR is caused by the sensor’s thermal noise. Due to the relatively weak C-band
signal backscatter from grasslands vegetation, this term has to be considered. γSNR
is defined as (Just and Bamler, 1994):

γSNR =
1√(

1+ 1
SNRsat1

)(
1+ 1

SNRsat2

) (2.3)

where SNRsat is calculated for each of the two images in the interferometric pair
according to:

SNRsat =
σ0

sat −NESZsat

NESZsat
(2.4)

where σ
0
sat is the spatially averaged backscattering coefficient of the area under

investigation in the respective acquisition, and NESZsat is a range-dependent noise
parameter that can be calculated using look-up tables provided in the Sentinel-1
metadata. The parameters in Equation (2.4) are in linear scale.

2.1.2. Estimation Bias

Estimation of coherence is biased towards higher values, decreasing the contrast
between low and high coherence areas (Touzi et al., 1999). By using larger aver-
aging windows in Equation (2.1) the bias can be decreased. At the same time one
will loose spatial resolution when using larger windows. Therefore, the choice of
window size must consider the size of the study object: in this case, the size of
grasslands as well as the expected coherence range. In this study averaging win-
dows with the following sizes (azimuth (az) × range (rg)) were used: 5 × 21 for
relative orbit number (RON) RON58, 5× 19 for RON80 and 5× 19 for RON160,
producing a footprint on the ground of ≈ 71 m × 69 m for all geometries. This
resulted in the equivalent number of looks (ENL) of 50 for RON58, and 46 for
RON80 and RON160. The chosen window sizes assured that the estimated co-
herence was not heavily biased, with the maximum bias value of 0.14–0.15 given
true coherence of 0.

2.2. Materials

2.2.1. Mowing events and field measurements

For a proper analysis the actual mowing events have to be precisely determined in
space and time. Inside the 6 km× 9 km Ref. I study area (Figure 1) around Rannu
parish, 37 agricultural grasslands were used in this study. On the grasslands the
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Figure 1. Location of the study areas in Estonia denoted as Ref. I, Ref. II and Ref. III.

main species were red clover (Trifolium pratense subsp. sativum), alfalfa (Med-
icago sativa), timothy-grass (Phleum pratense), meadow fescue (Festuca praten-
sis), red fescue (Festuca rubra). These grasslands were used to produce fodder,
therefore grass was collected after the mowing events. GPS logs from tractors
were used to acquire the most accurate measurements of mowing events in space
and time, recording the start and end times of each mowing event and digitising
the spatial extent of the event. 77 mowing events were determined in the 2015
vegetation season: 27 events in June, 19 in July, 9 in August, and 22 in Septem-
ber. Grasslands were mowed several times: 38 first, 30 second, and 9 third mows
were determined. The extent of the mowed area varied between 2.2 ha and 43.2
ha (mean area of 11.9 ha).

To have more detailed look on the relations of temporal coherence and vege-
tation properties six grasslands (marked as G1 through G6) were monitored from
May to September 2015 on a weekly basis, measuring the vegetation height, wet
and dry above-ground biomass, and soil moisture. The transect method (10 mea-
surements in straight line after every 25 m) was used for the field survey. Vegeta-
tion height was determined with a measuring tape, and the recorded value repre-
sents the height of the majority of vegetation at the measurement point interpreted
visually by the field worker. Soil moisture was measured in the upper 5 cm layer
using two hand-held conductivity probes: Delta-T ML2x and Extech MO750. In-
side a 0.5 m × 0.5 m square all vegetation was cut and weighed to measure the
wet above-ground biomass. Further it was dried and weighed again to provide the
dry above-ground biomass.
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Table 1. Sentinel-1A interferometric wide swath mode relative orbit numbers (RONs)
used in the study and their parameters. The values are given for the study area. Azimuth
(az), range (rg) (ESA, 2013).

RON Ascending/
Descending

Acquisition
Time (UTC)

Sub-Swath Incidence Angle Ground Range
Resolution az × rg, m

Near Far Near Far

58 Ascending 16:04 3 44.6 45.0 21.60 × 4.98 21.60 × 4.95
80 Descending 04:34 2 39.0 39.5 21.70 × 4.93 21.70 × 4.87
160 Ascending 15:56 2 37.9 38.4 21.70 × 5.05 21.70 × 4.99

Table 2. Acquisition dates for the RONs used in the study.

RON May June

58 1 13 25 6 18 30
160 8 20 1 13 25
80 3 15 27 8 20

RON July August

58 12 24 5 17 29
160 7 19 31 12 24
80 2 14 26 7 19 31

RON September October

58 10 4 16 28
160 5 17 29 11 23
80 12 24 6

2.2.2. SAR acquisitions and processing

Dual-pol data (VV + VH) from the C-band SAR remote sensing satellite Sen-
tinel-1A were used in this study. Interferometric wide swath mode (IW) acqui-
sitions from three geometries were used: RON58, RON80, and RON160. An
overview of the properties of geometries is given in Table 1. With some excep-
tions, acquisitions were made every 12 days for each geometry. The data was
delivered as SLC products. Acquisition dates for each geometry are given in Ta-
ble 2. Relatively small orbital InSAR baselines in the order of 150 m is ensured
by the Sentinel-1 orbit maintenance strategy (Yague-Martinez et al., 2016).

The Sentinel application platform (SNAP) tool (version 2.0.0) provided by the
European Space Agency (ESA) was used for processing the Sentinel-1A images
(Figure 2). The work flow was automated with Python 3 and the SNAP Graph
Processing Tool (GPT). The coherence images and backscattering coefficients for
VH and VV polarisations were calculated for each 12-day image pairs that were
available.

An 80 m × 250 m area around the field survey measurement transect was
used to get the average coherence and backscatter measurements. The following
parameters were calculated from the images for each acquisition date: average
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coherence values for VV and VH; average backscatter values for VV and VH;
time separation in days between the mowing event and the first acquisition in an
interferometric pair. These parameters were collected also for three acquisitions
before and three after a mowing event for each geometry. Inside buffering was
used to exclude data on the border and outside the outline of a mowing event
from the calculations. The size of the inside buffer was determined based on the
coherence window size and geolocation accuracy of Sentinel-1.

The inside buffering and calculation of average values from images was auto-
mated using the ArcGIS Python package arcpy. The matplotlib Python package
(Hunter et al., 2007) was used for visualisation.

2.2.3. Precipitation data

The effect precipitation has on coherence values was analysed. To investigate the
effect precipitation has on repeat pass interferometric coherence the precipitation
amounts before the first interferometric pair images after the mowing events were
estimated using a DualPol weather radar. The weather radar is located in Sür-
gavere, 50 km to the north–west of the study area. It was produced by Vaisala
Group, and it operates in the C-band (at wavelength of 5.33 cm).

The 15-minute scan files provided by the Estonian Weather Service were pro-
cessed with the wradlib Python package (Heistermann et al., 2013) to generate
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pseudo constant altitude plan position indicator (PseudoCAPPI) estimates in the
height of 500 m (Figure 2). Precipitation estimates for the Sentinel-1A acquisi-
tions were created by averaging 300 m × 300 m pixels from the 3 h accumulated
rainfall estimates.

2.3. Summary of the study results and discussion

Coherence values decrease before a mowing event and increase after it. The time
separation between the event and first image in the InSAR pair has to be con-
sidered. Based on the time separation between the coherence measurement and
the mowing event, coherence values were divided into six 12-day interval groups.
The median VH and VV coherence values of after-the-event groups were statisti-
cally significantly higher compared to the first group before the event. The group
containing coherence measurements from 0 to 12 days after a mowing event gave
the best separation between mowed and not mowed grasslands. The influence of
a mowing event was significant even after 24 to 36 days. Using 1-day interfero-
metric pairs of X-band SAR data Zalite et al. (2016) have also concluded that the
increase of coherence after a mowing event is observable. In this study a C-band
radar with a longer wavelength was used. This might be the major reason why sta-
tistically significant differences could be presented and the coherence stays higher
for a period of up to 36 days after an event.

When comparing VH and VV polarisation, it was concluded that the relative
increase after a mowing event for VH coherence was slightly higher than for VV
coherence. Similarly, El Hajj et al. (2014) concluded that the X-band HV polari-
sation is more sensitive to grasslands parameters than HH. When analysing sug-
arcane harvest Baghdadi et al. (2009) also described that that the co-pol channels
(HH and VV) have a slightly lower potential.

Precipitation diminished the increase of coherence after a mowing event. When
the 3-h precipitation estimates were larger than 0.25 mm, the VH and VV coher-
ence values after a mowing event generally remained under 0.25. Further, the
0.25 mm threshold allowed to group measurements from all three image acquisi-
tion geometries that were used in the study into two groups. Considering this, the
coherence values were divided into two groups with 3-h precipitation estimates
≤0.25 mm and >0.25mm. Median VH and VV coherence from RON160 showed
significant difference between these two groups. Precipitation before one or both
of the image acquisitions changes the dielectric constant and the structure of the
vegetation and may decrease the coherence. Similar decrease of coherence due
to precipitation has been described by (Ahmed et al., 2011; Zalite et al., 2016).
On the other hand coherence values from RON80 and RON58 geometries showed
no significant difference between the groups. The 3-h precipitation estimates of
RON80 and RON58 acquisitions were small and might not have significantly af-
fected the coherence. Additionally, the rather small sample size (55 to 77 mea-
surements depending on RON) and the accuracy of precipitation estimates (1 h
estimates RMSE 0.95 mm) must be considered when interpreting these results.
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The weekly measurements taken on six grasslands reveal the complex rela-
tionship between mowing events and coherence. Very high coherence was rarely
observed. It was registered that farming activities also weaken the increase of co-
herence after a mowing event. Field measurements also indicated that in the case
of rapidly growing vegetation the 12-day interferometric coherence is not tempo-
rally dense enough for the mowing detection. With Sentinel-1B being operational,
6-day coherence products can now be created. With 6-day coherence rapid vege-
tation growth has less influence on the increase of coherence after mowing event.

Field measurements show that the higher the soil moisture and sparser the
vegetation the stronger the increase of coherence after a mowing event. Still,
the operational parcel-level estimation of soil moisture based on satellite remote
sensing is challenging. For instance, Hornacek et al. (2012) stated that 1 km
spatial resolution could be achievable with using Sentinel-1 data.

Height of the residual grass after a mowing event affects the resulting coher-
ence values. Coherence stays low if the grass is cut to 0.3 m and pressed to the
ground. In contrast, Voormansik et al. (2016) and Yang et al. (2015) have found
that when vegetation is left on the ground the mowing event is more distinguish-
able with SAR data using polarimetric techniques.

Morning dew was likely one additional source of decorrelation. On early
morning acquisitions dew changes the positions and properties of scatterers, thus
decreasing the coherence. It was also observed that shallower incidence angles
resulted in lower coherence values on average. Using polarimetric methods for
harvest detection Adams et al. (2013) has stated that shallower incidence angles
are preferred. Differences between VH and VV polarisation were also observed.
These are probably caused by varying soil roughness and vegetation structure.
Considering all the above mentioned findings it was concluded that there is po-
tential to develop mowing detection algorithms and applications using C-band
SAR temporal interferometric coherence.

Considering these findings, it was concluded that there is potential to develop
mowing detection algorithms and applications using C-band SAR temporal inter-
ferometric coherence. The finding that statistically significant relation exists be-
tween C-band SAR 12-day interferometric coherence measurements and mowing
events is the most important result of this thesis. When compared to the previ-
ous studies (Dusseux et al., 2014; Schuster et al., 2011, 2015; Voormansik et al.,
2013, 2016; Wang et al., 2013; Zalite et al., 2016, 2014) the effect is relevant in
the context of SAR remote sensing of mowing events on grasslands. For instance
Dusseux et al. (2014) has concluded that the C-band HH/VV intensity ratio could
not be used to discriminate mowing on grasslands. The result is also important
because this novel approach can have practical value for validating CAP rules.
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III. MONITORING OF FORESTS WITH OPTICAL
SENSORS

The use of local statistics in the domain of optical remote sensing of forests was
analysed in the studies Ref. II and Ref. III. The amount of the incident sunlight in
the visible and infrared wavelength ranges (also called optical wavelengths) that is
absorbed by earth surface materials differs depending on the wavelength. The ab-
sorption characteristics of materials are determined by the chemical compositions
and can be so complex in nature that many current earth observation instruments
do not have sufficient spectral resolution to capture these properties. Majority of
reflectance from the vegetation is in the optical wavelengths. Healthy vegetation
has water absorption bands near 1.4, 1.9 and 2.7 µm in the middle infrared range
and chlorophyll absorption bands in the blue and red region in the visible range
allowing our eyes to see plants as green. If the plant dies or suffers stress the water
content changes and the chlorophyll absorption decreases, which results in vege-
tation appearing yellowish. These absorption characteristics of vegetation allow
to monitor the health of vegetation and characterise different types of vegetation
and lead to the wide use of the optical wavelengths in the remote sensing of forests
(Richards, 2012).

Forest remote sensing methods could be divided between empirical, e.g k-
nearest neighbours method (Franco-Lopez et al., 2001; Latifi et al., 2010) and
physical e.g. directional multispectral forest reflectance model (Kuusk and Nil-
son, 2000). White et al. (2016) reviewed the potential of four remote sensing
technologies for forest inventories: airborne laser scanning, terrestrial laser scan-
ning, digital aerial photogrammetry, and high spatial resolution (1-10 m)/very
high spatial resolution (<1 m) satellite optical imagery. They concluded that the
coupling of digital aerial photogrammetry and airborne laser scanning will likely
have greatest impact on the forest inventory practices in the next decade. A new
review after the operational use of Sentinel-2A and Sentinel-2B is necessary to
assess the potential of these new satellites for forest inventory practices.

The value of using local statistics in the estimations of forest remote sensing
has been stressed by Kilpeläinen and Tokola (1999); Tuominen and Pekkarinen
(2005); Wing et al. (2015); Wolter et al. (2009). Using the area that surrounds the
pixel, as well as using image objects/segments or vector data to construct explana-
tory variables from remote sensing data adds context to the single pixel measure-
ments. It allows us to use texture. Haralick (1979) divided the texture in image
data into either statistical or structural. Statistical texture describes the statistical
distribution of values. Structural texture describes the spatial distribution of val-
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ues. Examples of statistical texture measures are the average of pixel values within
the area of interest (Tuominen and Pekkarinen, 2005) and local variance (Coops
and Culvenor, 2000; Wolter et al., 2009). Examples of structural texture measures
used in forest remote sensing are locally calculated variograms and correlograms
(Muinonen et al., 2001) and local Moran’s I spatial auto-correlation (Purkis et al.,
2006). Both types of texture measures can be calculated with LSTATS software
that was introduced in Ref. II. The claim that one can find local statistics that
are not widely used, but could be useful in forest remote sensing, was the major
motivation to perform the analyses and write article Ref. II. The distinctive local
statistics of LSTATS for forest remote sensing are elaborated in section 3.1.

The quantity of NFI data is huge and it is ever growing. At the same time the
volumes of remote sensing data are also increasing and the capabilities of creat-
ing new features based on the remote sensing data are advancing. This leads to a
situation where machine learning methods that are effectively capable of exploit-
ing these resources are being increasingly applied in remote sensing studies and
applications. A study to test the hypothesis that machine-learning-based remote
sensing approach can give estimates with high accuracy using large NFI data set,
Landsat 7 images and true colour orthophotos was carried out and described in
Ref. III. Section 3.2 sums up this research and discusses the results.

3.1. Local statistics for forest remote sensing

Higher resolution allows to have more measurements or pixels per study object.
This in turn makes the use of local statistics more attractive. A study to review
the LSTATS software and to test the claim that one can find not widely used local
statistics that could be useful in forest remote sensing was carried out in North-
Estonia (Figure 1) Ref. II. Goal was to look for and review LSTATS specific
functions not commonly used in other software packages. 0.4 m true colour or-
thophotos from June and July 2002 were used. To get information about the forest
stands being analysed stand-based forest inventory data from 2001 and 2002 were
used. Test sites were areas with diverse canopies within a small area and where the
special properties of structural texture statistics are revealed. The specific func-
tions for numerical variables were searched analysing three common GIS software
packages: IDRISI, ArcGIS Desktop, Definiens Developer. Specific functions of
LSTATS were tested on forest stands. Functions from the reference software pack-
ages with most similar properties compared to LSTATS specific statistics were
tested on the same areas. Currently the functions for calculating local statistics
are used in Constud application and in an online calculator (Remm, 2014). Source
code of LSTATS functions is freely available from the online calculator.

3.1.1. Summary of the study results and discussion

Ten local statistics for numerical variables were detected that were specific to
LSTATS software. Most of these were structural texture indices: stripedness,
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gradient direction, gradient strength, Moran’s I, Moran’s I weighted by the re-
verse value of distance, difference between centre and boundary, homogeneity
of neighbours. The statistical texture indices were: share of values exceeding
the local mean, coefficient of variation and factor of kurtosis. Based on the vi-
sual analyses with the use of forest inventory data as reference, it was concluded
that local statistics of LSTATS could be helpful in the following forest remote
sensing tasks: distinguishing shadowed management passages/strips (list of local
statistics: Moran’s I, Moran’s I weighted by the reverse value of distance and dif-
ference between centre and boundary); isolating groups of tree crowns (Moran’s
I weighted by the reverse value of distance); allocating clearings (homogeneity of
neighbours, share of values exceeding the local mean and coefficient of variation);
delineating spruce canopies in forest (homogeneity of neighbours).

Ke and Quackenbush (2011) reviewed methods for automatic individual tree-
crown detection from passive remote sensing data and concluded that most of
algorithms use single band data. Smoothing Gaussian filters are often used in pre-
processing of the images. The use of structural texture indicators, such as Moran’s
I weighted by the reverse value of distance, could add valuable information for
tree-crown detection.

Image- or photo-interpretation has been developed by empirical experience for
more than 150 years and is still widely used (Jensen, 2014). For example, Bastin
et al. (2017) recently estimated global forest extent in dryland biomes based on the
photo-interpretation of more than 210000 0.5 ha sample plots. Besides the use of
kernel-based local statistic maps described in previous paragraph in the automated
remote sensing systems, they could also provide helpful ancillary information to
conduct a photo-interpretation task over forested areas. In the context of this thesis
the results of Ref. II showed that local statistics are applicable for remote sensing
of forests using true colour orthophotos.

3.2. Estimating the parameters of forest inventory

A study was carried out Ref. III to test the following hypotheses: first cluster
analyses can be used for reduction of remote sensing features; second remote
sensing approach that is based on machine learning can give estimates with high
accuracy using large NFI data set, Landsat 7 images and true colour orthophotos.
The goal was to analyse the use of a machine learning application for the estima-
tion of NFI parameters (Figure 3). Landsat 7 ETM+ from 6-th of July 2001 data
with 30 m spatial resolution and true colour orthophotos from June and July 2002
with 1 m resolution together with basic and soil maps were used. The following
inventory parameters from the NFI stands were involved in the experiment: the
dominant tree species according to tree stem volume in the primary layer, maturity
classes, mean annual increment of the stand volume and stand volume. Training
and validation data were created: 1846 randomly located sample points on or-
thophotos for training and 712 for validation; 969 points on the satellite image
for training and 660 points for validation. A study area in the northern part of
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Estonia was chosen for the experiment (Figure 1). Local statistics were computed
for all possible combinations of the radii of the kernels (from 10 to 50 m) and
input bands. The following local statistics were used: locally calculated average,
the proportion over the average, the standard deviation, the coefficient of varia-
tion, the mode from statistical texture indicators and the auto-correlation index
Moran’s I and Moran’s I weighted with the reverse value of distance from struc-
tural texture indicators.

In the experiment the MLNN software (Remm, 2004) was used for machine
learning and the LSTATS software (Remm, 2005) for calculating local statis-
tics. Currently both have been combined into Constud software described first
in (Remm and Remm, 2008). The machine learning software is using case-based
reasoning (CBR) methodology that is especially capable in circumstances where
a large number of measurements on a complicated predictable variable exist. It
was able to estimate different types of dependent variables: continuous, multi-
and binomial and complex characteristics (e.g. stand formula in forest). The CBR
methodology is also known as similarity-based reasoning. It has been defined
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as a multidisciplinary science that is based on the usage of former experiences
at a minimal level of generalisation (Aha, 1998). The MLNN machine learning
process of a dependent variable is an iterative search for the best set of weights
for exemplars and for features (explanatory variables). The leave-one-out cross-
validation (LOOC) indicator is used in the machine learning process to measure
the accuracy of a given set of exemplar and feature weights. The principle of
LOOC is that the predicted value for every training instance is calculated using all
other instances, leaving the current instance out. A more comprehensive descrip-
tion of the machine learning process can be found from Constud tutorial (Remm
and Kelviste, 2011).

3.2.1. Reduction of features

Large number of features can be composed when combining statistics, radii and
input bands — in this study 150 features. To simplify and optimise the learn-
ing process a preliminary feature selection could be used. Principal components
analysis (PCA) is a widely used method for the reduction of data dimensionality
(Castro-Esau et al., 2004; Chica-Olmo and Abarca-Hernandez, 2000; Mohammed
et al., 2011; Ranson et al., 2001) and correlation matrices have commonly been
used in feature pre-selection (Tuominen and Pekkarinen, 2005). Li et al. (2012)
proposed alternative feature reduction framework called locality-preserving di-
mensionality reduction and demonstrated that it outperforms several traditional
alternatives for feature reduction.

PCA generalises raw variables into smaller number of linearly uncorrelated
synthetic variables that are called principal components. It is difficult to interpret
and to use these components when the input variables have updated values from
new measurements. It is challenging to use very large correlation matrices like
150 × 150 features in study Ref. III. Also different parameters of statistical
correspondence have to be used to compare nominal and continuous variables.
In this study this led to the decision to use cluster analysis (k-means clustering
algorithm) and regression analysis in the comparison of feature reduction methods
instead of PCA. The goal of feature reduction in this study was to decrease the
number of explanatory variables from 150 to 30 with different methods and then
compare accuracy of estimations with Student’s t-test and κ-analyses (Congalton
and Green, 2009).

3.2.2. Summary of the study results and discussion

The cluster analysis can be used for the feature reduction method and was chosen
because it can handle both nominal and numerical data. 30 explanatory variables
were chosen out of 150 and a CBR-based machine learning estimation was con-
ducted. In both cases, when using orthophotos or Landsat images, the stand vol-
ume in the primary layer (the stand-based accuracy 76.54 m3 ha-1 (41 %) RMSE
and 74.64 m3 ha-1 (36 %) RMSE respectively) and dominant tree species (κ = 0.38
and κ = 0.41 respectively) were recognised more accurately than the the maturity
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class of the forest stand and the mean annual increment of stand volume. The
most valuable feature from orthophotos was the average saturation value of im-
age colour within a 30-m radius. From the satellite images the standard deviation
of ETM+ band 6.2 within a radius of 80 m was most useful. Features that use
Moran’s I weighted with the reverse value of the distance obtained relatively high
indicator values.

Using orthophotos with near-infrared channel and locally calculated variograms
for estimating stand volume Muinonen et al. (2001) have reported stand-level ac-
curacy of 18 to 27 % RMSE. Avitabile and Camia (2018) assessed four Europe-
wide remote-sensing-based forest maps using harmonised NFI statistics from 26
countries. The national-level accuracy of the maps ranged from 29 % to 40 %
RMSE and the pixel-level accuracy from 58 % to 67 % RMSE. In this study for-
est attribute maps were created with the stand-level accuracy of 39 % RMSE for
stand volume and 43 % RMSE for the stand mean annual increment. In the con-
text of this thesis it can be concluded that machine-learning-based remote sensing
approach analysed in Ref. III did not give estimates with high accuracy. Still
moderate accuracy reaching 36 % RMSE for stand volume was achieved.
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CONCLUSIONS

This thesis studies approaches for remote sensing of grasslands and forests based
on local statistics. The capability of modern hardware and software to effectively
process large image data sets allows to use local statistics to improve remote sens-
ing estimations more than before. Locally computed statistics are a fundamental
part of GEOBIA that is one of the hot topics in current remote sensing research.
The work is presented in three chapters. Chapter I gives an overview about re-
cent developments in remote sensing research in general, trends in the domains of
remote sensing of agricultural areas and forests and in the field of local statistics
in remote sensing of vegetation. Chapter II focuses on monitoring of grasslands
with SAR. Chapter III is devoted to monitoring of forests with optical sensors.

It is shown that there is potential to develop mowing detection algorithms and
applications using C-band SAR temporal interferometric coherence. The results
demonstrate that after a mowing event, median VH and VV polarisation 12-day
interferometric coherence values are statistically significantly higher than those
from before the event. The sooner after the mowing event the first interferomet-
ric acquisition is taken, the higher the coherence. Morning dew, precipitation,
farming activities, such as sowing or ploughing, high residual straws after the cut
and rapid growth of grass are causing the coherence to decrease and impede the
distinction of a mowing event. In the future, six-day interferometric coherence
should also be analysed in relation to mowing events to alleviate some of these
factors. Nevertheless, the results presented in this thesis offer a strong basis for
further research and development activities towards the practical use of space-
borne C-band SAR data for mowing detection.

The use of following local statistics: Moran’s I, Moran’s I weighted by the re-
verse value of distance, difference between centre and boundary, homogeneity of
neighbours, share of values exceeding the local mean and coefficient of variation
can be useful for estimation of forest parameters from true colour orthophotos.
These statistics could also add helpful ancillary information to conduct photo-
interpretation tasks over forested areas.

With the estimation of NFI data it is demonstrated that the case-based reason-
ing (a machine learning method) is well suited for empirical solutions of remote
sensing tasks where there are many different data sources available. In addition,
cluster analysis can be used as pre-selection method for the reduction of remote
sensing features. Locally computed average is the most useful feature when com-
pared to different texture indicators. It is concluded that the use of local statistics
adds valuable data to pixel-based remote sensing estimations.
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KOKKUVÕTE (SUMMARY IN ESTONIAN)

Lokaalstatistikute kasutamine rohumaade ja metsade
kaugseires

Kaugseire on objekti või nähtuse kohta informatsiooni kogumine olemata selle-
ga füüsilises kontaktis. Jensen (2014) on väitnud, et kaugseire valdkond on eks-
ponentsiaalse kasvu faasis. Maa kaugseire (Earth observation (EO)) satelliitide
ruumiline, spektraalne ja radiomeetriline lahutusvõime suureneb ja ülesvõtteid te-
hakse järjest tihedamalt. Maa kaugseiret kasutatakse näiteks atmosfääri, taimesti-
ku, mulla, vee, jää, mineraalide ja linna taristu kohta teabe saamiseks. Eesmärgiks
on saada kaugseirest igapäevaelus maksimaalset kasu näiteks ilmaennustamisel,
põllukultuuride kasvu jälgimisel ja jää kaardistamisel, meretranspordi paremaks
planeerimiseks.

Arengud riist- ja tarkvaras on loonud võimalused töödelda efektiivselt väga
suurt hulka kaugseire andmeid. Senisest laiaulatuslikumalt on võimalik kasutada
kaugseire hinnangute täiustamiseks lokaalstatistikuid. Käesoleva doktoritöö kon-
tekstis on lokaalstatistikud statistilised näitajad, mis arvutatakse kaugseire kujutis-
telt lokaalse huviala piires. Lokaalne huviala võib olla määratletud uuritavat kohta
ümbritseva alaga, mis on ringi, ruudu või muu kujuga. Lokaalne huviala võib olla
piirtletud ka polügooniga, mis pärineb olemasolevast vektorandmestikust või on
kaugseire kujutiselt segmenteeritud. Üks aktuaalsemaid teemasid kaugseire alases
uurimistöös on geograafiline objektipõhine pildianalüüs (geographic object-based
image analysis (GEOBIA)) ning lokaalstatistikutel on selles oluline osa. Käesolev
doktoritöö analüüsib lokaalstatistikute kasutamist rohumaade ja metsade kaugsei-
res eesmärgiga:

1. esitleda tehisava-radari interferomeetrilisel koherentsusel põhinevaid tun-
nuseid niitmiste seireks rohumaadel;

2. näidata lookalstatistikute kasutusvõimalusi ortofotodel põhinevas metsade
kaugseires;

3. täiendada olemasolevaid metsade kaugseire metoodikaid läbi tunnuste eel-
valiku ja masinõppe meetodite kasutamise riigimetsa takseerandmete in-
ventuuriks.

Käesolev doktoritöö koosneb kolmest peatükist. Peatükk I annab ülevaate ak-
tuaalsetest kaugseire uurimistöö suundadest, arengutest põllumajandusmaade ja
metsade kaugseires ning lokaalstatistikute kasutamisest taimkatte kaugseires. Pea-
tükk II käsitleb rohumaade monitoorimist tehisava-radari (synthetic aperture ra-
dar (SAR)) abil ning peatükk III metsade kaugseiret kasutades optilisi sensoreid.
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Doktoritöö tulemusena selgus, et C-laineala tehisava-radari interferomeetrilise
koherentsuse kasutamisel on potentsiaali niitmise tuvastamise algoritmide ja ra-
kenduste väljaarendamiseks. Tulemused näitasid, et pärast niitmist on VH ja VV
polarisatsiooni 12-päeva interferomeetrilise koherentsuse mediaan väärtused sta-
tistiliselt oluliselt kõrgemad võrreldes niitmise eelse olukorraga. Koherentsus on
seda kõrgem, mida väiksem on ajaline vahe niitmise ja pärast seda üles võetud
esimese interferomeetrilise mõõtmise vahel. Teisalt hommikune kaste, sademed,
põllutööde teostamine, näiteks külvamine või kündmine, kõrgelt niitmine ja kiire
rohu kasv pärast niitmist vähendavad koherentsust ja raskendavad niitmise tuvas-
tamist. Selleks, et eelpoolnimetatud mõjusid vähendada tuleks tulevikus uurida
6-päeva koherentsuse ja niitmise sündmuste vahelisi seoseid. Käesolevas doktori-
töös esitatud tulemused loovad tugeva aluse edasisteks uuringuteks ja arendusteks
eesmärgiga võtta C-laineala tehisava-radari andmed niitmise tuvastamisel prakti-
kas kasutusele.

Doktoritöös leiti, et ortofotodel põhinevate metsa kaugseire hinnangute and-
misel on abi lokaalstatistikute kasutamisest. Näidati, et kasulikud võivad olla järg-
mised lokaalstatistikud: Morani I, kaugusega kaalutud Morani I, erinevus keskosa
ja äärte vahel, naabrite homogeensus, üle keskmise olevate väärtuste osakaal ja
variatsiooni koefitsient. Lisaks võivad need statistikud olla kasulikud ka pildi tõl-
genduse (photo-interpretation) ülesannete lahendamisel metsastel aladel.

Käesoleva doktoritöö raames läbi viidud riigimetsa takseerandmete (national
forest inventory (NFI)) kaugseire hinnangu tulemused on mõõduka täpsusega. Lei-
ti, et klasteranalüüsi saab kasutada kaugseire tunnuste eelvaliku meetodina ning
näidistel põhinev järeldamine (case-based reasoning (CBR)) sobib hästi selliste
kaugseire ülesannete empiirilisteks lahendusteks, kus sisendandmetena on kasu-
tatavad väga paljud erinevad andmeallikad, näiteks optilised sensorid satelliitidel
ja lennukitel, täiendavad kaardiandmed, jne. Võrreldes erinevaid tekstuuri statisti-
kuid näidati, et lokaalselt arvutatud keskväärtus on kõige väärtuslikum tunnus. Jä-
reldati, et nii statistiliste kui ka struktuursete lokaalstatistikute kasutamisega saab
lisada pikslipõhistele kaugseire hinnangutele olulist andmestikku.
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ERRATA IN PAPERS

Publication I

1. On page 10, word "backscatter" should be used instead of word "coherence"
in the last sentence of the first paragraph. The corrected version is: "... and
backscatter measurements ...".

Publication III

1. In the Abstract, unit "m3" should be used instead of "m-3". For instance the
corrected version of "...74.64 m-3 ha-1..." is "...74.64 m3 ha-1..."

2. On page 292, Figure 2 has been erroneously switched with Figure 3. In
the corrected version Figures 2 and 3 have to be switched so that Figure
2 on page 292 illustrates the process of machine learning and estimation
(currently Figure 3) and Figure 3 on page 293 illustrates the technological
schema of map generatrion (currently Figure 2). The captions and refer-
ences to the figures must stay unchanged.
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