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Cosmin Dănis, or, Gianfranco Fornaro, Antonio Pauciullo, Diego Reale and Mihai Datcu

Super-Resolution Multi-Look Detection in SAR Tomography
Reprinted from: Remote Sens. 2018, 10, 1894, doi:10.3390/rs10121894 . . . . . . . . . . . . . . . . . 250

Alessandra Budillon, Michele Crosetto, Angel Caroline Johnsy, Oriol Monserrat, 
Vrinda Krishnakumar and Gilda Schirinzi

Comparison of Persistent Scatterer Interferometry and SAR Tomography Using Sentinel-1 in 
Urban Environment
Reprinted from: Remote Sens. 2018, 10, 1986, doi:10.3390/rs10121986 . . . . . . . . . . . . . . . . . 271

Alessandra Budillon, Angel Caroline Johnsy and Gilda Schirinzi

Urban Tomographic Imaging Using Polarimetric SAR Data
Reprinted from: Remote Sens. 2019, 11, 132, doi:10.3390/rs11020132 . . . . . . . . . . . . . . . . . 285

vi



About the Special Issue Editors

Michele Crosetto holds a civil engineering degree from the Politecnico di Torino (1993) and 
a doctorate in Topographic and Geodesic Sciences from the Politecnico di Milano (1998). He 
specialized in Geodesy, Photogrammetry and GIS in Lausanne (EPFL) and Zurich (ETHZ) from 1993 
to 1995. He has worked in the Joint Research Centre of the European Commission in Ispra, Italy 
(January 1999–July 2000) and as a researcher at the Cartographic Institute of Catalonia. He has been 
a member of the Institute of Geomatics since 2002. Since January 2014 he has worked with CTTC, 
where he is now Head of the Geomatics Division. His main research activities are related to the 
analysis of spaceborne, airborne and ground-based remote sensing data and the development of 
scientific and technical applications using active sensor types, such as Synthetic Aperture Radar 
(SAR), Real Aperture Radar (RAR) and laser scanners. In recent years he has been involved in a 
number of projects of the Fifth, Sixth and Seventh and H2020 Framework Programmes of the EU. 
In addition, he has been involved in different projects funded by the European Space Agency.

Oriol Monserratholds a PhD in aerospace science and technology from the Polytechnic University 
of Catalonia (2012) and a degree in mathematics from the University of Barcelona (2004). In 2003 he 
started working as a researcher in the Active Remote Sensing Unit of the Geomatics Institute. Since 
January 2014 he has worked as Head of the Remote Sensing Department of the Division of Geomatics 
at the Technological Centre of Telecommunications of Catalunya. His research activities are related 
to the analysis of satellite, airborne and terrestrial remote sensing data and the development of 
scientific and technical applications using mainly active sensors, such as Synthetic Aperture Radar 
(SAR), Real Aperture Radar (RAR) and laser scanners. From the point of view of applications, 
Dr. Monserrat is specialized in the measurement and monitoring of deformations using SAR 
interferometry techniques (InSAR). In his research career he has participated in different projects 
(most of them related to geohazards) of the Sixth and Seventh Framework Programmes of the 
EU (Galahad, SubCoast, PanGeo and Aphorism) as well as H2020 (HEIMDALL, GIMS). He has 
also participated in outstanding projects funded by the European Space Agency. He has been the 
coordinator of the SAFETY and U-Geohaz projects.

Alessandra Budillon received her “Laurea” degree (cum laude) in Electronic Engineering in 1996, 
and earned a PhD in Electronic Engineering and Computer Science in 1999 at the Università degli 
Studi di Napoli Federico II, Naples, Italy. From January to July 1998 she carried out, within her PhD 
course of study, research activity at the Brain and Cognitive Sciences Department, MIT, Boston, USA. 
In February 2001 she became assistant professor of Telecommunication at the Department of 
Information Engineering at the Seconda Università degli Studi di Napoli, Aversa, Italy. In November 
2004 she moved to the Department of Engineering at the Università degli Studi di Napoli Parthenope. 
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Abstract: This Special Issue hosts papers related to deformation monitoring in urban areas based on
two main techniques: Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR)
Tomography (TomoSAR). Several contributions highlight the capabilities of Interferometric SAR
(InSAR) and PSI techniques for urban deformation monitoring. In this Special Issue, a wide range of
InSAR and PSI applications are addressed. Some contributions show the advantages of TomoSAR in
un-mixing multiple scatterers for urban mapping and monitoring. This issue includes a contribution
that compares PSI and TomoSAR and another one that uses polarimetric data for TomoSAR.

Keywords: synthetic aperture radar; persistent scatterers; tomography; differential interferometry;
polarimetry; radar detection; urban areas; deformation

Our capability to monitor deformation using satellite-based Synthetic Aperture Radar (SAR)
sensors has increased substantially in recent years, thanks to the availability of multiple SAR sensors
and the development of several data processing and analysis procedures. Differential interferometric
SAR (DInSAR) [1] and Persistent Scatterer Interferometry (PSI) [2] involve the exploitation of at least a
pair of complex SAR images to measure surface deformation. Both the DInSAR and PSI techniques
exploit the phase of the SAR images. Most of the InSAR and PSI techniques assume the presence of
only one dominant scatterer per resolution cell [3,4]. This assumption cannot be valid when observing
ground scenes with a pronounced extension in the elevation direction for which more than one scatterer
can fall in the same range-azimuth resolution cell. This potential limitation can be overcome by
using SAR tomography (TomoSAR) techniques [5]. In fact, in such techniques, the use of a stack of
complex-valued interferometric images makes it possible to separate the scatterers interfering within
the same range-azimuth resolution cell [6,7]. This Special Issue is focused on deformation monitoring
in urban areas based on PSI and TomoSAR. It collects the latest innovative research results related to
these two techniques. These published papers show the capability of both techniques in mapping and
monitoring urban areas.

The papers related to PSI describe methodological and application-oriented research work.
In reference [8], the authors assess the deformations associated with the construction of a new metro
tunnel. In reference [9], PSI results are used as a key input for geological and geomorphological
analyses in urban areas. In reference [10], the subsidence phenomena over an entire metropolitan area
(Rome) are studied using Sentinel-1 data and open source tools. In reference [11], the applicability
for urban monitoring of pursuit monostatic data from the very high-resolution TanDEM-X mission
is addressed. A new PSI procedure is described in reference [12], which is used to monitor the land
deformation in an urban area induced by aquifer dewatering. The most original part of this work

Remote Sens. 2019, 11, 1306; doi:10.3390/rs11111306 www.mdpi.com/journal/remotesensing1
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includes the estimation of the atmospheric phase component using stable areas located in the vicinity
of the monitoring area. In reference [13], the observations coming from PSI are used to contribute
to the assessment of the health state of two bridges. The use of PSI to study the long-term land
deformation patterns in earthquake-prone areas is addressed in reference [14]. A methodology to
exploit PSI time series from Sentinel-1 data for the detection and characterization of uplift phenomena
in urban areas is described in reference [15]. In reference [16], PSI is used to identify and measure
ground deformations in urban areas to determine the vulnerable parts of the cities that are prone to
geohazards. In reference [17], the authors address the use of PSI data to study the pattern of temporal
evolution in reclamation settlements. Finally, in reference [18], the authors study the wide-area surface
subsidence characteristics of a large metropolitan area (Wuhan) using Sentinel-1 data.

In an urban environment, one of the most important tasks is to resolve layover, which causes
multiple coherent scatterers to be mapped in the same range-azimuth image cell. In references [19–22]
the use of tomographic techniques that synthesize apertures along the elevation direction exploiting a
stack of SAR images, allows the separation of the scatterers interfering within the same range-azimuth
cell. In particular, in reference [19], the detection strategy for multiple scatters is reported in the context
of “tomography as an add-on to PSI”, i.e., tomographic analysis is subsequent to a prior PSI processing.
The paper also highlights that while the instabilities in phase are typically modeled as additive noise,
their impact on tomography is multiplicative in nature. In reference [20], a Generalized Likelihood
Ratio Test (GLRT) with the use of multi-look is proposed to separate multiple scatterers and shows
tangible improvements in the detection of single and double interfering persistent scatterers at the
expense of a minor spatial resolution loss. In reference [21], an inter-comparison of the results from
PSI and TomoSAR is carried out on Sentinel-1 data. The analysis of the parameters estimated by the
two techniques allows us to achieve a level of precision comparable to other studies. The paper also
addresses the complementarity of the two techniques, and in particular, it assesses the increase of
measurement density that can be achieved by adding the double scatterers from SAR tomography to
the Persistent Scatterer Interferometry measurements. Finally, in reference [22], the use of polarimetric
channels in TomoSAR is explored. This paper shows that using a GLRT approach and dual pol data is
possible to reduce the number of baselines required to achieve a given scatterer detection performance.
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Abstract: Los Angeles has experienced ground deformations during the past decades. These ground
displacements can be destructive for infrastructure and can reduce the land capacity for groundwater
storage. Therefore, this paper seeks to evaluate the existing ground displacement patterns along
a new metro tunnel in Los Angeles, known as the Sepulveda Transit Corridor. The goal is to find
the most crucial areas suffering from subsidence or uplift and to enhance the previous reports
in this metropolitan area. For this purpose, we applied a Persistent Scatterer Interferometric
Synthetic Aperture Radar using 29 Sentinel-1A acquisitions from June 2017 to May 2018 to estimate
the deformation rate. The assessment procedure demonstrated a high rate of subsidence in the
Inglewood field that is near the study area of the Sepulveda Transit Corridor with a maximum
deformation rate of 30 mm/yr. Finally, data derived from in situ instruments as groundwater level
variations, GPS observations, and soil properties were collected and analyzed to interpret the results.
Investigation of geotechnical boreholes indicates layers of fine-grained soils in some parts of the
area and this observation confirms the necessity of more detailed geotechnical investigations for
future constructions in the region. Results of investigating line-of-sight displacement rates showed
asymmetric subsidence along the corridor and hence we proposed a new framework to evaluate
the asymmetric subsidence index that can help the designers and decision makers of the project to
consider solutions to control the current subsidence.

Keywords: subsidence monitoring; persistent scatterer interferometry; asymmetric subsidence;
groundwater level variation; Sepulveda Transit Corridor; Los Angeles

1. Introduction

Ground subsidence is mainly due to fluid overexploitation and expanding construction [1–4].
There are several cities and regions suffering from land subsidence, such as Mexico City [5,6],

Remote Sens. 2019, 11, 377; doi:10.3390/rs11040377 www.mdpi.com/journal/remotesensing4
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Shanghai, China [7–9], Lhokseumawe, Medan, Jakarta, Bandung, Blanakan, Pekalongan, Bungbulang,
and Semarang, Indonesia [10–13], Ravenna, Prato, Bologna, Italy [14–18], Tehran, Rafsanjan,
Neyshabour, Mashhad, Iran [19–25], Los Angeles, United States [26–32], and many more places
around the world. In the present study, we studied land deformation in Los Angeles metropolitan
area, Southern California, with a focus on the study area of a new transit corridor, known as Sepulveda
Transit Corridor. This investigation is crucial because land displacement will affect the design and
depth of a tunnel [33–36] and should be assessed based on soil properties. Also, all the information
about the location, soil and groundwater needs to be carefully managed, analyzed and investigated in
planning and design phase of the road construction to ensure the reliability of the subgrade [37–39].
Based on the previous researches in Los Angeles [26–31,40], the ground displacements in this area are
mainly due to the groundwater level variations and oil extraction [26].

Advances in technology and science have made accurate measurement of ground deformation
simple. Interferometric Synthetic Aperture Radar (InSAR) technique is a geodetic tool to image ground
displacement in centimeter-scale and can be a very helpful technique in understanding the earthquakes,
volcanos and glaciers [41]. InSAR can also benefit geomorphologists and hydrologist by providing
an accurate measurement of slope motion, sediment erosion and deposition, water level fluctuation
and soil moisture content [42–46]. InSAR has been considered as a powerful method to monitor ground
surface deformations [47] and is an alternative technique to measure surface displacement. InSAR can
measure small surface deformations in different situations and projects such as ground settlement and
excavations [48]. Using the high spatial and temporal resolution of radar images, the InSAR technique
can provide reliable results in the application of subsidence monitoring of such infrastructures as
roads [49], subways, rails, and tunnels. Tunnels are visible because of localized subsidence of the
above ground surface along their tunnel path. It means that it is possible to determine the effect of
tunnel excavation on the ground surface. Highways, standing over the ground surface, in most cases
show reliable stability compared to the surrounding areas [50].

A number of studies have used geodetic and InSAR techniques to evaluate the ground
deformation in Los Angeles Basin. For example, the radar data acquired by the European Remote
Sensing Satellites (ERS-1 and ERS-2) from 1992 to 1999 were analyzed [51] using InSAR to study the
ground deformations along the southern San Andreas fault system. In addition, the interseismic
crustal movement was measured [52] near Los Angeles, along the San Andreas Fault (SAF), by a new
technique for integrating InSAR analysis on ERS descending and ALOS ascending radar images,
and GPS data. The outputs display the vertical velocity of land deformation between −2 to +2 mm/yr,
and shows uplift on the SAF in the Los Angeles area. Several researchers investigated the ground
displacements related to groundwater level changes and fluid extraction in the Los Angeles Basin.
For instance, radar images of ERS-1/2 satellite and GPS data were deployed [29] to infer the seasonal
land deformations related to groundwater extraction in the Los Angeles basin. Also, a study on
metropolitan Los Angeles [40] evaluated seasonal oscillations of the Santa Ana aquifer (uplift and
subsidence), located in Los Angeles Basin, using InSAR technique from 1998 to 1999. The analysis
provided estimates of ground displacement in the Line of Sight (LOS) of the European Remote Sensing
(ERS) satellite in the time between satellite passes. The InSAR outputs showed uplift and subsidence
in metropolitan Los Angeles to in response to extraction of fluid resources.

The subsidence associated with groundwater pumping and faulting in Santa Ana basin, CA was
measured using InSAR technique from 1997 to 1999 and GPS data from 1999 to 2000 [53]. The results
showed subsidence as high as 12 mm/yr is happening by groundwater withdrawal and re-injection in
metropolitan Los Angeles. A time series analysis of ground deformation by InSAR based on small
baseline subset (SBAS) algorithm was carried out [28] for Santa Ana basin in Los Angeles metropolitan
area. ERS satellite data from 1995 to 2002 were used and it was found that ground deformations time
series from InSAR significantly agree with GPS time series from Southern California Integrated GPS
Network (SCIGN). A temporarily coherent point InSAR method [30] was applied on the Los Angeles
Basin, using 32 ERS-1/2 images acquired during 1995 to 2000 to detect land subsidence. InSAR and GPS
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measurements were used [26] for detecting ground deformations caused by injection of groundwater
and oil in Los Angeles from 2003 to 2007. A dataset of 64 TerraSAR-X images has been processed [27]
in Los Angeles in the period 2010–2014 and showed a cumulative displacement of −50 mm in oil
extraction fields. In 2018, a research [54] conducted to quantify ground deformation in the Los Angeles
Basin due to groundwater withdrawal and showed −20 to +10 mm/yr LOS displacement rate.

A number of studies have been carried out to measure surface deformation along the transit
corridors and their near infrastructures such as aqueducts and levees in California [55,56] and Rome
(Italy) [57]. For instance, land subsidence rate of Hampton Roads in Virginia, USA, was estimated [58]
using GPS observation and InSAR applied to ALOS-1 radar data. The outputs showed decent
agreement between GPS data and InSAR-generated subsidence rate map. In a study in Shanghai,
China [50], the X-band sensor Cosmo-SkyMed was used to monitor the subway tunnels and highways
by Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) analysis. In order to detect
and monitor ground subsidence caused by tunneling, InSAR time series analysis was applied [59] on
RADARSAT-1 and RADARSAT-2 radar data in the urban area of Vancouver, Canada. InSAR technique
was also used to monitor landslide displacements induced by excavations related to tunneling in the
Northern Apennines, Italy [48]. The tunnel was part of a larger project that contains the improvement
of a highway that connects Bologna and Florence. The InSAR outputs showed high agreement with
inclinometer and GPS as ground-based monitoring data.

Land surface deformation depends on many factors such as the depth of sediments and the
amount of fluid extraction. Therefore, each area may behave differently at different places and
different periods. In geotechnical engineering, land subsidence is estimated by considering the
following parameters: deformable soil thickness, effective stress variation, and modulus relating the
two previous parameters. The changes in the stress state are due to variations in the groundwater level.
As the piezometric levels were measured frequently during a period, they are used to determine the
groundwater table depth and pore water pressure changes are assumed equal to changes of ground
water table [24,60]. Drainage of groundwater in soil deposits can induce huge ground subsidence.
Thus, it is imperative to investigate the soil properties of deep geotechnical wells to detect thick
compressible sediments particularly in the areas suffering from groundwater extraction.

In this research, we focused on the study area of the Sepulveda Transit Corridor which is planned
to improve transportation means between the Los Angeles International Airport and the San Fernando
Valley. The previous studies considered the displacements of constructed or under-construction
infrastructures such as ground deformations caused by tunnel excavations. The main goal of
conducting the present study is to obtain the current ground deformation pattern of a new transit
corridor, which can affect its designing criteria and help the designers and decision makers of future
constructions. In addition, it is necessary to investigate the subsidence rates in recent years to modify
and update the past reports. This paper is organized as follows. First, the study area and the
Sepulveda Transit Corridor project is introduced. Second, a brief description of the basic concepts
of PSInSAR and the dataset is given. In this study, we used Sentinel-1A SAR images, provided by
the European Space Agency (ESA) [61], acquired over the study area from June 2017 to May 2018.
Third, the subsidence map derived from PSInSAR analysis is presented. Fourth, piezometric data, GPS
observations, and geotechnical properties are provided to assess the outputs. Finally, a framework for
evaluation of asymmetric subsidence is proposed. The research objectives of this research are:

• To assess and complement the previous studies on subsidence monitoring in Los Angeles using
more recent data.

• To evaluate the PSInSAR results considering soil properties, and hydrological data and GPS
information in the area.

• To identify deformation patterns over the study area of the corridor to inform and warn the
managers, designers and other stakeholders about the future hazardous consequences.
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• To show the variation in displacement rates along the alignment of corridor to help the designers
and decision makers of the project to detect the places that require considering immediate solutions
to control the current displacements.

2. Study Area: Sepulveda Transit Corridor, Los Angeles, California

The main aim of the Sepulveda Transit Corridor is to enhance transportation between the Los
Angeles International Airport (LAX) and the San Fernando Valley. In the current situation, the
I-405 highway in this area bear more than 400,000 travel every day and known as one of the most
traveled urban freeways in the US [62]. As such, the Los Angeles County Metropolitan Transportation
Authority (known as Metro), the agency that controls public transportation for the County of Los
Angeles, is conducting a study to assess a range of high-capacity rail transit alternatives between
the San Fernando Valley and LAX. The study conducted by Metro is expected to take approximately
20 months, from December 2017 (study kickoff) to Summer/Fall 2019 (study completion). It should be
noted that due to the importance of the Sepulveda project, it is funded by the Measure M expenditure
plan, with around $5.7 billion for construction of new transportation service to connect the San
Fernando Valley and the Westside, and around $3.8 billion for extending that transit service between
the Westside and LAX [62]. Figure 1 shows the study area of the Sepulveda Transit Corridor covering
an area of about 229 km2.

Figure 1. The study area for PSInSAR analysis, including the Sepulveda Transit Corridor.

3. Methodology

3.1. PSInSAR Time Series Analysis

The PSInSAR technique [63] was used in this research to monitor ground deformation through
the study are. This technique is one of the powerful SAR time series applications which can analyze
land displacements, particularly in urban areas [64]. PSInSAR looks for Permanent Scatterers [65]
with stable scattering properties and also relatively good coherence, over long period intervals in
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multi-temporal data [66]. For mapping ground deformation, a stack of SAR images of the same area is
selected. Afterwards, one single master acquisition is chosen from the stack based on the measured
baselines in time and space to achieve an appropriate coherence in interferograms. A reference point
is chosen, among the selected Persistent Scatterer Candidates (PSCs), which is relatively unaffected
by ground surface displacement. Then, a stack of co-registered Single Look Complex (SLC) images is
created using this single master configuration. Phases of each pixel are acquired when the topography
and earth curvature influence is removed from the phase. There are a number of factors influenced
the acquired phases, such as external DEM inaccuracy, Atmospheric Phase Screen (APS), linear phase
ramp, the scatterer movement, and decorrelation and speckle noise. The following equation [67] shows
the main factors in the phase calculation.

φk =
4π

λ
(

Bk
⊥

R sin θ
)h +

4π

λ
Tkv + φk

atm + φk
orb + φk

noise (1)

where the first term is related to the DEM error (h) because of the external DEM inaccuracy, the second
term is related to the linear deformation velocity (v) during the acquisition period. In this equation,
φk

atm, φk
orb and φk

noise denote the atmospheric phase delay, the residual orbital error phase, and the
temporal and geometrical decorrelation noise, respectively. In this study, we implemented PSInSAR
analysis in SARPROZ [4] and the applied processing steps are as the following:

First, each pixel could be a PS candidate if it satisfies the amplitude stability index for the pixel
have a value of at least 0.85. The amplitude stability index can be calculated as follow:

Dstab = 1 − σa

a
(2)

where Dstab , σa and a are the amplitude stability index, the standard deviation and the mean of
amplitude values, respectively. This condition resulted in 57,667 points in the present study.

Second, the unknown parameters of DEM error and the velocity are estimated. For this purpose,
the spatial graph of connections between points is considered and the initial parameters are estimated
along the connections. Then, the absolute values are achieved by numerical integration considering
a reference point as a starting point for the integration. Careful selection of the reference point is a key
factor in the accuracy of outputs, as careless reference selection will result in biased parameters for
all points.

Finally, a wider set of points are selected considering a spatial coherence of 0.80 and temporal
coherence of 0.85 conditions. At this stage, a second approximation of the parameters were applied on
the new dataset. Then, all PS points above the temporal coherence threshold were selected for the final
estimation. The DEM error, the linear deformation rate along the Line of Sight and the subsidence time
series are approximately calculated for the selected PS points.

It should be noted that differentiating between the contributions made to the phase by deformation
and atmosphere would be difficult, if we only had two SAR images. As we are using a time-series
of SAR images, we can take advantage of this fact that often the atmospheric perturbations exhibit
typically high spatial correlation but low temporal correlation [66]. Therefore, we can estimate the
atmospheric signal by applying a high-pass filtering in time and a low-pass filtering in space [63].
This is how the atmospheric phase signal was computed and removed from the total phase.
Furthermore, the displacement measured by InSAR can be decomposed into two main components:
a periodical component and a linear component. The periodical signal is a seasonal deformation
phenomenon which is occurred due to the thermal expansion and contraction particularly evident
on skyscrapers, bridges, etc. which is not the case in our study area. Therefore, in our work, we only
considered the linear trend signal and did not take the seasonality signal into account. Here, we used
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descending images which resulted in LOS displacement. So, in order to compare the PSInSAR and
GPS data, we used the following equation to obtain GPS measurements in LOS direction [66]:

GPSLOS = GPSup × cos(θinc)

−GPSnorth × cos(θazi − 3π/2)× sin(θinc)

−GPSeast × sin(θazi − 3π/2)× sin(θinc)

(3)

where GPSLOS is the converted value of GPS data in LOS direction. GPSup, GPSnorth, and GPSeast are
the values of GPS observation vector in the up, north, and east directions. θinc represents incidence
angle. The radar images were taken from different incidence angles and the average incident angel is
about 43.97◦ in this study. θazi represents the heading angle of the satellite from the North (azimuth
angle) and is about −9.66◦ in this study.

3.2. Data Collection

Land deformation measurement by PSInSAR needs sufficient number of SAR images.
From literature [67,68], the PS analysis requires at least 20 to 25 SAR images to achieve reliable outputs.
Considering this important condition on number of images, we collected 29 descending Sentinel-1A
SAR images acquired over the study area during June 2017 and May 2018. After collecting the raw
data, we defined the study area with an area of 1019 km2 to cover the corridor and its neighborhoods.
Figure 1 displays the study area. The white line indicates the master area and the black line shows the
boundary of the study area of Sepulveda Transit Corridor.

Figure 2 displays the SLC data used in this study and the spatiotemporal baseline configuration
of interferometric pairs. To form the interferograms, all images were connected with the master
image (5 December 2017). The master image is chosen at the barycenter of the temporal baseline,
x-axis, and normal baseline, y-axis, distributions. The dots and lines represent the images and the
interferograms, respectively.

Figure 2. The spatiotemporal baseline configuration of interferometric pairs showing the SLC data in
this study (29 images): Sentinel-1A, descending mode (track 71), and polarization VV.

4. Results and Discussion

4.1. Ground Deformation

Applying PSInSAR on a dataset of 29 descending Sentinel-1A radar images resulted in mean
velocity map of land deformation in the interest area covering a period between June 2017 and May
2018. It should be noted that based on the spatial coherence of the PSs calculated in the area, most of
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the region is covered by a coherence around 0.85 or higher and it can prove the reliability of the
monitoring process (Figure 3).

Figure 3. The coherence map obtained in PSInSAR analysis in the study area.

Figure 4 shows the deformation map along the study area of Sepulveda Transit Corridor and
its vicinity. In an overall view, we can categorize the corridor into three zones based on the trend of
displacement rates: (a) from 0 to 12 km; (b) from 12 to 24 km; and (c) from 24 to 34 km. The red spots in
Figure 4 indicates the southeast of the corridor, located over oil extraction sites. In Particular, Figure 5
shows the deformation map in the Inglewood oil field with the maximum subsidence rate about
30 mm/yr. Therefore, it is essential to investigate such engineering solutions as ground stabilization
in this site during the study phase and construction phase of Sepulveda corridor. The deformation
pattern, also, displays low amounts of uplift (blue features) in south and east of the region meaning
that water or gas probably pumped underground to stabilize the subsidence, or it may be as a result
of an increase in groundwater level which will be discussed in Section 4.3 of this paper. For instance,
the Los Angeles International Airport (LAX) is located in the regions suffering from low amounts of
uplift. Green and yellow features through the corridor demonstrate subsidence rates between −15
and 0 mm/yr. Vegetation areas include less coherent PS points; so, there are some regions without
sufficient outputs in the extracted maps. It was one of the main reasons to select a large study area to
provide more PS points and obtain the deformation trend.

Figure 6 shows the variations in displacement rates (average) along the corridor from south (0 m)
to north (34,000 m). In order to estimate the displacement rates in an arbitrary point through the
corridor, we proposed a function as Equation (4) derived from the available deformation rates in the
location of PS points. Such categorizations can help the designers and decision makers of the project to
detect the places, which require solutions to control the probable asymmetric subsidence along the
corridor. The asymmetric subsidence is fully explained in Section 4.5.

DR (
mm
year

) =

⎧⎪⎨⎪⎩
0.016x + 0.51, 0 < x < 12 km
−1.028x + 11.44, 12 < x < 24 km
0.314x − 16.11, 24 < x < 34 km

⎫⎪⎬⎪⎭ (4)

where DR is the displacement rate in each point through the alignment of Sepulveda Transit Corridor,
and x (km) is the distance from the start point (LAX).
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Figure 4. Mean velocity map of land deformation (mm/yr) in the region covering a period between
June 2017 and May 2018 overlapped onto Google Earth high-resolution imagery. The black line shows
the boundary of Sepulveda Transit Corridor study area. The corridor categorized into three zones
based on the trend of displacement rates: (a) from 0 to 12 km; (b) from 12 to 24 km; and (c) from 24 to
34 km.

Figure 5. Deformation map in the Inglewood area.
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Figure 6. Average rate of displacement along the Sepulveda Transit Corridor from south to north.

4.2. GPS Monitoring

In order to assess the results of PSInSAR analysis, the GPS observations and piezometric data are
collected in the present study. Figure 7 shows the location of GPS stations and piezometric wells (P1 to
P6). The characteristics and information of the well points are fully explained in Section 4.3.

GPS data has high temporal resolution because of continuous measurements while the PSInSAR
method provides high spatial resolution and lower temporal resolution compared to data from GPS
stations. Thus, the integration of GPS and PSInSAR measurements can be used to interpret the land
displacements. In order to evaluate the PSInSAR results in the previous section, GPS data [69] were
collected and introduced in Table 1. Eight stations are represented which two of them (DSHS and
FXHS) are inactive since 2011. So, we considered six active stations to compare their results with the
PSInSAR outputs in their locations and then, two stations (BRAN and NOPK) with more noises and
insufficient observations were removed. Figure 8 shows the comparison between PSInSAR-derived
time series deformation and the corresponding GPS observations. For this comparison, the RMSE was
computed between each PSInSAR output and GPS measurement and demonstrated relatively good
agreement between them. Lacking sufficient number of GPS stations is a significant weakness of GPS
stations in monitoring the land displacements compared to SAR Interferometry. Also, the fluctuations
in GPS results referred to seasonal effects and the instrument inherit errors [69]. These are the main
disadvantageous or weaknesses of GPS observations compared to the SAR analysis performed in the
present study.

Table 1. GPS Stations in the Study Area.

GPS Station Start Date
Location

Current Situation
Long. Lat.

DSHS 1999 −118.3485◦ 34.0239◦ Inactive (since 2011)
FXHS 1999 −118.3595◦ 34.0806◦ Inactive (since 2011)
BRAN 1994 −118.2771◦ 34.1849◦ Active
NOPK 1999 −118.3480◦ 33.9797◦ Active
LAPC 1999 −118.5747◦ 34.1819◦ Active
LFRS 1999 −118.4128◦ 34.0951◦ Active
CSN1 1999 −118.5238◦ 34.2536◦ Active
WRHS 1999 −118.4276◦ 33.9582◦ Active
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Figure 7. The location of GPS stations (squares) and piezometers (circles) in the study area.

Figure 8. Comparison between PSInSAR-derived time series deformation (red triangles) and GPS
observations (blue dots), Line-of-Sight direction, from June 2017 to May 2018.

Table 2 shows the comparison between GPS and PSInSAR deformation rates in long-term and
short period. Overall, from Table 2 it can be found that the Standard Deviation of GPS data is in
average (2.04) bigger than the Standard Deviation of PSInSAR data (1.56) which is because there are
more noises in GPS measurements.
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Table 2. The comparison between GPS and PSInSAR outputs.

GPS Station

GPS Observation
PSInSAR

Deformation Rate
from 2017 to 2018

(mm/yr)

Standard
Deviation of

GPS Data (mm)

Standard
Deviation of

PSInSAR Data
(mm)

RMSE (mm)
Long-Term

Deformation Rate
from 1995 to 2018

(mm/yr)

Deformation Rate
from 2017 to 2018

(mm/yr)

WRHS +0.73 −2.61 −2.23 2.16 1.41 0.54
LAPC +0.84 +0.49 +0.31 1.94 2.13 0.48
LFRS −0.19 −0.72 −0.49 2.09 1.37 0.48
CSN1 +0.20 +0.08 +0.06 1.95 1.34 0.77

4.3. Monitoring of Groundwater Level Variations

According to the literature, one of the main reasons for ground displacements in the study area
is water withdrawal or increase in groundwater level, except the red spots in the deformation map
which suffer from oil extraction in the region. Based on the project’s official report [70], groundwater
is highly variable along the extent of the project corridor. Unfortunately, the groundwater depths
and elevations are not well-documented throughout the Santa Monica Mountains. The historical
groundwater level data of the Inglewood quadrangle [71] shows the groundwater depths for the
southern end of the Sepulveda corridor and indicates that groundwater level in the southerly part
of the project alignment is about 12 m below grade and deepens to 15 m as the corridor extends
northward through Inglewood city. In addition, data from another project in the region, called the
Crenshaw/LAX Transit Corridor Project, show the areas along the southern part of the project corridor
have measured depths of groundwater ranging between 12 and 27.5 m below grade. As the corridor
bends northwest, the groundwater moves closer to the ground surface, with an approximate depth of
3 m or less [70].

Much of the I-405 highway in Sepulveda Canyon along the Santa Monica Mountains is not known
to encounter shallow groundwater [72]. Based to groundwater monitoring data of the widening
project of I-405 corridor from 2008 to 2009, groundwater was reached at depths greater than 21 m
below the corridor surface. However, higher groundwater levels were observed during drilling
between 1958 and 2007 for the purpose of as-built data at bridge locations through the existing
Sepulveda Pass. This data contains groundwater depths between 0.6 and 24 m below existing
grade [70]. The historical groundwater level data of the Van Nuys quadrangles [72] and the San
Fernando [73] displays groundwater to be progressively shallower northward from the base of the
Santa Monica Mountains where the groundwater depth is 12 m below grade and rises to 0 m below
grade where the transit corridor intersects the 101 freeway. From the 101 freeway north along the
corridor, the groundwater ascends progressively northward along alignment up to approximately 67
m below grade, where it reaches an abrupt groundwater barrier at the location of the Mission Hills
fault. At this area, where the I-405 meets SR-118, the groundwater jumps to 12 m below grade. This
site is where the San Fernando fault exists and groundwater data is probably not sufficient enough to
show accurate contours due to the extensive faulting and deformation within the area [70].

We monitored the variations in groundwater level in the study area of Sepulveda Transit Corridor.
Figure 9 shows temporal evaluation of groundwater level changes for the piezometers (the locations of
piezometers are shown in Figure 7). Table 3 shows the overall trend of groundwater level changes at
the studied piezometric wells and their corresponding PSInSAR deformation rate. The groundwater
level in the location of P5 experienced several fluctuations and dramatically decreased since 2008.
Surprisingly, this point shows the maximum subsidence rate among the piezometers with 11 mm/yr.
On the other hand, the water level remained stable during the period at P1 and P2. Both piezometers
have negligible displacements at their locations based on PSInSAR outputs. The rising trend of
groundwater in piezometer P3 confirms the PSInSAR analysis which shows uplift of almost 3 mm/yr
in P3 location. It should be noted that PSInSAR computes the total displacement rate and there may be
some other factors as parts of ground movements. In order to investigate the relation between land

14



Remote Sens. 2019, 11, 377

deformation rate and water level variation it is imperative to know soil properties that are thoroughly
explained in Section 4.4.

Figure 9. Temporal evaluation of groundwater level variations for six piezometers (P1 to P6) located in
the study area of Sepulveda Transit Corridor.

Table 3. Overall characteristics of the studied piezometric wells.

Piezometric
Well

Deformation Rate by
PSInSAR (mm/yr)

Δh (m) Δt (year) Δh/Δt (mm/yr)
Overall Trend of Ground Water Level

Variations

P1 0 5.08 8 0.64 Remained stable.
P2 0 6.5 59 0.11 Remained stable.

P3 +3 −34.9 49 −0.71 Increased during the whole period and
slightly decreased after 2009.

P4 −6.7 5 45 0.11 Relatively stable up to 1995 and then
decreased slightly up to now.

P5 −11 11.4 43 0.27 Experienced several fluctuations, but
decreased after 2008 up to now.

P6 −5 67.9 55 1.23 Decreased about 40 m between 1985 and 1995
and relatively stable up to now.

4.4. Geological Characteristics of the Sepulveda Project and Hydrogeology of Basins

The Los Angeles area consists of several basins containing groundwater systems. The Sepulveda
project extends through numerous geologic characteristics of Los Angeles County within the Santa
Monica (SM) and San Fernando (SF) Groundwater Basins. Table 4 shows the overall properties of
SM and SF basins. The recharge of SF is by natural streamflow from the surrounding mountains,
precipitation falling on impervious areas, reclaimed wastewater, and industrial discharges [74].
The replenishment of SM is mainly by percolation of precipitation and surface runoff onto the sub-basin
from the SM Mountains [75].

The SF Valley Basin is bounded by the Santa Susana Mountains on the north and northwest,
the San Gabriel Mountains on the north and northeast, the San Rafael Hills on the east, the Santa
Monica Mountains and Chalk Hills on the south, and the Simi Hills on the west. The groundwater
in this basin is mainly unconfined with some confinement. Also, several structures disturb the flow
of groundwater through this basin such as faults and subsurface dams [74]. The groundwater in the
SM Basin is mainly confined and this basin underlies the northwestern part of the Coastal Plain of
Los Angeles Basin. SM bounded by impermeable rocks of the SM Mountains on the north and by the
Ballona escarpment on the south [75].

The main water-producing units of SM include the relatively coarse-grained sediments of the
Recent Alluvium, Lakewood Formation, and San Pedro Formation [76]. The Recent Alluvium reaches
a maximum thickness of around 27 m and comprises the clays of the Bellflower aquiclude and
the underlying Ballona aquifer, depositing gravels resulting in the present Ballona Gap structure.
These gravels are dominant at an approximate depth of 15 m. The Ballona aquifer is generally separated
from the underlying San Pedro Formation by the confining layer [77]. The Lakewood Formation seems
to be present only in the northern half of the SM Basin. The most significant water-bearing units
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are the sands and gravels within the San Pedro Formation. The Silverado aquifer of the San Pedro
Formation has the greatest lateral extent and saturated thickness, and is considered as the main source
of groundwater. The average thickness of San Pedro Formation is about 60 m in the SM Basin. Beneath
the Silverado aquifer are relatively low-permeability sediments of the lower San Pedro and upper Pico
formations [77].

The Sepulveda project cuts through San Fernando Valley in the north and extends through the
Santa Monica Mountains in the south. The corridor is underlain by a layer of horizontal Quaternary
sediment and also Tertiary-age sediments and sedimentary rocks which faced deformation into folds
and offset by faults. Sedimentary and metamorphic bedrock are exposed with colluvial and alluvial
soil at the surface at high elevations such as Santa Monica Mountains. In the north and south of
Santa Monica Mountains, there is a thick layer of alluvial sediments. Also, the portion of the corridor
located above San Fernando Valley is underlain by up to 600 m of alluvial deposits and a layer of
Cretaceous-aged crystalline bedrock which exists below the alluvium [78]. The southern part of the
project corridor, located in the Los Angeles Basin, is underlain by unconsolidated Quaternary-aged
sandy deposits. These deposits can be subdivided into a loose unconsolidated Holocene-age layer
and late-Pleistocene sediments. Also, hard rocks only exist in the mountainous portion of the basin at
depth of 1500 m to 9000 m.

Figure 10 shows surface soil map of the study area including various soil types (the map is created
based on raw soil data provided by the Los Angeles County Department of Public Works). In order to
investigate the subsidence and uplift in the region, it is needed to study the soil properties in depth.
Figure 11 displays the location of nine geotechnical boreholes in the region. The raw data of boreholes
are collected from geotechnical report of the corridor and a number of geotechnical reports in the
area [79–84].

Groundwater pumping has the potential to cause subsidence which can induce structural impacts.
Induced subsidence is caused by the lowering of groundwater levels causing compaction of the
aquifer materials to a point that the ground surface changes elevation. As water is withdrawn and
groundwater levels declines, the effective pressure in the drained sediments increases. Compressible
layers then compact under the over-pressure burden that is no longer compensated by hydrostatic
pressure. The subsequent subsidence, includes both a component of elastic (recoverable) and inelastic
(unrecoverable) subsidence, and is most pronounced in poorly compacted sediments. As a historical
subsidence example, there is evidence for subsidence near Redondo Beach, in south of SM, that is
attributed to oil and gas extraction [85]. From literature, a review of the geotechnical logs for wells
completed in the SM Basin does not show considerable evidence of a thick compressible layer.
Groundwater levels have also experienced significant drawdown in the past prior to the importation of
water into the area. So, inelastic subsidence, which is of most concern, by nature can only occur once;
consequently, any potential subsidence would have already occurred. Land subsidence in the study
area does not appear to be a significant concern [76]. It should be added that as shown in Figure 12,
investigation of the boreholes indicates some layers of fine-grained materials in some parts of the study
area, which are susceptible to variations in groundwater level, an indication of the necessity of more
detailed geotechnical investigations for the future constructions in the region.

Table 4. Overall characteristics of San Fernando (SF) and Santa Monica (SM) basins [74,75].

Basin Confined/Unconfined Recharge
Groundwater
Level Trend

SF Mainly unconfined with
some confinement

Natural streamflow from the
surrounding mountains, precipitation
falling on impervious areas, reclaimed
wastewater, and industrial discharges.

fairly stable over
about the past

20 years

SM Confined
Mainly by percolation of precipitation
and surface runoff onto the sub-basin

from the SM Mountains.

fairly stable over
about the past

20 years
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Figure 10. Surface soil map of the study area. The map is created based on raw soil data provided by
the Los Angeles County Department of Public Works, Water Resources Division.

Figure 11. The location of Lithological logs.
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Figure 12. Lithological logs in the interest area.
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4.5. Asymmetrical Subsidence

In most cases, the subsidence profile during the design phase of construction is considered
symmetrical due to the assumptions inherent in the analysis and oversimplifications of the ground
behavior. However, the ground behavior is not simple but instead very complex with different
types of materials and different stress-strain responses. Such complexities can lead to the ground
surface displacement to occur in such a way that it is not symmetrical (asymmetrical). In other words,
asymmetrical subsidence means the difference in the amount of ground deformation between two
near points which could be devastating especially to the available infrastructure and the infrastructure
under construction such as the Sepulveda Transit Corridor. Asymmetry in subsidence can be observed
in such industries [86–88] as mining, tunneling, groundwater withdrawal, oil and gas extraction,
and geothermal fluid withdrawal.

Asymmetrical ground subsidence can be economically devastating to structures at surface.
The heterogeneity of the ground layers (soil or rock) contribute to difficult estimation of asymmetrical
subsidence [86,89]. As discussed in the Section 4.4, the Sepulveda project extends through numerous
geologic characteristics and the region suffers from ground deformations. Accordingly, it is necessary
to provide a certain procedure for the evaluation of asymmetric subsidence. Therefore, to detect the
areas suffering from asymmetric subsidence, we propose a simplified version of strain rate based on
the PSInSAR outputs to calculate Asymmetric Subsidence Index (ASI) as the following steps:

In step 1, consider two close PS points through the corridor length (LL) and two PS points on/near
both sides of the corridor width (LW).

In step 2, determine the displacement rate (DR) of the selected points in step 1 based on
PSInSAR analysis.

In step 3, calculate the ASI along length (ASIL) by the ratio between the displacement rates
(step 2) and length (LL), Equation (5). Calculate the ASI along width (ASIW) by the ratio between the
displacement rates and length (LW), Equation (6).

ASIL =
dL
LL

=

∣∣∣∣DR2 − DR1

LL

∣∣∣∣ (5)

where DR1 and DR2 are the displacement rate of the PS points in length. For instance, the value of DR1

and DR2 of the Sepulveda Transit Corridor can be estimated by Equation (4).

ASIW =
dW
LW

=

∣∣∣∣DRRight − DRLe f t

LW

∣∣∣∣ (6)

where DRRight and DRLeft are the displacement rate of the PS points in width.
In step 4, the final Asymmetric Subsidence Index of the interest area is defined as the maximum

of ASIL and ASIW, Equation (7).
ASI = max{ASIL, ASIW} (7)

It should be noted that for practical purposes, it is more accurate and better to use vertical
displacements, to provide much more meaningful result, instead of line-of-sight deformations in
engineering problems. The higher the value of ASI, the higher the asymmetry of the deformation and
the value of allowable ASI depends on the sensitivity of each especial structure. Therefore, we suggest
computing ASI for new constructions for considering possible evaluations and solutions. For practical
calculation, we suggest considering the average of ASI values for a several points. Clearly, the amount
of dL and dW must be less than allowable displacement which depends on the sensitivity of each
particular project. Figure 13 displays a simple example in the study area to show how to calculate the
ASI. The required calculations for this example are shown in Table 5 and the computed ASI in this
example is negligible; so, it can be assumed symmetrical. The proposed framework can be easily used
in engineering applications compared to the more common strain rate analysis.
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Figure 13. An example for ASI calculation for an infrastructure in the study area.

Table 5. The ASI calculation for the example.

Point
Temporal
Coherence

DR (mm/yr) Length (m) ASI Max ASI

A 0.99 −14.6 LAB = 53.4 ASIL =
∣∣∣−14.6−(−14.1)

53.4×1000

∣∣∣ = −9 × 10−6

3 × 10−5B 0.99 −14.1

C 0.99 −13.1 LCD = 31.2 ASIW =
∣∣∣−13.1−(−14.1)

31.2×1000

∣∣∣ = 3 × 10−5
D 0.99 −14.1

5. Conclusions

The main aim of this research was to obtain the land displacements along a new metro tunnel
under preliminary study in Los Angeles, CA called Sepulveda Transit Corridor; to detect the most
crucial areas suffering from subsidence or uplift; and to complement the previous reports in Los
Angeles. For this purpose, we applied Persistent Scatterer Interferometric Synthetic Aperture Radar
using 29 Sentinel-1A radar images from 2017 to 2018. The outputs demonstrated a high-rate of
subsidence in the Inglewood field that is near the south portion of the Sepulveda Transit Corridor.
Finally, we used the PSInSAR outputs to calculate Asymmetric Subsidence Index (ASI). The main
conclusions of the present study can be drawn as the following:

• The results of this paper showed that the ground subsidence in northern portion of the Sepulveda
Transit Corridor is continuous with subsidence rates between 1 and 14 mm/yr and a high-rate
of subsidence (30 mm/yr) occurs in the Inglewood field near the south portion of the corridor,
which may cause irreversible consequences in the future.
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• Based on the variation in displacement rates along the corridor, we categorized the corridor into
three zones to help the designers and decision makers of the project to detect the places which
require considering solutions to control the probable asymmetric subsidence along the corridor.

• The ground water extraction rate and geotechnical properties in the area both strongly influence
the rate and the distribution of subsidence.

• Collecting deep geotechnical boreholes indicated fine-grained layers in the region. This observation
confirmed the necessity of more detailed geotechnical investigations in the interest area.

• There are not a sufficient number of piezometers to detect the groundwater level and accurate
in-situ instruments such as GPS stations and extensometers to monitor the land displacements
in this area. Therefore, for future researches, we recommend adding more piezometers and
instruments particularly in the places suffering from continuous subsidence or uplift.

• Asymmetrical subsidence can be devastating to structures. Because of the heterogeneity of the
ground layers, it is difficult to estimate asymmetrical subsidence. So, a simplified framework was
proposed based on PSInSAR outputs to evaluate asymmetric subsidence.
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Abstract: The main aim of this paper is to test the use of multi-temporal differential interferometric
synthetic aperture radar (DInSAR) techniques as a tool for geological and geomorphological surveys
in urban areas, where anthropogenic features often completely obliterate landforms and surficial
deposits. In the last two decades, multi-temporal DInSAR techniques have been extensively applied
to many topics of Geosciences, especially in geohazard analysis and risks assessment, but few
attempts have been made in using differential subsidence for geological and geomorphological
mapping. With this aim, interferometric data of an urbanized sector of the Venetian-Friulian Plain
were considered. The data derive by permanent scatterers InSAR processing of synthetic aperture
radar (SAR) images acquired by ERS 1/2, ENVISAT, COSMO SKY-Med and Sentinel-1 missions from
1992 to 2017. The obtained velocity maps identify, with high accuracy, the border of a fluvial incised
valley formed after the last glacial maximum (LGM) and filled by unconsolidated Holocene deposits.
These consist of lagoon and fluvial sediments that are affected by a much higher subsidence than the
surrounding LGM deposits forming the external plain. Displacement time-series of localized sectors
inside the post-LGM incision allowed the causes of vertical movements to be explored, which consist
of the consolidation of recent deposits, due to the loading of new structures and infrastructures, and
the exploitation of the shallow phreatic aquifer.

Keywords: geological and geomorphological mapping; Late-Quaternary deposits; differential
compaction; multi-temporal DInSAR; Venetian-Friulian Plain

1. Introduction

In coastal areas and urbanized zones, the recent sedimentation or shallow deposits, even
anthropogenic, generally bury the previous deposits that can often be rather different from surface
formations. This setting frequently hampers the correct assessment of the subsoil, even in the
first 5–30 m. This paper analyzes the possible relationship existing between the geological and
geomorphological features of an urbanized sector of the coastal plain located in north eastern Italy, and
its rate of subsidence measured by multi-temporal differential synthetic aperture radar interferometry
(DInSAR) techniques. Here, we test the potential of this method on reconstructing the shallow
stratigraphic sequence in areas where traditional in situ and remote sensing surveys, such as geological
and geomorphological field work and air-photo interpretation, are difficult or impossible because of
the presence of anthropogenic structures.

Land subsidence commonly affects urban areas as a consequence of intensive groundwater
exploitation, which reduces the pore water pressure and activates soil consolidation processes. Several
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cases are deeply studied all around the world as Kolkata [1], Bucharest [2], most of the big cities in
Central Mexico area [3]. A well-known case study corresponds to the area of Venice and its mainland,
which is rather close to the study area and where several pioneering researches were carried out [4–6]
(and reference therein). Another frequent cause of subsidence is the realization of new buildings
and infrastructure that are underground excavations and tunneling, which alter the subsoil stress
conditions and trigger compaction effects [7–9].

Monitoring of land subsidence could be performed through conventional techniques, which
include repeated leveling or global positioning system (GPS) surveys [10–12]. Despite the relatively
high horizontal and vertical accuracy, the main limitations of these monitoring strategies are the
punctual nature and low resolution of the measurements. Alternatively, remote sensing techniques,
like unmanned aerial vehicle (UAV) [13], airborne laser scanning [14], or airborne surveys in general,
lead to distributed information over the area of interest. Unfortunately, a dense temporal resolution
of these measurements is costly and time-consuming, limiting their availability to very few areas.
Therefore, in the last two decades, DInSAR techniques have been extensively applied to estimate
displacements caused by subsidence [15–19]. DInSAR techniques provide a good compromise between
the temporal and spatial resolution of these measurements, which could be effective for the analysis of
surface deformation over extended areas.

When applied to urbanized areas, DInSAR techniques are generally used to detect and assess
surface deformations and damage induced on buildings, or other anthropogenic structures by
natural or human-induced processes. An increasing number of studies have been performed on
the effects of recent urbanization and subsidence effects, exploiting space-borne satellite data and
trying to find a connection between interferometric remote sensing techniques, civil engineering, and
urban developing planning. Some recent applications focused on cross-rail, being in London [20],
on the effect of differential subsidence affecting buildings in some Rome neighborhoods [21], or on
bridge-monitoring [22].

Due to the numerous advantages of DInSAR techniques and the growing availability of synthetic
aperture radar (SAR) satellite data, amplitude and phase information from SAR images have also been
used by applying different techniques in order to investigate many topics of geosciences, including
geology [23,24]. Most of the geological applications are related to earthquakes [25–27], volcanic
eruptions [28–30], tectonics [31–34], and landslides [35–38], while few research has been focused on
the potential of multi-temporal DInSAR as a tool for geological and geomorphological mapping [39].
This represents the main aim of our research.

To test our hypothesis, we considered an area near the city of Portogruaro, in the eastern part
of the Venetian Plain (Figure 1) at the passage from the alluvial to the coastal plain, where fluvial
and lagoon/coastal deposits are present. In this area, the on-going subsidence was investigated at a
regional scale. The combined use of DInSAR and DGPS measurements highlighted the occurrence of
a zone where the subsidence value reaches up to 2–7 mm/year, while in the surrounding zones the
average values are between 0 and 1 mm/year [6,12,40,41]. This down-lifting area is elongated in N-S
direction, has an average width between 1 and 2 km [41] and, when compared to geological maps [42],
seems to coincide with a major incised filled fluvial valley existing in the area. The sedimentary
deposits filling this valley are very different from the ones forming the external alluvial plain and
they are characterized by a larger compressibility. These characteristics led to mapping the differential
subsidence currently affecting the area by multi-temporal DInSAR techniques, and check whether the
pattern of down-lift matches with the planform of the buried valley so that it can eventually improve
the detection of its boundaries. The comparison between remote-sensed data and geological ground
truth is supported by the availability of recent geological maps, and a huge database of stratigraphic
cores and geotechnical tests [42,43].

In the next sections, the main geological and geomorphological features of the study area are
reported (Section 2); after the description of SAR data and processing and post-processing methods
used to test the contribution of interferometric data in geological and geomorphological mapping
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(Section 3), the obtained results are presented (Section 4). Finally, the results are discussed in Section 5
where, due to the large amount of gathered information, we will preliminary explore the possible
causes of the subsidence.

2. Study area

This research analyzes the distal sector of the alluvial megafan of Tagliamento River (Figure 1),
that is fed by the Carnic and Julian Alps and is one of the major streams of the Venetian-Friulian
Plain [44]. The plain corresponds to the foreland basin of the south-eastern Alps and is formed by
Plio-Quaternary deposits, which along the coastal sector, between Tagliamento and Livenza rivers,
have a thickness from 500 to 800 meters [45]. Active tectonic structures are not present in the study area,
but the distal plain is affected by a long-term subsidence related to crustal flexuring and the compaction
of Quaternary deposits, with an average vertical rate of −0.4 mm/year in the last 125 kyr [40,46].

Figure 1. (a) Simplified geomorphological sketch of north-eastern Italy, with an indication of the
study area (red square). Legend: (1) rivers; (2) upstream limit of the spring line; (3) boundary of the
Tagliamento alluvial megafan; (4) Alps; (5) morainic amphitheater; (6) gravelly plain; (7) fine-dominated
distal plain; (8) reclaimed areas currently under sea level; 9) coastal sand ridges and beaches. (b) Digital
elevation model of the study area (modified from [47]).

In the study area the first subsoil consists of Late-Quaternary alluvial sediments, alternated with
coastal deposits. A major phase of deposition occurred during the Last Glacial Maximum (LGM,
29–19 kyr BP [48]), when the Tagliamento alluvial megafan was formed and 15-30 m of alluvial
sediments aggraded over the whole Venetian-Friulian Plain. During that period, the mountain
catchment of Tagliamento hosted a major Alpine glacier, which reached the plain with its front (#5 in
Figure 1a [49]). The Tagliamento River was one of the main glacial outwashes but, at that time, it was
characterized by an unconfined channel, which transported the gravel only up to 15-25 km from the
glacial front, while sands, silts, and clays reached the distal sector of the plain [50]. Thus, the distal
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portion of the LGM megafan of Tagliamento is dominated by fine sediments and along the boundary,
between coarse (permeable) and fine sediments (impermeable), a belt of springs feed a dense network
of minor streams (Figure 1a). These are groundwater-fed rivers, which are characterized by a rather
steady water discharge along the year and almost no sedimentary load, as they originate in the middle
of the plain [51] (and reference therein).

Since 19.5 kyr BP, the front of Tagliamento glacier withdrawn from the plain and, consequently,
the fluvial system experienced a severe starvation in the sediment supply that led the river to entrench
along few narrow incised valleys [50]. This process induced the river to abandon, almost completely,
the alluvial megafan, leading the LGM surface to be exposed over large sectors of the plain up to the
present (Figure 2a). Where the LGM surface is still cropping out, is marked by a rather well-developed
soil, which is over consolidated and characterized by the occurrence of calcic horizon [51] (and
reference therein) [52].

Figure 2. (a) Map of the geological units (after [43]). Legend: (1) lagoon deposits of late Holocene; (2)
swamp organic deposits; (3) organic deposits at the bottom of the valley of Reghena River; (4) alluvial
deposits of Early Middle Age; (5) alluvial deposits of Roman age; (6) alluvial deposits of early Holocene;
(7) Last Glacial Maximum (LGM) alluvial deposits. (b) Map of the thickness of the post-LGM deposits
(modified from [42]).

Two of the major fluvial valleys incised by the ancient Tagliamento, in the post-LGM, have been
occupied by Lemene and Reghena River, which are important groundwater-fed streams (Figure 2b).
The incised landforms can be recognized in the landscape up to Portogruaro, where the rivers join.
The geomorphological evolution occurred along the Holocene brought to the abandonment of the
incised valleys and their progressive infill, leading to the obliteration of their topographic evidence in
the coastal plain. The combined analyses of detailed digital elevation models (DEMs) and stratigraphic
cores that can recognize and characterize the fluvial incision between Portogruaro and the Lagoon of
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Caorle (Figure 2b). This buried sector of the incised valley has been also named the valley of Concordia,
after the name of the Roman city of Julia Concordia, that was built over a remnant terrace of LGM plain
isolated inside the valley [42,47,50].

In the distal plain, the fluvial incisions were active between Late Glacial and Early Holocene (i.e.,
19–8 kyr BP) and these landforms were between 500 and 2000 m wide and reached a maximum depth
of 20 m to the top of the LGM (Figures 2b and 3 [42,51]). Because of the funneling of the river flux,
at the bottom of the incised valleys the gravels could be transported far more downstream than during
the LGM and reached the present coastal plain. Avulsion processes occurred upstream of the study
area between 9.6 and 8.4 kyr BP and caused the eastern shifting of the Tagliamento River, leading to
the abandonment of the incision. The valley of Concordia was rapidly waterlogged and occupied by
swampy environments that favored the accumulation of up to 1.5 m of peat and organic sediments (#5
in Figure 3).

Figure 3. Reference cross section of the stratigraphic setting near Concordia Sagittaria (modified
after [47]). The location of the section is reported in Figure 2.

Between 8.5 and 7.5 kyr BP, the post-LGM marine transgression reached the present coast [53]
and led the lagoon waters to expand along the pre-existing depressed areas, as the abandoned fluvial
incisions. Thus, the brackish environment occupied the bottom of the valley up to the center of
Portogruaro, and deposited within the incised valley a greenish gray muddy unit characterized by
the common occurrence of lagoon fossils and some lenses of peat. This brackish and swampy setting
characterized the valley of Concordia until the early Medieval, when an important avulsion phase led
the Tagliamento to temporarily activate a branch along the present Lemene River [42,47]. Between
the 6th and 8th century AD, the river floods deposited a huge quantity of sediment that completely
buried the valley downstream of Portogruaro and sealed large sectors of the ancient city of Julia
Concordia [47] (and references therein). This phase formed a remarkable fluvial ridge, which is visible
from the highway A4 almost to the present lagoon (Figure 1b). The Lemene River is currently flowing
along the residual channel of Tagliamento, that was maintained open and prone to the activity of
groundwater after a sudden avulsion, which moved the Alpine river to its present direction near
Latisana (Figure 1a [47]).

The last important phase in shaping the present landscape occurred in the first part of the
20th century, when large sectors of the Caorle Lagoon had been reclaimed for agricultural purposes.
Nowadays, between Tagliamento and Livenza rivers, about 100 km2 are lower than sea and are drained
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thanks to the lagoon dykes and a complex network of ditches, canals, and pumping stations (#8 in
Figure 1b).

3. Materials and Methods

The evolution and rate of surface deformations have been obtained through the processing
of several space borne synthetic aperture radar (SAR) datasets, acquired by different national and
international missions, and characterized by various ground resolutions, satellite revisiting time, and
acquisition geometries. As listed in Table 1, ERS-1/2, ENVISAT, COSMO-SkyMed, and Sentinel-1
datasets have been considered. The main specifics of each dataset influence the expected results.
One of the parameters, which could condition the multi-temporal DInSAR results is the wavelength,
which determines the data sensitivity to surface variation and vegetation changes. Moreover, the
satellite revisiting time acts on the data temporal decorrelation, therefore the multi-temporal coherence
and the persistent scatterers density tends to increase as the time span between subsequent images
decreases. All the technical details of the considered SAR data are reported in Table 1. The availability
of this archive data has allowed the reconstruction of almost 26 year deformations, from 1992 up to
2017, with some limited temporal gaps. For all the datasets, descending acquisition geometry has been
considered because of the larger amount of available scenes, in particular for the ERS, ENVISAT and
COSMO-SkyMed (CSK) datasets. The unique acquisition geometry allows a consistent comparison of
the results along the line-of-sight (LOS), despite some differences in the incidence angles. Only the ERS
data, both ascending and descending datasets, have been considered to verify whether the expected
vertical direction of deformation, common for the subsidence phenomenon, could be confirmed.

Table 1. Main characteristics of synthetic aperture radar (SAR) data considered in this study.

Satellite
Mission

Orbit Period
N. of

Images

Revisiting
Time

(Days)

Band/
Wavelength

(cm)

Resol.
az./Range

(m)

Line-of-Sight
(LOS) Incidence

Angle, θ

LOS
Azimut,

α

ERS-1/2 Desc.
Asc.

06/14/1992–
12/13/2000
08/01/1995–
08/30/2000

63
37 36 C/5.6 6/24 ~23◦ ~274◦

~85◦

ENVISAT Desc. 04/02/2003–
07/14/2010 71 36 C/5.6 6/24 ~23◦ ~274◦

COSMO–
SkyMED Desc. 02/18/2012–

01/12/2016 66 12 X/3.1 2.5/2.5 ~33◦ ~277◦

Sentinel-1 Desc. 12/23/2014–
07/22/2017 91 6/12 C/5.6 5/20 ~37◦ ~277◦

The multi-temporal DInSAR techniques extend InSAR analyses to retrieve the spatio-temporal
evolution of deformations over large areas, considering a stack of data. In this context, the numerous
approaches, developed in the last two decades, can be classified into two main categories, the persistent
scatterers interferometry (PSI) [54,55] and the small baseline subset (SBAS) [56]. Generally, the PSI
approach generates all the interferograms referred to as a common master image, detecting point
targets characterized by a stable back-scattered signal over time, and a high coherence between
different acquisitions. The SBAS algorithm maximizes the spatio-temporal coherence by relying on
interferograms characterized by small perpendicular baseline values. Therefore, PSI is generally
applied to analyze deformation affecting urban areas while SBAS is more adequate on distributed
scattering conditions.

Here, data processing was performed through the PSI technique as the study area is densely
urbanized. This remote sensing technique can measure Earth surface displacement from space, with
millimetric sensitivity. This method exploits multiple SAR scenes acquired over the same area and,
through the algorithm proposed by [54,55], is able to separate the displacement component of the
phase from the back-scattered signal. Identifying the persistent scatterers (PS) candidates depends on
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the dispersion of the amplitude of the backscatter signal in time, but additionally a multi-temporal
coherence threshold could be defined to filter the most reliable points. Thus, the density of the output
results is strongly dependent on the land use and, in our case, on the urbanization density.

The main output of the PSI processing is a mean deformation velocity map along the satellite line
of sight (LOS) showing a velocity value for each of the selected PS. Furthermore, the time-series of
displacements is obtained, providing not only the mean displacement rate but also the evolution in
time of the deformation trends. This is essential information to support the results interpretation and
its connection with a specific triggering factor. The precision of the deformation velocity depends on
several factors, as the number of scenes and their temporal distribution, the PS density, their coherence,
the characteristics of the deformation evolution in time, the reference point quality, the distance from
the reference point [57]. According to [24], numerous PSI validations have been carried out in the last
15 years, providing an inter-comparison of common PSI results from different groups. In the framework
of Terrafirma project [58], the standard deviation of the deformation velocity differences ranges between
0.4 and 0.5 mm/yr, while it reaches 1.1 to 4 mm for deformation time-series. These values refer to ERS
and Envisat datasets, considering urban areas with zero or moderate deformation velocities.

ERS-1/2 and ENVISAT interferometric data, derived by PSI processing performed by TRE srl,
were provided by the Italian Ministry of the Environment and for Protection of the Land and Sea in the
framework of the “Not Ordinary Plan of Remote Sensing” project (http://www.pcn.minambiente.it/
mattm/en/). COSMO SKY-Med and Sentinel-1 interferometric data were derived by the PSI processing
of SAR images through the SARscape software developed by sarmap SA.

To support one of the main aims of this work, that is, the comparison of PSI results with ground
information and specifically with thickness of post-LGM sediments, sparsely distributed PS velocities
have been interpolated. The interpolation has been performed on ERS ascending and descending PSI
results through the inverse distance weighted (IDW) method. To avoid the underestimation of the
ground displacements and better investigate the possible causes of subsidence, interpolated maps
have been combined to assess the vertical and horizontal (E-W) deformation components using the
following equations [59–62]:

Vhorizontal =
(Vdescending/hdescending)− (Vascending/hdescending)

(edescending/hdescending)− (eascending/hascending)
(1)

Vvertical =
(Vdescending/edescending)− (Vascending/eascending)

(hdescending/edescending)− (hascending/eascending)
(2)

where h and e are the LOS directional cosines. If there are no horizontal components, as in the case
hypothesized in this study, the vertical displacement rate can be easily derived by taking into account
the LOS incidence angle (θ):

Vvertical =
Vascending,descending

cos θ
(3)

4. Results

Figure 4 reports the PS velocity maps derived by the PSI processing of the different SAR datasets
with superimposed the isopach of the post-LGM sediments. Negative values (red) indicate an increase
in the distance between satellites and PS measured in the LOS, a green color indicates a decrease
in the LOS, and yellow colored PS indicate points supposed stables having a velocity between −1.5
and 1.5 mm/year. As mentioned in Section 3, SAR data, acquired in descending orbit, have been
considered, but we have also reported the results from the processing of ERS 1/2 data acquired in
ascending mode to detect whether horizontal components of the displacement are present. As the
distribution and the values of velocity are very similar in the two maps, it can be inferred that the
displacement is mainly vertical and indicates the subsidence of the area. This evidence was confirmed
by the estimation of E-W and the vertical components, combining ERS ascending and descending PS
LOS velocities (Figure 4a,b) through Equations (1) and (2) (Figure 5). A slightly horizontal component
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is present in few isolated pixels (Figure 5a), probably as a consequence of the deformation being related
to buildings that can react in different ways to vertical displacements. Figure 5b shows that the rate of
displacement is mainly vertical, with an increment of about 8.7%, compared to those measured along
the LOS, taking into account the incidence angle of ERS acquisitions (Table 1) (see Equation (3)). In the
case of ENVISAT, COSMO-SKyMed and Sentinel-1 acquisitions, the expected increment is about 8.7%,
19% and 25%, respectively.

PS density, as expected, increases from the oldest to the more recent interferometric
data and with the resolution of SAR images: 61 PS/km2(ERS), 102 PS/km2(ENVISAT),
4765 PS/km2(COSMO-SkyMED) and 1266 PS/km2(Sentinel). This could be explained by considering
the higher resolution of COSMO-SKyMed data with respect to all other datasets, the shorter revisiting
time, and the small orbital tube of Sentinel-1 acquisitions, which reduced decorrelation effects. To get
an acceptable density of PSI points in all four datasets, in the case of ERS and ENVISAT, the final
results were filtered using a PS coherence >=0.6, while in the other two cases a coherence >=0.75.

As it can be seen in Figure 4, most of the negative values in the velocity fell inside the post-LGM
incision in the entire observation period. The measured maximum velocities reach −10 mm/year, few
and isolated PS showed positive values, which considered errors in the processing and were excluded
from the results. The theoretical precisions of the measured deformation velocities are equal to
0.35 mm/year and 0.42 mm/year for ERS ascending and descending datasets, and 0.38 for the Envisat
descending datasets. The velocity precisions are even better for Sentinel-1 and COSMO-SkyMed
datasets, 0.28 mm/year and 0.25 mm/year respectively.

The relationship between the different displacement rates and the spatial distribution of surficial
deposits is clearly evidenced in Figure 6, where a velocity map of the study area was created
interpolating both ascending and descending ERS interferometric data by using the IDW method.
Inside the post-LGM incision LOS velocities vary from −1 up to −10 mm/year, while outside the area
can be considered stable with velocities ranging from −0.9 to +1 mm/year. Velocity cross sections
through the post-LGM incision (Figure 6b–g) show the different displacement rates between Holocene
deposits filling the incision and LGM deposits forming the external plain in different sectors. The
sections clearly identify the border of the incision marked by a sudden increase in the velocity, but the
rate of displacement can change both into the same section and in the different sectors. These variations
can be related to the edification of new buildings during the observation period, which in most of
cases represents the triggering factor of the ground displacement. Thus, the different velocities can be
explained taking into account the time when soils have been overloaded, as will be better discussed
in the next section. Velocity sections D-D’ and F-F’ (Figure 6e,g) are of particular interest because
they show the effectiveness of PSI technique in geological and geomorphological mapping. Section
D-D’ shows that, by assessing the subsidence rate, it is possible to identify the limits of the post-LGM
incision and also the presence of the remnants of the alluvial terrace existing in correspondence of
the ancient city of Concordia Sagittaria, which was built on the fully consolidated sediments of the
LGM alluvial plain. In fact, the velocities range from −1 to 0.0 mm/year at the margin of the cross
section and in correspondence of this isolated terrace. Also in section F-F’, it is possible to identify
the margins of the post-LGM incision, which are marked by the sudden variation in the subsidence
rate. In this case, the decrease of ground displacement rate recorded almost at the center of the profile
(around 1500 m) is not related to the presence of a buried remnant of the LGM plain, but to the artificial
embankment existing along the Lemene River. These anthropogenic structures were built during the
19th century and, probably, this rather long period led to an almost complete consolidation of the
subsoil, limiting the on-going subsidence.
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Figure 4. Persistent Scatterers (PS) velocity maps derived from PSI processing of ERS (1992-2000) (a,b),
ENVISAT (2003–2010) (c), CSK (2012–2016) (d), and Sentinel-1 (2014–2017) (e) synthetic aperture radar
(SAR) data. Graduated blue lines (Isopach) show the thickness of post-LGM sediments.
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Figure 5. East-West (a) and vertical (b) components of displacement rate estimated by combining ERS
ascending and descending PSI results. The green color (positive values) indicates displacements toward
East (a) and uplift (b), red color (negative values) indicates movements to West (a) and down-lift (b).
Graduated blue lines (Isopach) show the thickness of post-LGM sediments (same classification of
Figure 4).

Comparing the PS velocity maps of Figure 4, it is possible to note that the subsidence rate of
the sectors inside the post-LGM incision decreases over time. This evidence can be better observed
considering the area included in the red square of Figure 7a, located slightly west of the historical
center of Portogruaro town. From 1989 to 2012 this sector has undergone intense urbanization with the
construction of new residential buildings (mainly mono-familiar houses with two floors and detached
houses). PS velocity maps, superimposed on the land cover changes in the observation period, show
that all the houses built inside the incision are affected by subsidence, while those located outside it are
stable (Figure 7c–f). The sharp difference in the subsidence rate showed by all interferometric datasets
allows high accuracy detection of the border post-LGM incision.

By observing a single new building, it can be noted that the rate of subsidence decreases over
time. This is the case of the house indicated with the purple circle #1 in in Figure 7b. In the aerial view
taken in May 1989, it is not present, but it was built in the time span between May 1989 (Figure 7c)
and June 1992 (date of the first ERS SAR acquisition in descending mode). In fact, it is present in the
aerial view from August 1998, but it has been identified as a PS, which means that it is included in all
the SAR images acquired by ERS satellites, otherwise it could not be recognized as a PS. Immediately
after construction, the house was affected by a vertical deformation rate of −7.3 mm/year and a total
vertical displacement of about −75 mm measured by PSI processing of ERS SAR images in the period
1992–2000 (Figure 8a); then, from 2003 to 2010, the velocity decreased to −2.8 mm/year as measured by
ENVISAT SAR data processing (Figures 7d and 8a). Finally, from 2012 the subsidence is still ongoing
with a rate between −3.0 and −3.4 mm/year, which was measured by processing COSMO and Sentinel
SAR images (Figure 7e–f and Figure 8a). A similar behavior can be observed in the case of the house
indicated by the purple circle #2 in Figure 7b, which was built between May 1989 and January 1995
(date of the first ERS SAR acquisition in ascending mode). After the construction it was affected by a
vertical displacement with a rate of −8.0 mm/year, measured through the processing of ERS images
(Figures 7c and 8b), while during the ENVISAT period the rate decreased to −3.2 mm/year (Figures 7d
and 8b) and, finally, from February 2012 to the present, the velocity measured by COSMO and Sentinel
interferometric data is −2.8 mm/year (Figures 7e–f and 8b). Hence, also in this case, subsidence is still
ongoing. The last case relating to the house is indicated by the purple circle #3 in Figure 7b, which was
built between August 1998 and February 2003 (first ENVISAT acquisition in descending mode). In fact,
it is not present in the 1998 aerial view (Figure 7c), but it was detected by ENVISAT SAR sensor. In this
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case, the monitoring starts by processing ENVISAT acquisitions, which shows a vertical displacement
rate of −9.6 mm/year (Figure 8c), then the rate decreased to −4.5 and −4.1 mm/year, measured by
the processing of COSMO, and Sentinel SAR data, respectively (Figure 8c).

Figure 6. Velocity map (a) and cross sections (b–g) showing the variation in the displacement rate due
to the presence of post-LGM sediments. Gray continuous lines indicate the variation in the ground
surface elevation. Gray dashed lines indicate the boundary of LGM and post-LGM deposits.
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Figure 7. Land cover change from 1989 to 2012 in the area indicated by the red rectangle in (a) and
PS velocities calculated through PSI processing of ERS (c), ENVISAT (d), COSMO SkyMED (e) and
Sentinel-1 (f) SAR data. Purple circles in (b) indicate the sectors where the time series of displacement
have been plotted in Figure 8. The blue line (b–f) indicates the border of the post-LGM incision.
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Figure 8. Time series of vertical displacements (Vv) calculated through Equation 3 applied to PSI
results in the sectors 1 (a), 2 (b) and 3 (c) of the area showed in Figure 7b. To better follow the temporal
evolution, the displacements derived by ENVISAT and COSMO –SkyMED (CSK) datasets are plotted
starting from the linearly interpolated value (continuous lines) of the previous dataset. Note the similar
results from PSI processing of CSK and Sentinel SAR data during the overlapping period of acquisition,
which shows the high precision of the calculations.

The different behavior of sediments inside and outside the post-LGM fluvial incision can be
clearly observed in the area included in the red square of Figure 9a. In this area a new overpass was
built between 2012 (Figure 9b) and December 2014 (first Sentinel-1 acquisition). During the period
between December 2014–July 2017, the east ramp of the overpass was affected by a displacement rate of
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about −12 mm/year, as measured through the PSI processing of Sentinel-1 SAR data (Figure 9c), while
the west ramp has shown a lower rate (about 3.5 mm/year), which reflect the different geotechnical
behavior between LGM and post-LGM deposits, locating the limit of the incision.

Figure 9. Land cover change before (b) and after (c) 2010 in the area indicated by the red square in (a)
showing the different rate of subsidence outside and inside the post-LGM incision calculated through
PSI processing of Sentinel-1 SAR data (c).

Further interesting results are outlined in Figure 10a, regarding a sector located slightly east of
the historical center of Portogruaro. Also in this case, the limit of post-LGM fluvial incision can be
easily identified as it is marked by the different displacement rates between past and recent deposits in
all the interferometric datasets (Figure 10b–e). But the behavior of this sector is very different from the
other subsiding areas because the PS velocities do not decrease over time. Taking into account all the
PS inside the incision with a velocity < −1.5 mm/year, a mean displacement rate of −3.5, −2.6, −2.7,
and 3.1 mm/year have been obtained by ERS, ENVISAT, COSMO, and Sentinel SAR data processing,
respectively. These estimated velocities are not related to the load induced by the construction of new
structures and infrastructures, indeed the land cover did not change during the observation period, as
can be seen comparing Figure 10f,g.
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Figure 10. PS velocity maps of the area indicated by the red square in (a) ERS (b), ENVISAT (c),
COSMO SKY-Med, (d) and Sentinel (e) interferometric data. The comparison between (f) and (g) shows
that no land cover changes occurred during the observation period.
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5. Discussion

The obtained results clearly show that interferometric data can help identify the border of
post-LGM fluvial incision, due to the different rates of displacement between the LGM deposits
of the ancient alluvial plain and younger incised valley fill. As it has been illustrated in the results
section, recent deposits are affected by a rate of displacement up to −10 mm/year, while deposits of
LGM plain can be considered stable. By combining ERS ascending and descending interferometric
data, it can be seen that displacements are mainly vertical (Figure 5). This is a high favorable condition
using PSI technique which may present some difficulties in evaluating the horizontal components of
the movement, especially in the North-South direction.

In order to use interferometric techniques as a tool for geological and geomorphological mapping,
it is essential to consider SAR data from different sensors covering a time span as long as possible.
In our study area, ERS data are the best information to identify the presence of recent sediments
(Figures 4a–b and 6), but also the other datasets helped to better delineate the shape of the post-LGM
fluvial incision. In fact, ENVISAT, COSMO, and Sentinel interferometric data have shown sectors
affected by subsidence in different periods, and sectors compared to ERS (Figure 4c–e). This is linked
to the mechanism of ground displacement in the study area, which is mainly related to the construction
of structures and infrastructures. Furthermore, such elements are essential in using PSI techniques,
because they are one of the best reflectors of the incident RADAR signal and can be recognized as
permanent scatterers in the processing.

Interferometric data from the different datasets allows monitoring the temporal evolution
of subsidence and exploring the causes. The edification of new buildings induces a load in the
soils triggering the clay deposit compaction (consolidation process [63,64]), with a rate of vertical
displacement of up to −10 mm/year during the primary step, then the rate decreases to −4 mm/year
and −3 mm/year in the secondary step (Figure 8). This behavior, which is similar to the one seen [65]
in the city of Rome, has been clearly observed in urbanization occurring at the border of the incision
in Figure 7. Here the consolidation process that is caused by the construction of new buildings
can be entirely monitored through interferometry. Further important information from this study,
is that the consolidation of the sediments filling the incision can last more than 25 years, in fact all
the cases indicated in Figure 8 are still ongoing. This is a very important finding that suggests the
possible use of interferometry to observe the consolidation process at the site scale, helping better
define the mechanical behavior of soil, overpassing the limits of laboratory and in situ tests, which
are performed on small samples, at specific points, and cannot take into account the variability
of site conditions. Of course, laboratory and in situ tests remain mandatory for the evaluation of
geo-mechanical properties of soils in the design of structures and infrastructures.

The above mentioned mechanism of subsidence limits the use of interferometry in the recognition
of geological architecture of subsoil in the study area, because it depends on the development of
new structures and infrastructures, it can then be applied only in urban areas and cannot provide
information in scarcely urbanized sectors. Thus it is very difficult to evaluate the natural subsidence
caused by the consolidation under lithostatic load, and, consequently, it seems to limit the use of
interferometry in geological and geomorphological surveys. But this issue could be addressed
considering L-band SAR data, which are more penetrating than C- and X-band, and are affected
by a lower loss of coherence in forest and vegetated areas. These advantages have been recently
shown by [17], evaluating ground displacements in the south sector of the Venetian-Friulian Plain
by processing ALOS-PALSAR SAR data. Unfortunately, this kind of data was not available for our
research. However, geological and geomorphological mapping is difficult in areas where the anthropic
action has obliterated surficial evidences. These results show the potential of interferometric data in
this new application field.

The mechanism of subsidence in our study area can also explain the good performance of ERS
datasets in the identification of post-LGM incision, despite the lower PS density compared to other
datasets. This area experienced a great urban expansion at the end of the 20th century. New urban
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settlements triggered the consolidation of post-LGM deposits and became the optimal target for the
ERS acquisitions, which started at the beginning of the 1990s. In the following periods, urbanization
was quite limited to new residential areas at the border of the main historical centers of Portogruaro and
Concordia Sagittaria, and to the maintenance and improvement of the road network; such elements
have been effectively detected and monitored by the ENVISAT, COSMO-SKY-Med and Sentinel-1 SAR
sensors. Our case study shows that the use of interferometric data in geological and geomorphological
surveys slightly depend on the characteristics of SAR data. The band and satellite revisiting time could
influence the density of PSI points, but indeed do not limit the potential in defining the evolution of
urbanization and the geological features of the area under investigation.

Certainly, the different rates of subsidence of pre- and post-LGM deposits are related to their
geotechnical properties, in particular the degree of compressibility and permeability. In most cases
the subsidence is linked to the loading of soft soils, but the are some exceptions as the area shown in
Figure 10, where, although no land cover changes occurred in the last 30 years, ground displacements
have been measured by all interferometric datasets. A similar situation has been observed in some
localized sectors of the historical centers of Portogruaro and Concordia Sagittaria. According to
the geological setting, the tectonic subsidence going on in the study area has a regional pattern
and, between Tagliamento and Livenza rivers, it has an average rate of 0.4 mm/year. Thus, this
long-term deformative process affects the whole study area and could not explain the differential
vertical settlements characterizing the areas over the incised filled valley. This setting may mean the
groundwater exploitation is a major cause of the differential subsidence.

From a hydrogeological point of view, in the study area, ten overlapping aquifers between 10
and about 500 m depth, have been recognized, and are composed of coarse deposits interbedded by
clayey and silty layers [66,67]. The first aquifer is located between 10 and 25 m and is semi-confined,
while the remaining are confined. A phreatic aquifer is present in the first ten meters, the water
level is 2 m deep on average, and it has a seasonal fluctuation of about 1.5 m that is controlled by a
pumping system to ensure groundwater does not reach the ground surface, which in some sectors
has an elevation under the sea level. This shallow aquifer is recharged mainly by rainfall and the two
rivers present in the area (Lemene and Reghene rivers). The most exploited aquifers by a number
of water wells present in the area are the deepest ones, but quantitative data of exploitation are not
available [67]. Then, it is not easy to evaluate the relationships between subsidence and groundwater
exploitation. However, considering the ground displacements mapped in Figure 6, and their pattern,
which perfectly matches the planform of the incised valley, it is evident that down lift movements are
led by a surficial motivation. The depletion of deep aquifers can generate a large-scale subsidence,
which could not induce a differential down lift in the very shallow deposits. Thus, the exploitation
should also affect the surficial aquifers and, in particular, the unconfined one or that between 10–30 m,
triggering the compaction of soft sub-soils with low displacement rates, due to the low permeability of
the deposits [60,64].

6. Conclusions

In this paper we tested the use of multi-temporal differential interferometric synthetic aperture
radar techniques as a tool for geological and geomorphological mapping, especially in urban areas
where surficial evidences are often obliterated by the development of structures and infrastructures.
To this end, the urbanized sector of the municipalities of Portogruaro and Concordia Sagittaria towns,
located in the Venetian-Friulian Plain between Tagliamento and Piave rivers, has been considered,
because its geological and geomorphological setting was already quite well known.

Interferometric data derived by permanent scatterers InSAR processing of SAR data acquired
by ERS 1/2, ENVISAT, COSMO SKY-Med, and Sentinel-1 missions from 1992 to 2017, have been
considered to evaluate the subsidence rate of the territory. Measuring the ground displacement rate
allowed the identification, with high accuracy, the borders of a post-last glacial maximum incision
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filled by recent, unconsolidated lagoon and alluvial deposits, which are characterized by a subsidence
rate much higher than the surrounding Pleistocene deposits of the external plain.

By monitoring the evolution of ground displacements inside the incision for a long period, the
causes of the subsidence could be explored. The consolidation process, caused by the loading of
post-LGM sediments after the construction of new buildings, and the development and maintenance
of the road network, are the main causes of vertical movements. A primary consolidation step, with
velocities of up to −10 mm/year, followed by a secondary step, with velocities about −3–4 mm/year,
have been observed. In most of the cases, this is the mechanism of the subsidence, but in some sectors,
where urban settlement changes have not been observed in the last 30 years, ground displacements
seem to be related to the exploitation of the shallow phreatic aquifer. The ability to monitor the
behavior of soils under loading for a long time, suggests that interferometry can be also used for the
geo-mechanical characterization at the site scale, which represent a challenging use of the technique.

The obtained results show that DInSAR techniques can be effectively applied in geological and
geomorphological surveys, mapping elongated features, with a length of kilometers and a width that is
several hundreds of meters. Using these methods depends on the physical and mechanical properties
of deposits and on the geological processes acting in the area under investigation. Processing SAR data,
that is acquired by sensors with different wavelengths, covering a period of time as long as possible,
is recommended.

Future research should regard the attempt to use interferometric techniques in geological and
geomorphological mapping of scarce urbanized areas and the numerical simulation of physical
phenomena occurring after the loading of soils and/or the exploitation of groundwater. To overcome
the limits of interferometry, due to spatial and temporal de-correlations, the performance of different
DInSAR techniques that make an accurate choice of processing parameters, could be tested; also the use
of L-band SAR data could be considered. To validate the ex-post assumptions about the possible causes
of subsidence, a hydro-mechanical numerical modelling that reconstructs the ground displacement
pattern measured by interferometry should be performed on the basis of previous geotechnical and
hydrogeological data, new geognostic and laboratory tests, and data on the water level changes of the
shallow phreatic aquifer.
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Abstract: Land subsidence in urban environments is an increasingly prominent aspect in the
monitoring and maintenance of urban infrastructures. In this study we update the subsidence
information over Rome and its surroundings (already the subject of past research with other
sensors) for the first time using Copernicus Sentinel-1 data and open source tools. With this
aim, we have developed a fully automatic processing chain for land deformation monitoring
using the European Space Agency (ESA) SentiNel Application Platform (SNAP) and Stanford
Method for Persistent Scatterers (StaMPS). We have applied this automatic processing chain to
more than 160 Sentinel-1A images over ascending and descending orbits to depict primarily the
Line-Of-Sight ground deformation rates. Results of both geometries were then combined to compute
the actual vertical motion component, which resulted in more than 2 million point targets, over
their common area. Deformation measurements are in agreement with past studies over the city
of Rome, identifying main subsidence areas in: (i) Fiumicino; (ii) along the Tiber River; (iii) Ostia
and coastal area; (iv) Ostiense quarter; and (v) Tivoli area. Finally, post-processing of Persistent
Scatterer Inteferometry (PSI) results, in a Geographical Information System (GIS) environment, for
the extraction of ground displacements on urban infrastructures (including road networks, buildings
and bridges) is considered.

Keywords: urban subsidence; Copernicus Sentinel-1; Persistent Scatterer Interferometry;
SNAP-StaMPS; Rome

1. Introduction

Since the launch of Copernicus Sentinel-1A on 8 April 2014, a new era of continuous monitoring
using spaceborne Synthetic Aperture Radar (SAR) sensors has started. Sentinel-1 constitutes a
significant improvement from previous European C-band SAR missions, European Remote Sensing
(ERS) satellites and Environmental Satellite (ENVISAT), since it reduced the temporal revisit time from
35 to six days, at best using the two satellite segments A and B, with a large swath coverage of 250 km.
The scientific communities as well as Earth Observation (EO) practitioners were thus given the means
to extend the use of spaceborne SAR data to land applications.

In support to the EO community, the European Space Agency (ESA) continued developing
appropriate tools for the utilization of the Copernicus Sentinel data. By evolving existing tools,
such as the Next ESA SAR Toolbox (NEST) as well as integrating others, the SeNtinel Application
Platform (SNAP) [1] becomes a multi-mission toolbox supporting both SAR and optical data processing.
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Newly implemented on Sentinel-1, the Terrain Observation by Progressive Scans (TOPS) acquisition
mode [2] required further development in terms of interferometric handling to ensure robust results.
The SNAP TOPSAR) capabilities were made available to users at an early stage, just before the start
of Sentinel-1 data dissemination, while SNAP TOPS Interferometric SAR (InSAR) development were
first communicated at the ESA Fringe 2015 consultation meeting. Currently, TOPS InSAR processing
is sufficiently documented [3–7] and SNAP remains a widely used end-to-end open source tool for
processing of Sentinel-1 data.

Further development of SNAP was carried out to include exports to software packages supporting
more advanced interferometric analysis, such as Stanford Method for Persistent Scatterers (StaMPS) [8].
StaMPS is a freely distributed package for research purposes with a large user community that
incorporates Persistent Scatterer Interferometry (PSI) and Small Baseline methods to measure ground
displacements from time series of SAR acquisitions. The idea was for the open source InSAR processor
to be used together with StaMPS PSI, boosting the utilization of the Copernicus Sentinel-1 data
for geohazard-related applications. The potential of SNAP-StaMPS integration has been already
demonstrated at [9], for which the authors had also published a set of scripts to support utilization by
the scientific community [10].

In this study we employ such open tools to analyze the urban deformation of the
Rome metropolitan area for the first time using Sentinel-1 data, and combined ascending and
descending orbits to depict the vertical urban deformation with special attention to different areas.
Ground deformation analyses of Rome have already been undertaken in the past [11,12], but these
have not been updated recently, and have not included Sentinel-1 SAR observations. Here we intend to
update existing knowledge with contemporary information regarding ground deformation in the Rome
metropolitan area using open data and tools. Previous relevant studies are indirectly used to verify
our findings and to allow us to understand which subsidence patterns correspond to already identified
phenomena and which new sources of deformation that would require further attention. Finally, a
dedicated analysis was performed highlighting vertical displacements along urban infrastructures,
including road networks, buildings and bridges.

1.1. Study Area

The study area includes the city of Rome and its surroundings, in the Lazio region of central Italy
(Figure 1). The geology of the region is characterized by volcanic deposits (mainly pyroclastic tuff)
from the Albano volcano district to the southeast and the Sabatino volcano district to the northwest,
with alluvial sediments along the Tiber valley in between the two [13]. The topography gradually
decreases from these two volcanic districts towards the Tiber, with valleys carved by fluvial erosion.
The variability of heights in the Rome metropolitan plain does not exceed 100 m.

The southwest of the study area is dominated by the Tiber River delta and coastal plain. Both are
comprised of alluvial sediments with a flat morphology [12]. The northeast of the study area includes
the beginning of the Apennines mountain chain, comprising mainly sedimentary limestone and
dolomite rocks [13].

Many cases of land subsidence have already been identified over the study area, and quantified
through various InSAR techniques, a detailed review of which is presented in [14]. Subsidence of
buildings on the alluvial sediments along the Tiber River in Rome has been measured using PSI, Small
Baseline Subsets (SBAS), Interferometric Point Target Analysis (IPTA) and 4D SAR imaging techniques
in many studies, e.g., by [11,15–17] and others, using ERS-1, 2 and ENVISAT ASAR data. The main
cause of subsidence in this case is the weight of relatively recent construction on the unconsolidated
alluvial material, especially in areas such as Grotta Perfetta, in the southwestern outskirts of the
city [11–16].

Other studies, such as [14,18,19], focused on quantifying displacement which may affect the
structural integrity of archaeological monuments in the historical center of the city, using SBAS, PSI
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and SqueeSAR with ERS-1 and -2, ENVISAT ASAR [18], Radarsat-1, 2 [19] and COnstellation of small
Satellites for the Mediterranean basin Observation (COSMO-SkyMed) data [14].

Another type of ground displacement in the region of interest, which has been measured using
InSAR techniques, has been identified in the Acque Albule Plain [20], in the northeastern part of the
study area. Here a combination of groundwater extraction for mining and the presence of compressible
soils has led to ground subsidence in the area. This has been quantified and studied with ERS and
ENVISAT data using PSI and Quasi-PS InSAR (QPS) techniques by [21]. QPS is based on a different set
of filtered interferograms (multi-master configuration) and is weighted by interferometric coherence.

More recently, subsidence affecting the area surrounding the Rome Fiumicino (FCO) airport, in
particular over the third runway, has been studied with the PSI technique applied to ERS, ENVISAT
and COSMO-SkyMed data by [12]. The authors showed how the varying rate of subsidence in the area
correlates with the age of overlying man-made constructions and the nature of the underlying geology.

2. Materials and Methods

2.1. Open Source Toolboxes

This work has been carried out using the open source ESA SNAP and StaMPS software packages.
The SNAP Graph Builder operator can be used to create processing chains which can be called using
the batch mode Graph Processing Tool (GPT). We have exploited this utility to create the several
templates necessary for creating single master TOPSAR coregistration and interferogram generation.

Finally, in order to fully automate the single master interferogram generation, we have developed
and made available, based on well-designed SNAP graphs, a set of scripts called “snap2stamps”.
These scripts enable automatic processing after setting some parameters in a configuration file. In fact,
they are python wrappers which use the aforementioned templates based mainly on SNAP TOPSAR
interferometric operators and whose outputs are compatible with StaMPS PSI chain. The snap2stamps
scripts are available via the Zenodo repository [10]. Latest versions of the scripts (not verified by the
developing team) can also be found on the GitHub repository (https://github.com/mdelgadoblasco/
snap2stamps). The authors had released a first version of the snap2stamps package in July 2018, which
automates the TOPSAR single master Differential InSAR (DInSAR) processing, fully compatible with
StaMPS PSI [9], allowing the creation of stacks of single master interferograms in batch mode, just by
defining some simple settings such as project folder, subswath to process and defining the bounding
box coordinates of the area of interest.

Additionally, for the removal of the Atmospheric Phase Screen (APS), we have employed the
Toolbox for Reducing Atmospheric InSAR Noise (TRAIN) [22] and applied the linear approach
(topography versus phase) integrated in the aforementioned open source package.

2.2. Data and Processing

For the data processing we have employed an ESA RSS CloudToolbox which is a Virtual Machine
provided by the ESA Research and Service Support [23] with access to collocated Sentinel-1 data via
Copernicus Data and Information Access Services (DIAS). This has the advantage of eliminating the
data download time, as the data is locally accessible and ready to use. The resources employed were
8 vCPUs, 32 GB RAM and 1TB disk space, resulting in a total processing time of approximately 15 days,
including the post-analysis of PSI results.

For the interferometric processing, the Advanced Land Observation Satellite (ALOS) World
3D (AW3D30) Digital Surface Model (DSM) [24], of 30 m spatial resolution, was utilized, while for
examining the geolocation accuracy as well as the interpretation of PSI results we employed a very
high resolution DSM (5 m/pixel), as extracted from CartoSat-1 satellite data [25].
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2.2.1. Copernicus Sentinel-1 Data

We limited our analysis to Sentinel-1A data only (12-days repeat cycle) (Table 1), which is sufficient
given the expected magnitude of ground displacements and the availability of a large number of
acquisitions over the area of interest. Some details on the Sentinel-1 data employed for the processing
are shown in Table 1. It should be noted that since Sentinel-1 products are not spatially synchronized,
meaning that their starting and ending times may vary within each orbit, often more than one scene
is required to fully cover our area of interest. This introduces additional storage and computational
requirements, as consecutive scenes, for the same acquisition date, need to be downloaded and
assembled into single products before proceeding with the interferometric processing. Our area of
interest (AOI) and the extent of Sentinel-1 ascending (A117) and descending (D022) orbits is illustrated
in Figure 1.

Among the different options, we have selected ascending and descending tracks, 117 and 022,
respectively, for which the area of interest is mapped with comparable incidence angles. By ensuring
combination of similar viewing geometry, i.e., sensitivity to vertical motion, we facilitate a more robust
extraction of the vertical motion component, of interest for our investigation.

Figure 1. Area of interest and footprint of the selected Sentinel-1 master scenes for both ascending
(A117) and descending (D022) tracks. ALOS World 3D DSM used as background.

Table 1. Sentinel-1 data employed for processing, with first and last image of each dataset, orbit pass,
track and number of acquisitions.

Satellite First Image Last Image Orbit Pass Track N Acquisitions

S1A 2015/03/24 2018/04/13 Descending 22 82
S1A 2015/03/30 2018/04/19 Ascending 117 87
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2.2.2. SNAP-StaMPS PSI Processing

The PSI processing is split into two independent workflows: (i) single master DInSAR processing
using ESA SNAP; and (ii) the PSI processing using StaMPS.

Firstly, the master scene is selected from the beginning of the data series, as Sentinel-1 has orbit
control which guarantees any interferometric combination among the data. Additionally, as we want
to obtain PS points over urban infrastructure, we expect that temporal baseline will not greatly affect
the number of PS obtained. Master image splitting and update of orbit state vectors follow, also using
the SNAP Graphical User Interface (GUI), to ensure proper selection of bursts covering our AOI.
These steps are critical since they optimize time and resources for the rest of the processing. Table 2
details the parameters involved in master image splitting for burst selection over the AOI.

Table 2. Main characteristics of the selected Sentinel-1A master scene.

Track
Acquisition

Date
Mean Inc. Angle

(rad/degrees)
Sub-Swath Polarization Initial Burst Last Burst

D022 2015/05/23 0.75/42.97 IW3 VV 5 8
A117 2015/08/09 0.67/38.39 IW2 VV 5 7

The next step involves generating all single master interferograms using the snap2stamps scripts,
by following an automatic processing scheme implemented in four steps:

1. Slave preparation. In this step, the Sentinel-1 Single Look Complex (SLC) data are sorted
by acquisition date while checking if SLC assembly (concatenation procedure) is necessary,
depending on whether the defined AOI is covered by more than one scene per acquisition date.

2. Slave splitting. To enable processing in batch mode, the SNAP Graph Processing Tool (GPT) is
used, which runs already-defined processing chains (graphs in xml format). For this step, the
TOPSAR-Splitting and Apply Orbit operators are called, to update the annotated orbit information
with more precise ones according to their availability (restituted or precise). These orbits are
automatically downloaded by SNAP. The corresponding graph is illustrated in Figure 2, part A.

3. Coregistration and interferogram computation. This is the most computationally demanding
step, as it performs the coregistration of the TOPSAR data (Back-geocoding with Enhanced
Spectral Diversity [26] refinement) and produces the interferograms with the Flat-Earth and
topographic phase contributions removed. Optionally, a finer subset can be applied over an AOI,
as defined in the project configuration file. If no information is provided by the user, the full burst
interferograms are generated. The outputs of this step are two debursted stacks of master-slave
Single Look Complex (SLC) files and the master-slave interferogram. Supplementary data files
required by StaMPS are also generated, including elevation band and orthorectified latitude and
longitude coordinates as independent products. The graph employed for this step is shown in
Figure 2, part B.

4. Stamps export. This is the final step of the single master DInSAR processing, which converts
previous processing results into binary raster files compatible with StaMPS readers. Graph shown
in Figure 2, part C.
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Figure 2. Schematic diagram presenting the different chains of the SentiNel Application Platform
(SNAP) workflow to prepare the interferometric inputs for Stanford Method for Persistent
Scatterers (StaMPS) Persistent Scatterer Interferometry (PSI) processing [9]. Part (A–C) illustrate
the workflow employed for slave splitting, coregistration, interferometric computation and StaMPS
export, respectively.

The following step involves the ingestion of SNAP exports into StaMPS using a specific script,
called mt_prep_snap, available in the distribution. Subsequently, the StaMPS PSI processing chain is
run from step 1 to 7 as described in the StaMPS User Manual [27].

In this case, we additionally applied the integrated TRAIN, using the linear tropospheric correction
approach, to mitigate the topography-correlated atmospheric phase.

In order to properly merge the results from both ascending and descending tracks in subsequent
post-processing steps, we selected the same reference point in both cases, corresponding to a permanent
European Reference Frame (EUREF) Global Navigation Satellite System (GNSS) station (M0SE00ITA),
located at the Aerospace Engineering Faculty of the University of Rome “La Sapienza”. Based on the
EUREF solution [28], the station seems stable, with no evident vertical motion (Vx = −0.7 ± 0.1 mm/yr,
Vy = −1.3 ± 0.1 mm/yr and Vz =0.5 ± 0.1 mm/yr in ETRF2014) during the entire observation period.

We ran StaMPS PSI three times from the merging of the different patches (step 5) onwards, each
time with different grid options [27]: (i) no merging; (ii) merging by 20 m grid; and (iii) merging by
40 m grid. For each run, the merging of PS candidates was performed with the same threshold selected
for the phase noise filtering in StaMPS step 4.

2.2.3. Post-Processing

Having both ascending and descending PSI measurements, we combined them to calculate the
vertical component for each individual Persistent Scatter (PS) point (see Figure 3) using Equation (1)
and (2), as described in [29]: [

dLOS
asc

dLOS
desc

]
= A

[
dup

dhald

]
(1)
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with

A =

[
cos θasc sin θasc

cos Δα

cos θdesc sin θdesc

]
(2)

where dLOS is displacement along Line-Of-Sight (LOS). dup is the vertical displacement. dhald is the
projection of horizontal displacement in descending azimuth look direction (ALD). θ is the incident
angle. Δα is the satellite heading, difference between ascending and descending orbit.

 

Figure 3. Ascending and descending decomposition in vertical and horizontal components (A) and the
Azimuth Look Direction (ALD) for the descending orbit pass (B).

The combination of ascending and descending PS points was performed in the vector domain
avoiding any rasterization option, as described in [30]. The method combines PS targets based on
their geographic proximity, while attributes transfer and decomposition of motion is done within the
features geodatabases. This leads to a higher number of final PS points and reduction of error budget
introduced by spatial interpolation and rasterization procedures. PS points of one geometry having no
neighbouring targets by the opposite geometry, within a defined search radius, are being excluded.
The selection of the maximum search radius for the combination, in our case 40 m, was based on the
statistical analysis of the distances between PS targets from the independent LOS solutions.

After obtaining the vertical component of the deformation rates, by using GIS capabilities, we
overlaid the deformation information over buildings, roads, highways and railways vector layers to
calculate the maximum observed deformation for each of these elements. In such a way, we were
able to provide subsidence information over critical infrastructure (roads, bridges etc.) as well as on
individual building blocks. For the special case of the road networks, and in order to depict the spatial
variability of motion along them, a segmentation procedure was applied considering a distance of 20 m
for each segment. The displacement value is then calculated based on PS points located at a specified
distance across each road segment. To reduce overlaps between successive segments, we considered a
square buffering option, i.e., buffer zones do not exceed the segments’ start and end points.

Since StaMPS does not update PS heights, inaccuracies in the geolocation of PS targets over urban
environments, especially for high buildings, might occur. To compensate for the above mentioned
issue, during the calculation of the deformation statistics for each vector element (road, buildings etc.)
a 20 m buffer was considered. The choice of the buffer distance was based on the visual interpretation
of the results.

3. Results

We have obtained the average PSI LOS deformation rates for both ascending and descending
tracks (Figure 4). An indicator of the compatibility of solutions between acquisition geometries is the

54



Remote Sens. 2019, 11, 129

standard deviation of the mean LOS deformation velocities, which correspond to 1.04 mm/yr and
1.17 mm/yr for A117 and D022 tracks, respectively.

Given the difference in area covered by each track, the relatively larger number of PS points in the
descending solution could be explained (Table 3). Apart from the effect of area coverage, it seems that
the overall numbers of PS points is comparable. We attribute this to the common observation period
and incidence angles considered for both ascending and descending datasets.

Figure 4. Sentinel-1 average Line-Of-Sight (LOS) deformation rate maps over the period
March 2015–April 2018 for descending (left) and ascending (right) acquisition geometries. Positive
values indicate motion towards the sensor or uplift, whereas negative values motion away from the
sensor or subsidence. Selected reference point (M0SE00ITA EUREF station) is shown as square. ALOS
World 3D Digital Surface Model (DSM) as background.

After decomposing the ascending and descending LOS measurements, we obtained the vertical
deformation rate map presented in Figure 5. It can be easily seen that various deformation patterns
exist, attributed mainly to the different subsidence mechanisms acting in the metropolitan area of
Rome. There are several areas undergoing significant subsidence, such as (i) FCO airport; (ii) along the
Tiber River; (iii) the coastal zone of Ostia; (iv) Ostiense quarter within Rome and; (v) Tivoli area, while
the rest of the region exhibits relatively low ground deformation rates. In the following sections we
provide a more detailed analysis of the PSI results.

As we ran StaMPS using different merging options, we obtained different numbers of PS points
for each solution. In Table 3, we summarize the total points obtained for each merging configuration
and those remaining after the vertical decomposition. It should be noted that, for the decomposition,
only the overlapping area between ascending and descending results is exploited.

Table 3. Total number of PS points obtained by StaMPS processing (LOS) and after the decomposition
to actual motion component (Vertical).

Orbit
No Merging
LOS/Vertical

20 m
LOS/Vertical

40 m
LOS/Vertical

Ascending (A117) 1065328/947386 486188/418481 264024/211999
Descending (D022) 1342924/1061976 580578/439738 311615/217237

For the full resolution datasets, we obtained over 1 million point targets for both orbits (Table 3),
a fact which poses some difficulties in handling the dataset for post analysis purposes. The decision to
reduce the initial number of PS points or not depends actually on the application at hand. For example,
while working on infrastructure monitoring, it may be relevant to maintain full resolution results, as
the number of points decreases rapidly after merging. For the needs of our work, the 20 m merged
solutions offered a reasonable trade-off between density of PS targets and computational requirements
for post-processing.
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The obtained PS density after the decomposition, calculated at 200 m grid, is shown in Figure 5.
The increase of density over the built-up area of Rome, reaching 1700 points/km2 in the center of the
city, is evident, while several rural urban centers also exhibit relatively high PS densities varying from
300 to 600 points/km2. The locations of ascending and descending PS targets over an urban fabric
of moderate density are presented (Figure 6), showing the advantages of the applied decomposition
approach in retaining larger numbers of PS targets that allows proper characterization of on-going
deformation phenomena. The final average velocity map of vertical deformation over the study area is
shown in Figure 5, where the different areas with higher subsidence can be clearly identified.

 

Figure 5. Figure 5. Sentinel-1 average vertical motion rates for the period March 2015–April 2018.
For the decomposition, PS points at full resolution were spatially down sampled by a window of 40 m
radius (see Section 2.2.2). Selected reference point (M0SE00ITA EUREF station) is marked by a black
square. ALOS World 3D DSM as background. The locations of other figures are also shown.

Figure 6. Sentinel-1 PS density over a 200 m resolution grid (left) and PS locations for both ascending
and descending geometries at full resolution. Black square indicates the location of the zoom image
shown on the right. ALOS World 3D DSM (left) and CartoSat-1 DSM (right) as backgrounds.
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3.1. Critical Urban Infrastructures: Global Road Network

As mentioned in Section 2, we separated the vertical deformation of the different elements such as
roads, highways, railways and buildings using the extracted OpenStreetMap shapefile layers available
in [31], and here in Figure 7 we show the deformation for the different roads and highways over our
AOI. Significant deformation is revealed near the Fiumicino area, along the Tiber River and in the
eastern part outside the Grande Raccordo Anulare (GRA). However, other roads show stable behavior
or irrelevant deformation.

Systematic monitoring of human infrastructure, particularly critical for communication and
transportation (highways, railways, roads, bridges, viaducts) or providing resources (electricity
plants, dikes, dams) can be used for maintenance planning activities as well as for infrastructure
risk assessment.

Figure 7. Average vertical motion rates along motorways as well as primary and secondary road
networks (left) and a detail over Rome city, including tertiary, residential and pedestrian roads (right).
ALOS World DSM (AW3D30) (left) and CartoSat-1 DSM (right) as backgrounds.

3.2. Subsidence along the Tiber River

This type of subsidence phenomena is quite common on areas constructed over alluvial deposits
along river floodplains.

As mentioned in Section 1.1, the subsidence of buildings on the alluvial sediments along the
Tiber River in Rome has been studied using similar techniques. Some notable studies include [11–17].
These all used ERS-1, 2 and ENVISAT ASAR data. The main cause of subsidence in this case is the
weight of relatively recent construction on the unconsolidated alluvial material [11–16]. The older
constructions in the city center of Rome on the other hand display less movement, as their position
has consolidated over time. Findings from the PanGeo project [17], and the studies mentioned above,
reported subsidence along the Tiber River and its tributaries determined using PSI and other techniques
applied to ERS SAR and ENVISAT ASAR data acquired from 2002 to 2005.

Similar patterns over these alluvial deposits are present in our results (Figure 8). It is difficult to
compare the deformation velocities between the studies, due to the different datasets employed and
periods analyzed. We measure strong subsidence in several areas such as Ostiense and Santa Victoria
quarter, with maximum vertical deformation rate of −7.2 mm/yr. Also remarkable is the subsidence
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along the Tiber River and its tributaries (with more than 52k PS points), with a maximum deformation
rate of −8.7 mm/yr and an average of −1.4 mm/yr.

 

Figure 8. Average vertical deformation rates along the Tiber River and its tributaries (left) and detailed
views presenting the estimated maximum deformation rates per building block within the center of
Rome (right). The selected reference point (M0SE00ITA EUREF station) is shown in the black square.
CartoSat-1 DSM as background.

3.3. Fiumicino Airport and Ostia Coastal Region

The deformation over the Fiumicino area is also known, and consistent with previous studies
(e.g., [12]), in which similar subsidence patterns are found. There are some points to highlight on the
deformation over this area: (i) the airport runway oriented north-south; (ii) the highway; and (iii) the
harbor area.

Regarding the runway, part of the track is located over an ancient lake. This has a different degree
of consolidation compared to the other part, located over alluvial deposits. A very different behavior
is thus shown between the two parts [12]. Also, the highway from Rome towards Fiumicino airport
suffers from a high rate of vertical subsidence. This poses a higher risk than comprehensive subsidence
over the entire area as large variations in deformation rate can lead to cracks in infrastructures.

Figure 9 illustrates the spatial distribution of the vertical deformation on the Fiumicino area, where
the Rome-Fiumicino highway deformation is highlighted in (A), the full time series deformation of a
smaller area for both ascending and descending orbits is shown in (B) and in (C) the total accumulated
vertical deformation of the portion of highway inside the black ellipse found in (A). Figure 9C has
been obtained by considering the linear velocity of the vertical motion for each PS point inside the
dashed lines in Figure 9A from West to East. The horizontal axis is the longitude and vertical axis
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refers to the total accumulated vertical motion. There are visible transitions of blue to red and vice
versa between adjacent points, where blue corresponds to no motion or the PS point in that position,
as there is not always a PS point per each 20 m of highway.

Figure 9. Spatial distribution of average vertical deformation rates at Fiumicino (FCO) airport area
overlain on CartoSat-1 DSM (A). PSI LOS displacement time series for selected point target (B) and
cumulative motion plot for the Roma-Fiumicino highway (C) are also shown.

Moving from West to East, the first area with strong vertical deformation is near the Mediterranean
coast of Ostia-Fiumicino, where more than 20k PS are obtained, measuring a maximum deformation
rate of −9 mm/yr. Further East, the nearest area with strong deformation is the Fiumicino airport,
where only on the airport North–South oriented runway are located 270 PS points, with a maximum
vertical deformation of −14.8 mm/yr, and an average deformation along the track of −6.6 mm/yr.
Next to the Fiumicino airport, in the Ponte Galleria industrial area, with more than 3700 PS points, the
maximum subsidence value is less than −19 mm/yr while the average vertical deformation is less than
−5 mm/yr. Continuing towards Rome city, the highway Rome-Fiumicino also suffers strong vertical
deformation, having a maximum deformation of −19 mm/yr and an average vertical deformation of
almost −7 mm/yr.

3.4. Other Cases of Strong Displacement Patterns

Other important patterns are found over highways and roads, for which it is worth highlighting
that the areas where strong transitions between subsidence rates occur are generally more dangerous
as these are responsible for cracks in infrastructures. Hence, these areas with strong variations in
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subsidence behavior, and with high spatial frequency are the ones we would suggest to closely monitor,
as well as the areas with significant subsidence, as continuous subsidence may also pose a risk.

In Figure 10, we show an example of the road subsiding while the bridges seem to remain more
stable. Specifically, near Settebagni, on the “A1 Diramazione Roma Nord” there are more than 700 PS,
measuring a maximum vertical deformation of −7.8 mm/yr with an average of around −4 mm/yr.

Finally, on the Eastern part of Rome (see Figure 6), we find Tivoli and Tivoli Terme, with more than
17k PS, measuring a maximum vertical deformation of −12 mm/yr, with an average of −3 mm/yr,
similar to values obtained in [20].

 
Figure 10. Deformation patterns at the “A1 Diramazione Roma Nord” north of Rome, showing
subsidence of alluvial deposits and relative stability of constructed bridges. Geolocation accuracy
of the obtained PS results can be visually assessed based on the overlap on the CartoSat-1 DSM in
the background.

4. Discussion

We present ground deformation in the Rome metropolitan area for the first time, using Copernicus
Sentinel-1 mission data and open source toolboxes, paving the way for the broader utilization of the
proposed chain by EO practitioners in geohazards applications.

Despite the availability of additional satellite data, limiting the analysis to Sentinel-1A acquisitions
(repeat of 12 days) was considered sufficient, given the relatively low deformation rates in the area
and the expected linear behavior of motion in time.

The area exhibits diverse deformation patterns, the spatial expression of which indirectly suggests,
at least for some cases, the underlying deformation mechanism. The demonstrated quality of
interferometric products obtained by Sentinel-1, both in terms of spatial density and uncertainties
of displacement estimates is of key importance for the interpretation of motion and the phenomena
involved. In our case, the density of the results reaches 1700 point/km2 (~70 PS targets on a
200 m × 200 m grid) for dense urban centers, 300–600 point/km2 for the suburban environments, while
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for the entire area of interest we calculated (including areas with no PS) on average 250 point/km2.
It is worth mentioning that we exploit only the co-pol. (VV) channel of Sentinel-1, yet by considering
both polarizations (VV+VH) an increase in the number of PS targets is expected. As a result of the high
PS density in built-up areas, and thus, availability of multiple PS targets within each building block,
it is possible to differentiate between deformation of the buildings themselves from those related to
soil foundations. Yet, given the uncertainties in the location of the PS points and the resolution of
Sentinel-1, such separation of motion should be handled with care.

Among the most pronounced deformation patterns is the subsidence at Fiumicino airport
reaching −20 mm/yr and along the Tiber River and its tributaries with motion in the order of −5mm/yr.
Several other cases with a magnitude of motion worth mentioning, in the range of −12 to −3 mm/yr,
are found along the coastal zone of Ostia as well as in the Tivoli region. The presence of relatively high
deformation gradients for the above mentioned sites is well documented in several studies [11–18,20].
A more detailed analysis is provided in the PanGeo project report about the Geohazard description
of Rome [17]. In [20], an analysis integrating geological and hydrogeological modelling provided
insights on the relation between ground displacement, variations in the groundwater table and
geotechnical properties of the subsoil for the specific case of Fiumicino area. For most of the cases,
ground deformation can be attributed to the local geological conditions, such as the compaction
of soft sediments, whereas loading by urban constructions should be one of the major reinforcing
factors. However, further investigation is required to characterize the on-going subsidence induced
phenomena and their temporal evolution compared to past ground displacement measurements.

Computed average vertical displacement rates for the various lithological types, as described in
the 1/25,000 scale geological map of Lazio [24] are shown in (Figure 11). As expected, unconsolidated
deposits (e.g., sands, clays and other alluvial material) show higher subsidence rates compared to
basement formation such as marls, limestones and dolomites.

 

Figure 11. Maximum subsidence rate per soil lithological type in the broader metropolitan area of
Rome [31]. Sorted from lower to higher maximum subsidence value.

Deformation over urban infrastructures was also detected, with the case of the GRA, the ring
highway surrounding the city of Rome, showing subsidence rates of up to −7.8 mm/yr. In fact, the
proposed segmentation approach enabled the localization of the deformation along the entire road
network of the Rome metropolitan area, a valuable option to support planners.

The above-mentioned findings were verified by inter-comparison with previous studies.
Further validation activities were not considered necessary, since InSAR techniques have already
undergone a long period of validation [32], confirming their capacity to measure surface motion.
Actually, the majority of the observed subsidence has been already reported in the past [11–18].
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However, the updated status as provided by Sentinel-1 is of significant importance, since the
continuation of ground deformations without addressing any mitigation actions may lead to
undesirable consequences in the future.

Finally, our ability to detect and measure ground movements with substantial accuracy within
a short time should be underlined. Comparable studies in the past would require long observation
periods to collect sufficient satellite data to obtain robust solutions. At the same time, our capacity
to actually monitor phenomena has been increased by the systematic availability of the Copernicus
Sentinel-1 data.

5. Conclusions

We have demonstrated the utilization of open and free data from the Copernicus Sentinel-1
mission using open source toolboxes for advanced interferometric processing. We provide details on a
dedicated package for the automation of SNAP-StaMPS PSI processing, which we make available to
EO practitioners in response to the growing need for EO-based solutions for monitoring geohazards.
The integration of such a chain on a cloud processing environment will enable EO practitioners to
respond to the ever-increasing volume of satellite data and high processing capacity requirements.

We verified the results by inter-comparison with previously published studies. To facilitate
openness, we have made the PSI measurements over Rome available online, encouraging further
analysis and interpretation as well as promoting collaboration between research communities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/2/129/s1,
Sentinel-1 PS LOS displacement rates over the period April 2015–May 2018 in WGS84 projection are provided in
Environmental Systems Research Institute (ESRI) shapefile format for both ascending and descending datasets.
Each record contains latitude and longitude coordinates in decimal degrees, record identifier, average LOS
deformation rates and standard deviation of average LOS deformation rates, both in mm/yr.
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Abstract: Persistent Scatterer Interferometry (PS-InSAR) has become an indispensable tool for
monitoring surface motion in urban environments. The interferometric configuration of PS-InSAR
tends to mix topographic and deformation components in differential interferometric observations.
When the upcoming constellation missions such as, e.g., TanDEM-L or TWIN-L provide new standard
operating modes, bi-static stacks for deformation monitoring will be more commonly available in
the near future. In this paper, we present an analysis of the applicability of such data sets for urban
monitoring, using a stack of pursuit monostatic data obtained during the scientific testing phase of
the TanDEM-X (TDX) mission. These stacks are characterized by extremely short temporal baselines
between the TerraSAR-X (TSX) and TanDEM-X acquisitions at the same interval. We evaluate
the advantages of this acquisition mode for urban deformation monitoring with several of the
available acquisition pairs. Our proposed method exploits the special properties of this data using
a modified processing chain based on the standard PS-InSAR deformation monitoring procedure.
We test our approach with a TSX/TDX mono-static pursuit stack over Guangzhou, using both
the proposed method and the standard deformation monitoring procedure, and compare the two
results. The performance of topographic and deformation estimation is improved by using the
proposed processing method, especially regarding high-rise buildings, given the quantitative statistic
on temporal coherence, detectable numbers, as well as the PS point density of persistent scatters
points, among which the persistent scatter numbers increased by 107.2% and the detectable height
span increased by 78% over the standard processing results.

Keywords: pursuit monostatic; PS-InSAR; urban monitoring; skyscrapers

1. Introduction

Persistent Scatterer Interferometry (PS-InSAR) is a multi-temporal interferometric method that has
been widely used for urban monitoring. Various cities use PS-InSAR as a standard monitoring tool for
monitoring slow deformation, including ground [1–4], single buildings [5–7], and infrastructures [8,9].
The upcoming bi-static sensor missions promise even higher performance in global monitoring. In 2010,
the TanDEM-X (TerraSAR-X Add-on for Digital Elevation Measurements) mission was launched.
Together with TerraSAR-X (TSX), the constellation operates in a bistatic mode, with the primary goal
of producing a highly accurate global digital elevation model (DEMs) of the Earth [10]. A secondary
goal of the program is to demonstrate potential new applications of TanDEM-X (TDX) [11,12] and
innovative new operating modes, including the bistatic, monostatic pursuit, and alternating bistatic
modes, during the commissioning and scientific research phases of the mission [13,14]. Among those
operation modes, the pursuit monostatic (PM) data is of interest for urban PS-InSAR applications that
address slow motion, especially subsidence in urban areas.
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In the PM mode, two satellites fly in the same orbit, one behind another, with an increased
along-track baseline of 20 km, which is equal to a temporal baseline of 10 s. This enlarged distance
allows both satellites to transmit and receive signals independently; thus, for each target scene, an
independent image pair can be obtained within a time interval of 10 s. With this extremely short
along-track temporal baseline between acquisitions within the PM mode, various applications on the
datasets were conducted [15,16], and qualities were analyzed [17,18]. Few applications are found on
urban areas [19], while most publications about PM data applications are focused on Moving Target
Indication (MTI) [20,21], with examples drawn from sea surface derivation [22], and oil and ship
detection [23]. Another example demonstrate the use of PM data for agricultural monitoring [24].
Many of the methods adopted in those publications are designed for change detection (CD), and are
focused on minor changes of the targets occurring over short time intervals. Research on mono-static
pursuit data for surface motion estimation, however, is limited; we assume that this is due to the
limited availability of such stacks.

Upcoming Synthetic Aperture Radar (SAR) missions show similar constellations to TerraSAR-X
and TanDEM-X; for example, TanDEM-L [25–27] or TWIN-L [28], will increase the availability of
stacks of bi-static or PM image pairs considerably. In preparation for this, we use the technique of
persistent scatter (PS) SAR interferometry for surface motion monitoring in urban areas. Although
PM data allows for standard procedures without considering bi-static processing steps, processing
PM data stacks with the standard PS-InSAR method does not make full use of the extremely short
10 s temporal baselines. Interferometric configuration in the standard PS-InSAR method tends to mix
the topographic and deformation components in differential phase observations during estimations,
especially in areas crowded with high-rise buildings; however, the interferometric phase generated
by using only PM pairs is almost free from long-term deformation and atmospheric delay; hence, it
is suitable for retrieving topographic residuals of urban areas, and the deformation estimation can
thus be improved, especially regarding high-rise buildings, where spatially uncorrelated topographic
residuals are commonly observed. Addressing this issue, we developed a new processing chain for
PM data stacks, based on interferometry of PM pairs. The method will, in principle, be also applicable
to bi-static stacks from the TanDEM-X mission, as well as future space-borne systems.

The paper is arranged as follows: in Section 2, the methodology of the processing is explained;
in Section 3, the results of urban monitoring using pursuit monostatic spotlight acquisitions are
demonstrated; in Section 4, the results are analyzed, and finally in Section 5, conclusions are drawn.

2. Materials and Methods

Principles of the standard PS-InSAR method are first stated in this section; after that, the proposed
method will be presented based on the modification of the standard processing chain.

2.1. Standard PS-InSAR

The core of the standard PS-InSAR method is to conduct a time-series analysis of PS that can
preserve stable backscattering over time. PS points can be selected based on several adoptable indexes,
such as amplitude stability or temporal coherence. Selected PS points are connected to form a network;
the deformation and topography differences for each arc are derived. The differential interferometric
phase between the neighboring PS points is noted as:

Δφdi f f = Δφde f o + Δφtopo + Δφatmos + Δφnoise (1)

Δφdi f f express the differential interferometric phase, while φde f o, Δφtopo, and Δφatmos stand for
the deformation, topographic, and atmospheric components of the differential interferometric phase.
Δφnoise is the residual noise. The deformation component describes the deformation velocity difference
between the neighboring PS points in the same arc. Both linear and non-linear deformation can be
contained in this term; for example, urban subsidence [1] for linear deformation, and periodic thermal
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deformation [7] for non-linear deformation. The topographic component describes the residual
topographic phase between neighboring PS points in the same arc. The atmospheric component
describes phase change caused by phase delay during transmission, e.g. due to water vapor differences
in the atmosphere. These three interferometric phase components, are main elements in the differential
phase, together with non-linear deformation and noise, the equation can be extended as:

Δφdi f f =
4π

λ
TΔv +

4π

λ

B⊥
ρsinθ

Δh + Δφatmos +
4π

λ
ΔDnon−linear + Δφnoise (2)

In this equation, λ is the wavelength, T is the temporal baseline, ρ is the slant range, and θ is
the incident angle. Δφdi f f is the differential observation; the linear deformation velocity Δv and the
residual topographic phase Δh are the unknowns. If the actual differential phase is bigger than 2π,
phase ambiguities also need to be considered in the resolution process, which are also unknowns.
The atmospheric component Δφatmos can be mitigated by spatial filtering, or optionally supported
by introducing an external water vapor mapping product. It can also be estimated within standard
PS-InSAR, which will be mentioned in the later paragraphs. The atmospheric component Δφatmos,
non-linear deformation component ΔDnon-linear, and noise term Δφnoise are considered as residual phase
ε, as we can see in:

ε = Δφatmos +
4π

λ
ΔDnon−linear + Δφnoise (3)

Nevertheless, distances between PS candidates (PSC) within the PSC network can be controlled
within certain limits, and the area of triangles in this network can be restricted to be small enough
either, hence the residual phase ε of differential observations can normally be considered to be no
bigger than π; therefore, phase ambiguities can be assumed to be zero. If the number of images in one
interferograms stack is M, differential observations generated between the neighboring PS points x
and y can be formulated as:

Δφk
x−y,i f g =

[
αk, βk

]
·
[

Δνx−y

Δhx−y

]
+ ε (k = 1, 2, . . . , M) (4)

where Δφk
x−y,i f g is the differential interferometric phase generated between x and y, k is the index of

interferograms, αk and βk are the coefficients of mean velocity Δvx-y and the residual topographic phase
Δhx-y; Δvx-y and Δhx-y are unknowns, and they have to be determined under maximized temporal
coherence γ.

To solve for the mean velocity Δvx-y and the residual topographic phase Δhx-y in Equation (4),
periodogram spectral analysis [29] is applied in the standard PS-InSAR technique. The method can
transform the residual phase into a frequency domain in space {Δh, Δv}, and search for the location of
single PS points that could maximize the temporal coherence γ. This method is based on the original
wrapped interferograms, and the performance of this method depends on the temporal and spatial
distribution of baselines; with an increased number and a more even distribution of the temporal
baseline, the performance could be improved.

The atmospheric component is also estimated, together with mean velocity Δvx-y and the
residual topographic phase Δhx-y. After estimation of the topographic error and deformation for
each point along the network based on a previously selected sparse PSC network, their topography
and deformation can be derived, starting from a selected reference point. The remaining phase residuals
caused by atmospheric effects and are subsequently used to estimate the atmospheric phase screen
(APS) of each interferogram. The atmospheric components in differential phases can be extracted
through low-pass filtering in the spatial domain, and high-pass filtering in the temporal domain [30].
On this basis, the APS of each interferogram can be obtained by interpolation, using various methods,
for instance, kriging. After removing the APS, the deformation and topographic error for every PSC in
the stack are estimated relative to the previously selected reference point.
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After determination of Δh and Δv, the topography and deformation can be derived for each PS
point. Topographic components for each PS point can be resolved within an indirect adjustment model,
and can be abbreviated as:

ΔhM×1 = CM×N × hN×1 (5)

where M is the number of PS connection arcs, N is the number of selected PS points, Δh is the residual
topographic observation, h is the unknown PS topography, and C is the coefficient matrix describing
the relationship between residual topographic phase Δh between neighboring PS points and the
topography h for each PS point, which is also what we referred as PS height. In response to least-square
principle, the solution for this function is:

hN×1 =
(

CT
N×MPM×MCM×N

)−1
CT

N×MPM×M ΔhM×1 (6)

In Equation (6), P is weight matrix. On the other hand, deformation pattern may not necessarily
be linear. As we consider the whole scene, the topographic phase between neighboring PS points
may also lead to phase wrapping in the spatial domain. In this context, the topographic component is
considered as an error source and deformation is extracted based on the resumed interferometric phase
after removal of the topographic components. Phase unwrapping is applied to the interferograms,
and various algorithms can be chosen, for instance, Branchcut [31], SNAPU [32], etc. The unwrapped
interferometric phase is noted as:

φk
x,uw = φk

x,de f o + φ̂k
x,topo + φ̂k

x,atmos + φ̂k
x,noise (7)

where φk
x,uw expresses the unwrapped phase, φk

x,de f o expresses the deformation component, and

φ̂k
x,topo, φ̂k

x,atmos and φ̂k
x,noise express the topographic, atmospheric components as well as the noise

term of the unwrapped phase, respectively. After removal of the topographic component and the
estimated atmospheric component from the interferometric phase, the residual phase can be considered
as deformation signal. Converting the deformation phase φ̂k

x,topo into the slant-range deformation
distance d, d = φde f o · λ/4π together with the temporal baseline t, according to least-square principle,
the deformation velocity within each time interval can be resolved as:

v =
(
t′Pt

)−1Pd (8)

In this equation, v is the expected deformation velocity, P is the weight matrix, d is the slant range
deformation distance, and t is the temporal baseline.

In practical image processing, the processing chain is implemented using SARProZ (Daniele
Perissin, RASER Limited, Hong Kong) [33], in which the standard PS-InSAR can be divided into four
parts that are listed below:

• Preliminary processing: image import; master selection; co-registration; resampling; reflectivity
map generation; amplitude stability index generation;

• Preliminary geocoding: ground control point (GCP) selection; external DEM input; projection of
external DEM and synthetic amplitude in SAR coordinates; Mask for PSCs;

• APS estimation: interferometric formation using star graph; select a subset of PSCs according
to a certain threshold; triangulation of sparse PSC network and generation of differential phase;
deformation and topographic estimation based on given search space; selection of reference point;
inversion of initial APS;

• Sparse estimation: interferometric formation using star graph; selection of all PSCs based on a
certain threshold; Input of initial APS, differential phase and reference points; deformation and
topographic estimations based on the given search space for the PSCs.
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However, applying the standard PS-InSAR approach to a PM data stack does not provide the best
possible solution. As mentioned in the first section, there are two kinds of temporal baselines in PM
data stacks: normal temporal baselines between repeat-pass intervals of the same satellite, which is
11 days for our case, and the extremely short 10 s temporal baselines between the acquisition times
of TSX and TDX satellites at the same repeat-pass interval. These short temporal baselines are also a
feature of this PM data. The interferometric phase generated with 10 s pairs are less likely to contain
deformation components and also are less affected by atmospheric delay, consequently making these
interferometric phases contain mainly the topographic phase component. As the deformation and
residual topographic phase are estimated together in standard PS-InSAR, an external estimated height
with the 10 s pairs could provide more accurate residual topography values for deformation estimation,
thus allowing for a better performance of urban target monitoring.

2.2. A PS-InSAR Solution for Mono-Static Pursuit Datasets

To explore the full potential of these interferometric phases generated with 10 s pairs, and to refine the
performance of deformation estimation, we propose a new processing chain that separates topographic
error estimation from velocity estimation. The purpose is to use the 10 s pairs for topographic error
estimation so that influences of un-modeled deformation and APS can be largely avoided. We assume
that the retrieved topographic error would be better estimated with this modification; when measuring
deformation and calculating APS, we use these precise topographic error estimations; in this way, the
precision of the overall processing will be increased. This new processing chain is especially advantageous
for areas with high-rise buildings, where large spatially uncorrelated topography errors occur.

Our proposed processing chain is similar with the standard PS-InSAR processing chain mentioned
in Section 2.1. The preliminary processing steps and geocoding steps are the same. We read the SAR
image data stack, select a common master image, and co-register all slave images to this master and
resample. The reflectivity map and amplitude stability index are generated for each pixel based on
this co-registered data stack. External Digital Elevation Models (DEM) are used, in order to simulate
the spatial correlated topographic component. After this conventional preprocessing, APS and sparse
estimations are implemented by using a modification of the original PS-InSAR processing chain.

In the proposed processing chain, both APS and sparse estimation are processed in two rounds;
the first round aims for the residual topographic estimation, and the second round for the deformation.
In round one, the interferometric formation of the PM data are connected only between the 10 s pairs,
as shown in the real example used in our experiment listed below.

According to Figure 1, the interferometric phases are generated between SAR acquisitions derived
from TSX and TDX satellites that fly within a temporal baseline of 10 s. Topographic errors, instead
of deformation velocities, are estimated in this formation, since the generated interferometric phases
are free from atmospheric delay. Furthermore, as we are working in urban areas, the temporal
decorrelation for man-made targets is negligible, making this an ideal configuration for height
estimation. Nevertheless, given that interferometric phases are less affected by atmospheric delay or
by long-term deformation, regular spatial correlated error such as orbital error may still have some
impact on the differential phase generated from these interferometric phases.

Once estimation for the residual topographic error is completed, we reprocess the stack in round
two, connecting the interferograms in time. In our experiments, we used a standard single master
approach, and as shown in Figure 2, all of the slave images are connected to a common master image
in a star graph. However, other approaches, e.g., SBAS-like, are also possible.
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Figure 1. Interferometric formation of the proposed method for height estimation from TerraSAR-X
(TSX) and TanDEM-X (TDX) image pairs.

Figure 2. Interferometric formation of the proposed method for deformation estimation.

Deformation estimation is conducted in this round, considering the residual topographic phase
derived previously in the first round; after removing this component, the deformation phase is
unwrapped and the mean velocity of each PS point is resolved according to Equation (9). In summary,
the processing chain of the proposed method is listed below:

• Preliminary processing: image import; master selection; co-registration; resampling; reflectivity
map generation; amplitude stability index generation;

• Preliminary geocoding: GCP selection; external DEM input; projection of external DEM and
synthetic amplitude in SAR coordinates; Mask for PSCs;

• First APS estimation: interferometric formation using only 10 s PM pairs; selection of a subset of
PSCs according to a certain threshold; triangulation of sparse PSC network and generation of the
differential phase; topographic estimation only based on a given search space; selection of the
reference point; inversion of the initial APS;
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• First sparse estimation: interferometric formation using only 10 s PM pairs; selection of all
PSCs based on a certain threshold; input of initial APS, differential phase, and reference point;
topographic estimation only based on the given search space for PSCs;

• Second APS estimation: interferometric formation using a star graph; selection of a subset of
PSCs according to a certain threshold; triangulation of sparse PSC networks and generation of
a differential phase; deformation estimation based on residual phase components derived in
the first round within a given search space; selection of the reference point; inversion of the
initial APS;

• Second Sparse estimation: interferometric formation using star graph; selection of all PSCs based
on a certain threshold; Input of initial APS, differential phase and reference point; deformation
estimation based on the residual phase component derived in first round within a given search
space for PSCs;

The specific flow charts of both the standard and our proposed processing chains are briefly
shown in Figure 3.

Figure 3. Flow charts of the standard processing chain (left) and the proposed processing method
(right) for PS-InSAR.

3. Experiment Results

Both processing chains mentioned in Figure 3 are tested with a pursuit-monostatic dataset
acquired over our study area in Guangzhou. The results are presented separately in this section.
Specific information on our study area and dataset information are also demonstrated below.

3.1. Study Area and Dataset Information

Guangzhou is one of the most developed cities in China, where rapid economic development
brings many new buildings in recent years. Our study area is displayed in the yellow square shown in
Figure 4, which covers the central area of the Zhujiang New Town Central Business District (CBD).

This is an extremely dense urban area with dozens of skyscrapers. The landmark buildings in
this area include the CTF Finance Centre (539.2 m), known as Canton East Tower, and Guangzhou
International Finance Centre (440.75 m), known as West Tower. These two are the tallest two buildings
in this area. Other tall buildings such as Universal Plaza (318 m), Guangcheng International mansion
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(360 m), Pearl River Tower (309 m), Leatop Plaza (303 m), and Fuli Ying Kai Plaza (296.4 m), are among
the top 10 highest buildings in Guangzhou. They are marked with pentagons in Figure 4. Also, the
Guangzhou Opera House, the Guangdong Museum, and the Haixinsha Asian Games Theme Park are
located in the south of Zhujiang New Town. These are located along the two sides of the so-called
Automated People Mover System (APM), together with the skyscrapers, as we can see in the blue
north–south traffic line in that passes though the central area of Zhujiang New Town CBD. Therefore,
this area is marked as the central part of our test site, as shown in the orange region in Figure 4.

Figure 4. Study area of the staring spotlight monostatic pursuit stack over Guangzhou.

Apart from the central area, there are also tall buildings around the central area. The general
distribution of the buildings with different heights is very different in our study area, though
according to the approximate average heights of buildings, the study area could be divided into
several sub-regions, if one street block is counted as a single unit. Here, we sorted the sub-regional
urban surface into three categories. The first one is the central CBD marked in orange; with many
skyscrapers, the average height of this area is very high. The second one is the newly built residential
areas, where many tall buildings with height limits are distributed. These residual areas include urban
communities, shopping districts, and public service buildings, such as schools, hospitals, and tax
bureaus. Due to the height limit of 100 m according to the definition of “high-rise buildings” given
by the General code for civil building design (GB50352-2005), these residual buildings, marked in the
pink regions, are typically not higher than 100 m. The rest of the test site are old residual areas in
Guangzhou with building heights not exceeding 50 m; residual apartments with eight floors about
24 m are the most common.

Based on the three categories, we select two small regions in our test site, i.e., test region A and
B, marked with dashed boxes in Figure 4 for simple analysis in the experiment. These two regions
cover the first two typical types of urban areas, as mentioned above, and demonstrate the different
features in height distribution. Two subsets, the central area and central east area in test region A, are
further selected for their high density of tall buildings, named subregions 1 and 2, shown as purple
and orange areas, respectively, in Figure 4.
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The Pursuit Monostatic data stack used in the experiment contains 14 ascending staring spotlight
(ST) images, i.e., seven TSX/TDX mono-static pursuit pairs during 11 December 2014 to 26 February
2015. Other specific parameters about the dataset are listed in Table 1.

Table 1. Dataset information of pursuit monostatic data in Guangzhou.

Operation Mode Pursuit Mono-Static

Image Mode Staring Spotlight (ST)
Look Angle 43.4◦
Polarization VV

Direction Ascending

Resolution
0.24 m (azimuth)

0.80 m (ground range)

Azimuth Extent 3 km
Range Extent 5.5 km

External Information

Acquisition Time Temperature (◦C)

20141211 14.5
20141222 9.1
20150102 11.6
20150113 11.2
20150204 12.4
20150215 16.7
20150226 22.0

3.2. Experimental Results

Experimental results obtained in processing these pursuit monostatic data using both standard
and proposed processing chains are displayed in the following paragraphs.

3.2.1. Processing Results from the Standard Method

The Pursuit Monostatic dataset in the Guangzhou test site is first processed with the standard
processing method. Preprocessing and preliminary geocoding are accomplished according to the steps
listed in Section 2.2. Interferometric formations of SAR images are configured in a star graph, using a
single master as shown in Figure 2.

After generating interferograms and coherence, initial PS candidates are selected based on
the amplitude stability, index with a threshold of 0.2. Although 0.3 is usually sufficient for urban
monitoring, we set this threshold to be slightly lower, because the image resolution of the staring
spotlight data is high enough to ensure abundant reliable PS points in the results. In this result,
we select 740,105 PSC according to our threshold; the temporal coherence of these PSC points after
processing is shown in Figure 5.

In this result, the PSCs generally demonstrate good temporal coherence, as we can see in Figure 5A,
where most of PSC coherence values are distributed in the numerical interval [0.6, 1], especially PSCs
from the ground and from lower parts of building façades. Their temporal coherence is mostly
distributed in [0.8, 1], as the red points shown in Figure 5. Nevertheless, we can still find some relative
unstable PSCs, shown in yellow in Figure 5A. These yellow points are mainly distributed along the
façades of high-rise buildings, especially in the central area and its surrounding regions marked in
Figure 4, as we can see in the enlarged coherence map in test regions A and B, as shown in Figure 5B,C.
The triangle icons in Figure 5A,B represent skyscrapers with heights above or around 300 m. By
comparing the coherence maps of the test regions A and B, we can find some unstable PSCs that
have clear shapes of buildings edges, but there is a shift between the actual locations and the derived
locations from standard processing results. These unstable PSCs are referred to “shifted PSCs” in our
experience, and their shifts in location can be found around skyscrapers in Figure 5B. In Figure 5C,
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where most of the buildings are residential buildings that have a height limit of 100 m, much less
shifted PSCs are found.

After selecting the initial PSCs according to the amplitude stability index, the estimation of
deformation and topographic residuals are implemented, together within a total resolving of the
differential phases, based on the least-square principles, according to Equation (4). Deformation and
topographic residuals of PSCs are accomplished by setting pre-defined search spaces between −100 to
100 mm/year for linear deformation, and −300 m to 300 m for topographic residuals, since the vast
majority of PSCs are expected to fall into this interval. 343,965 PS points are extracted, with temporal
coherences of larger than 0.97 and their estimated topographic residuals, or residual height maps, are
shown in Figure 6.

 

Figure 5. Temporal coherence map of the selected persistent scatterer candidates in the standard
processing result: (A) The whole study area; (B) Subset of the map in test region A; (C) Subset of the
map in test region B.

The resulted PS point residual heights range from −288.8 m to 168.5 m, with a mean value of
27.3 m. As we can see from Figure 7, a majority of the PS points detected in this result are points with
low heights, since ground points, i.e., green points, are dominant in the map. High PS points can also
be found in high-rise building areas, as we can see in the test regions A and B; however, the detectable
height is limited, and only found in the lower part or the bottom of the buildings; this is clearer in the
3D demonstration of the PS-InSAR result in test region A, as shown in Figure 7.
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Figure 6. Residual height map for pursuit monostatic (PM) data in Guangzhou using the standard
PS-InSAR method.

 

Figure 7. 3D demonstration of the highly temporal coherent persistent scatterers in test region A using
standard PS-InSAR processing.

The deformation map is shown in Figure 8. A total of 343,963 PS points were selected with a
temporal coherence bigger than 0.85 and amplitude stability index smaller than 0.2. As we can see from
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Figure 8, most ground points are stable, while in the southeastern part of our test site, a subsidence
pool can be found.

Figure 8. Linear deformation map generated from standard processing results using PS points with a
temporal coherence bigger than 0.85.

Clear structured PS point clusters can be found and they show significant negative motion,
i.e., motion away from the sensor in the line-of-sight direction. The shape of these point clusters
indicate that they are part of high-rise buildings, but they show a shift between the location of these
point clusters and normal PS points of the same structure; as mentioned in previous paragraphs, these
clusters are referred as “shifted PS” and their presence is assumed to be caused by geocoding error,
with an inaccurate estimation of topographic residuals. A clearer view of this deformation result is
shown below, in which a 3D deformation map of a small area in test region A is displayed.

We can see more clearly that in Figure 9, thermal expansions are also visible on high-rise buildings
where velocity is accumulated along with height. An estimation with seasonal deformation could
be applied to remove the thermal deformation, as mentioned in Crosetto et al. [7]; however, the
mono-static pursuit data has only seven pairs, covering a time span of just three months, which is not
enough to model the temperature-related deformation correctly.

3.2.2. Processing Results from Our Proposed Method

After processing the pursuit monostatic data using the standard processing chain, we continue to
process these data using the proposed processing chain. Preprocessing and preliminary geocoding are
also accomplished according to the steps listed in Section 2.2. Topographic residuals and deformation
estimation steps are accomplished in separated processing rounds. Topographic residuals are accomplished
in the first round, with interferometric formation set in accordance with Figure 1.

In this test, PSCs are selected with the same amplitude stability index used in the standard
processing steps; the topographic component of PSCs is retrieved in a least square process, assuming
that only topographic residuals are left in the interferometric phase. Meanwhile, the temporal coherence
of the PSCs is also generated, as shown in Figure 10.
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Figure 9. 3D-view of the estimated linear deformation trends visualized with Google Earth for the
standard processing method.

Figure 10. Temporal coherence map of the selected PSC in the standard processing result: (A) The whole
study area (B) Subset of the map in test region A (C) Subset of the map in test region B.
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Figure 10 shows that an overwhelming majority of PS points demonstrate very high temporal
coherence distributed in the numerical interval [0.9, 1], even in areas with many high-rise buildings in
test regions A and B, as displayed in the enlarged coherence map in Figure 10B,C. Also, we do not find
shifted PSCs in this result. The point number and general stability of the PSCs are largely improved in
our proposed processing results.

Residual height map generated in the proposed processing chain is displayed in Figure 11 and visualized
in 3D in Figure 12, with a pre-defined search span for height estimation set between −300 m to 300 m.

Figure 11. Residual height map for pursuit mono-static data in Guangzhou, using a proposed processing chain.

 

Figure 12. 3D-visualization of PS-InSAR results, using the proposed processing method.
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A total of 712,760 PS points were extracted with the same coherence threshold of 0.97 being used
for displaying the results from standard processing. As we can see in Figure 11, the PS heights in
the high-rise building areas are fully detected. The detectable height limit is largely improved in this
result, ranging from −294.9 m to 300 m, with an average height of 38.1 m. For skyscrapers, the height
estimation is also largely improved, as the detectable PS points on the buildings are increased from the
ground or the bottom to the full façades, as we can see in the 3D image of test region A below.

These PS heights are restored and used in the following deformation estimation. The interferometric
formation is set according to Figure 2, where the identical star graph is adopted. Deformation estimation
is thus accomplished based on pre-derived topographic residuals. Consequently, the linear deformation
results are shown in Figure 13, where 465,564 PS points with a temporal coherence larger than 0.85 are
selected, with an amplitude stability index smaller than 0.2.

 
Figure 13. Linear deformation map generated from the proposed processing results, using PS points
with a temporal coherence of larger than 0.85.

Deformation patterns in Figure 13 shows similar results compared to Figure 8, with a subsidence
pool detected in southeastern area of our test site. This subsidence signal can be more clearly observed in
Figure 13, as we can see that the shifted PS clusters in Figure 9 disappear in our proposed processing results.
As we assume, this is due to the large reduction of topographic errors during the height estimation using
only PM pairs. This improvement of topographic residual estimations further improves the deformation
estimation accuracy. Although we still cannot estimate the temperature-related motion with only
seven TSX and TDX pairs, with increased detectable height limits in our proposed processing method,
the thermal deformation is also improved. For the same single building, the detected deformation
velocity grows larger than that in the standard processing results, especially for skyscrapers in the
central area, as we see in 3D demonstration of PS deformation in Figure 14.
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Figure 14. 3D view of the estimated linear deformation trends visualized with Google Earth for the
proposed method.

4. Discussion

To evaluate the performance of these two processing chains, the results of the two processing
chains are compared and analyzed in this section, on the basis of quantitative statistics. PS point
properties are discussed in three aspects, including temporal coherence, and topographic and
deformation estimation.

4.1. Temporal Coherence

The temporal coherence of PSCs selected using the same threshold in both standard and proposed
processing chains are analyzed according to the histogram shown in Figure 15. A histogram of PS
points for temporal coherence in both standard and proposed processing results.

Figure 15. Histogram of PS points for temporal coherence in both standard and proposed processing results.

The histogram was generated, taking 0.02 as bin distance. The blue and red bars express the
PS numbers in each bin; Blue and red vertical lines express the mean height value of the total PS
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heights, for standard and proposed processing results respectively. As we can infer from Figure 15, the
persistent scatterers from the proposed method demonstrate a steeper distribution in the histogram,
with quicker increase in PS numbers in high coherence intervals, compared to PSs derived from the
standard processing result. The mean temporal coherence of the proposed processing result, 0.99, is
also bigger than the mean temporal coherence, 0.94, of the standard processing result, which indicates
a generally higher stability of PSs in the proposed processing results, as well as less disturbance in the
phase observations. Topography estimation using these PSs is more likely to obtain accurate results.

4.2. Topography Estimation

Topography estimation results are also quantitatively analyzed, mainly focusing on PS point
numbers and density.

4.2.1. PS Point Numbers

Histogram of PS point heights for both standard and proposed processing results are presented
with a distance bin of 5 m, as shown in Figure 16.

Figure 16. Histogram of PS point heights for both the standard and proposed processing results.

The blue and red bars represent PS point numbers in each bin of PS height for the standard
and proposed processing results, respectively. The blue and red vertical lines represent the mean
height value of the total PS points in stand and proposed processing results, respectively. The green
dotted lines express the accumulated PS numbers for the standard processing results as a percentage;
meanwhile, the green triangle lines express the accumulated PS numbers for the proposed processing
results as a percentage. As we can infer from Figure 16, for PS points selected with the same temporal
coherence threshold, more PS points are detected in each height bin in the proposed processing results,
than in the standard processing results, with an overall rate of increase of 107.2%, and 663% in the
100 m bin. Also, the detected PS height span is increased from the standard processing results to the
proposed processing results, from 168.5 m to 300 m, increased by 78%. The majority of PS heights are
distributed in interval from 0 to 50 m.

The percentage curves of accumulated PS numbers, marked in green circle and triangle icons in
Figure 16, also reveals that more than 88% of the PS points are distributed in height intervals between
0 to 50 m in standard processing results, as marked with A1, which are assumed to be ground or low
building points. About 99.4% of the total PS points have height values below 100 m, marked in A2;
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and only around 0.6% percent of the PS points are detected over targets with heights bigger than 100 m.
On the other hand, for proposed processing results, 76% percent of the detected heights are below
50 m, as marked with B1, and 92.4% of the PS points are below 100 m, marked with B2; the other 7.6%
of the detected PS heights are between 100 m and 300 m. There is also a local peak of PS numbers with
a height value around 100 m; this is in accordance with the emergence of high-rise buildings, which are
built under the height limit of 100 m. These increased number of PS points with heights around 100 m
are assumed to be building roofs. This comparison shows the limited detection ability of standard
processing method on high-rise buildings, comparing to proposed processing results, especially for
high-rise buildings.

4.2.2. Persistent Scatterer Density

Apart from the general increase of the PS points, the PS point density is further estimated based
on the statistics of the variance and mean value of a PS point. This variance is defined as the square
deviation of the estimated height values within a patch centered on each PS point with extension of
10 m; the mean value of a PS point is defined as the mean height value of all PS points within the patch.
The statistical results of variance and mean value, as well as the differences between these two, are
calculated and normalized. The sub region 1 and 2 are selected as our test regions as we can see in
Figure 4. The Statistical results of these values are listed below.

Figures 17 and 18 demonstrate variance and mean values, as well as the difference histogram of
these two indexes. The variance of the PS points in the proposed processing results increases in our
test region, compared to the standard processing results, as most of the variance difference is positive
in the histograms; the detectable locations are also expanding in the proposed processing method.
As we know, façade PS points are vertically distributed on buildings, so that if the variance gets bigger,
it could be either caused by an increased point density within a certain height limit, or an increased
detected height limit. In this context, the mean value of the test region is also presented. The mean
value of the test region is slightly increased; as we infer from the mean value difference histogram from
both Figures 17 and 18, the difference value is distributed around 0, but it has a larger positive span.
As we can see in the distribution map, PS points with an increased mean value are mostly derived
from building façades. Hence, we can infer from these statistics of the variance and mean value that
the point density on the building façades is increasing. Besides, in the statistical result of the central
area of Zhujiang CBD, increased variances are detected. For the skyscrapers in the central area, the
variance and mean value map increases, which is a hint towards the increase of the point density and
the detected heights, which is also in accordance with the 3D visualization of these areas in Figures 7
and 12.

4.3. Deformation Estimation

Comparisons of surface motion estimated from the standard method and our proposed methods
are also addressed, as we can see in Figures 8 and 13. Similarities can be found in these two results:
first, for PS near the ground, both results show good performance, as we can see in the northeastern
part of our results. The traffic lines can be clearly seen in the northeastern corner of our test site. Second,
the same subsidence patterns can be detected in the southeastern part of our study area. A linear ramp
could be detected in the deformation maps, which is assumed to be caused by orbital error, such orbital
effects can occur due to the limited number of the images, the special nature of the data acquired, and
the baseline distribution during the science phase of the project.

For deformation results, the main improvement from our proposed processing method lies in the
removal of the shifts and refinements of thermal deformation in the high-rise building area. Since the
thermal deformation in the high-rise buildings accumulated from the bottom to the top of buildings, a
linear relationship exists between the thermal deformation and the PS height. This linear relation is
also due to the short overall time-span of the data acquisition. For data stacks covering a longer time
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period, we would rather expect a sinusoidal behavior. However, in our example, a linear regression
analysis is accomplished, in order to evaluate this refinement. The results are demonstrated below.

Figure 17. Statistics result of the two methods in sub-region 1: (A) variance of the standard processing
method (B) mean height of the standard processing method (C) variance of the proposed processing
method (D) mean height of the proposed processing method (E) Histogram of the variance difference
to the standard processing method (F) Histogram of the mean height difference to the standard
processing method.

As we can see in Figure 19, there is a clear linear relationship in the regression result in sub-region
1 and 2, with deformation and height in the central area. It can be inferred that the deformation
changes faster along with height in the proposed processing, as we can see in the specific slope in
Figure 19A,C, compared to Figure 19B,D. The reason for this increase in the linear slope is the removal
of shifts, as well as an increased number of PS points detected on high façades, which increases
the detectable span of the temperature-related deformation, thus enlarging the proportion of larger
deformations in the results. The absolute value of this deformation could be corrected if we had more
image pairs covering a longer period. Furthermore, we can see that we can estimate points at much
higher positions correctly.
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Figure 18. Statistical result of the two methods in sub-region 2: (A) variance of the standard processing
method (B) mean height of the standard processing method (C) variance of the proposed processing
method (D) mean height of the proposed processing method (E) Histogram of the variance difference
to the standard processing method (F) Histogram of the mean height difference to the standard
processing method.

However, when processing the deformation, influences from the atmosphere are unavoidable.
For ground subsidence monitoring, the main deformation trends can be found with the standard
PS-InSAR processing, as well as our proposed method. We can see differences and reduced noise in
our approach. For monitoring high-rise buildings, and especially for skyscrapers, shifts during
estimation are refined, and the linear relationship between the deformation and PS height are
better restored. However, the number of images, and especially of image pairs, is very limited
in both stacks, which leads to imperfect results, as the number of images is too low to successfully
estimate temperature-related deformation. Nevertheless, we demonstrate improvements when using
our proposed approach, and its practical significance for mono-static pursuit and bi-static data
stack processing.
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Figure 19. Linear regression results between thermal deformation and PS height: (A) the proposed
processing result in sub-region 1, (B) the standard processing result in sub-region 1, (C) the proposed
processing result in sub-region 2, (D) the standard processing result in sub-region 2.

5. Conclusions

Urban monitoring is an important issue in China. With upcoming SAR missions, e.g., TanDEM-L
and Twin-L, the application of innovative SAR products in urban monitoring has to be explored.
Pursuit monostatic data is tested in this paper as an example, but the results can also be used for
bi-static stacks. A direct application of this data to standard PS-InSAR shows only a restricted ability for
urban monitoring and does not make full use of the extremely short temporal baselines, which are the
characteristic of the pursuit monostatic pairs. In this context, a new processing method is proposed on
basis of the standard PS-InSAR method in this paper. Both proposed and standard PS-InSAR processing
methods are tested with pursuit monostatic staring spotlight data in Guangzhou. The detectable PS
numbers and height span using the proposed processing method are largely increased by 107.2% and
78%, respectively. For surface motion estimations near the ground surface, both methods achieve
similar performances. For deformation estimation in high-rise buildings, shifts that occurred in the
standard processing results are fixed with the proposed processing. Based on the experimental results
mentioned above, we conclude that the proposed processing method demonstrates better ability in
urban monitoring, and it is a more suitable choice for monostatic pursuit and bi-static data.
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Abstract: This paper describes a Persistent Scatterer Interferometry (PSI) procedure to monitor the
land deformation in an urban area induced by aquifer dewatering and the consequent drawdown of
the water table. The procedure, based on Sentinel-1 data, is illustrated considering the construction
works of Glories Square, Barcelona (Spain). The study covers a period from March 2015 to November
2017, which includes a dewatering event in spring 2017. This paper describes the proposed procedure,
whose most original part includes the estimation of the atmospheric phase component using stable
areas located in the vicinity of the monitoring area. The performances of the procedure are analysed,
characterising the original atmospheric phase component and the residual one that remains after
modelling the atmospheric contribution. This procedure can work with any type of deformation
phenomena, provided that its spatial extension is sufficiently small. The quality of the obtained
time series is illustrated discussing different deformation results, including a validation result using
piezometric data and a thermal expansion case.

Keywords: SAR; Sentinel-1; differential SAR interferometry; atmospheric component; modelling;
deformation time series; validation

1. Introduction

Deformation monitoring of urban areas is an important tool for city management and asset
maintenance. An important application is the monitoring of the deformation caused by construction
works that involve aquifer dewatering, which can affect buildings and infrastructures. In this
paper we describe one of this type of application: the monitoring of the deformation associated
with the construction works related to the transformation process of the Glories Square, located
in the centre of Barcelona (Spain). These works involve the construction of underground tunnels,
which requires aquifer dewatering. They are monitored with a set of in situ measurements, e.g.,
inclinometers, topographic surveys, levelling, which are mainly located in the area of the Glories Square.
Such measurements are complemented with Persistent Scatterer Interferometry (PSI) observations,
which aim at achieving a global view of the deformation phenomena occurring in the square and,
especially, its surroundings, where in situ measurements are not available.
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The PSI monitoring is based on C-band data acquired by the Sentinel-1A sensor. The Sentinel-1
mission offers significant improvements, with respect to previous European Space Agency missions,
in terms of revisiting time, spatial coverage and quality of the Synthetic Aperture Radar (SAR) imagery.
The Interferometric Wide Swath (IWS) acquisition mode of Sentinel-1 images provides a 250-km swath
with a repeat cycle of 6 days, considering both 1A and 1B. The Sentinel-1 mission has been especially
designed for massive wide-area monitoring. An important advantage of the Sentinel-1 mission is that
the data are freely available for both scientific and commercial applications. Several studies based on
Sentinel-1 data have been devoted to urban deformation monitoring. Relevant examples include the
monitoring of Mexico City [1], Madrid [2], Wuhan [3], Shanghai [4], Ravenna [5], the San Francisco
Bay Area [6], Beijing [7], the Lanzhou New District [8], Florence [9], and Istanbul [10]. The monitoring
of a slow-moving urban landslide area is described in [11], while the monitoring of sink-holes in urban
areas is described in [12]. In [13] a high-speed railway bridge is studied, while in [14] the monitoring
of a network of roads and railways is focused on.

This paper is organised as follows. Section 2 examines some important characteristics of PSI
monitoring in urban areas. Section 3 describes the PSI approach proposed by the authors to monitor
the area of interest. Section 4 discusses the results achieved over the area of interest. Section 5 includes
the conclusions of this work.

2. Urban PSI Monitoring

Several PSI deformation monitoring approaches have been proposed in the last two decades,
see [15] for a review. The PSI approach usually used by the authors is described in [16]. However,
in some cases, it is possible to tailor the PSI data processing and analysis to the specific characteristics of
the application at hand. This was the case in the analysis of the Glories Square area, which is described
in this work. In the following, we briefly describe the key characteristics of the proposed processing.

The monitoring of the Glories Square and its neighbouring areas primarily concerns buildings and
infrastructures. In order to obtain measurement points (hereafter called Persistent Scatterers, PSs) over
such elements, it is important to properly model the Residual Topographic Error (RTE) component
of the PSI observations for two reasons: for PSI modelling purposes and to properly geocode the PSI
results. A second aspect regards the thermal expansion displacements. Some approaches have been
proposed to explicitly model and estimate such displacements, e.g., see [17]. It is worth mentioning
that these displacements can be neglected if one could filter out the PSs characterised by high RTE
values (e.g., those above 10 m). However, in this work, this approach was discarded because the
PSs located on the top of the buildings are of major interest, and we decided to keep the thermal
displacements together with the ground deformation. This has the advantage of performing a standard
PSI analysis, i.e., avoiding the computational costs of explicitly modelling the thermal expansion
component. The analysis of the thermal expansion displacements and their separation from the
deformation was carried out during data interpretation.

The third and most important aspect concerns the atmospheric phase component. Most of the PSI
approaches use sets of spatial and temporal filters to estimate the atmospheric phase component [18–20].
The critical issue is to separate two low-pass spatial contributions: the deformation and the atmospheric
components. The assumption usually employed is that the former one is temporally correlated, while
the latter component is not correlated in time. In the targeted application this approach has two
limitations. The first one is the difficulty to properly separate subtle deformation from the atmospheric
contribution, with the risk to underestimate the former one. The second limitation is that no prior
information is available about the dewatering plans and hence on the expected ground deformation.
For instance, water pumping can be intermittent, implying a series of ups and downs of the ground,
which cannot be smooth in time. For these reasons, we decided to adopt an alternative approach, which
does not make use of spatio-temporal filters and, more importantly, does not make any assumption
associated with such filters. We use a different philosophy based on stable areas, which allows us to
estimate the atmospheric component without making any assumption concerning the deformation
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at hand. This has two advantages: we can correctly estimate sudden deformation, without the
disadvantage of filtering out the high-frequency temporal components of the deformation; in addition,
we can avoid the subjective decisions often associated with filtering. We use a similar procedure to
process interferometric ground-based SAR data [21].

This approach requires the availability of known stable areas in the vicinity of the area of interest.
This needs external information, which however can be validated during the data analysis. The stable
areas are used to estimate the atmospheric component, which is then predicted and removed from
the PSI observations over the area of interest. Several approaches can be used for this purpose, e.g.,
kriging, least squares collocation (e.g., see [22]), polynomials, etc.

3. The Proposed PSI Approach

In this section we detail, step by step, the proposed PSI approach.

1. Acquisition of a set of N interferometric Sentinel-1 SAR images that cover the area of interest.
In this work, a minimum of 25 IWS images were used.

2. Precise co-registration of the entire burst stack that covers the area of interest. This is based on
the information provided by the precise orbits associated with the images.

3. Generation of two redundant networks of interferograms: full-resolution (pixel footprint: 4 by
14 m) and 10 in range by 2 in azimuth (10 × 2) multi-look (pixel footprint: 40 by 28 m).

4. Candidate PS selection using the Amplitude Dispersion index [18].
5. The 2 + 1D phase unwrapping of the redundant 10 × 2 multi-look interferograms, see for

details [16].
6. Identification of stable areas in the surroundings of the area of interest.
7. Estimation of the atmospheric phase component over the stable areas. In the current

implementation of the monitoring, this step is performed assuming a linear phase model.
The residuals of such models are used to validate the hypothesis regarding the stable areas.

8. Prediction and removal of the estimated atmospheric component from the original
single-look interferograms.

9. Using the atmospheric-free single-look interferograms, estimation of linear deformation velocity
and RTE using the periodogram, see [23].

10. Removal of the RTE from the atmospheric-free single-look interferograms.
11. The 2 + 1D phase unwrapping of single-look (RTE- and atmospheric-free) interferograms.
12. Generation of the deformation time series and estimation of the deformation velocity.
13. Geocoding of the results: the deformation velocity and the deformation time series.

4. Data Description

The study area concerns the surroundings of the Glories Square in Barcelona, see Figure 1.
This area is located in the Besòs river delta, that is in a sedimentary environment with (sub-)horizontal
layers. Below a 6-m thick anthropogenic deposits layer, two stratigraphic levels can be identified:
quaternary units and tertiary (Pliocene) units. The quaternary materials are mainly clays with sand
and gravel interbeds. The tertiary units are composed of medium to coarse sands from NE to SE and
from SW to NW around the Glories Square, and mainly of grey marls from NW to NE and from SE to
SW. The processed area is bordered by the red line shown in Figure 1, while the main area of interest
has a perimeter indicated by a yellow line. In order to define this area, based on aquifer hydraulic
properties and piezometers located in the area of interest, it was assumed that water pumping can
have a maximum influence area (i.e., the area where changes in the water table can have effect on
the surface) with a radius of 1 km, centred in the middle of the Glories Square. The remaining areas,
i.e., outside the influence area, were considered stable. In this specific case there were previous PSI
processing results that indicate the stability of this area. However, as it is discussed later, the hypothesis
of the stable area can be validated during data processing and analysis. The analysed dataset includes
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78 descending IWS SLC Sentinel-1A images, which cover the period from March 2015 to November
2017, see Table 1. The dataset includes 1813 interferograms, which were generated using all possible
image combinations, with a limit of one year for the temporal baselines.

 

Figure 1. Study area (included in the red perimeter) and main area of interest (included in the yellow
circle), which is the maximum area potentially affected by the water pumping activities. The area
outside the yellow circle is considered stable. The figure inset shows the city of Barcelona.

Table 1. Dates of the 78 descending IWS images used in this work. Relative orbit: 110.

# Date # Date # Date # Date

1 20150306 21 20151219 41 20160827 61 20170424
2 20150318 22 20151231 42 20160908 62 20170506
3 20150330 23 20160112 43 20160920 63 20170518
4 20150411 24 20160124 44 20161002 64 20170530
5 20150505 25 20160205 45 20161014 65 20170611
6 20150517 26 20160217 46 20161026 66 20170623
7 20150529 27 20160229 47 20161107 67 20170705
8 20150610 28 20160312 48 20161119 68 20170717
9 20150704 29 20160324 49 20161201 69 20170729
10 20150716 30 20160405 50 20161213 70 20170810
11 20150728 31 20160417 51 20161225 71 20170822
12 20150809 32 20160429 52 20170106 72 20170903
13 20150821 33 20160511 53 20170118 73 20170915
14 20150914 34 20160523 54 20170130 74 20170927
15 20150926 35 20160604 55 20170211 75 20171009
16 20151008 36 20160628 56 20170223 76 20171021
17 20151101 37 20160710 57 20170307 77 20171102
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Table 1. Cont.

# Date # Date # Date # Date

18 20151113 38 20160722 58 20170319 78 20171114
19 20151125 39 20160803 59 20170331
20 20151207 40 20160815 60 20170412

5. PSI Results over the Test Area

First of all, we analysed the characteristics of the output of step 5, described in the previous
section. This output includes a set of 78 of 10 x 2 multi-look unwrapped phase images, where the
first image values are set to zero because they represent the temporal reference. The objective of the
analysis focused on the stable areas was the inspection of the characteristics of the atmospheric phase
component. We assumed that, in the stable areas, this component is the only one spatially correlated
(i.e., the RTE phase component, the thermal phase component and the phase noise are assumed to be
spatially uncorrelated).

The data were analysed using the empirical autocorrelation function, EAF, C(dK), whose values
are second order statistics [24]:

C(dK) =
1

nT
·

nT

∑
i=1

{
[M(Pi)− mM] · 1

nJ
·

nJ

∑
j=1

[
M
(

Pj
)− mM

]}
(1)

where dK = K · Δ is the distance from the origin; K is an integer number; Δ is the function step;
nT = l · m is the total image pixel number, given by the number of line times the number of columns;
M(Pi) is the image value in the pixel Pi; mM is the mean image value; and nJ is the total number of
pixels Pj that, for a given Pi, satisfy the condition: (K − 1) · Δ < ‖Pi − Pj‖ < K · Δ. Two examples of
EAF are shown in Figure 2. From this function, the following information can be derived:

(1) σtot, the total standard deviation of the phase image;
(2) σcorr, the standard deviation of the spatially correlated part of the phase image;
(3) σnoise, the standard deviation of the spatially uncorrelated part of the phase image;
(4) Lcorr, the correlation length, i.e., the distance from the origin where the EAF has a correlation

which is half of that in the origin.

 

Figure 2. Example of correlation drop. Normalised EAFs (i.e., EAF divided by σ2
corr) of the phase

image #14: before the atmospheric correction (red) and residual phase image after the correction
(green).
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The main results of the analysis are summarised below:

• A number of 24 images out of 77 (i.e., 31.1% of the total) have σcorr <0.4 rad. This indicates a rather
weak atmospheric component. In terms of displacement this corresponds to a standard deviation
below 1.76 mm. A number of 14 images out of 24 were acquired during winter or late autumn:
this confirms that this is the period of the year when less atmospheric turbulence occurs. With the
exception of one image, with Lcorr = 680 m, this group is characterised by zero or negligible Lcorr.

• A number of 26 images out of 77 (i.e., the 33.8% of the total) have σcorr between 0.4 and 0.5 rad.
With the exception of one image, with Lcorr = 833 m, this group is characterised by moderated
Lcorr values, in the range between 20 and 50 m.

• Finally, 27 out of 77 images (i.e., the 35% of the total) have σcorr above 0.5 rad, see their main
characteristics in Table 2. A number of 18 images out of 27 were acquired in summer or late
spring: this is the period when there is maximum atmospheric turbulence. With the exception of
7 images, which have negligible Lcorr values, all the remaining images have correlation lengths
above 50 m, with a maximum value of 1785 m.

Table 2. Main characteristics of the 27 phase images that are affected by the strongest atmospheric
phase component. Values before atmospheric correction (orig) and after the correction (res).

Image # s_tot_orig s_corr_orig s_tot_res s_corr_res L_corr_orig L_corr_res

34 0.63 0.50 0.60 0.47 204 192
68 0.71 0.51 0.69 0.49 24 0
45 0.67 0.50 0.62 0.44 27 18
62 0.64 0.51 0.64 0.51 255 183
40 0.67 0.54 0.48 0.32 655 0
39 0.69 0.54 0.63 0.47 26 18
4 0.78 0.54 0.67 0.44 0 0
72 0.67 0.54 0.49 0.33 417 0
48 0.69 0.55 0.62 0.48 417 18
16 0.72 0.56 0.54 0.35 281 0
69 0.69 0.56 0.52 0.36 468 0
37 0.74 0.59 0.55 0.36 24 0
3 0.71 0.60 0.64 0.52 204 18
24 0.71 0.61 0.40 0.22 1785 0
42 0.80 0.63 0.62 0.41 28 0
76 0.76 0.63 0.59 0.43 553 37
35 0.77 0.67 0.67 0.55 765 329
23 0.76 0.69 0.47 0.35 1029 18
36 0.83 0.72 0.55 0.38 1029 0
57 0.99 0.75 0.81 0.53 26 0
41 0.94 0.80 0.59 0.40 1122 0
67 0.97 0.82 0.64 0.45 842 0
14 1.01 0.92 0.53 0.37 1496 0
64 1.16 0.95 1.07 0.86 51 18
70 1.17 1.08 0.60 0.46 1658 18
12 1.33 1.21 1.10 0.97 468 384
44 1.40 1.30 0.98 0.85 638 185

As mentioned in the previous section, the atmospheric component was estimated over the stable
areas using a linear phase model, which represents an easy-to-implement and robust modelling
approach over small areas. The original 78 phase images, the atmospheric models (the linear planes)
and the residual phase images after removing the models are shown in Figure 3. The hypothesis
of the stable area can be validated by analysing the latter ones. In fact, a deformation signal would
typically appear as a persistent pattern in consecutive images. This is not the case in the analysed
dataset. The main results of the EAF analysis of the residual phase images displayed in Table 2 are:
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• Compared to the original data, the average reduction of σcorr is 30.5%. The most relevant result is
a drop of 90% of the average Lcorr values. This is an important indicator to judge the goodness of
the proposed method. An example of correlation drop is shown in Figure 2: in this case the Lcorr

values drop from 1496 m to zero.
• It is worth noting from Table 2 that there are five images where the Lcorr values remain quite

high (i.e., above 180 m) after removing the atmospheric component (images 12, 34, 35, 44, and
62). In two cases (images 12 and 44), the corresponding σcorr values are also high (0.85 and
0.97 rad). These two images represent a case where there is an important atmospheric component,
which cannot be modelled by a linear atmospheric model. In this case there are two options:
(i) discarding the images, especially if the dataset is big enough; (2) if the images cannot be
eliminated, the deformation time series have to be interpreted with attention: the time series
values in correspondence of the two images may contain spikes.

• The remaining images have σcorr values ranging between 0.22 and 0.55 rad. These values indicate
the dispersion of the residual atmospheric signal, which affect the corresponding deformation
time series. In terms of displacements, the standard deviations of such a signal, range from
0.97 mm (best case) to 2.42 mm (worst case): these values seem to be acceptable for the purpose of
the application at hand, as discussed later.

 
 

Figure 3. Atmospheric component estimation using stable areas. Original phases that cover an area of
approximately 16 km2 (left). The black circles show the 1-km radius area of interest. Estimated linear
atmospheric components (middle). Residual phase after removing the linear atmospheric component
(right). The black colour means no-used data. The first image is set to zero (green colour) because it is
used as reference image.
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The last part of the analysis concerned the 1-km radius area of interest (influence area, Figure 1).
The objective was to assess the effects of the residual atmospheric component in the deformation time
series (computed in the step 12 of the proposed PSI procedure). The analysis concerned the stable PSs
of the main area of interest: they were selected by only considering those points that have an absolute
deformation velocity below 1 mm/yr. The time series were analysed using the EAF: all the 78 images
were included in the analysis (no images were discarded). These are the main results:

• The average σtot of all the time series is 1.90 mm. Only 127 out of 3862 time series have σtot above
3 mm: this represents 3.3% of the PSs. It is worth observing that the σtot includes, among others,
the residual (non-modelled) atmospheric effects and the noise of the observations, which depends
on the PS quality.

• As expected, the Lcorr is close to zero for the great majority of time series. This is key to detect
subtle (temporally correlated) deformation using the time series.

6. Deformation Results and Discussion

We discuss in the following some examples of time series, to illustrate the goodness of the
proposed procedure. Figure 4 shows the line-of-sight (LOS) deformation time series of a point located
close to the Glories Square. In this figure, during the period from March to June 2017, there is a terrain
subsidence (up to about −10 mm), followed by an uplift to roughly recover to the original height. It is
worth underlining that this result was achieved using exclusively SAR data, without any additional
information. In the interpretation of the data, it was identified that this behaviour was due to aquifer
dewatering, and the subsequent recovery of the water level due to the stop of the pumping activity.
This is evident from the piezometer data plotted in Figure 4, which were acquired in a location close to
the point, and which match very well with the estimated deformation time series. This represents an
example of validation of the PSI results.

Figure 4. Example of time series validation: the deformation time series (green) is strongly correlated
with the piezometric data of the same area. The black deformation time series represents a solution
based on spatio-temporal filters, see [16]: a 96-day moving average was used. The location of the point
and the piezometer is shown in Figure 5. The deformation values refer to the radar line-of-sight (LOS).
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Figure 5. Examples of LOS accumulated deformation maps corresponding to the maximum of the
displacement (12 April 2017, above) and to the recovery of the displacements (3 September 2017, below).
In the above image, the three rectangles (grey-zone 1, orange-zone 2 and pink-zone 3) show the location
of the three zones shown in Figure 6. The green circle A shows the location of the point considered in
Figure 4. The white circle shows the location of the piezometer.

Figure 6. Examples of LOS deformation time series of three zones located in the deformation area
shown in Figure 5. The time series display the median values of the points contained in each zone.
The blue time series concerns the piezometric data.
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To illustrate the performance of the proposed procedure, in Figure 4 the above time series is
compared with a solution based on spatio-temporal filters, see the procedure described in [16]. In this
case we used a 96-day moving average. In this example, it is evident that the first deformation time
series matches the sudden drop of the piezometric data, while the second solution is basically missing
such a drop, providing a biased temporal low-pass solution. One may observe that in the time series
there are several peaks that are not linked to a particular period of dewatering. They have an amplitude
of ± 2–3 mm with respect to the global trend of the time series. They are not due to thermal expansion:
they are examples of the residual atmospheric effects, discussed earlier in this paper.

Figure 5 shows the LOS accumulated deformation maps corresponding to the maximum of the
displacement (12 April 2017) and to the recovery of the displacements (3 September 2017). From the
first map it is possible to assess the actual dimension of the area affected by ground deformation
induced by dewatering. Figure 6 shows some additional examples of LOS deformation time series of
three zones located in the deformation area shown in Figure 5. The time series display the median
values of the points contained in each zone. One may appreciate that there is a good agreement
between the measured time series and the piezometric data. Finally, Figure 7 shows the displacement
time series of PSs located outside the maximum potential influence area. The location of such points is
shown in Figure 1. The time series correspond to basically stable areas, with most of the time series
values between ±2 mm. The time series include some spikes, with absolute values up to 6 mm, which
are mainly due to residual atmospheric effects.

Figure 7. Example of LOS deformation time series related to three zones located in the stable area
shown in Figure 1. The blue line shows the piezometric data. The plotted values represent the median
deformation measured within the 3 green circles from Figure 1.

Another example of deformation time series is shown in Figure 8. In the same figure,
the temperatures of the scenes are plotted in correspondence to the days of acquisition of the SAR
images. One may appreciate a strong correlation between deformation and temperature. This is clearly
a displacement behaviour induced by thermal expansion. This type of result is possible only if an
appropriate estimation of the atmospheric phase contribution is carried out: this confirms the goodness
of the procedure proposed in this work.
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Figure 8. LOS displacement time series (orange line) of one single PS and plot of the corresponding
temperatures (grey line). This is a clear example of thermal expansion displacements.

This paper has focused on a PSI procedure to monitor the land deformation associated with
construction works that involve water pumping and hence lowering of the water table. The case study
focuses on the construction works related to the transformation process of the Glories Square, located
in the centre of Barcelona (Spain). The PSI monitoring was based on C-band data acquired by Sentinel-1
sensors. The used PSI procedure was tailored to the specific characteristics of the application at hand.
The performances of the proposed procedure were analysed. This involved the characterization of the
original atmospheric phase component of 78 Sentinel-1 SAR images using the EAF and, in particular,
the standard deviation of the spatially correlated part of the phase images, σcorr, and their correlation
length, Lcorr. In the analysed case study, the atmospheric component was estimated and removed from
the original PSI observations using a linear phase model. The same EAF analysis was carried out on the
residual atmospheric phase component. The most important aspect is a drop of 90% of the average Lcorr

values: this indicates that the proposed atmospheric estimation procedure works properly. However,
in the analysed case, at least two images (2.5% of the images) show relatively high σcorr and Lcorr

values: they represent two cases where a strong atmospheric component cannot be properly modelled
by the linear atmospheric model used. However, this 2.5% does not compromise the quality of the
estimated deformation time series. An EAF analysis of such time series was carried out: the average
σtot of the time series of stable points is 1.90 mm. Only 3.3% of the time series have σtot above 3 mm.
The quality of the time series was further illustrated considering different deformation result examples.
The most important one concerns a validation result, where the PSI estimated deformation matches
well with external piezometric data. This result is confirmed by other time series coming from different
locations in the main deformation area. A final example regards a thermal expansion case. The strong
correlation with the temperature is only possible with an appropriate estimation of the atmospheric
phase contribution: this confirms the goodness of the approach proposed in this work.

7. Conclusions

The most original aspect of this procedure is the estimation of the atmospheric phase component
using stable areas located in the vicinity of the monitoring area. This approach overcomes some
important limitations of PSI techniques that use sets of spatial and temporal filters. In particular,
it avoids the assumption that the low-pass spatial deformation is temporally correlated. This implies
that, with the proposed procedure, sudden deformation can properly be estimated. In addition
to the PSI approach described in this paper, the authors routinely apply this procedure to process
interferometric ground-based SAR data.

The proposed PSI procedure was developed and tested for a specific application, i.e., the
monitoring of urban land deformation due to water extraction. However, the same procedure can
work with any type of deformation phenomena, provided that its spatial extension is sufficiently small.
This is an important characteristic of the proposed procedure: it works only over relatively small areas,
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where the atmospheric component, estimated over the stable areas, can be interpolated in the area of
interest. The larger the area of interest, the bigger will be the error in the estimation of the atmospheric
component over this area (i.e., the larger will be the residual atmospheric component). It is worth
noting that the interpolation of the atmospheric component is only possible if stable areas surround the
area of interest. In some applications this cannot be possible: in this case the atmospheric component
needs to be extrapolated. This implies larger errors in the estimation of the atmospheric component.
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Abstract: Displacement monitoring of large bridges is an important source of information
concerning their health state. In this paper, a procedure based on satellite Persistent Scatterer
Interferometry (PSI) data is presented to assess bridge health. The proposed approach periodically
assesses the displacements of a bridge in order to detect abnormal displacements at any
position of the bridge. To demonstrate its performances, the displacement characteristics of two
bridges, the Nanjing-Dashengguan High-speed Railway Bridge (NDHRB, 1272 m long) and the
Nanjing-Yangtze River Bridge (NYRB, 1576-m long), are studied. For this purpose, two independent
Sentinel-1 SAR datasets were used, covering a two-year period with 75 and 66 images, respectively,
providing very similar results. During the observed period, the two bridges underwent no actual
displacements: thermal dilation displacements were dominant. For NDHRB, the total thermal
dilation parameter from the PSI analysis was computed using the two different datasets; the
difference of the two computations was 0.09 mm/◦C, which, assuming a temperature variation
of 30 ◦C, corresponds to a discrepancy of 2.7 mm over the total bridge length. From the total
thermal dilation parameters, the coefficients of thermal expansion (CTE) were calculated, which were
11.26 × 10−6/◦C and 11.19 × 10−6/◦C, respectively. These values match the bridge metal properties.
For NYRB, the estimated CTE was 10.46 × 10−6/◦C, which also matches the bridge metal properties
(11.26 × 10−6/◦C). Based on a statistical analysis of the PSI topographic errors of NDHRB, pixels on
the bridge deck were selected, and displacement models covering the entire NDHRB were established
using the two track datasets; the model was validated on the six piers with an absolute mean error
of 0.25 mm/◦C. Finally, the health state of NDHRB was evaluated with four more images using the
estimated models, and no abnormal displacements were found.

Keywords: SAR interferometry; displacement monitoring; Sentinel-1; permanent scatterers; thermal
dilation; health monitoring

1. Introduction

The long-term millimeter-level displacement monitoring of man-made structures, such as dams,
embankments, bridges, and railways, is a promising field of application for satellite Persistent Scatterer
Interferometry (PSI). This technique offers the advantages of wide area coverage, high sensitivity
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to small deformations, and day and night and all-weather operation, which makes it suitable for
man-made structural health monitoring. A review of the PSI technique is provided in Reference [1].

PSI monitoring of man-made structures has usually been based on high-resolution SAR data.
Relevant examples include dam monitoring using ALOS PALSAR data [2,3], and several works based
on TerraSAR-X data [4–7]. A combination of ALOS PALSAR and TerraSAR-X data is described in
Reference [8]. RADARSAT-2 images were used for railway monitoring [9]. An example based on
COSMO-SkyMed imagery is described in Reference [6]. As far as bridge monitoring is concerned,
the X-band images are the extensively used PSI data [7,10–12]. This is mainly due to the high spatial
resolution of X-band data, and their high sensitivity to displacements with respect to the C- and L-band.
However, with the advent of Sentinel-1 SAR sensors, this has changed slightly. The main reasons for
this are that the resolution is still high (with a footprint of 4 by 14 m) and the quality of the signal is
good enough to measure millimeter displacements [13]. Moreover, the spatial coverage of a single
Sentinel-1 image (250 by 180 km) and their free availability suggest a great advantage with respect to
X-band data in terms of costs.

In this study, we have focused on C-band Sentinel-1 data, taking advantage of open access SAR
data. This study is a continuation of the work described in Reference [13]. The main improvements in
this study can be found at different levels. From the methodological point of view, the new approach
includes: the assessment of the initial conditions of the bridge by using the extended PSI model [14];
the removal of the topographic phase error, which is an important error source during the health
evaluation phase; and the evaluation of the displacements along the bridge, instead of focusing only
on the piers. From the point of view of the analysis, we have added the analysis of two independent
datasets for each bridge in order to cross-validate the results, and we have described a procedure to
evaluate the sensitivity of PSI for different tracks, in order to find the best one. Finally, it is worth
noting that the work shows the applicability of the approach to different bridges, by adding the results
over a second bridge.

In Section 2, the main steps of bridge health evaluation are described. Section 3 provides general
information concerning the bridges analyzed and the Sentinel-1 datasets. Section 4 presents the analysis
of the sensitivity of the PSI measurements to the longitudinal displacements of the bridges. Section 5
describes the main issues related to the data processing. Section 6 describes the SAR interferometric
results obtained, and Section 7 shows some examples of the bridge health evaluation. Section 8 includes
the discussion and main conclusions.

2. A Bridge Health Evaluation Procedure

A large number of long bridges have been built in the last few decades. Maintaining the safety
of these bridges is crucial. To monitor the evolution of the condition of a bridge, to locate and repair
damages and also to perform a reliability assessment, a long-term structural health monitoring (SHM)
system is generally installed on the bridges [15,16]. An SHM system is a tool for engineers and
managers to plan and evaluate the maintenance operations on a structure. Long-term monitoring
data collected from the SHM system can be used, e.g., to evaluate the vibrations of the main girder,
the static performance of steel truss arc, the movement of piers, and the fatigue of the steel deck [17].
The SHM system for bridge health evaluation has the advantage of high temporal resolution, while its
spatial resolution depends on the number of point sensors mounted on the bridge. Spatial resolution
can, in some cases, be improved using the PSI technique, which is characterized by spatially dense
measurement points. In the following sections, we describe a health evaluation procedure, focused on
thermal dilation displacements of the bridge.

The key idea of the procedure is to: (i) use a set of SAR images to model the thermal dilation behavior
of a given bridge; and then (ii) use additional SAR images to monitor the temporal evolution of the
bridge. Figure 1 illustrates the flow chart of the procedure, which is composed of three parts highlighted
in different colors. The procedure can be used to monitor the thermal dilation displacements of the
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entire bridge, exploiting the dense set of measurements provided by the PSI technique. The main steps
of the procedure are described below.

1. Collect N SAR images over the bridge of interest, acquired at times t1 to tN . Acquire, for each
image, the temperature of the given scene at the time of acquisition of each image: T1 to TN .

2. Generation of a redundant network of M interferograms from the N collected images (M >> N) [18],
and calculation of the displacement time series using the traditional PSI method.

Figure 1. Flow chart of the bridge health evaluation procedure.

1. The extended PSI model described in Reference [14] is used to estimate the main PSI phase
components. This involves the following steps:

(a) Pixel selection. In the SAR images, only those points characterized by low noise levels are
selected using the amplitude dispersion index [19].

(b) Pixels connection. The selected pixels are connected by edges (Figure 2). For each interferogram
k and edge e, the phase difference ΔΦk(e) is derived. Let us call this difference ΔΦk

obs.
(c) Phase modeling and parameter estimation. For each phase difference, we can write:

Δεk = ΔΦk
obs − ΔΦk

m(Δv, Δte, ΔTh) (1)

where Δεk is the differential phase residual associated with a given edge e, while

ΔΦk
m(Δv, Δte, ΔTh) = 4π

λ ΔTkΔv + 4π
λ

Bk
⊥

Rk sinθ
Δte + 4π

λ ΔTempkΔTh is the modeled
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differential phase. Δv, Δte and ΔTh are the differential unknowns associated with the
edge e; Δv is the differential deformation velocity; Δte is the differential topographic
error; and ΔTh is the so-called differential thermal dilation parameter; ΔTk and Bk

⊥ are the
temporal and perpendicular baseline of the interferogram k; ΔTempk is the temperature
difference between the acquisitions of the two images of the interferogram k; Rk and
θk are the slant range and incidence angle of the interferogram k; and λ is the radar
wavelength. To estimate the three unknowns for each edge e, the following function is
maximized numerically:

γ =
1
M

M

∑
k=1

exp
(

j·(ΔΦk
obs − ΔΦk

m(Δv, Δte, ΔTh)
)

(2)

where γ is a goodness of fit parameter, which indicates the quality of the estimation of the
three unknowns; and M is the number of interferograms.

(d) Phase component reconstruction. This step involves the integration of the differential
unknowns Δte, Δv, and ΔTh. A minimum number of edges associated with a single
pixel is set during the integration.

2. Bridge displacement modeling and error estimation based on the estimated phase components.
This involves the following steps:

(a) Bridge deck masking. This step is based on the statistic result of the topographic errors
achieved in step 3(d). Assuming the bridge deck is flat, a mask is built to select pixels on
the bridge deck

(b) Cross averaging. Instead of using the displacement measurements along the bridge
longitudinal profile as in Refence [13], we average the above selected pixels in the
cross-bridge direction. Therefore, robust and accurate displacement measurements along
the longitudinal direction of the bridge are measured.

(c) Bridge displacement modeling. Considering the cross averaged phase components on the
bridge deck, the following displacement model can be established:

dLong = ΔTemp·ΔTh + Δv·Δt (3)

where dLong is the modeled longitudinal displacement, ΔTemp and Δt are the temperature
and temporal difference, respectively, and ΔTh and Δv are the thermal dilation and linear
velocity parameters along the bridge estimated by PSI.

(d) Bridge displacement model error estimation. With the acquisition time t1 to tN and the temperature
T1 to TN, the model error, measured by the standard deviation of the differences between
the cross-average value of the modeled displacements and the displacement time series
achieved in step 2, is estimated.

3. Bridge health evaluation. The idea for this evaluation is based on the hypothesis testing of the
displacement differences, which are calculated between the upcoming measurements and the
modeled ones, similar to Deviation Index DI1 described in Reference [20]. This includes the
following two steps:

(a) Differential displacement estimation. Let us assume that a new SAR image is acquired at
tN+1, with a temperature of TN+1. Then, more interferograms are generated with the
image tN+1, and the cross-average displacements of the entire bridge deck are evaluated
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through interferogram phase unwrapping, bridge deck masking, and cross averaging. Such
displacements are then compared with the modeled ones, and their difference is calculated:

Diffk,k+1
Long = Interfk,k+1

Long − Modelk,k+1
Long (4)

where Modelk,k+1
Long = ΔTempk,k+1·ΔTh + Δv·ΔTtk,k+1 is the modeled longitudinal

displacement, while Interfk,k+1
Long is the measured one.

(b) Bridge health evaluation. The differences between the measured and modeled displacements
are assessed using the procedure described in Reference [13], and the confidence interval
is given as twice the estimated model error. A positive evaluation is when the measured
displacements are within the confidence interval (i.e., the bridge shows a good behavior,
or the displacements are within the design parameters of the bridge). Otherwise, a detailed
analysis of the bridge, and especially of the bearings, is required.

Figure 2. Scheme of the selected pixels connection.

3. Description of the Test Sites and Datasets

3.1. The NDHRB

Nanjing-Dashengguan High-speed Railway Bridge (NDHRB) is located in the Nanjing section
of the middle and lower reaches of the Yangtze River, in China. This bridge (see the blue rectangle
in Figure 3a) is the world’s longest span high-speed railway bridge and the largest bridge with the
heaviest design load ever built [17]. The structure of the NDHRB includes an orthogonal steel deck
system; the heights of each part are highlighted in Figure 3c. The bridge includes six tracks: two tracks
of the Beijing-Shanghai high-speed line; two tracks of the Shanghai-Chengdu railway lines; and two
tracks of the Nanjing Metro. For more details, see Reference [17]. The bridge is supported by six sliding
bearings (4#, 5#, 6#, 8#, 9#, 10#) on the two sides of the bridge and a fixed bearing (7#) located in the
center of the bridge. The deck cross-section of NDHRB is shown in Figure 1d. The main structure of
the bridge was built using three types of steel: Q345qD, Q370qE, and Q420qE. Their coefficients of
thermal expansion (CTE) are 16.0 × 10−6/◦C, 13.0 × 10−6/◦C, and 13.0 × 10−6/◦C, respectively.

3.2. The NYRB

Nanjing-Yangtze River Bridge (NYRB) (the yellow rectangle in Figure 3a), connects the
Beijing-Shanghai railway and the Nanjing-Yangzhou national highway. It is the first highway-cum-railway
bridge (the upper layer is a highway, and the lower layer is a railway) built in China. It was opened on
29 December 1968, after ten years of construction. The main bridge is 1576-m long (128 m, plus 160 m
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by 9): it includes a simply-supported steel truss girder, with a span of 128 m, and 9 remaining
continuous steel truss girders of 160 m, where every three spans are united as a bridge segment
(span-continuous truss) [21]. In order to adapt to the longitudinal displacement of the bridge decks
caused by temperature changes, huge expansion joints are mounted between the three segments at 1#,
4#, 7#, and 10# piers, with a maximum moving ability of 38 cm for 1#, 55 cm for 4# and 7#, and 34 cm
for 10# [22]. Movable bearings are mounted at 1#, 3#, 4#, 6#, 7#, 9#, and 10#, while fixed bearings are
on 0#, 2#, 5#, and 8#. Low alloy steel of 16Mnq is used as the main structure of the main girder and
railway cross-section [23], with a CTE of 11.26 × 10−6/◦C. The overall layout of the NYRB is shown in
Figure 3f. It should be noted that the bridge was closed for 27 months for comprehensive repair and
maintenance work at the end of 2016.

Figure 3. Sentinel SAR image coverage over the two bridges. (a) Location of the two bridges and
burst coverage (white and red rectangles) of the two ascending SAR datasets used in this study;
(b) Footprint of the two tracks; (c) Photo of the Nanjing-Dashengguan High-speed Railway Bridge
(NDHRB), the heights of the structure are taken from Reference [24]; (d) Cross-section of the NDHRB;
(e) Photo of the Nanjing-Yangtze River Bridge (NYRB); (f) Layout of the NYRB.

3.3. The Sentinel-1 Datasets

The two bridges are imaged in the overlap area of two ascending Sentinel-1 tracks: track 01
(the absolute orbit number of the first image, acquired on 25 April 2015, is 005639); and track 02
(the absolute orbit number of the first image, acquired on 2 April 2015, is 005437): see Figure 3b.
Specifically, this occurs in a single burst of the third swath of track 01 (see the white rectangle in
Figure 3a), and two bursts of the first swath of track 02 (see the red rectangle in Figure 3a). Seventy-five

106



Remote Sens. 2018, 10, 1714

IW mode SAR images, acquired between 25 April 2015 and 15 May 2018, are available for track 01.
Track 02 has sixty-six IW mode SAR images, acquired between 8 April 2015 and 10 May 2018; the SAR
image datasets of track 01 and track 02 are listed in Tables 1 and 2, and the ambient temperatures were
acquired from the Pukou weather station, respectively. Due to the different swaths of the two tracks,
the corresponding incidence angles are 45◦ for track 01, and 31◦ for track 02.

Table 1. Sentinel-1 SAR image dataset of Track 01 (the non-bold group is used for displacement
modeling and the bold one for health evaluation).

No. Date T/◦C No. Date T/◦C No. Date T/◦C No. Date T/◦C No. Date T/◦C

1 20150425 25.0 16 20160126 4.8 31 20160829 27.2 46 20170414 24.7 61 20171104 11.7
2 20150706 18.2 17 20160219 12.6 32 20161004 22.4 47 20170426 17.8 62 20171116 14.1
3 20150730 33.0 18 20160302 16.6 33 20161016 20.7 48 20170508 15.6 63 20171128 14.4
4 20150811 27.5 19 20160314 11.8 34 20161028 12.8 49 20170520 28.6 64 20171210 8.4
5 20150823 27.5 20 20160326 11.3 35 20161109 10.3 50 20170601 32.5 65 20171222 11.5
6 20150916 25.2 21 20160407 17.8 36 20161203 11.5 51 20170613 22.4 66 20180103 1.8
7 20150928 26.3 22 20160419 21.0 37 20161215 4.4 52 20170625 28.5 67 20180115 11.6
8 20151010 19.6 23 20160501 26.8 38 20161227 2.8 53 20170719 34.1 68 20180127 −1.2
9 20151022 22.6 24 20160513 18.4 39 20170108 5.7 54 20170731 33.8 69 20180220 4.2

10 20151103 15.8 25 20160525 27.7 40 20170201 3.7 55 20170812 26.2 70 20180304 16.4
11 20151115 17.1 26 20160606 24.9 41 20170213 12.6 56 20170824 32.1 71 20180328 24.6
12 20151127 4.5 27 20160630 30.7 42 20170225 11.0 57 20170905 26.7 72 20180409 23.3
13 20151209 10.3 28 20160724 36.3 43 20170309 16.1 58 20170917 27.0 73 20180421 22.5
14 20151221 7.0 29 20160805 29.7 44 20170321 13.2 59 20171011 15.1 74 20180503 24.1
15 20160114 3.6 30 20160817 33.0 45 20170402 19.6 60 20171023 15.1 75 20180515 33.2

Table 2. Sentinel-1 SAR image dataset of Track 02 (the non-bold group is used for displacement
modeling and the bold one for health evaluation).

No. Date T/◦C No. Date T/◦C No. Date T/◦C No. Date T/◦C No. Date T/◦C

1 20150408 10.8 16 20160601 20.2 31 20170304 16.4 46 20170912 26.6 61 20180311 18.6
2 20150502 17.9 17 20160719 30.3 32 20170316 11.9 47 20170924 21.4 62 20180323 18.5
3 20150701 27.8 18 20160812 33.7 33 20170328 19.5 48 20171006 19.1 63 20180404 11.9
4 20150725 28.5 19 20160929 18.3 34 20170409 11.8 49 20171018 15.9 64 20180416 16.9
5 20150818 28.4 20 20161011 18.2 35 20170421 20.4 50 20171030 12.5 65 20180428 25.1
6 20150911 25.1 21 20161023 16.2 36 20170503 21.1 51 20171111 13.9 66 20180510 20.8
7 20151005 20.4 22 20161104 16.9 37 20170515 20.2 52 20171123 11.2 67
8 20151122 16.6 23 20161116 14.9 38 20170527 30.6 53 20171205 5.7 68
9 20151216 4.3 24 20161128 9.5 39 20170608 28.4 54 20171217 1.9 69

10 20160109 8.1 25 20161210 10.3 40 20170702 24.3 55 20171229 10.5 70
11 20160202 2.5 26 20170103 11.2 41 20170714 33.8 56 20180110 2.8 71
12 20160226 15.3 27 20170115 4.0 42 20170726 36.2 57 20180122 8.1 72
13 20160321 15.0 28 20170127 6.5 43 20170807 32.2 58 20180203 -1.2 73
14 20160414 24.2 29 20170208 1.0 44 20170819 30.1 59 20180215 6.6 74
15 20160508 14.2 30 20170220 4.4 45 20170831 20.0 60 20180227 14.3 75

4. Feasibility Study: SAR Measurement Sensitivity

This section presents a sensitivity analysis of the longitudinal deformations of the SAR-based
measurements for both datasets. The aim of this study is to calculate the sensitivity parameter and
evaluate the feasibility of the proposed PSI-based approach. For details on the sensitivity analysis of
the line of sight (LOS) observation regarding the different sensors, see Reference [25].

Due to the Line-of-Sight (LOS) nature of the displacements measured using SAR interferometry,
the structural displacement monitoring capability depends on the SAR geometry and the azimuth of
the bridge’s main axis. We assumed that the most important contribution of the temperature related
movements was longitudinal [13]. Thus, considering only the displacements in the longitudinal direction,
the relation between the LOS and the longitudinal deformation can be written as follows (see Figure 4):

dL =
dLOS

sinθ cos
(
αbr − αrg

) (5)
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where dLOS and dL are the LOS and longitudinal deformation, respectively; θ is the incidence angle,
and α = αbr − αrg is the horizontal angle given by the difference of the SAR range azimuth, αrg,
and bridge longitudinal azimuth, αbr.

Figure 4. Relation between the line of sight (LOS) displacements and those in the bridge longitudinal
direction. Scheme in the vertical plane (a) and in the horizontal one (b). It is worth noting that in this
analysis it has been assumed that the bridge slope is almost zero.

Let us define s = sin θ cosα as the sensitivity of the longitudinal displacements of bridge in the
LOS. The larger the s is, the better the measurements are. Figure 5 illustrates the relationship between s,
the radar incidence angle θ, and the horizontal angle α. When the SAR range direction is perpendicular
to the bridge’s main axis, the sensitivity goes to zero and the longitudinal displacements cannot be
measured. The sensitivity of the NDHRB and the NYRB, calculated with the geometry of Track 01 and
Track 02, is listed in Table 3.

Figure 5. Relation of the sensitivity s as a function of the radar incidence angle θ and the horizontal
angle α.

Table 3. Sensitivity to the longitudinal displacements of the NDHRB and the NYRB, computed with
the geometry of Track 01 and Track 02.

NDHRB NYRB

Track 01 Track 02 Track 01 Track 02

θ/degree 45.0 31.0 45.0 31.0
αbr/degree 133.6 133.6 120.6 120.6
αrg/degree 79.5 79.5 79.5 79.5
α/degree 54.1 54.1 41.1 41.1

s 0.41 0.30 0.53 0.39
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5. PSI Processing

To evaluate bridge health using the method presented in Section 2, we divided each dataset into
two groups (distinguished by bold and non-bold fonts in Tables 1 and 2): the first group (non-bold)
was used for modeling the bridge displacement, while the second group (bold) was used for evaluating
bridge health.

Software developed by CTTC was used for SAR data processing [26]. It consists of two main parts:
the generation of differential interferograms; and the modeling and decomposition of phase components.

A redundant network was used for the phase component decomposition. All interferograms
with temporal baselines of less than 132 days were generated (see Figure 6). A 3-arc SRTM DEM
was used for topographic phase removing. In total, 585 interferograms were generated for Track 01
and 485 for Track 02. The maximum spatial baseline for Track 01 was 196 m (interferometric pair
20171011_20180103) and 263 m for Track 02 (interferometric pair 20150408_20150725). The minimum
spatial baselines for the two tracks were 2 m (interferometric pair 20161227_20170213) and 1 m
(interferometric pair 20170702_20170714), respectively. The SAR multi-looking was not applied to
preserve the original resolution of the data.

Figure 6. Spatial and temporal baselines of the Sentinel-1 datasets: Track 01 (a) and Track 02 (b).

The amplitude dispersion index (DA) was applied for pixel selection. The threshold was set to
0.2. Edges with γ < 0.7 were discarded, and a minimum number of 10 edges associated with a single
point was set for the integration. Finally, the three-phase components (linear velocity, topographic
error, and thermal dilation coefficient) were extracted numerically with the extended PSI model [14].

6. PSI Results

6.1. NDHRB

The topographic error is given by the difference between the Digital Terrain Model (DTM) used in
the interferogram generation and the actual height of a given scatterer. Figure 7 shows the topographic
error and its statistics using the two tracks: the two arcs of the bridge can be clearly identified.
The distribution of the topographic error is similar in both cases: as seen below, both include a uniform
distribution, which corresponds to the bridge arcs, and a normal distribution, which is related to the
other part of the bridge.
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Figure 7. Estimated topographic errors and their statistics for the NDHRB. The figure marked with ‘(a)’
is related to Track 01, and that with ‘(b)’ refers to Track 02.

To study the displacements of the bridge deck, a mask was applied to the map of the thermal
dilation parameter and linear velocity: only those points whose heights are between −10 m and 10 m
were selected. This was followed by the projection of the LOS displacements into the longitudinal
bridge direction. Figure 8 shows the estimated thermal dilation parameters in the LOS direction;
Figure 9 presents their average cross values in the longitudinal direction for the two tracks, while
Figure 10 shows the average cross values of the LOS linear velocities for the two tracks. The main
results related to thermal dilation are summarized in Table 4. This is discussed in the following
four sections.

Figure 8. Estimated thermal dilation parameter in the LOS direction. The figure marked with ‘(a)’ is
related to Track 01, and that marked with ‘(b)’ refers to Track 02.
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Figure 9. Average cross thermal dilation parameters in the longitudinal direction. The figure marked
with ‘(a)’ is related to Track 01, and that marked with ‘(b)’ refers to Track 02.

Figure 10. Average cross velocities in the longitudinal direction. The figure marked with ‘(a)’ is related
to Track 01, and that marked with ‘(b)’ refers to Track 02.

Table 4. Thermal dilation parameters of the NDHRB.

Track 01 Track 02

PS/pixels 903 942
dLOS,Max(mm/) 3.06 2.31

dLOS,Min (mm/◦C) −2.88 −2.00
dLOS,total (mm/◦C) 5.94 4.31

dL,total (mm/◦C) 14.33 14.24
CTE (/◦C) 11.26 × 10−6 11.19 × 10−6

(1) A large number of Persistent Scatterer (PS) measurements were obtained on the deck of the
NDHRB, for both Track 01 (903) and Track 02 (942). They are uniformly distributed, covering the entire
bridge. Many PSs are from the steel truss girder and the bridge deck, including railway sleepers, tracks,
and ballast. The change in the incidence angle of the radar has very little impact on the scattering
characteristics of NDHRB.

(2) Similar thermal dilation characteristics were observed on the two tracks. Results show that
the thermal dilation parameters on both sides of the bridge are almost equal but with opposite signs.
The magnitude of the thermal dilation parameter increases with the distance from the bridge center,
where the fixed bearing (7#) is located. The measured CTE (11.26 × 10−6 and 11.19 × 10−6 for Tracks 01
and 02, respectively) match the bridge properties mentioned in Section 1, and the results described
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in Reference [13]. To validate the accuracy of the thermal dilations measured using PSI, the thermal
dilations observed at the six movable bearings and the in-situ measurements [17] were compared
(see Figure 11). Taking the in-situ measurements as Reference, the absolute mean error is 0.25 mm/◦C.

Figure 11. Thermal dilations measured by Track 01, Track 02, and the in-situsensors.

(3) The average cross values of the linear velocity calculated for the LOS displacement for both
tracks are below 2 mm/year, and there is no clear correlation between the two tracks. Comparing this
estimated linear deformation with the displacement caused by the thermal dilation: the relative thermal
dilation parameters of the entire bridge, in the LOS, reached 5.94 mm/◦C and 4.31 mm/◦C (see Table 4),
this means that a temperature variation of 30 ◦C causes at least 130 mm of LOS displacement; hence
the estimated linear deformation is much smaller. The velocity values shown in Figure 10 could
be due to residual non-modeled thermal dilation displacements, and can be neglected in bridge
displacement modeling.

(4) Table 4 shows the thermal dilation parameters estimated using Track 01 and Track 02:
the difference in the total longitudinal parameter (dL,total) of the two tracks is 0.09 mm/◦C, which
corresponds to 2.7 mm with a temperature variation of 30 ◦C. These results depict the high sensitivity
of the proposed approach.

(5) Considering the length of the NDHRB (1272 m), the CTE of the NDHRB can be estimated,
corresponding to 11.26 × 10−6/◦C and 11.19 × 10−6/◦C for the two tracks: they agree well with each
other (see Table 4). The differences between these values and 13.0 × 10−6/◦C, which is the CTE of
Q420qE that dominates the expansion of the bridge, are 1.74 × 10−6/◦C and 1.81 × 10−6/◦C: their
relative errors are 13% and 14%. The relatively smaller observed CTE values can be explained by the
friction of movable bearings.

6.2. Results of NYRB

Due to the comprehensive maintenance of the NYRB, the interferometric coherence decreases
dramatically for all SAR acquisitions; hence, only 45 images in Track 01 and 34 images in Track 02,
from their first acquisitions, were used for PSI processing.

Figure 12 shows the LOS phase components of the NYRB estimated with Track 01 (upper)
and Track 02 (lower). It is very clear that the PS density is quite different: Track 01 has far more
measurements (640) than Track 02 (96). Hence, with more PS measurements covering the entire bridge,
Track 01 is capable of providing valuable phase information, while Track 02 fails. The diversity of the
PS density can be explained by the fact that the upper layer of the NYRB is a highway that is relatively
flat for C-band radar signal, while the lower part of the bridge, constructed with metal truss, has strong
backscattering. With the decrease in the radar incidence angle, the upper layer with less backscattering
becomes the main scattering area, hence, the amount of PSs decreases dramatically.

Three segments of the NYRB are highlighted by the thermal dilation coefficients in Figure 12a,
which corresponds with the architectural properties of the bridge (four fixed bearings mounted at 0#,
2#, 5#, and 8#, see the green arrows, and huge expansion joints mounted at 1#, 4#, 7#, and 10#, see
the red arrows in Figure 12). On each segment, the thermal dilation is zero in the fixed pier, and the
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values increase towards each side up to the expansion joints, but with opposite signs. The thermal
dilation parameters of the NYRB at the middle segment (480 m) are listed in Table 5. It can be seen
that the difference in the estimated CTE and the structural property is very small (0.80 × 10−6/◦C),
corresponding to a relative error of 7.1%. The under-estimated value can be explained by the small
internal stresses of the structure. The absolute values of the estimated topographic errors are all less
than 10 m (see Figure 12b), which also correspond well with the flat characteristics of the NYRB.
The estimated linear deformation rates shown in Figure 12c are mostly around 0 mm/year, which
shows that the NYRB had no linear deformation during the monitoring period.

Figure 12. LOS phase components of the NYRB, estimated with Track 01 (upper) and Track 02 (lower);
the reference point is marked with the red triangle, (a) thermal dilation coefficient, (b) topography
error, and (c) linear velocity.

Table 5. Thermal dilation parameters of the NYRB at the middle segment.

Track 01 Track 02

PS/pixels 640 96
dLOS,Max (mm/◦C) 1.23 -
dLOS,Min (mm/◦C) 1.43 -
dLOS,total (mm/◦C) 2.66 -

dL,total (mm/◦C) 5.02 -
CTE (/◦C) 10.46 × 10−6 -
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7. Bridge Health Evaluation

We assumed that the bridges were in a healthy state during the SAR monitoring period in the
first group. By considering the NDHRB as an example, the two datasets were used independently
to evaluate the bridge health using the procedure presented in Section 2. The bridge states of
the two acquisitions from each track in the second group—that is, 3 May and 15 May 2018 for
Track 01, and 28 April and 22 May 2018 for Track 02—were evaluated. The longitudinal displacement
measurements of the bridge obtained from unwrapped interferograms were compared with the
modeled ones, and the differences were used for the hypothesis testing. Hence, the health of the
bridges was evaluated on the final SAR imaging dates.

The accuracy of the structural displacement model was estimated by evaluating the difference
between the modeled and observed displacement time series during the designed stable life period of
the bridge. Figure 13 shows the measured displacement time series, the modeled displacement time
series, and their difference for Track 01 over the NDHRB; the standard deviation of their difference
is 5.9 mm, while the value for Track 02 is 6.2 mm. It should be noted that the linear term of the
displacement residual in each acquisition was estimated and removed.

Figure 13. Accuracy evaluation of the bridge displacement model over Track 01. Measured displacement
time series (left), modeled displacement time series (middle), and their difference (right).

Figure 14 shows the NDHRB health evaluation results using the proposed procedure in four
SAR image acquisitions: 20180503, 20180515, 20180428, and 20180510. In each evaluation procedure,
Figure 14 with ‘(a)’ is the unwrapped interferogram, ‘(b)’ is the measured average cross displacement,
‘(c)’ is the modeled displacements, and ‘(d)’ is the displacements difference between the measured
and modeled value. The atmospheric effects are neglected assuming that the area is small enough to
avoid significant contributions. Moreover, in order to ease the phase unwrapping, only the points
located on the bridge deck are used. Considering two times the absolute mean error of the models
(2 × 5.9 mm = 11.8 mm for Track 01, and 2 × 6.2 mm = 12.4 mm form Track 02), the up control line
(UCL) and the lower control line (LCL) can be drawn at ±11.8 mm and 12.4 mm, respectively (see the
red lines in ‘(d)’ of Figure 14). It can be seen that all of the displacement differences are included
in the control lines, while some large values are mainly caused by traffic along the bridge, e.g., pair
20180428_20180510. Therefore, in this case, there are no abnormal displacements of the entire bridge in
the four periods observed.
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Figure 14. NDHRB health evaluation using the proposed method for the two tracks. From top to
bottom of each interferometric pair: longitudinal displacement interferometric measurements, averaged
cross values, modeled value, and difference between the measurement and the modeled one.

8. Discussion

Displacement monitoring plays an important role in structural health evaluation. In this study,
displacement monitoring and health evaluation of two bridges (the NDHRB and the NYRB) using the
PSI technique and SAR interferometry were carried out.

We analyzed the sensitivity of Sentinel-1 space-borne SAR interferometry to measure structural
displacements. The approach used can be replicated in different bridges to select the best track and
frame before beginning the download of the images.
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The results obtained have demonstrated the applicability of the proposed approach on two bridges
with very different structural characteristics. The estimated sensitivity to anomalous displacements
in the proposed health evaluation approach was around 1 cm. Such precision is good enough for a
wide range of bridges. In this context, Figure 15 shows two temporal profiles of the movement of a
point located at the middle of the bridge (192 m-span) and measured through an in-situ real aperture
radar [27]. These time series show the vertical displacement of the point induced by a high-speed train
(a) and a metro (b). It can be seen that all the induced displacements are below the centimeter.

Figure 15. Vertical displacement time series induce by a high-speed train (a) and a metro (b) in the
middle of the 192-m-span monitored using IBIS-S.

A total of 903 and 942 points were measured on the NDHRB using two Sentinel-1 tracks: such
measurements made it possible to monitor the displacements of the entire bridge. Moreover, the use of
two independent tracks in this bridge provided a cross-validation of the results obtained, which was
useful for assessing the precision of the methods used. The number of PS measurements on the NYRB
decreased dramatically as the radar incidence angle decreased from 45 degrees (in the third swath) to
31 degrees (in the first swath). In this case, it was only possible to obtain results with one trajectory.

Using two tracks of Sentinel-1 SAR images (75 and 76 images, respectively) was useful for
assessing the results obtained from two independent datasets. However, the results obtained from both
datasets could also be merged to provide higher temporal sampling for the SHM. During the period
observed, the bridges underwent no actual displacements. Hence, the thermal dilation displacements
were dominant. The total thermal dilation parameters of the NDHRB, estimated using the two datasets,
were compared. A discrepancy of 0.09 mm/◦C was found, which corresponds to a difference of 2.7 mm
over the total length of the bridge, assuming a temperature variation of 30 ◦C. The total thermal
dilation parameter was 14.28 mm/◦C, which resulted in a CTE of 11.22 × 10−6/◦C: this corresponds
well with material properties of the bridge. Similar results were obtained from the NYRB.

Finally, it is worth underlining that such an approach cannot be applied to all bridges due to
different issues such as SAR geometry limitations, traffic along the bridge, or structural characteristics.
However, depending on the location of the area of interest, the acquisition policy of Sentinel-1
constellation could help to minimize such limitations by offering the possibility of acquiring ascending
and descending data, and, in some cases, of working with parallel adjacent tracks, as in the case of the
two bridges analyzed. Moreover, the continuous acquisition mode providing an image every 6, 12, or
24 days, depending on the location, makes it possible to devise long-term monitoring plans.

9. Conclusions

In this paper, a procedure for continuously assessing the displacements of a bridge has been
proposed. It has been successfully applied on two huge bridges—the NDHRB and the NYRB—by
using medium-resolution Sentinel-1 SAR images. The results have been cross-validated by using two
independent datasets obtaining millimeter-order differences. A bridge health evaluation method,
based on longitudinal displacements covering the entire bridge deck, has been presented and validated
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on the NDHRB. This method evaluates the abnormal displacements along the entire bridge deck,
which is an advantage with respect to methods that only measure the displacements with respect to
the piers. Its applicability has been illustrated over the two bridges, the NDHRB and the NYRB.
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Abstract: In earthquake-prone areas, identifying patterns of ground deformation is important before
they become latent risk factors. As one of the severely damaged areas due to the 2011 Tohoku
earthquake in Japan, Urayasu City in Chiba Prefecture has been suffering from land subsidence as a
part of its land was built by a massive land-fill project. To investigate the long-term land deformation
patterns in Urayasu City, three sets of synthetic aperture radar (SAR) data acquired during 1993–2006
from European Remote Sensing satellites (ERS-1/-2 (C-band)), during 2006–2010 from the Phased
Array L-band Synthetic Aperture Radar onboard the Advanced Land Observation Satellite (ALOS
PALSAR (L-band)) and from 2014–2017 from the ALOS-2 PALSAR-2 (L-band) were processed by
using multitemporal interferometric SAR (InSAR) techniques. Leveling survey data were also used
to verify the accuracy of the InSAR-derived results. The results from the ERS-1/-2, ALOS PALSAR
and ALOS-2 PALSAR-2 data processing showed continuing subsidence in several reclaimed areas
of Urayasu City due to the integrated effects of numerous natural and anthropogenic processes.
The maximum subsidence rate of the period from 1993 to 2006 was approximately 27 mm/year,
while the periods from 2006 to 2010 and from 2014 to 2017 were approximately 30 and 18 mm/year,
respectively. The quantitative validation results of the InSAR-derived deformation trend during
the three observation periods are consistent with the leveling survey data measured from 1993 to
2017. Our results further demonstrate the advantages of InSAR measurements as an alternative to
ground-based measurements for land subsidence monitoring in coastal reclaimed areas.

Keywords: ERS-1/-2; PALSAR; PALSAR-2; InSAR; land subsidence; reclaimed land; Urayasu City

1. Introduction

Land subsidence is one of the most serious environmental problems in many urban areas around
the world [1]. In particular, coastal areas, which contain young and compressible deposits, are often
vulnerable to subsidence caused by either anthropogenic or natural factors [2,3]. This phenomenon is
evident in the coastal city of New Orleans, LA in the USA [4], Jakarta in Indonesia [5,6], Ho Chi Minh in
Vietnam [7], Bangkok in Thailand [8], Shanghai and Shenzhen in China [9,10], Venice in Italy [11] and
in the western Netherlands [12]. Continuous land subsidence causes remarkable economic losses in the
form of building damages leading to high maintenance costs [13]. Thus, identifying land deformation
trends is a crucial task to maintain the sustainability of coastal urban areas [14].

Over the past two decades, land subsidence monitoring has been significantly improved by the use
of interferometric synthetic aperture radar (InSAR) techniques [15]. Although the traditional methods
(i.e., global positioning system (GPS) and leveling) can also provide precise measurements, they cannot
acquire dense ground displacement measurements with a large-scale coverage in a short time and at a
low cost [16]. The advanced time-series InSAR techniques, such as persistent scatterers interferometry
(PSI) and the small baseline subset (SBAS) technique, can achieve results in better spatial and temporal
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resolutions with higher precision [17–20]. Furthermore, the increase in the available synthetic aperture
radar (SAR) satellites with different temporal and spatial resolutions has provided a great opportunity
for researchers to perform long-term geohazard monitoring by combining observations from those
satellites [21].

Urayasu City is located in the Tokyo Bay area, where more than 70% of the area was reclaimed
from 1964 to 1980 [22,23]. The reclamation was performed using the sand and soil dredged from the
seabed off the coast of Urayasu [24]. In addition, Urayasu City is located in an earthquake-prone area,
which increases the risk of land subsidence due to the combined effects of seismicity and the natural
consolidation of soil [25,26]. On 11 March 2011, a devastating earthquake of moment magnitude Mw 9.0
occurred off the coast of Tohoku, Japan, which caused severe damage to buildings and infrastructures
and created large ground settlements of up to 60 cm in the reclaimed areas [27,28]. This catastrophic
event has attracted a great deal of attention from researchers and organizations. The Geospatial
Information Authority of Japan (GSI) carried out a leveling survey, comparing the results with light
detection and ranging (LiDAR) survey data, and concluded that the surface subsidence was not caused
only by the soil liquefaction but also by pro-earthquake consolidation [29]. Konagai et al. [30] mapped
the soil subsidence using LiDAR data taken before and after the earthquake. Pasquali et al. [31]
measured the land subsidence during 2006–2010 using both the Environment Satellite Advanced
Sythetic Aperture Radar (ENVISAT ASAR) and the Advanced Land Observation Satellite Phased
Array L-band Synthetic Aperture Radar ALOS PALSAR data. ElGharbawi and Tamura [32] estimated
the liquefaction induced deformation using ALOS PALSAR images spanning from August 2006 to April
2011. Nigorikawa and Asaka [24] conducted a leveling survey from April 2011 to April 2013 and found
accelerated land settlement only in the reclaimed land areas rather than in the natural alluvial low land
and pointed out the settlement may still be ongoing. However, the previous studies mainly focused on
the soil liquefaction-induced subsidence during the earthquake, and the long-term spatiotemporal
evolution of land subsidence before and after the earthquake has not yet been clearly identified.

In this study, we used three different SAR datasets, the European Remote Sensing satellites
(ERS-1/-2) and ALOS PALSAR & ALOS-2 PALSAR-2 to identify the trends of land subsidence dynamics
in Urayasu City over a period of 24 years by using multitemporal InSAR techniques. Moreover,
the InSAR results were compared with leveling survey data. The observed results may provide useful
information for identifying and understanding the behavior of the slow subsidence phenomenon over
a long-time period, which plays an important role in future risk mitigation strategies.

2. Study Area

Urayasu City is located in the Tokyo Bay area of Chiba Prefecture, from 139◦56′22′′E to 139◦52′20′′E
and from 35◦37′N to 35◦40′23′′N. The total area is 16.98 km2, and the total population was 167,950 in
February 2018 [33]. As shown in Figure 1, Urayasu City is divided into three areas, namely, Moto-Machi
(old town), Naka-Machi (central town) and Shin-Machi (new town). Moto-Machi is a naturally formed
Holocene lowland, and the other two areas were reclaimed from 1964 to 1980 [34,35]. Figure 1b and
Table 1 shows the distribution and other detailed information of those reclaimed areas. The elevation
in the old coastline area of Moto-Machi is approximately 0 to 2 m and gradually increases towards the
coastal levee, becoming especially high in Sogo Park of Akemi district and the Tokyo Disney resort
area (Figure 1c). The thickness of the alluvial soil layers varies from 20 m in the Moto-Machi area
to 60–80 m in the Naka-Machi and Shin-Machi areas, which indicates the complexity of the soft soil
distribution in those areas [22,23].
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Figure 1. The map of the study area, Urayasu City, Japan. (a) The geographic location of Urayasu City;
(b) the distribution and development history of the reclaimed areas, namely Moto-Machi (old town)
outlined in green, Naka-Machi (central town) outlined in yellow and Shin-Machi (new town) outlined
in red. A to G represent the reclaimed areas at different times. The background image is a Phased
Array L-band Synthetic Aperture Radar onboard the Advanced Land Observation Satellite (ALOS-2
PALSAR-2) intensity image acquired on 4 December 2014; and (c) the topography of the study area [36].

Table 1. The detailed history of reclaimed areas and the districts.

Reclaimed Areas Reclaimed Year Districts

A 1975 Maihama
B 1968 Higashino, Tomioka, Imagawa, Benten and Tekkodori
C 1971 Kairaku, Mihama and Irifune
D 1978 Akemi and Hinode
E 1980 Takasu
F 1979 Minato
G 1979 and 1981 Chidori
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3. Data Sets and Methods

3.1. Data Sets

In this study, the SAR data collected by the ERS-1/-2 and ALOS-1/-2 satellites were used to
monitor the long-term deformation pattern of Urayasu City. The ERS-1/-2 data were provided by the
European Space Agency (ESA) and the PALSAR & PALSAR-2 data by the Japan Aerospace Exploration
Agency (JAXA). A total of 52 C-band ERS-1/-2 single look complex (SLC) scenes were acquired from
the track/frame 489/2889 during the period from May 1993 to February 2006. Note that there is a data
gap in 1994 and 1995 due to the limited acquisitions of ERS-1 data; 24 L-band ALOS PALSAR SLC
data were acquired from the path/frame 58/2900 during the period from June 2006 to December 2010;
13 L-band ALOS-2 PALSAR-2 SLC data were acquired from the path/frame 18/2900 during the period
from December 2014 to November 2017. The detailed acquisition parameters of these three SAR data
are given in Table 2.

A 5-m high-resolution digital elevation model (DEM) provided by the GSI was used as a reference
to remove the topographic phase in the multitemporal InSAR processing [36]. The daily GPS data
observed by the GPS earth observation network system was used as reference point, and the leveling
survey measurement data was used to validate the InSAR derived deformation. The daily GPS data
was provided by the GSI of Japan. The leveling survey measurements have been conducted by the
Chiba Prefecture on an annual basis, and the results are publicly available at their official website [37].
The archived leveling survey data before 2008 was obtained from the Chiba Prefectural Archives.

Table 2. Acquisition parameters of the ERS-1/-2, ALOS PALSAR and ALOS-2 PALSAR-2 data sets.

SAR 1 Sensor ERS-1/-2 2 ALOS PALSAR ALOS-2 PALSAR-2

Orbit direction Descending Descending Descending
Operation mode SAR/IM 3 FBS/FBD 4 Strip map (SM)1

Band (wavelength) C-band (5.6 cm) L-band (23 cm) L-band (23 cm)
Resolution 20 m 10/20 m 3 m

Revisit cycle 35 days 46 days 14 days
Look angle 23◦ 34.3◦ 35.4◦

Incidence angle 23.3◦ 38.7◦ 39.7◦
Swath 100 km 70 km 50 km

Number of images 52 24 13
Temporal coverage May 1993 to February 2006 June 2006 to December 2010 December 2014 to November 2017

1 Synthetic aperture radar; 2 European Remote Sensing satellites; 3 IM: image mode; 4 FBS: fine beam single;
FBD: fine beam double.

3.2. Methodology

The multitemporal InSAR methodologies involve the use of multiple SAR datasets to overcome
the limitations of conventional InSAR (e.g., spatial and temporal decorrelations and atmospheric
disturbance) and measure the land surface displacements with high precision [38–40]. In this study,
the PSI and the SBAS were applied to the archived (i.e., ERS-1/-2 and ALOS PALSAR) and recent
(i.e., ALOS-2 PALSAR-2) SAR data. The PSI method utilizes a time-series of radar images to identify
high coherent points, the so-called persistent scatterers (PS) [17–19]; the SBAS method uses distributed
scatterers from all available SAR images with corresponding small baselines in order to reduce
the spatial decorrelation and obtain the time-series displacements [20]. The reason for using both
techniques relies on the fact that the PSI applicability is limited to temporally uniform rates of
displacement, while the SBAS has the ability to capture strong nonlinearities in the study area [41].
The PSI has a high sensitivity to slow displacements but suffers severe limitations in the capability to
measure “fast” deformation phenomena, and the PS density is usually low in vegetated, forested and
low-reflectivity areas (e.g. very smooth surfaces) [42], while the SBAS performs better in nonurban
vegetated areas, and also in areas with high deformation rates [43,44].

As shown in Figure 2, the ERS-1/-2 and PALSAR data were processed using both the PSI and
SBAS methods. Due to the limited number of PALSAR-2 acquisitions, we used only the SBAS method.
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The SARscape®Modules (5.4) for ENVI (5.4) software suite (HARRIS Geospatial Solutions, Broomfield,
CO, USA) was employed to perform the interferometric analyses. For the ERS-1/-2 data, we used the
latest precise orbit products provided by the ESA to correct the orbit inaccuracies [45] and generate
a total of 424 interferograms, including 36 for PSI processing and 388 for SBAS processing pairs
(Figure 2a,b). The PSI pairs were generated with respect to the master image from 24 January 2000.
The normal baselines range from 22 m to 557 m. A custom atmospheric filtering was performed with
a low pass spatial filter with a 1.2 km × 1.2 km window and a temporal high pass filter at 365 days.
The mean coherence threshold of 0.56 was used to identify the PS candidates. To obtain more accurate
displacement measurements, the GPS base station was used as a reference point in the geocoding
process (Figure 1b). The SBAS pairs were generated with respect to the multi-master images and by
setting spatial and temporal threshold criteria. The threshold criteria for the absolute mean of the
normal baselines was 210 m and that for the absolute mean of the temporal baselines was 937 days.
Moreover, the image acquired on 2 August 1999 formed the largest number of interferometric pairs,
when used as a master scene. For that reason, it was chosen as a reference (i.e., super master image).
Therefore, all the slave scenes are co-registered to this reference geometry (Figure 2b). To increase the
signal-to-noise ratio of the interferograms, a multi-looking factor of one in range and five in azimuth
was used, producing a ground resolution of about 20 m. The topographic phases in both the PSI
and SBAS interferograms were removed using the 5-m DEM data. After that, we visually checked
the intermediate products (i.e., flattened and filtered (wrapped) interferograms and the unwrapped
phases) to detect possible errors, which were caused by strong orbit inaccuracy, non-coherent pairs,
atmospheric artefacts, residual topography etc., and 23 interferometric pairs were discarded from
further processing. For refinement and re-flattening, we selected 45 reference points where the
unwrapped phase value was close to zero and the flat areas were identified from the unwrapped
interferograms and the topographic map. The linear inversion model was used to estimate the residual
height and the displacement velocity for both the PSI and SBAS processing [20].

For the PALSAR data, we used both fine beam single (FBS) polarization and fine beam double
(FBD) polarization images, with an HH polarization mode, and generated a total of 150 interferograms,
including 21 for PSI processing and 129 for SBAS processing pairs (Figure 2c,d). The PSI pairs were
generated with respect to the master image of 5 August 2009. The normal baselines range from 237 m
to 3084 m. The same atmospheric filter which was used for the ERS-1/-2 PSI processing was also
used to remove the atmospheric phase components. The mean coherence threshold of 0.75 was used
to identify the PS candidates. The same GPS base station used for the ERS-1/-2 PSI processing was
used as a reference point in the geocoding process. The SBAS pairs were generated with respect to
the multi-master images and by setting spatial and temporal threshold criteria. The threshold criteria
for the absolute mean of the normal baselines was 1084 m and that for the absolute mean of the
temporal baselines was 453 days. The image acquired on 20 March 2009 was chosen as a super master
image (Figure 2d). A multi-looking factor of one in range and five in azimuth was used, producing a
ground resolution of about 15 m. The topographic phase in both the PSI and SBAS interferograms was
removed using the same DEM used for the ERS data. Four interferometric pairs were removed due to
the unwrapping errors. The same reference points used in ERS-1/-2 SBAS processing were also used
for the refinement and re-flattening. The same linear inversion model was used for both the PSI and
SBAS processing.
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Figure 2. The temporal and spatial baseline distributions of the SAR interferograms from the ERS-1/-2,
ALOS PALSAR and ALOS-2 PALSAR-2 data sets (a–e), where each acquisition is represented by a
diamond associated to an ID number; the green diamonds represent the valid acquisitions and the
yellow diamonds represent the selected master image of persistent scatterers interferometry (PSI) and
super master image of the small baseline subset (SBAS). (a) Time–position plot of PSI interferograms
generated by the ERS-1/-2 data, with 24 January 2000 as the master image; (b) time–baseline plot of
SBAS interferograms generated by the ERS-1/-2 data, with 2 August 1999 as the super master image;
(c) time–position plot of PSI interferograms generated by the ALOS PALSAR data, with 5 August 2009
as the master image; (d) time–position Delaunay 3D plot of SBAS interferograms generated by the
ALOS PALSAR data, with March 20, 2009 as the super master image; (e) time–position Delaunay 3D
plot of SBAS interferograms generated by the ALOS-2 PALSAR-2 data, with 4 December 2014 as the
super master image; and (f) the histogram of the average coherence for the three satellite datasets.
These connections in (d,e) are a subset of the whole main network and represent such interferograms
that will be unwrapped in a 3D way.

The histogram of the average coherence for the PALSAR-2 data shows the relatively good
coherence of PALSAR-2 when compared with the ERS-1/-2 and PALSAR data (Figure 2f). For the
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PALSAR-2 data, we generated 78 interferograms for SBAS processing (Figure 2e), with respect to
the multi-master images. The threshold criteria for the absolute mean of the normal baselines was
182 m and that for the absolute mean of the temporal baselines was 386 days. The image acquired
on 4 December 2014 was chosen as a super master image. A multi-looking factor of six in range and
seven in azimuth was used, producing a ground resolution of about 15 m. The topographic phase
was removed using the same DEM used for the PALSAR data processing. To smooth the differential
phase, the Goldstein filter was applied [46]. The minimum cost flow (MCF) network and Delaunay
3D method were employed to unwrap the differential interferograms [47,48] with an unwrapping
coherence threshold of 0.35. The same reference points used in PALSAR SBAS processing was also
used for the refinement and re-flattening. The linear inversion model was used in the processing.
All the final displacement measurements were measured in the satellite line of sight (LOS) direction
and were geocoded in the WGS84 reference ellipsoid with a 25-m ground resolution.

4. Results

4.1. Time-Series Analysis of the ERS-1/-2 Data from May 1993 to February 2006

The mean velocity (mm/year) maps of the final geocoded displacements generated from the
ERS-1/-2 data are shown in Figure 3a (for PSI) and Figure 3b (for SBAS). The color cycle from green to
purple indicates the positive to negative velocities in the LOS direction. The negative values indicate
that the surface is moving away from the satellite (i.e., subsidence) while the positive values indicate
the opposite direction of movement (i.e., uplift). As shown in Figure 3a,b, the major subsidence areas
were highlighted by both InSAR measurements, which were located on the borders of the Naka-Machi
and Shin-Machi areas. The results derived from the SBAS method show higher densities of the
obtained points than those of the PSI. In the study area of over 860,256 pixels, 54,458 measurement
points were obtained by the PSI method, and 89,251 points by the SBAS method. The presence
of vegetation in Urayasu City—namely the palm trees in the streets and parks—might cause this
difference. The histograms of the estimated displacement velocities by the PSI and SBAS for the study
area are shown in Figure 4a,b, respectively. The average displacement rate and the standard deviation
for the PSI were −1.0 and 4.9 mm/year, while those for the SBAS were −0.95 and 1.9 mm/year,
respectively. In general, the ERS-1/-2 results show that approximately 85% of the PS points indicate
displacement rates between −4 mm/year and 2 mm/year (Figure 4).

Figure 5 shows the measured displacement histories for eight representative points, which
are shown in Figure 3. For both the PSI and SBAS measurements, the patterns of subsidence for
each point show similar characteristics, such as an increase in subsidence rates. However, point
P1 located in Moto-Machi shows very low subsidence rates (−0.1 and −0.9 mm/year for PSI and
SBAS, respectively) compared to those in other areas. This suggests that the Moto-Machi area had
relatively stable ground conditions during the ERS-1/-2 monitoring period. It is worth mentioning
that the PSI’s estimated displacement velocity is almost two times more than the SBAS results; this
may be caused by the different reference points selected in the two methods. We also calculated the
correlation coefficient between PSI and SBAS results over those selected points using the Pearson
correlation coefficient [49,50]. Most of those points showed relatively good correlation, while the P1
and P3 showed low correlation. However, the points P1 (−0.1 mm/year vs. −0.8 mm/year) and P3
(−0.7 mm/year vs. −2.3 mm/year) both show a small displacement velocity. To provide a quantitative
comparison of the estimated time series for those selected points, we calculated the velocity difference
between the two methods. The smallest velocity difference was 0.7 mm/year (P1), while the largest
velocity difference was 12.6 mm/year (P7). The average velocity difference for all points between the
two methods was 4.6 mm/year.
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Figure 3. Line of sight (LOS) displacement velocity in Urayasu City from 1993 to 2006 for the ERS-1/-2
data: (a) Estimated mean displacement velocity using the PSI method; (b) estimated mean displacement
velocity using the SBAS method. The background image is an ERS-2 intensity image acquired on
24 May 1999. The red points P1 to P8 are the selected points to show the time-series LOS displacements
estimated by the PSI and SBAS measurements in (a,b), respectively.
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Figure 4. Histogram distribution for the ERS-1/-2-derived displacement rates from May 1993 to
February 2006: (a) the corresponding histogram of the PSI measurements from the ERS-1/-2 data; and
(b) the corresponding histogram of the SBAS measurements from the ERS-1/-2 data.

Figure 5. Time-series LOS displacement plots of the PSI and SBAS measurements from the ERS-1/-2
data (a–h) for the selected points P1 to P8, which are indicated by red points in Figure 3.
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4.2. Time-Series Analysis of the PALSAR Data from June 2006 to December 2010

The mean velocity (mm/year) maps of the displacements for the period from June 2006 to
December 2010 is shown in Figure 6a for PSI and Figure 6b for SBAS. The same color cycle from green
to purple was used for those results. As shown in Figure 6a,b, the density of the measured points by
the PSI is coarser than those by the SBAS, due to the existence of vegetation in the study area. In the
study area of over 695,387 pixels, 50,441 measurement points were obtained by the PSI method, and
78,044 points by the SBAS method. The histograms of the estimated displacement velocity by the PSI
and SBAS for the study area are shown in Figure 7a,b, respectively. The average displacement rate
and the standard deviation for the PSI were −1.3 and 3.9 mm/year, whereas those for the SBAS were
−1.7 and 3.3 mm/year, respectively. Overall, the PALSAR results show that approximately 85% of the
PS points indicate displacement rates between −6 mm/year and 3 mm/year (Figure 7).

During the PALSAR monitoring period, most of the previously detected subsidence areas were
also detected in this period, but the spatial distributions of subsidence are reduced (e.g., the areas
such as points P2, P4, P5 and P8 located in Figure 6a,b). This indicates that most of those areas were
experiencing continuous subsidence over the study period, but the magnitude was beginning to
decrease. This is evident at the points P2 and P4 (Naka-Machi) and P8 (Shin-Machi) that showed
a decrease in displacement velocity compared to the ERS-1/-2 monitoring period. In addition,
the leveling data at the points U-8, U-10, U-11, U-13 and U-14 also reveal that the subsidence rate
has begun to decrease from 2003 [37]. However, significant subsidence was identified in the coastal
levee areas (i.e., the Maihama (A), Akemi and Hinode (D), Takasu (E), Minato (F) and Chidori (G)
districts), which was not identified by the ERS-1/-2 data (Figure 6). In general, the PALSAR (L-band)
has a longer wavelength than the ERS-1/-2 (C-band), which has less decorrelation over vegetated
terrain and has better coherence [51]. Thus, the results of the PALSAR data offer a higher density of
PS pixels. Therefore, we can assume that these areas may have been experiencing subsidence during
the ERS-1/-2 monitoring period and may have been excluded from further processing due to the low
coherence exhibited in these areas in the ERS-1/-2 data. Another reason for those differences is that
the subsidence in the coastal levee may have started during the PALSAR monitoring period.

Figure 8a–h shows the measured displacement time-series for eight representative points, which
are shown in Figure 6a,b (the same points in Figure 3a,b). From Figure 8a–h, we can see that the
time-series LOS deformations derived by both the PSI and SBAS processing showed good agreement
in the subsidence trend. The estimated deformation rates by the PSI and SBAS measurements on points
P1, P2, P4, P7 and P8 showed a velocity difference of less than 3 mm/year, while the points P3, P5 and
P6 showed the largest velocity difference of over 5 mm/year. The average velocity difference for all
points between the two methods was 2.9 mm/year. In general, similar to the ERS-1/-2 monitoring
period, the Moto-Machi area also showed very low subsidence rates in the PALSAR monitoring period.
This may be related to the fact that, in most parts of the Moto-Machi area, the urban infrastructures
and houses are built over the naturally formed Holocene lowland that has stable ground conditions
over time.
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Figure 6. Mean LOS displacement velocity in Urayasu City from 2006 to 2010 for the PALSAR data:
(a) estimated mean displacement velocity using the PSI method; (b) estimated mean displacement
velocity using the SBAS method. The background image is a PALSAR-2 intensity image acquired
on 04 December 2014. The red points P1 to P8 are the selected points to show the time-series LOS
displacements estimated by the PSI and SBAS measurements in (a,b), respectively. A-G represent the
reclaimed areas and districts which described in Table 1.
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Figure 7. Histogram distribution for the PALSAR-derived results from June 2006 to December 2010.
(a) The corresponding histogram of the PSI measurements from the PALSAR data; and (b) the
corresponding histogram of the SBAS measurements from the PALSAR data.

Figure 8. Time-series LOS displacement plots of the PSI and SBAS measurements (a–h) for points P1 to
P8, which are indicated as red points in Figure 6a,b, respectively.
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4.3. Time-Series Analysis of the PALSAR-2 Data from December 2014 to November 2017

The mean velocity (mm/year) maps of the displacements for the period from December 2014
to November 2017 are shown in Figure 9. The same color cycle from green to purple was used for
the result. In the study area of over 690,336 pixels, 76,500 measurement points were obtained by
the SBAS method. The histogram of the SBAS-derived displacement velocity for the study area is
shown in Figure 10. The average displacement rate and the standard deviation are −0.5 mm/year and
1.9 mm/year, which are lower than those obtained with the ERS-1/-2 and PALSAR data. In general,
the PALSAR-2 results show that approximately 85% of the PS points indicate displacement rates
between −3 mm/year and 1 mm/year (Figure 10). To show the variations in the LOS displacement
velocities at different locations over the three observation periods, six profiles across several locations
in Urayasu City were selected (Figure 9). We can see from Figure 11 that these selected profiles show
different displacement dispersion patterns, such as profiles P1–P1’ and P5–P5’ which show a dispersion
of approximately −0.5 mm/year to −2.6 mm/year. Along profile P4–P4’, the subsidence rate increased
from 0.1 to 21 mm/year within the distance of 0.6 km. The profiles in Figure 11b–d,f reveal that the
PALSAR-estimated subsidence rate has a larger value than those from the ERS-1/-2 and PALSAR-2.
Contrary to the ERS-1/-2 and PALSAR-estimated displacement velocity, the PALSAR-2 results show an
uplift within the distance of 300 to 900 m in the profile P1–P1’ across the Moto-Machi area (Figure 11a).
Moreover, both PALSAR and PALSAR-2 estimated displacement rates show a significantly decrease
along P4–P4’ (Figure 11d).

During the PALSAR-2 monitoring period, because of the high spatial resolution and shorter
revisiting time compared to the ERS-1/-2 and PALSAR data, a subsidence estimation with better spatial
coverage and precision was achieved. Figure 9 shows that the three areas that have subsided during the
previous monitoring periods have also showed land subsidence in this PALSAR-2 monitoring period
(i.e., the border areas between Naka-Machi and Shin-Machi; the areas close to the levee of Hinode
and Akemi (D); the Maihama area (A)). This may further imply that these areas were experiencing
continuous subsidence during the entire monitoring period. Considering the existence of non-linear
subsidence, the actual subsidence may not be a linear motion overtime, and the results by PSI and
SBAS simply reflect the subsidence phenomena. However, the spatial extent and the magnitude of
subsidence over Urayasu City is shrinking. The Moto-Machi area is in a relatively stable ground
condition over the whole monitoring period, and the areas close to the borders of Moto-Machi and
Naka-Machi began to stabilize over time. A further detailed discussion about the evolutions and the
causes of land subsidence in Urayasu City are given in Section 5.4.
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Figure 9. Mean LOS displacement velocity in Urayasu City from 2014 to 2017 for the PALSAR-2 data.
The background image is a PALSAR-2 intensity image acquired on 4 December 2014. P1–P1’ to P6–P6’
are the selected profiles to show the displacement velocities at different sites.

Figure 10. The corresponding histogram of the SBAS measurements from the PALSAR-2 data.
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Figure 11. Mean LOS displacement velocities for the three observation periods (a–f) along the six
profiles whose positions are indicated as purple lines in Figure 9.

5. Discussion

5.1. Comparison of the InSAR-Derived Results with the Leveling Data

To assess the accuracy of the InSAR-derived results over the three observation periods,
a quantitative comparison of the time-series displacements with the leveling survey data provided
by the Chiba Prefecture at 22 measurement points was performed. To locate each leveling point,
we referenced the online version of the Chiba information map and the illustration figures of each
leveling point provided [52]. For the InSAR measurement points, especially those in incoherent areas,
the pixels that lay within 100 m of the corresponding leveling points were assigned, and the average
velocity of these pixels was calculated. We selected the leveling data in the same overlapping periods
as the three InSAR measurement periods. We assumed the horizontal deformation was negligible, and
the LOS displacement velocity was converted into the vertical displacement velocity by dividing the
cosine of the sensor incidence angle [53].
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Figure 12. Comparison between InSAR-derived linear subsidence velocity and leveling measured
linear subsidence velocity during the three InSAR observation periods: (a,b) ERS-1/-2 derived linear
subsidence rate (May 1993 to February 2006) and leveling-derived linear subsidence rate (January
1993 to January 2006); (c,d) PALSAR-derived linear subsidence rate (June 2006 to December 2010)
and leveling-derived linear subsidence rate (January 2006 to January 2011); (e) PALSAR-2-derived
linear subsidence rate (December 2014 to December 2016) and leveling-derived linear subsidence rate
(January 2015 to January 2017); and (f) spatial distribution of leveling points in Urayasu City.
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Figure 12 shows the spatial distribution of the leveling points and the comparison between
the leveling and InSAR-derived linear subsidence rate. Note that the number of leveling points
are different among the different InSAR observation periods; 17 leveling points were used for the
comparison of the ERS-1/-2 and PALSAR observation periods, while 21 leveling points were used
for the PALSAR-2 observation period, which is due to five new leveling points being established
after the 2011 Tohoku Earthquake and the leveling point U-12A being missing in 2016. We also used
different plot scales (20 mm/year vs. 12 mm/year) and (2/4 mm vs. 1/2 mm for error lines), due
to the smaller errors shown in PALSAR data using the SBAS method (Figure 12d). The comparison
results show that the results from the ERS-1/-2 data using the SBAS method have the largest root mean
square errors (RMSEs) of 4.4 mm/year, while the results from PALSAR and PALSAR-2 data using the
SBAS method have the smallest RMSEs of 0.9 and 2.2 mm/year, respectively. For the ERS-1/-2 and
PALSAR data, more than 12 out of the 17 measurement points showed a residual value of less than
4 mm/year (Figure 12a–d); for the PALSAR-2 data, and 14 out of the 21 measurement points showed a
residual value of less than 2 mm/year (Figure 12e). As shown in Figure 12a,b,e, the results from the
ERS-1/-2 and PALSAR-2 data using the PSI and SBAS method showed the largest discrepancies at
several leveling points. This may have been caused by the low coherence of ERS-1/-2 datasets and
the contribution of phase noise. The fewer PALSAR-2 image pairs and the sudden elevation changes
in the ground, i.e., the leveling point U-17 subsided by the influence of construction work during
2015–2016 [37], may also affect the comparison result. Nevertheless, according to these comparisons,
the InSAR-derived results agree relatively well with the result of the leveling measurements and
suggest the reliability of the InSAR-measured subsidence rate.

5.2. Spatial and Temporal Patterns of Land Subsidence

To further reveal the land subsidence patterns in different districts over the three observation
periods, we generated the spatial distribution map of difference of land subsidence rates (Figure 13)
using the ArcGIS 10.3 (Esri, Redlands, CA, USA) spatial analyst tool. As the incidence angles of
those sensors are different, before comparison, the LOS displacement velocity was converted into
the vertical displacement velocity by dividing the cosine of the sensor incidence angle [53]. It can
be seen from Figure 13a that the areas in the central town (i.e., Maihama (A), Tekkodori, Benten,
Imagawa (B) and Irifune (C)) and new town (i.e., Takasu (E), Minato (F) and Chidori (G)) show
slight to moderate subsidence with a 2–13 mm/year rate during the ERS-1/-2 observation period.
From Figure 13b, we can see that the subsidence rate in some of the districts of the central town
(e.g., Benten, Tekkodori and Imagawa (B)) has decreased up to 12 mm/year; while the areas in the
new town showed increasing subsidence up to 28 mm/year, especially in Hinode (D) and Chidori
(G). The comparison of PALSAR-2 and PALSAR estimated subsidence rate show that, the previous
subsiding areas were experiencing a reduced subsiding rate, except some localized subsidence in the
new town (Figure 13c). The comparison of PALSAR-2 and ERS-1/-2 estimated subsidence rate show
that, the subsidence in both of the central town and new town has significantly decreased, except for
areas in Maihama (A), Irifune (C), Hinode and Akemi (D) (Figure 13d). In general, most of those areas
in the central town are residential and commercial amusement land, while the bew town are parks and
industrial land. The subsidence in parks can only be caused by the natural soil consolidation, while in
the residential, commercial and industrial areas, the subsidence may be caused from the integrated
effect of numerous natural and anthropogenic processes.
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Figure 13. The spatial distribution map of difference of land subsidence rates during the three
observation periods: (a) ERS-1/-2 derived subsidence rate using the SBAS method; (b) difference
between ERS-1/-2 and PALSAR derived subsidence rates (subtracting ERS-1/-2 from PALSAR);
(c) difference between PALSAR and PALSAR-2 derived subsidence rates (subtracting PALSAR from
PALSAR-2); (d) difference between ERS-1/-2 and PALSAR-2 derived subsidence rates (subtracting
ERS-1/-2 from PALSAR-2).

5.3. The Use of Different SAR Sensors in Land Subsidence Monitoring

The number of satellite data sources is currently increasing steadily. These datasets from the
previous SAR sensors such as ESA archive (ERS-1/-2, ENVISAT) as well as the new generation of C, X
and L-band SAR images provided by the RADARSAT-2, Sentinel-1A, ALOS-2, TerraSAR-X, Tandem-X
and the COSMO-SkyMed constellation, etc. have enabled us to compute the time series of the occurred
and on-going surface displacements from regional scale to individual buildings. In particular, the
exploitation of the free and open access data archives collected by the Sentinel-1A system permit us to
conduct continuous land deformation analysis over large areas.

In this study, three different SAR datasets, the ERS-1/-2, ALOS PALSAR and ALOS-2 PALSAR-2,
were used to monitor the long-term land subsidence in Urayasu City. The C-band has a shorter
wavelength and hence better displacement sensitivity, and the L-band has longer wavelength and
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lower frequency showing more extensive coverage over natural areas and less temporal decorrelation.
The data acquired by these satellites cover long periods of time and enabled us to perform long-term
deformation monitoring of the study area. However, those different sensors have different imaging
parameters, e.g., spatial and temporal resolution, incidence angle, and wavelength, which show
different characteristics in terms of their maximum detection gradient, degree of decorrelation,
capability of noise rejection, etc. The different imaging parameters and the use of an uneven number
of images among different sensors cause some difficulties in comparing their performance and the
quality control of multi-sensor InSAR results. Moreover, the low resolution and the longer revisit time
of ERS-1/-2 and PALSAR has prevented us from observing short-term land deformations caused by
the anthropogenic activities. Furthermore, data gaps between the PALSAR and PALSAR-2 caused
some difficulties in analyzing InSAR results.

5.4. Land Subsidence and Possible Causes

The origin of land subsidence in coastal areas can be summarized into two categories: either
caused by natural causes (e.g., natural compaction/consolidation of soil or tectonic movements, such
as earthquakes) or anthropogenic activities (e.g., oil, gas and ground water exploitation). In some cases,
the pattern of land subsidence might be even more complicated when it is caused by the combined
effects of multiple factors at different scales. In Urayasu City, since most of the areas are land-filled,
the natural consolidation of soil is postulated to be the primary driver of land subsidence. To further
analyze the relation between subsidence and soil geology, we compared the InSAR-derived subsidence
areas with the geologic map showing the depth of the upper surface of the solid geological stratum
in Urayasu City (Figure 14a) and found a remarkable spatial correlation between the geologic map
of the soil properties and the subsiding areas. In most of the reclaimed zones, the upper layer of soil
filled with hill sand and dredged sandy soil (FS) with a standard penetration test (SPT) N-value of 2–8;
an alluvial sand layer (AS) with SPT N-value of 10–20 underlies the filled layer; a very soft alluvial
clay (AC) is deposited under the AS layer with a low SPT N-value of 0–5; a diluvial (Pleistocene) dense
sand layer (DS) with SPT N-value of 50 or greater is deposited blow the AC layer (Figure 14b) [23,24].
Along the line A–A’, the thickness of AC layer increases significantly between the Naka-Machi and
Shin-Machi area, and it continues towards the sea (Figure 14b). As the consolidation of soil occurs
in soft clay deposits, the thick AC layers in Naka-Machi and Shin-Machi area are most probably
responsible for the continuing subsidence in Urayasu City.

As shown in Figure 14a, the depth of the bottom of the alluvial layers increases from 20 m in
Moto-Machi to about 40 m in Shin-Machi, with several narrow-buried valleys of up to 70 m in depth.
The buried-valleys, which are about 60 m deep, exist directly below the Minato, Chidori, Tekkodori,
Imagawa, Akemi and Irifune areas, causing complicated changes in the thickness of the soft ground in
those areas, while the depth increases up to 80 m in Maihama where the largest subsidence occurred.
This further suggests that the areas undergoing large subsidence correspond to those having thick
layers of soft soil over a stiff basement. The Moto-Machi area, with soil deposits consisting of sandy
soils with an alluvial origin, was quite stable over the observation period, while the Naka-Machi and
Shin-Machi areas, with thick layers of fine-grained soft soil overlying a stiff basement, had significant
land subsidence over the study period. However, considering the complexity of the land use and
the anthropogenic activities in different districts of Urayasu City, the subsidence may not be solely
caused by the natural consolidation, but also from the integrated effects of numerous natural and
anthropogenic processes.
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Figure 14. Depth of the upper surface of the solid geological stratum (a) in Urayasu City (adapted from
the public report by the technical committee of Urayasu City [54]). The points refer to the locations of
borehole sites; (b) soil cross sections along the A–A’ line. FS + AS refer to filled sandy soil and alluvial
sand layers, and AC and DS refer to the alluvial clay layer and diluvial dense sandy layer, respectively.
The borehole investigation data were obtained from the Chiba Prefecture [55].

The additional load of buildings and structures is also considered to be one of the causes of land
subsidence in urban areas [56]. In Urayasu City, since the establishment of Urayasu town in 1909 in
the old town (Moto-Machi)—a naturally formed Holocene lowland—the natural soil consolidation
might be gradually reduced and stopped. Besides this, the density of buildings in the old town are
lower than the central town. Many houses, commercial buildings and public facilities were built in
the central town during the first phase of the project, ending in 1975. Meanwhile, many high-rise
buildings, universities, hotels and storehouses were built in the new town during the second phase
of the project, ending in 1980 [22]. The additional load during and after the building construction,

138



Remote Sens. 2018, 10, 1304

especially the high-rise buildings, could transfer a high loading to the ground and may eventually
lead to substantial land subsidence. However, these buildings use a pile foundation to satisfy bearing
capacity and deformation and may not show significant subsidence while the surrounding areas are
subsiding. Figure 15 shows the InSAR-derived subsidence velocity (2006–2010) and the locations of
high-rise buildings. Most of those buildings show stability, whereas their surroundings show land
subsidence. However, further investigations are expected to determine the relationship between land
subsidence and the building density/high rise buildings.

The Maihama district in the central town, where Tokyo Disneyland is located, showed
significant subsidence throughout the whole InSAR observation period. However, in this area,
the pattern of land subsidence may be even more complicated due to the continuous construction and
renovation/redevelopment of the fantasy-land and other anthropogenic activities. The SAR images
with a low resolution and longer revisiting time, and the linear inversion model used in the InSAR
processing, may hinder the effective monitoring of short-term movements such as those induced
by human activities and may cause some biased results. Therefore, more high-resolution SAR data
with a short revisiting time and further investigation is required to understand the intricacies of the
relationship between land subsidence, natural consolidation and load of buildings.

Figure 15. Subsidence rate map (2006–2010) generated with ALOS PALSAR data overlaid on a Google
Earth image. The green polygons indicate the park area, red polygons indicate the location of high-rise
buildings, the yellow polygon shows the highly populated residential area. The blue polygon indicates
the border of Urayasu City and corresponds to the location of Figure 14a, and the A–A’ line corresponds
to the soil cross section in Figure 14a,b.

Ground water exploitation is one of the major causes of land subsidence in many coastal cities,
such as in Jakarta [5], Bangkok [8] and Shanghai [57]. Nevertheless, this may not be the cause of land
subsidence in Urayasu City; this is because the ground water exploitation was gradually reduced and
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stopped in 1993 [58], and the city receives water from a water purification plant which uses the main
water sources of the Tone river and Edogawa river [59]. Moreover, since April 1992, Chiba Prefecture
has been implementing restriction rules on groundwater use for the highly susceptible areas of land
subsidence, including Urayasu City [60]. Thus, the ground water exploitation has insignificant impacts
on land subsidence in Urayasu City.

As an earthquake-prone country, earthquakes happen frequently in Japan. Earthquakes have
significant influences on coastal areas, especially on reclaimed land. In the 2011 Tohoku earthquake,
houses and infrastructures were severely damaged due to soil liquefaction in Urayasu City [22].
In addition, long-term ground settlement was also observed after the earthquake, and the degree of
subsidence was different in areas where reclaimed soils were improved or not [24]. In the areas where
the soil was not improved, the subsidence may have been accelerated by the earthquake. The InSAR
observation results derived from the PALSAR-2 data showed significant continuing land subsidence
near the levee areas (mostly parks and vacant lands), which may have been accelerated by the effects of
the earthquake. However, most areas showed a decrease of land subsidence, this may be related to the
fact that the PALSAR-2 observations (December 2014 to November 2017) were collected almost 4 years
after the Tohoku earthquake, and considering the soil aging effect and soil improvement, the land
settlement in most of those areas caused by the natural soil consolidation and the earthquake might
gradually decrease. It is worth mentioning that after the earthquake, the Urayasu government started
to test several countermeasure methods, such as lowering the ground water level and grid wall soil
improvement. Finally, Urayasu has adopted the grid wall soil improvements as a countermeasure
to prevent future risks [61]. This project may also have played a positive role in alleviating the land
subsidence in Urayasu City.

6. Conclusions

In this study, to monitor the long-term spatial patterns of land subsidence in Urayasu City,
we used three sets of different SAR data and advanced InSAR techniques. The obtained InSAR results
during the three observation periods from 1993–2010 and 2014 to 2017 show continuing subsidence
occurring in several reclaimed areas of Urayasu City. The maximum subsidence rate from 1993 to
2006 was approximately 27 mm/year, from 2006 to 2010 it was 30 mm/year, and from 2014 to 2017 it
was about 18 mm/year. The results were verified by comparing them with the leveling survey data.
The comparison shows that the obtained InSAR results agree well with the leveling measurements,
with a correlation value of over 0.8. The natural consolidation of soil in the reclaimed areas can be
considered as a primary driver of land subsidence in Urayasu City, while the integrated effects of
numerous natural and anthropogenic processes are also not negligible. Considering the soil aging
effect, water-use restriction rules and soil improvement work performed by the government and land
owners might also have played a positive role in alleviating the land subsidence and related disasters.
However, further investigation is required to understand the intricacies of the relationship between
the land subsidence and anthropogenic activities. The outcome of this research further proves the
suitability and effectiveness of InSAR measurements in the land subsidence monitoring of coastal
urban areas.
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Abstract: This paper presents a methodology to exploit the Persistent Scatterer Interferometry
(PSI) time series acquired by Sentinel-1 sensors for the detection and characterization of uplift
phenomena in urban areas. The methodology has been applied to the Tower Hamlets Council area
of London (United Kingdom) using Sentinel-1 data covering the period 2015–2017. The test area
is a representative high-urbanized site affected by geohazards due to natural processes such as
compaction of recent deposits, and also anthropogenic causes due to groundwater management and
engineering works. The methodology has allowed the detection and characterization of a 5 km2

area recording average uplift rates of 7 mm/year and a maximum rate of 18 mm/year in the
period May 2015–March 2017. Furthermore, the analysis of the Sentinel-1 time series highlights that
starting from August 2016 uplift rates began to decrease. A comparison between the uplift rates and
urban developments as well as geological, geotechnical, and hydrogeological factors suggests that
the ground displacements occur in a particular geological context and are mainly attributed to the
swelling of clayey soils. The detected uplift could be attributed to a transient effect of the groundwater
rebound after completion of dewatering works for the recent underground constructions.

Keywords: Persistent Scatterer Interferometry (PSI); Sentinel-1; uplift; expansive soils; dewatering;
London

1. Introduction

Ground displacements can be evidence of several processes of natural origin such as
swelling/shrinkage of expansive soils, compaction of recent deposits, tectonic displacements associated
to the occurrence of earthquakes or long-term tectonic movements and anthropogenic causes such as
pumping-induced aquifer-system compaction [1]. In many instances, the movements are due to the
interactions of multi-driving factors that act at various spatial and temporal scales [2]. Furthermore,
ground motion can imply surface deformation with 3D displacement components, negative and
positive vertical movements and/or horizontal (E-W) movements. Negative displacement corresponds
to lowering of the earth surface named land subsidence meanwhile positive displacement is the uplift
of the earth surface.

Uplift phenomena are less common and less studied than land subsidence. Positive movements
(uplift) can occur as a result of various natural and human causes; for example, swelling of clay
soils [3], fault effects [4], and water rebound in mining areas [5,6]. Uplift phenomena can lead to
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various environmental and engineering problems such as springs of polluted water [7] and damage to
building foundations [8,9].

In the United Kingdom (UK), shrinking and swelling of clay lithologies represents one of the most
damaging geohazards, costing the economy an estimated £3 billion over the past 10 years as reported
by the Association of British Insurers [10]. Accordingly, the capability to detect and quantify the ground
displacement of structures and infrastructure at regional and local scale would be a cost-effective tool
that offers great value to insurance companies and government institutions.

Persistent Scatterer Interferometry (PSI) is a powerful remote sensing tool, capable of mapping
displacements over wide areas at very high spatial resolutions. The technique is based on the processing
of multiple interferograms derived from a large set of Synthetic Aperture Radar (SAR) images to obtain
displacement time series, along the line of sight (LOS) of the satellite, of radar targets on the earth
surface [11–13].

Several studies report on PSI applications for urban deformation monitoring such as the study of
displacement time series of buildings, roads, railways, dams, and tunnels [14–22].

London is a megacity of the United Kingdom experiencing an increasing density of structures
and infrastructure such as transport tunnels, requiring dewatering schemes to control groundwater
during their construction [23,24]. Satellite-based data were previously used to characterize ground
displacements in London. Aldiss et al. [25] used ERS and ENVISAT collected between March 1997
and December 2005 to carry out a geological interpretation of the subsidence and uplift trend.
Cigna et al. [26] used ERS and ENVISAT covering the time intervals 1992–2000 and 2002–2010
to delineate the boundaries of the geohazards in London within the framework of the European
Commission FP7-SPACE project PanGeo. Bateson et al. [27] used the satellite-based data covering the
period 1997–2005 to validate the results of the modelled subsidence due to groundwater abstraction for
the Merton area of south-west London. Bonì et al. [28] exploited the ERS and ENVISAT covering the
time intervals 1992–2000 and 2002–2010 to analyze the ground motion due to the groundwater level
changes in London. More recently, high-resolution PSI data from the COSMO-SkyMed constellation
has been used to study the effect of tunnel-induced subsidence damage assessment [29].

In this paper, new Sentinel-1 SAR data are used to measure the ongoing displacements in London
covering the period from 2015 to 2017. The goals of this study are (1) the exploitation of new and freely
available Sentinel-1 data to analyze uplift phenomena and (2) the development of a methodology for
the geological interpretation of PSI results in urban areas. The developed methodology represents
a refinement for uplift investigations using new Sentinel-1 data, of the methodology proposed in
Bonì et al. [30] for subsidence studies. The procedure is addressed to overcome limitations, such as the
analysis of large data sets, by (i) improving the management and interpretation of dense time series
guaranteed by Sentinel-1 (ii) and to provide an insight on the capability to monitor movements during
engineering works given by the reduced revisit time (i.e., 6–12 days) of the latest spaceborne sensors.

Urban developments as well as geological, geotechnical, and hydrogeological factors have been
compared with the average velocities and the displacement time series to identify the predisposing and
triggering factors of the detected ground displacements. The results allow to detect and characterize
uplift phenomena after the termination of engineering works such as dewatering process for structures
and infrastructure network construction as in the case of Crossrail tunneling in London.

2. Study Area

With more than 60,000 boreholes sunk in Greater London alone, the geology of the London
Basin has been widely described by Sumbler [31], Ellison et al. [32], and reviewed by Royse et al. [23].
The Basin consists largely of a broad gentle syncline of Mesozoic and Cenozoic units overlapping the
Palaeozoic basement, the London Platform, of folded Silurian and foreland Devonian rocks at depths
of ~300 m in central London. The main geological units of relevance are: The Upper Cretaceous Chalk
Group, a fine grained and micro-porous limestone up to 400 m thick which mainly outcrops in the
marginal areas of the basin (Figure 1). Unconformably overlying the Chalk is the oldest Paleogene
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deposit, the Thanet Sand Formation, a 30 m coarsening upwards succession of fine grained, sandy-silty
terrigenous sediments [32]. Successively, the basin experienced the deposition of the Lambeth Group
(LMBE) composed of 20/30 m illite, smectite and montmorillonite dominant clay intercalated with silty
and sandy horizons and lenses. During the Eocene the deposition of the Thames Group, comprising
the Harwich Formation and, then, London Clay Formation (LC), started in the basin. West of London,
the youngest Eocene sediments in the London Basin are preserved: they are predominantly the sands
and clay units of the Bracklesham Group.

The subsequent Quaternary deposits (superficial geology) are represented by the river terrace
deposits of the Thames River, locally covered by alluvial deposits of the Thames River.

Due to the erosion of much of the overlying deposits, the LC is probably the most well-known
of the units present in the London Basin with a significant influence on London’s infrastructure: its
widespread presence beneath much of central London, with a thickness between 90 m in the west
and to 150 m in the east [33] and relatively homogeneous structure makes it a near perfect tunneling
medium, thus, facilitating the development of the London Underground [23].

Nevertheless, spatially widespread illite/smectite clay minerals in the LC are particularly
susceptible to seasonal processes of shrinking and swelling, potentially damaging buildings and
infrastructure [34,35], and therefore represent a major concern for the insurance industry.

Figure 1. Location (sources: Esri, DeLorme, USGS, NPS) and geological map of London based upon
the 1:50,000 bedrock geology, with the permission of the British Geological Survey. All rights reserved.
British National Grid. Projection: Transverse Mercator. Datum: OSGB 1936. The geological cross
section A-A’ is also reported (modified from [28]).
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The main aquifer of the Basin is represented by the Chalk Group. This is characterized by
a primary and secondary porosity related to the matrix and the fracturing network, respectively [36–38].
The primary porosity of these rocks is about 35% [39] but the average conductivity is just about
0.001 m/day [40]. The basin is marked by several faults that act like a barrier or conduits for the
groundwater flow [41,42]. The Chalk outcrops in the northern and southern part of the Basin where it is
directly recharged by the rainfall infiltrations. In the central area of the Basin, the overlying Palaeogene
formations confine the aquifer. Whereas the lithological variability of Palaeogene deposits leads to
hydrogeological heterogeneity, these units do not form principle aquifers. Where sand-rich horizons
are present in the Paleogene deposits (Thanet Formation and Lambeth Group), significant quantities of
groundwater can be contained. The hydraulic continuity between the Chalk and Thanet Sands may
be limited in places, and some continuity with the Lambeth Group depending on the clay and sand
content [41]. Therefore, Chalk-Thanet Sands (deep aquifer) and Lambeth Group-Harwich Formation
(intermediate aquifer) are regarded as separate aquifers for resource management [41]. The sand unit
of Lambeth Group and Harwich Formation represents the intermediate aquifer that it encloses in the
top and bottom by the clayey units of the London Clay and the Lambeth Group, respectively.

River Terrace Deposits (RTD) and Made Ground (MG) form a minor shallow aquifer, separated
from deeper aquifers by clay layers.

The groundwater level (GWL) lowering across the London Basin mainly started in the mid-1850s
with a progressive increase in abstraction from the Chalk aquifer. This abstraction became unsustainable
leading to unconfined conditions in about 1940 and started to rise again after the mid-1970s [41,42].
In order to contrast this local groundwater variation, that can lead to serious effects on both building
foundations and shallow structures such as the London Underground etc., the General Aquifer
Research, Development and Investigation Team (GARDIT) strategy was developed by Thames Water,
Environment Agency and London Underground and as a result, an observation borehole network
within the Basin was established in order to control and manage the GWL in the London Basin [41,42].
In this area, more than 20 major tunneling projects started since the 1980s, the latest being: Pimlico
and Wandsworth to Wimbledon cable tunnel (1992–1995), Jubilee Line Extension (1993–1999), Channel
Tunnel Rail Link (2001–2006) and the National Grid power tunnels (2011 to present).

3. Data

A multidisciplinary approach has been implemented in order to carry out a comprehensive study
of the investigated phenomena, by using satellite radar interferometric data and different information
contained in geological, geotechnical, hydrogeological and buildings database.

3.1. PSI Data

The study has been performed using 79 SAR images acquired by Sentinel-1A/B satellites on the
descending pass on track 201. The images were acquired from May 2015 to March 2017 with a nominal
revisit cycle of 6/12 days. Processing was carried out using the GAMMA software—and, in particular,
the Interferometric Point Target Analysis—IPTA package [43]. IPTA allows millimetric displacement
measurements to be made using individual, highly reflective terrain-features that provide a persistent
response throughout the multi-temporal dataset being analyzed. These ‘persistent scatterers’ (PS)
generally correspond to parts of man-made structures such as buildings, bridges, pylons, etc., or hard,
rocky terrain. A multi-master approach was used with displacement, elevation and thermal expansion
coefficients estimated for each PS.

Results are in the satellite line-of-sight and therefore contain a combination of vertical and
horizontal displacement components. The line-of-sight is defined by an incidence angle of 34 degrees
from nadir and a look orientation of 282 degrees. The processing results show a total of 1,455,921 PS,
over a processing area of around 1596 km2, hence the target density amounts to 912 PS/km2 (Figure 2).
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Figure 2. Average line of sight (LOS) velocity measured by the use of Sentinel-1 data during the period
2015 to 2017 across the study area. The location of the GNSS station is also reported.

The Sentinel-1 dataset covers a limited observation period, thus, the historical ascending ERS-1/2
and descending ENVISAT data, from 1992 to 2000 and from 2002 to 2010 [26,28], respectively, have been
also analyzed for the characterization of the local scale ground instability (study area, see the location
in Figure 2). PSI ground motion data acquired by ERS1/2 and ENVISAT data, are characterized by
nominal repeat cycle of 35 days and were also processed using the GAMMA SAR and Interferometry
software and, in particular, the IPTA algorithm [43]. This allows an investigation into the evolution of
displacement from 1992 through to the current day.

3.2. Geological, Groundwater Level and Buildings Database

Different datasets have been considered to analyze the predisposing and triggering factors of
ground motion in London. The exploited databases are described as follows.

• Groundhog Desktop from the British Geological Survey (BGS)

Groundhog Desktop is a free-to-use software tool for visualizing and interpreting a range of
geological and environmental data such as boreholes, water levels, geo-technical and geo-chemical
measurements, geological maps, conceptual models, and cross-sections [44]. The database contains
more than 1,300,000 records of boreholes, shafts, and wells from all forms of drilling and site
investigation work available in Great Britain. This database has been used to estimate the thickness of
the clayey deposits.

• National Geotechnical Properties Database (NGPD) from BGS

The NGPD holds geotechnical information extracted from site investigation records provided
by clients; consultants and contractors, and from field and, secondarily, from laboratory test results
carried out by the BGS [45]. For each sample, the location, the lithology, the depth, and the geotechnical
characteristics are documented. The Swelling Pressure of the clayey layer has been analyzed using
this database.
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• GeoSure from BGS

GeoSure identifies and classifies the susceptibility connected to areas of potential natural ground
movement in Great Britain. The database provides information on the Volume Change Potential (VCP)
and Volume Change Potential Range of the shrinking-swelling formations in three-dimensional space;
at intervals down to 20 m in Greater London [46]. The VCP values are based on the Modify plasticity
Index (Ip’) proposed in the Building Research Establishment Digest 240 [46].

• Groundwater level data from Environment Agency (EA)

The EA maintains an extensive network of groundwater level observation boreholes within and
outside the London Basin. Time series data for groundwater levels have been made available from the
Environment Agency’s WISKI database and plotted as water level in m AOD (above ordnance datum;
UK sea level measurement).

• Building height map from Emu Analytics

The online database [47] shows the height of each buildings for England’s largest urban areas,
based upon the EA’s LiDAR data up to 2015.

• Building age map from Consumer Data Research Centre

The database [48] shows, for the major cities of England and Wales, the age of constructions
of residential structures present in it. The dwelling age data is supplied grouped in approximately
ten-year age bands starting from 1900 with a count of the number of houses in each band plus a Pre-1900
band that groups all the previous buildings.

4. Methodology

In this section, the procedure to analyze uplift phenomena in urban areas by exploiting the new
Sentinel-1 data is presented refining the one discussed in Bonì et al. (2016) [30] for subsidence studies.
The procedure consists of three main phases (Figure 3). In the first phase, the displacement time
series (TS) and the average velocity accuracy assessment is performed. In the second phase, different
statistical tests are applied in order to find the spatio-temporal pattern of the principal components of
movement, and the kinematic model of the targets. Finally, the third step consists of the mechanism
recognition of the ground motion areas. Therefore, the integration of satellite data with geological,
geotechnical, hydrogeological, urbanization and construction processes data is considered in order to
investigate the causes of ground motion processes. The phases of the methodology are described in
detail in the following subparagraphs.

Figure 3. Flowchart of the methodological approach to detect and characterize uplift phenomena in
urban areas.
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4.1. Displacement Time Series and Average Velocity Accuracy Assessment

In order to properly exploit the TS and the average velocities, it is fundamental to take into
account that these measurements can be sensitive to uncompensated orbital errors or uncompensated
low frequency atmospheric effects [49]. These systematic errors can affect both TS and the average
velocities and can be detected as regional trends in the whole dataset [50]. Furthermore, TS are
also sensitive to the phase noise, therefore, a post-processing analysis of the PSI data is essential to
avoid misinterpretation of unreal ground deformation. A TS check is performed by selecting the most
coherent (>0.9) targets with an average LOS velocity in the range ±0.5 mm/year., where no significant
movements are expected. The approach proposed by Notti et al. [51] was applied to correct uncertainty
due to regional unreal trends, and anomalous displacement detected on certain dates (i.e., unreal
movements at the same time as meteorological events, such as snowfall). Thus, the average TS of
the selected targets is extracted and according to the wavelength of the sensor (C-band), a threshold
±5 mm of displacement along LOS is considered for detecting anomalous dates. The regression line of
the average TS of the selected target is computed to investigate if the dataset is affected by regional
trend or tilts.

Additionally, TS and the average velocity accuracy assessment is also performed using external
data such as measurements acquired by levelling campaigns, inclinometers, or Global Navigation
Satellite Systems (GNSS) stations. First, PSI time series and the average velocities are projected along
the vertical direction, by dividing them for the cosine of the satellites incidence angle. Then, the average
velocity is computed for the period that matches between the two independent techniques. Thus,
the standard deviation between the PSI and GNSS average velocity (δVEL) is estimated. The same
procedure is also applied for the displacement time series. In this case, the standard deviation of the
difference between the PSI and GNSS time series (δTS) is computed. If the standard deviation of the
PSI and GNSS average velocity and of the difference between the displacement time series is close to
the sensitivity of the PSI technique the results can be assumed as consistent.

4.2. Displacement Time Series Analysis

PSI techniques allow the measurement of the average velocity and the displacement time series
of a huge number of measurement points. The displacement time series are complex to interpret
using manual analysis. Indeed, recent studies report some methodologies to overcome limits related
to manual and visual analysis of TS [51–54] using automatic or semi-automatic time series analysis.
These methodologies support the analysis of large PSI datasets in order to identify areas of interest
using the time series trends. Here, two approaches have been implemented: (1) a statistical procedure
to find the principal components (PC) of TS and (2) an automatic classification tool for TS based on
statistical tests that analyze the variance.

PC analysis has been applied to satellite-based time series by implementing a matrix of PS
location versus time [30]. The matrix contains in each column the LOS displacements for each SAR
image, and in each row the displacement time series of the targets. The main outcomes are the
correlation and covariance matrices, the eigenvalues and eigenvectors, the percent variance that each
eigenvalue captures, and the PC score maps. In interpreting the principal components, PC scores
and the eigenvectors related to each target are useful for knowing the distribution and the trends of
the principal components. Furthermore, scree plots of the percentage of variance explained by each
principal component is useful to find the number of significant PC of the dataset.

The second procedure is the TS analysis using the PS-Time program [54], which is a freely
downloadable toolbox compiled in MATLAB [54]. The main outcome is the classification of TS in one
of three predefined target trends such as uncorrelated (displacement fluctuates erratically over time),
linear (linear and constant velocity) and non-linear (changes of the velocity over time and style of
deformation that can be quadratic, bilinear, discontinuous with constant velocity and discontinuous
with variable velocity) based on a sequence of statistical tests that discriminate different styles of
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ground deformation. Furthermore PS-time program permits the detection of the date (break) where
abrupt changes in slope in non-linear TS are recorded.

Then, the outcomes of the two approaches are exploited to enhance the interpretation of the
predisposing and triggering factors using cross-comparisons.

4.3. Mechanism Recognition

Geological interpretation of satellite data is performed using external data (such as geological,
geotechnical, hydrogeological, urbanization and construction process data), by integrating them
into a Geographical Information System (GIS). The recognition of the mechanisms is based on
cross-comparison of the representative subsoil geological profiles, and the relative displacement
time series with multidisciplinary information [14]. Furthermore, the analysis of the breaks and the
detection of the deceleration and acceleration periods are fundamental to identify the predisposing
and triggering factors.

5. Results

5.1. Displacement Time Series and Average Velocity Accuracy Assessment

The displacement time series were analyzed as described in 4.1. First, targets characterized by
coherence higher than 0.9 and LOS velocity in the range ±0.5 mm/year were selected. By applying this
filter to the whole dataset 14.5% of PS shows high coherence and low velocity rates. Then, the average
displacement of the selected targets has been computed for each SAR scene, to extract the average TS
(Figure 4). It is worth noting that Sentinel-1 data are affected by a higher noise than the long-term time
series such as acquired by ERS-1/2 and ENVISAT satellites. The reason for this issue is mainly due to
the much shorter time span covered by the Sentinel-1 data (2 years) [55].

However, the results show that anomalous LOS displacement at certain date and regional
trends are not evident. Therefore, all SAR scenes have been exploited for the following analysis
and post-processing corrections were not implemented.

Figure 4. Average displacement time series (TS) of the targets characterized by coherence higher than
0.9 and LOS velocity in the range ±0.5 mm/year. The black dotted line represents the regression line
of the average TS whereas the red ones are the upper and lower threshold line.

Furthermore, the measurements acquired by two GNSS stations located in London, and available
through the British Isles Continuous GNSS Facility (http://www.bigf.ac.uk/), have been exploited (see
the location in Figure 2) to obtain a comparison of the displacement time series and the average velocity
using independent data. Firstly, LOS displacements TS and average velocities were projected along
the vertical direction, by assuming that the displacement is essentially vertical [25,26]. This estimation
was done dividing the LOS measurements by the cosine of the incidence angle.
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The measurements acquired at the Stratford station (STRA) and Thames Barrier South Bank
station (TBSB) were compared with the average velocity and TS of the nearest targets (around 12
and 30 m, respectively) characterized by a value of coherence higher than 0.9 (Figure 5). Also, in this
case, TS acquired by the Sentinel-1 sensors are characterized by a higher noise than the measurements
acquired by the two GNSS stations for the short total time span covered by this dataset [55].
The standard deviation of the velocity acquired by PSI data and the Stratford station (δVEL) reaches
values of 1.35 mm/year. While the standard deviation of the difference between the PSI and GNSS time
series (δTS) reaches values of 0.66 mm. The comparison between the PSI data and the measurements
acquired at the Thames Barrier South Bank station shows values of 1.34 mm/year and 1.59 mm for
δVEL and δTS; respectively. It is worth noting that the use of only two GNSS stations cannot adequately
validate the PSI data at the scale of the basin. However, the results show that at local scale the PSI data
are consistent with the displacements and velocities measured by the available GNSS stations. Indeed,
the retrieved values for δVEL and δTS are comparable with the values (1 mm/year and 5 mm) obtained
by previous authors using the C-band sensors [56]. Whereas, a higher accuracy was detected using
X-band sensors (0.5–01 mm/year and 1 mm) by other authors [57,58].

Figure 5. Comparison between the PSI and GNSS vertical displacement time series. See Figure 2
for the GNSS stations location. The antenna installation images are also reported (available data at
http://www.bigf.ac.uk/files/network_maps/script_all_pcsn_30s.html).

152



Remote Sens. 2018, 10, 607

5.2. Displacement Time Series Analysis

Following the time series accuracy assessment, TS were analyzed through different automatic
statistical procedures; such as the Principal Component Analysis (PCA) and the TS classification in
predefined target trends. The first procedure has been performed at large scale (the Greater London
administrative area) using TS over the whole dataset, while the second one has been applied using
TS at local scale over an area of 206 km2 (study area, see the location in Figure 6). Indeed, even
though the average velocity may be useful to detect physical processes characterized by linear trends,
the same parameter seems not to be efficient in detecting non-linear and seasonal movements [59].
TS classification was implemented to investigate in detail the study area and was not performed at
large scale for the computational load.

Principal Component Analysis approach has been applied using the procedure described in
Section 4.2. Principal component analysis was performed using Sentinel-1 data to analyze the
spatio-temporal deformation pattern during the period 2017–2017 as previously applied using different
SAR data for land subsidence studies [30,53,59]. The results show that the first component of motion
(PC1) explains 97.3% of the variance and 2.54% is explained by the second component of motion
(Figure 6d). The other components are not significant (explained variance lower than 1%) and were
not considered in the following analysis. Figure 6 shows the spatial distribution of the principal
components score units. Positive scores for a PC have a TS trend similar to that of one of the eigenvector
time functions, while those with negative scores show a TS trend opposite to that of the eigenvector
time function [60]. Indeed, each PC is defined by a linear combination, whose coefficients, termed
eigenvectors, are the magnitude of the contribution of each original variable to each PC [60].

The spatial pattern of the PC scores highlights that PC1 mainly affects the southwestern sector of
the Greater London administrative area (Figure 6a); while the second component is mainly localized in
the southwestern sector (Figure 6b) and in the uplift zone localized in the study area (see insets box in
Figure 6b). A visual inspection of the principal components eigenvectors of the dataset covering Greater
London administrative area (Figure 6c) highlights that the first component (PC1) corresponds to the
long-term linear lowering of the earth’s surface, while the second one corresponds to the long-term
uplift ground motion with a non-linear trend. The uplift area is characterized by negative scores of
the PC1 and high positive score of the second one. Therefore, the TS trend of the uplift phenomena is
directly correlated with the PC2 trend. The PCA approach has allowed for the easy detection of not
only the uplift but also the non-linear trend of this phenomena characterized by two breaks in the
eigenvector time function (Figure 6c) by analyzing around 1,455,921 PS. Furthermore, the boundaries
of the uplift zone have been defined using the approach proposed by Bonì et al., 2016 [53], by using
a buffer area of 50 m around the PS characterized by PC2 score higher than the interquartile range
(Figure 10).

TS classification has been applied to investigate in detail the time series trend in the uplifting area.
The results of the automatic TS classification show that among the selected targets (around 260,000) in
the study area, 74.5% are classified with a non-linear trend, whereas 1.6% are classified with a linear
trend (Figure 7a). The remaining targets (23.9%) show uncorrelated time series. The non-linear time
series are characterized by a strong non-linearity. Non-linear time series are bilinear trend and mainly,
changes in trends in displacement time series were identified at August 2015 and May–August 2016 in
the Tower Hamlets area. The results are consistent with the eigenvector of the second component of
ground motion detected using the PCA approach. Indeed, by selecting the targets within the uplift
zone (see the location in Figure 10) and by computing the average TS (Figure 7b), the break dates are
evident. LOS velocity until August 2015 is −12.86 mm/year, whereas in the following period an uplift
trend with LOS velocity of 8.31 mm/year is observed. Furthermore, starting in May–August 2016,
a deceleration of the movements is detected, with LOS velocity of 1.23 mm/year.

The results of the analysis highlight that a remarkable ground uplift phenomenon has been
detected in an area of 5 km2 with deformation rates ranging from to 6 to 18 mm/year and the TS
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analysis give insight about acceleration and deceleration of the ground motion during the monitored
period (2015–2017).

Figure 6. Principal component score maps of the first (a) and second (b) component of motion.
Eigenvector value (c) of the principal component (PC) and the percentage of explained variance (d) are
also reported.
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Figure 7. TS trends in the uplift zone (a). Average TS of the non-linear targets located in the uplift
zone. The detected breaks (red dotted lines) are also reported (b). See the location of the uplift zone in
Figure 10.

5.3. Mechanism Recognition

5.3.1. Analysis the Geological and Geotechnical Factors

The lithological information of 21 boreholes provided by BGS were exploited to estimate the
thickness of the clayey soils in the study area (Figure 8a). First, the thickness of the LC was computed
and then, the estimation of the clayey soils was estimated as the total thickness of the clayey soils
considering the LC and LMBE (Figure 8d). Furthermore, the average LOS velocity in a 50 m buffer
zone were estimated for each borehole. Considering the thickness of the LC, the comparison between
the clayey soils thickness and the LOS velocity show a coefficient of determination (R2) for the linear
regression of 0.56 (Figure 8c). While by considering the clayey layers of the LC and the LMBE, a higher
correlation is retrieved showing a coefficient of determination, R2 for the linear regression of 0.75
(Figure 8d). Therefore, the uplift rates are higher when the clayey layers are thicker.
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Figure 8. (a) Location of the boreholes used to estimate the thickness of the clayey soils. The cross
sections (red line) are also reported; (b) Example of the procedure applied to estimate the thickness
of the clayey soils of the London Clay and by computing the sum of the thickness of the clayey soils
of the London Clay and Lambeth Group; (c) Comparison of the LOS velocity estimates in the period
2015–2017 with the thickness of clayey soils of the London clay using the boreholes information;
(d) Comparison of the LOS velocity estimates in the period 2015–2017 with total thickness of clayey
lithologies of the boreholes considering the London Clay and the Lambeth Group. Based upon the
1:50,000 bedrock geology, with the permission of the British Geological Survey. All rights reserved.

Then, the BGS geotechnical database [44] was analyzed to investigate the role of the geotechnical
properties of the deposits located in the study area. A buffer of 50 m has been computed for each
geotechnical borehole (Figure 9a) and the average LOS velocity has been extracted. Then, the LOS
velocity in the buffers have been plotted versus the swelling pressure (SPRS) of these formations
(Figure 9b). The values of swelling pressure represent the pressure exerted by a contained clay when
absorbing water in a confined space and derive from consolidation tests performed using samples
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extracted at different depths for each borehole [44]. The analysis of the SPRS has been performed by
diving the measures obtained for the alluvial of the Thames and River Terrace Deposits that represent
the superficial deposits (samples carried out in the first 7 m) and for the deeper formations such as
the LC and LMBE (samples carried out at depth higher than 7 m). It is worth noting that a direct and
linear correlation between the swelling pressure and the average LOS velocity for the deeper layer is
evident, while the superficial deposits do not show a linear correlation between the swelling pressure
and LOS velocity which can be explained with the coarser granulometry, different mineralogy and
thinner succession (<10 m on average) of the overlying material. Jones et al., 2017 [34] analyzed the
swelling potential of the London Clay at different depths, and specifically: 0, −1, −2, −3, −4, −5,
−10, −15 and −20 m across England and Wales. According to Jones et al., 2017 [34], in the study area
are present potential swelling soils associated with a high Volume Change Potential (VCP). VCP is
the relative change in volume of a soil to be expected with changes in soil moisture content and is
manifested by shrinking and swelling of the ground [34]. The superficial deposits (up to −5 m deep)
are characterized by VCP in the classes A, B, and C that correspond to non-plastic, low and medium
plasticity classes, with Ip’ up to 40% according the classification introduced by Jones et al., 2017 [34].
From −10 m the VCP assumes value referred to class D according to [34], that means formations with
high plasticity up to 60%. Therefore, also the analysis of the plasticity index shows that the clayey
layers between 10–15 m depth are characterized by high plasticity index and high swelling pressure
and these layers could be responsible of the detected uplift.

Figure 9. (a) Location of the geotechnical boreholes; (b) Comparison of the LOS velocity estimates
in the period 2015–2017 with the swelling pressure of the superficial (depth lower than 7 m) and
deeper layers (higher than 7 m). Simplified Superficial Geology of Greater London modified from the
DiGMapGB50, the Digital Geological Map of Great Britain at the 1:50,000 scale and bedrock geology at
the 1:50,000 scale, with the permission of the British Geological Survey. All rights reserved.

5.3.2. Comparison between the Groundwater Level Changes and Deformation Rates

After considering the clayey layer of the LC and partially contained in the LMBE as the
predisposing factor of the uplift, the triggering factors of the occurrence of these movements in
the period 2015–2017 were investigated. First, the groundwater level changes were analyzed to verify
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if the uplift is related to a groundwater rebound. Indeed, the uplift zone (Figure 10) is located in
an area where the aquifer is confined by the LC and pore pressure changes could trigger ground motion.
Therefore, historical ERS-1/2 and ENVISAT data were also exploited to compare the deformation rates
and the piezometric level evolution in the last twenty-four years. Unfortunately, in the uplift area
(Figure 10), piezometers time series provided by the Environment Agency are not available for the
1992–2016 period, but four exemplificative piezometers time series have been analyzed in proximity of
the uplift area (Figure 10). It is worth noting that the use of the PSI data acquired by different sensors
using different incidence angles clearly affects the capability to measure the vertical component of
the displacement. More precisely, ERS-1/2 and ENVISAT with an incidence angle of 23◦ allows the
estimation of 92% of vertical displacements, while Sentinel-1 satellites with a 34◦ incidence angle
only detect 83% of vertical displacements. Therefore, LOS velocities have been projected along the
vertical direction for each dataset in order to homogenize the datasets for the comparison with the
groundwater level changes (Figure 10).

Groundwater level changes between January 2015 and January 2016 reported by the Environment
Agency [41] record a rise of 1 m in the uplift zone (Figure 10). Furthermore, by cross-comparison of the
available piezometric level measurements with the deformation rates, a direct correlation is evident
(Figure 10) as previously reported [28].

Figure 10. Cross-comparison between the deformation rates detected using ERS-1/2, ENVISAT and
Sentinel-1 data and groundwater level changes. The black and the blue lines represent the vertical
displacement and the groundwater level data, respectively. In the map; the black lines represent
the groundwater level change (m) between January 2015 and January 2016 from [41] and the red
line represents the uplift area. Based upon the 1:50,000 bedrock geology, with the permission of the
British Geological Survey. Contains Environment Agency information © Environment Agency and/or
database right 2017.

5.3.3. Comparison between Urbanization, Construction Processes and Uplift Rates

As already mentioned in Section 1, London represents a megacity where an increasing urban
development has been reached. Therefore, the role of the urbanization for the ground displacement
has been investigated. Building construction could be an accelerating factor for the consolidation
processes [61], whereas in this case it was verified that the uplift could be due to local groundwater
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rebound after the termination of construction processes supposing dewatering operations. Thus,
the age of the building constructions has been plotted versus the LOS velocity, with the results showing
that newer building corresponds to areas with the highest terrain uplift (Figure 11). Furthermore, even
if newer buildings have been constructed (2000–2009), the measured LOS velocity is low (higher than
−3 and lower than 3 mm/year), whereas in the London Clay it is not present (see the cross-section
A-B in Figure 11). While uplift rates higher than 7 mm/year are observed where the buildings have
been built up in the period 2000–2009, the uplift ranges between 3 to 7 mm/year where the buildings
have been constructed in the period 1993–1999.

Figure 11. Cross section and buildings age. Based upon Groundhog Desktop data; with the permission
of the British Geological Survey. See the location of the cross section in Figures 8 and 9.

Furthermore, the role of the engineering works for the Crossrail construction has also been
assessed. Crossrail is a 42 km underground railway under London, running as far west as Reading in
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Berkshire and as far east as Shenfield in Essex and includes the construction of a 21 km of twin-bore
tunnel, 10 newly built, and 30 upgraded stations up to approximately 30 m below street level (Figure 12).
During the construction, begun in 2012, controlled dewatering was performed at some stations in order
to guarantee ground stability during the excavation process [62]. The dewatering operations started
from 11 August 2008 for works at Canary Wharf Station (Figure 12) and ceased in August 2015, with
a substantial reduction of pumping at Limmo (Figure 12). All dewatering operations were completed
on 14 March 2016. Simultaneous dewatering was undertaken at multiple Crossrail sites. During
the dewatering process the ground water level was monitored. More precisely, the dewatering was
performed in the deep aquifer (Chalk-Thanet Sand) and in the shallow aquifer (Made Ground and River
Terrace Deposits). In the intermediate aquifer (Lambeth Group-Harwich Formation), de-pressuration
works were performed to reduce the water pressures, rather than removing the water itself. Therefore,
the works connected with the Crossrail Project mainly affected the deep aquifer and did not affect the
intermediate and shallow aquifers [62,63].

Figure 12. (a) Location of the Crossrail line 1 and the dewatering sites. (b) Cross-comparison of the
average TS obtained using the Sentinel-1 data in a buffer zone of 50 m from Limmo shaft and the
groundwater level changes measured at Limmo station. Dewatering periods are also reported.
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The uplift area is located in the Crossrail worksite named the Limmo Shaft, where a 40 m deep
shaft was required for the construction of 8.3 km of tunnel from the Limmo Peninsula to Farringdon
(Figure 12a). In this area, the pumping started on the 4 November 2013 to support dewatering works
CP13 and CP14 (Figure 12a) and was completed on the 14 March 2016 (Figure 12b). Dewatering of
the major aquifer was performed, including the deep aquifer, in the Thanet Sand and Chalk strata.
After the completion of the dewatering, groundwater recovery was observed from August 2015 to
May 2016. The uplift rates detected using the Sentinel-1 data were compared with the groundwater
level changes measured at Limmo station (Figure 12b). The results give insight about the direct
correlation between the groundwater rebound after the completion of the dewatering procedure at
Limmo. Indeed, the breaks in the TS date detected at August 2015 and May August 2016 represents
the termination of the dewatering procedure and the end of the groundwater rebound, respectively.
The groundwater rebound of around 20 m corresponds to about 15 mm of uplift. Moreover, a delay
time of about 1 month has been detected between the beginning of the groundwater level recovery
and the uplift trend.

6. Discussion

This work introduces a methodology for the geological interpretation of PSI data for the detection
and characterization of uplift trends in an urban area. The systematic and reproducible procedure has
been developed and tested using the new and freely available Sentinel-1 SAR data acquired over the
London basin. The procedure improves the management and interpretation of dense time series as
acquired by Sentinel-1 sensors and gives insight into the possibility of new applications of the recent
sensors to monitor the movements during construction process and the effects after the termination of
the engineering works.

From the geological point of view, the uplift zone insists on the depocenter of the syncline of
the London Basin and it is bounded by faults in the southern area. The analysis of the geotechnical
parameters has highlighted a high value of swelling pressure for the clayey soils of the London Clay
and Lambeth Group (bedrock formations), and a low value for the alluvium soil and River Terrace
Deposits present in the superficial deposits, confirming that bedrock formations, when wetted, have
a great potential of volume change which can be responsible for the uplift. Indeed, in the study area,
the piezometric level rose by 1 m in the period 2015–2016.

In the Tower Hamlets area (Figure 1), several large buildings built after the 2000s are also
present. To construct their foundations the piezometric level was probably lowered below the swelling
formations. Following the construction of the foundations the subsequent rise of the groundwater
may have caused the swelling of the clayey formations. Considering that dewatering operations
probably were implemented in the uplift area to proceed with construction works; the subsequent
groundwater rebound after the completion of the works may have caused the swelling of the clayey
formations. From the analysis of the geological, hydrogeological, structural, and anthropogenic factors
it is possible to hypothesize that the uplift was caused by the rise of the piezometric level in this
particular geological contest.

It is worth noting that the groundwater rebound due to the completion of the dewatering
procedures for the Crossrail construction is correlated with the non-linear uplift trend detected using
the Sentinel-1 data. The dewatering activities in the shallow aquifer were performed by local pumping
or sump flows of the deposits enclosed within impermeable retaining walls and they did not generate
effects on this aquifer outside the retaining walls [62]. Whereas, the dewatering operations of the deep
aquifer generated temporary effects in the groundwater level [63]. Indeed, the maximum planned
abstraction triggers; in January 2014, a drawdown cone measuring 5.9 km × 7 km in plan, with
a maximum drawdown in the Chalk of about 35 m at the Canary Warf [62]. After the termination of
Crossrail dewatering, the drawdown cone induced by Crossrail was dissipated and the groundwater
level gradually recovered. Therefore, it is reasonable that the highest value of uplift occurs in an area
where the recovery is fastest because the cone depression was greatest.
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Therefore; the full groundwater level recovery that has been achieved at Limmo could be the
cause of the uplift area, whereas in the Canary Wharf, the deep central cone still existed in 2016 because
the dewatering was still ongoing. Thus, an uplift trend is also expected in the proximity of the Canary
Wharf after the groundwater recovery in the following years.

7. Conclusions

In this work a methodology to detect and characterize uplift trends in urban areas using new
satellite SAR sensors such as Sentinel-1 data is presented. The principal novelty of the proposed
procedure is the full exploitation of the displacement time series and the average velocity obtained by
the PSI technique. The methodology represents a systematic and reproducible approach to investigate
uplift phenomena in urban areas. The proposed methodology consists of three phases:

1. Displacement time series and average velocity accuracy assessment: check of the systematic
errors that could affect the whole dataset and local validation with external data such as
GNSS measurements.

2. Displacement time series analysis: two approaches have been implemented, such as a statistical
procedure to find the PC of TS and an automatic classification tool for TS based on statistical tests.

3. Mechanism recognition: cross-comparison between the uplift rates and external data (such as
geological, geotechnical, hydrogeological, urbanization and construction processes data) in order
to interpret the predisposing and triggering factors of the phenomena.

The methodology was tested in London, which is a representative high-urbanized area, using the
Sentinel-1 data covering the period from 2015 to 2017. The results confirm its ability for the definition of
the extension and rates of uplift phenomena and for the characterization of the phenomena. The results
reveal that an area of about 5 km2 localized between the O2 arena and the London City Airport has
experienced an average uplift rates of 7 mm/year and a maximum value of 18 mm/year in the period
from May 2015 to March 2017. The analysis of the displacement time series indicates a non-linear trend
of the uplift area characterized by an acceleration during the period from August 2015 to May–August
2016, and decreasing uplift rates from 2017. The comparison between the spatio-temporal evolution
of the movements and the predisposing and triggering factors gives insight about the correlation
between the uplift trends and the thickness of the clayey soils within the LC and LMBE. Furthermore,
the analysis of the geotechnical properties of the LC shows that the soils localized in the uplift area
have high volume change potential between 10 to 15 m in depth. The groundwater level change of the
uplift area is about of 1 m in the period 2015–2016. The uplift triggered by the groundwater rebound
occurs in a peculiar geological context, such as the depocenter of the syncline of the London Basin,
where the maximum thickness of clayey soils is reached, and the aquifer is characterized by confined
conditions. Additionally, the role of recent construction has been investigated in detail. Indeed, uplift
rates higher than 7 mm/year are observed where the buildings have been built up in the period
2000–2009 and the uplift ranges between 3 to 7 mm/year where the buildings have been constructed
in the period 1993–1999.

Furthermore, the role of the engineering works for the Crossrail construction has also been
assessed and the results reveal that the breaks in the TS coincides with the termination of the dewatering
procedure and the end of the groundwater rebound, respectively.

In the era of big data with multiple SAR systems coming into service, our methodology has
proven to be appropriate and efficient to leverage large volumes of heterogeneous data and is easily
applicable in others urban areas. The findings in this work confirmed that these systems can support
the knowledge of the effects after the termination of dewatering works such as for the Crossrail project
in London.

The approach contributed to understanding the uplift phenomenon in London due to the
interaction of anthropic activities and natural predisposing factors. Overall this work contributes
to an increased understanding of the ground motion response after dewatering operations and the
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analysis could play a significant role on evaluating the induced displacements by future construction
processes in other similar geological settings.
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Abstract: The identification and measurement of ground deformations in urban areas is of great
importance for determining the vulnerable parts of the cities that are prone to geohazards, which is a
crucial element of both sustainable urban planning and hazard mitigation. Interferometric synthetic
aperture radar (InSAR) time series analysis is a very powerful tool for the operational mapping of
ground deformation related to urban subsidence and landslide phenomena. With an analysis spanning
almost 25 years of satellite radar observations, we compute an InSAR time series of data from multiple
satellites (European Remote Sensing satellites ERS-1 and ERS-2, Envisat, Sentinel-1A, and its twin
sensor Sentinel-1B) in order to investigate the spatial extent and rate of ground deformation in the
megacity of Istanbul. By combining the various multi-track InSAR datasets (291 images in total)
and analysing persistent scatterers (PS-InSAR), we present mean velocity maps of ground surface
displacement in selected areas of Istanbul. We identify several sites along the terrestrial and coastal
regions of Istanbul that underwent vertical ground subsidence at varying rates, from 5 ± 1.2 mm/yr
to 15 ± 2.1 mm/yr. The results reveal that the most distinctive subsidence patterns are associated with
both anthropogenic factors and relatively weak lithologies along the Haramirede valley in particular,
where the observed subsidence is up to 10 ± 2 mm/yr. We show that subsidence has been occurring
along the Ayamama river stream at a rate of up to 10 ± 1.8 mm/yr since 1992, and has also been
slowing down over time following the restoration of the river and stream system. We also identify
subsidence at a rate of 8 ± 1.2 mm/yr along the coastal region of Istanbul, which we associate with
land reclamation, as well as a very localised subsidence at a rate of 15 ± 2.3 mm/yr starting in 2016
around one of the highest skyscrapers of Istanbul, which was built in 2010.

Keywords: time series analysis; InSAR; PS; landslide; subsidence; land reclamation; urbanization;
risk; Istanbul; Turkey

1. Introduction

Very rapid social and economic transformation in recent decades caused a huge rural-to-urban
migration all over the world, which has fueled urban growth. This massive population shift has
brought many complex challenges together with regard to sustainable development and natural
disaster management. Istanbul is the largest city in Turkey, with a population of approximately
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14 million inhabitants, and one of the most rapidly growing cities in Europe [1]. According to the
Istanbul Transportation Master Plan (ITMP), when taking into account the consequence of Turkey’s
economic growth in the last two decades and the large amount of immigration, projections indicate
that the population will overcome 20 million inhabitants in 2023 [2]. This rapid population growth
poses major threats to the city’s development when considering its vulnerability to natural disasters
such as earthquakes, landslides, and floods, due to heavy and unplanned urbanization practices.
Besides, the short distance (~20 km) of the main active branch of the North Anatolian Fault to the city
poses a major threat to Istanbul [3].

Spaceborne interferometric synthetic aperture radar (InSAR) is a powerful remote sensing tool that
enables observations of Earth’s surface day and night under all weather conditions with high precision.
Over the past decades, the method has been widely exploited in order to measure and monitor
ground deformation induced by earthquakes [4–7] volcanoes [8], the withdrawal of ground water or
other fluids [9,10], soil consolidation [11,12], mining [13], landslides [14,15], permafrost melting [16],
ground subsidence [17,18], land reclamation [19], and sinkholes [20]. Previous studies have shown the
capacity of InSAR methods to measure and map land subsidence due to various anthropogenic factors,
including ground water extraction in megacities such as Tianjin [21,22], Shanghai [23], Mexico City [24],
and lithological factors in Bandung basin, Indonesia [25]. Among InSAR techniques, persistent
scatterers InSAR (PS-InSAR) was developed to tackle limitations related to temporal and geometrical
decorrelation and atmospheric effects [26–31]. It enables monitoring the temporal evolution of the
ground motion by exploiting multiple SAR images acquired over the same area. It uses the radar
return signal reflected from persistent scatterers (PS, pointwise phase-stable targets) such as rooftops,
large rock outcrops, bridges, or motorways, where the spatial density of such PS is high [27]. PS-InSAR
analyses provide a time series of PS displacements and average surface velocities by searching a
motion model that is relative to a reference point, and assumed to be motionless.

In the megacity of Istanbul, PS-InSAR time series analyses have allowed the monitoring of ground
motions induced by anthropogenic activities [32], lithological features [33], and tectonic activities [7,34].
However, there has been little discussion about the long-term temporal evolution of the ground motion
and its possible causes. This study presents a PS-InSAR analysis of the secular ground motion
in the urbanized metropolitan area of Istanbul. The processed InSAR data (Figure 1) span nearly
25 years, from 1992 to 2017, with multi-sensor images acquired along ascending and descending orbits.
Most of the surface motion anomalies that we identify are associated with ground subsidence that
has been induced by various factors, including natural compaction, and anthropogenic activities.
These subsidence anomalies are carefully measured and analyzed from the perspective of urbanization
and the assessment of geohazards for the city of Istanbul. The causes of subsidence in cities are diverse,
and include factors such as lithology (i.e., rock type), variations in soil moisture content, groundwater
exploitation, and overburden loads associated with human activity. In Istanbul, considering the
proximity of several segments of the active North Anatolian Fault (NAF) in the Sea of Marmara, which
have remained unbroken since 1776, the characterisation of subsidence susceptibility for Istanbul is
crucial with regard to hazard mitigation and urban planning, as it can identify the vulnerable parts of
the region that are prone to possible future earthquake damage. Thus, the main goal of the present
study was to use a long-term PS-InSAR time series to: (1) quantify subsidence phenomena and discuss
associated causes such as lithology-controlled natural compaction and anthropogenic activities, and
(2) monitor the temporal evolution of the subsidence.
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Figure 1. Study area and satellite synthetic aperture radar data coverage used in the present study.
The shaded topography is given by the Shuttle Radar Topography Mission (SRTM) along the North
Anatolian Fault (NAF) in the Sea of Marmara, and major faults are drawn in red [35]. Rectangles labeled
with sensor and track numbers indicate the coverage of the SAR images that were used in the present
study. The red and black arrows indicate satellite’s line-of-sight look and flight directions, respectively.
Circles with numbers show the study regions in the paper (details are given in the text).

2. Background of the Study Areas

The present study primarily focusses on six areas where an InSAR time series enabled the
detection of anomalous ground displacement: the region of Haramidere, where a series of active
natural landslides had been previously mapped (circle 1 in Figures 1 and 2), and the Ayamama
floodplain (circle 2 in Figure 1), a geological setting that is discussed in Section 2.1 (Figure 2), as well as
several local subsidence areas that are related to anthropogenic activities (circles 3 to 6 in Figure 1).

2.1. Geological Setting of Study Areas 1 and 2

The Haramidere and the Ayamama streams are located near the boundary between the Istranca
Methamorphic Unit (Paleozoic–Mesozoic) and Istanbul Unit (Paleozoic). These units are covered by
the Eocene sedimentary sequence of the Thrace basin [36]. The Paleozoic metamorphic basement of
the study area consists in the east in a thick turbiditic sandstone–shale sequence of the Carboniferous
age, while the Eocene cover is made of limestone, marl, and claystone units, which are transgressive
on Çatalca metamorphic units in the west (Figure 2).
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Figure 2. Simplified geological and structural map of study areas 1 and 2 (circles 1 and 2 as in Figure 1).
Numerous active landslides (dark green patches) were mapped between the Küçükçekmece and
Büyükçekmece lakes [simplified from Ergintav et al., Duman et al. and Ozgul et al. [37–39]. The inset
map shows a figure area north of the Sea of Marmara, and the main segments of the NAF in red [35].

2.2. Study Area 1: Haramidere Valley and Avcilar Neighborhood

The Haramidere valley is located between Buyukcekmece Lake and Kucukcekmece Lake in the
Avcilar Peninsula. It is located about 15 km north of the NAF, which cuts across the Sea of Marmara
(Figure 2). Although the Avcilar district is located at a distance of 120 km west of the epicenter of
the 17 August 1999 Izmit earthquake, it was the only area in the Istanbul metropolitan region that
suffered extensive damage [40]. During this earthquake, 27 buildings collapsed, 2076 other buildings
were heavily damaged, and 273 casualties were reported in Avcilar [41,42]. The maximum ground
acceleration that was measured on soft sediments was 0.25 g, which is six times higher than the
peak ground acceleration recorded on the bedrock in the center of Istanbul [40]. This difference
is the result of the amplification of seismic waves in surficial layers with soft lithology [40,42–46].
Despite a low background seismicity, which suggested no active faulting in the region [47], destructive
and widespread damage during the 1999 Izmit earthquake drew considerable attention on this area,
requiring the reassessment of active faulting. In order to investigate any relationship between the
faults and damage observed in Avcilar and the vicinity, fault-mapping was refined from field studies
and seismic reflection analyses [37,48–50]. These studies showed that the presence of secondary faults
might be an important driving factor for the localised seismic amplification [7,51].

Landslides have been identified as another important geohazard in the suburb of Avcilar for
many years [38,52,53]. Recent events in that area often result from the reactivation of old landslides
due to the overloading of the existing landslides by new constructions. The investigation of the old
landslides in more detail is very important in order to anticipate measures that could be taken to avoid
future possible damage in the urbanized center of the Avcilar peninsula. A total of 391 landslides
were mapped (Figure 2) in the region [38]. Approximately half of all of the landslides were distributed
between Buyukcekmece and the Haramidere valley, which are important local landforms in the region
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(Figure 2). Duman et al. [52,53] used field geological observations to argue that the parameters that
control landslide initiation are shallow groundwater levels, lithology, and liquefaction.

2.3. Study Area 2: Ayamama River Valley

The Ayamama valley is located in the western part of Istanbul, east of the Haramidere valley
(Figure 2). The river flows north–south from the eastern part of the Basaksehir district, and towards
the Sea of Marmara in the Bakirkoy district [54]. It runs through the heavily urbanised and highly
populated area of the European side of Istanbul. The lower parts of its basin show various land use
patterns and a high density of population [55]. The Ayamama stream is known to produce seasonal
flooding. According to the municipality of Istanbul, sedimentation and illegal urbanisation in the
riverbeds have decreased floodplain capacity, which has subsequently caused periodic floods and
overflows. One of the worst flooding events that affected the region was on 9 September 2009, which
caused 31 casualties and 50 injuries. In the city’s development plan, the Ayamama river basin and its
surrounding zone had been set aside for recreational areas. However, after an amendment was made
to develop it into residential area in 1997, industrial and residential land use rapidly increased along
the axis of the stream [56].

2.4. Study Areas 3 to 6: Subsidence Events Associated with Land Reclamation and Urbanisation

Istanbul lies on both sides of the Bosphorus Strait (İstanbul Boğazı), and has been subjected to
heavy and unplanned urbanisation. This rapid urbanisation gave rise to land reclamation along
the coastal areas of the Marmara Sea in order to provide new recreational areas to compensate for
the destruction of green areas [57]. Nearly 2.6 square kilometers of land have been gained from the
Istanbul coast by filling up the sea since 2000 [58]. We have focussed on the two recreational areas in
the Yenikapi neighborhood and the Maltepe district for the investigation of the ground deformation
related to land reclamation by the PS-InSAR method (sites 4 and 6). Another two local subsidence
phenomena have been observed along the banks of the Golden Horn (Haliç, site 3), and around a
skyscraper located in the Levent neighborhood of Istanbul (site 5).

3. Datasets and Methodology

3.1. Datasets

The SAR data used in the present study consisted of 291 C-band (5–6 GHz, ~6 cm wavelength)
images acquired with various sensors, including 51 (ERS 1/2) images on two overlapping ascending
tracks spanning from 1992 to 2001, 52 ENVISAT images on two overlapping ascending tracks spanning
from 2003 to 2011, and 188 Sentinel 1A/B TOPS (Terrain Observation with Progressive Scans in
azimuth) images in one ascending and two descending orbits acquired between 2014–2017 (Figure 3,
see Table 1 for details). The Istanbul metropolitan area is entirely covered by all of the tracks.
These multiorbit/sensor datasets enable us to examine the consistency between different sets of
observations by inter-comparisons.

Table 1. Characteristics of each processed track.

Track C-Band/Satellite Geometry
Time

Interval
Incidence Angle at

Swath Center
Interferograms

Used
Density 2

(PS/km2)

T107 ERS 1/2 Descending 1992–2001 ~23◦ 28 93
T336 ERS 1/2 Descending 1992–2001 ~23◦ 21 212
T107 ENVISAT Descending 2003–2011 ~23◦ 25 190
T336 ENVISAT Descending 2003–2011 ~23◦ 25 176.8
T58 SENTINEL 1 Ascending 2015–2017 ~39.2◦ 56 250.4
T36 SENTINEL 1 Descending 2014–2017 ~33.7◦ 65 289.6

T138 SENTINEL 1 Descending 2014–2017 ~43.9◦ 65 252.7
1 SENTINEL 1 A/B TOPS; 2 Density of permanent scatterers (PS) in the urban areas.
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Figure 3. Baseline versus time plots for the seven tracks used in this study. The red dots indicate the
master image used as a reference for each track. For the Sentinel data, the period when the two satellites
1A/1B were operational is indicated in orange (before this period, only satellite 1A was operational).

3.2. Methodology

Single look complex images and interferograms of the Envisat/ASAR and ERS archives were
generated using the ROI_PAC software [59] and the Delft Object-oriented Radar Interferometric
Software (DORIS), respectively [60]. All of the interferograms of the SENTINEL 1A/B satellites datasets
were generated using the latest version of the software “Generic Mapping Tools Synthetic Aperture
Radar (GMTSAR)“ [61] using the Shuttle Radar Topography Mission (SRTM) 3-arcsecond digital
elevation model for correcting topographic contributions to the radar phase. All of the interferograms
were generated based on a single master network in order to use them in the PS-InSAR analysis.
The choice of the master images for each track (red dots on Figure 3) were made so as to minimize
the spatial and temporal baselines. The stacks of interferograms were processed with the PS-InSAR
approach using the software package STAMPS (permanent scatterers InSAR analysis), which allows the
identification of radar benchmarks by selecting pixels on the basis of their noise characteristics [62,63].
For the selection of permanent scatterers, STAMPS takes into account the statistical relationship
between amplitude and phase stability, which is quantified by the ratio between the standard deviation
and the mean of the amplitude through time for each pixel (amplitude dispersion index). In the present
study, we selected a threshold value of 0.42 for this amplitude dispersion index [27], which minimises
the random amplitude variability, and eliminates highly decorrelated pixels in some areas covered
with vegetation, agricultural fields, or snow.

4. Results

InSAR-Derived Land Subsidence Maps

Figure 4 shows the mean line-of-sight (LOS) velocity fields that were calculated from a PS-InSAR
time series on the metropolitan city of Istanbul. A main deformation feature, which is common
to all of the tracks, is the NNW–SSE elongated area in the southwest region of Istanbul, along the
Haramidere valley on the Avcilar peninsula (Figure 4, circle 1 in a, site 1, as described in Sections 2.1
and 2.2). The associated motion is away from the satellite for both the descending and ascending
tracks, suggesting a dominant subsidence signal, peaking at up to 10 mm/year in the line-of-sight.
We identified another likely subsiding area along the Ayamama stream valley. This anomaly is
elongated in a WNW–ESE direction, and is located along the western side of the Kucukcekmece Lake
(Figure 4a circle 2, named as site 2). The area labeled with circle 3 in Figure 4a (named as site 3) covers
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the primary inlet of the Bosphorus, and is called Golden Horn urban waterway. This Golden Horn’s
bank is also likely subject to subsidence. Other potential subsidence anomalies caused by the settlement
of the reclamation in the coastal areas were identified along the northern coast of the Marmara Sea
(circles 4 and 6 in Figure 4a corresponding to sites 4 and 6). Lastly, we point to a local subsidence signal
at a rather fast rate that was observed around a skyscraper (Figure 4a, circle and site 5) located in the
Levent neighbourhood of Istanbul. The spatial and temporal variations of these different deformation
patterns are discussed along with their possible underlying causes in the following sections.

 

Figure 4. Averaged line-of-sight velocity maps of the Istanbul metropolitan area from an interferometric
synthetic aperture radar (InSAR) time series analysis, with varying time spans depending on the sensor.
Negative velocities (cold colors) represent the displacement of the ground toward the satellite, and
positive velocities (warm colors) indicate the displacement away from the satellite. Red lines in the Sea
of Marmara indicate the submarine branches of the NAF. Average line-of-sight velocity (a) for Sentinel
ascending track 58. The solid black circles labeled from 1 to 6 indicate the locations of the subsidence
anomalies that are discussed in the present study. 1: Haramidere River, 2: Ayamama Stream Valley,
3: Golden Horn, 4: Yenikapi reclamation area, 5: Skyscrapers in Levent neighbourhood, 6: Maltepe
reclamation area; (b) for SENTINEL 1A/B descending track 36; (c) for Sentinel descending track 138;
(d) for Envisat descending track 107; (e) for ERS descending track 336; (f) for ENVISAT descending
track 336 and (g) for ERS descending track 107.

5. Discussion

5.1. Self-Consistency between InSAR Measurements

We first quantitatively assessed the consistency of InSAR mean velocity measurements calculated
from different datasets, across different time periods, for the widest areas of subsidence in the
Haramidere and Avcilar valleys. An inter-comparison of the line-of-sight displacement rates in
these areas was performed using a two-step procedure. In the first step, the mean velocity fields were
downsampled by a factor of 10 in order to minimise errors within the geolocalisations (spatial mismatch
between measurements). In a second step, we selected all of the pixels in the localised deforming

173



Remote Sens. 2018, 10, 408

areas of Haramidere Valley and Avcilar neighbourhood that were common to a pair of overlapping
tracks, and compared the distribution of their subsidence rates for each pair of tracks (Figure 5).
The consistency of velocities was good overall (mean correlation = 0.62). The observed differences
could have originated from various factors, such as: (1) different incidence angles depending on the
satellite, as they were not taken into account in the inter-comparison (Table 1), (2) different temporal
coverages, (3) geolocalization uncertainty, (4) InSAR processing errors, and (5) seasonal effects [64].

 

Figure 5. Quantitative comparison of the line-of-sight displacement rates between all of the tracks
used in the present study. The upper-right triangle matrix shows pairwise correlations of different
tracks with correlation values and color intensities (blue and red indicate low and high correlation,
respectively). In the lower-left triangle, the black dots denote the points that can be extracted on both
tracks. SEN and ENV in the panel represent SENTINEL and ENVISAT, respectively.

5.2. Site 1: Haramidere Valley

Close-up views of the elongated pattern of subsidence in the Haramidere valley are shown on 6
for all tracks. In order to quantify the vertical, subsidence component of the motion, we decomposed
the mean PS-InSAR line-of-sight velocity fields into east–west and vertical components using the
method described by Samieie-Esfahany et al. [65]. We only used the velocity fields calculated from
the Sentinel 1A/B images (two tracks, 58 [Asc] and 138 [Dsc]) that covered the same time interval to
calculate this decomposition. We assumed that there was no north–south displacement, due to the low
sensitivity of the LOS data to this component of displacement. Doing so, we reduced the number of
unknown variables for each permanent scatterer point to two displacement components, ddown, the
vertical displacement (positive downward), and dwest, the horizontal displacement in the east–west
direction (positive toward west). In a first step, we resampled the mean line-of-sight velocities for the
ascending and descending tracks onto a 0.0005◦ × 0.0005◦ regular grid (approximately 10 m spacing).
We used the nearest neighbour procedure in the resampling of the persistent scatterer pixels that were
within 30 m of the center of each grid nodal point. In a second step, we selected all of the pixels that
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exist in both the ascending and descending tracks. For further interpretation of the displacements, we
referenced the two tracks using reference points located in an area that was assumed to be stable (circle
in the NE part of Figure 6). In a third step, the decomposition of the line-of-sight velocity fields into
east–west and vertical components was calculated, taking into account the local incidence angle of the
satellite view (Figure 7).

 

Figure 6. Zoom views of displacement rates in the Haramidere Valley and its surrounding area.
The mean velocity value of the persistent scatterers (PS)-InSAR points within the solid black circle in
the center of the maps has been used to illustrate the temporal evolution of the subsidence associated
with weak lithology (Figure 8). It is referenced to the mean value of the PS-InSAR points within the
circle labeled R, which is considered a stable area. The DSC and ASC labels are for the descending and
ascending orbits, respectively.

The vertical displacement field shows that subsidence occurs on both banks of the Haramidere
valley, and follows an elongated area in the valley in a northwest–southeast direction (Figure 7c).
The maximum subsidence is centered on the valley (Figure 7f). This region has a long, slow-moving
landslides history, and is located in an area with shallow water level, poor soil conditions, and weak
lithology, which are all parameters that are considered as favoring landslides [17,40,66]. The subsidence
that we observed coincided overall with previously mapped active landslide zones. However, the
contours of these mapped landslides did not match precisely with the areas that had the highest
subsidence in our vertical velocity map. The horizontal component in the east–west direction, which
was derived by decomposition, showed a horizontal movement in the opposite direction on both banks
of the valley, toward the valley center (Figure 7b,e). The sign change in the east–west velocity was
also centered on the valley axis, as the maximum subsidence. We concluded that the observed signal
was consistent, rather, with the subsidence of the soil/surface on the valley slope (Figure 7d), moving
downslope due to landslide or soil creep gravity. This downslope movement had both horizontal and
vertical components, which were well captured by the InSAR data.
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Figure 7. Decomposition of horizontal and vertical components of ground displacement using only
S-1 datasets. (a) The shaded topography was given by the Shuttle Radar Topography Mission (SRTM)
along the Avcilar region. Fault lines were simplified from Ergintav et al. [37]; (b) Vertical component.
Patches with thick dark boundaries correspond to the landslides that were identified geological maps, as
shown on Figure 2 [simplified from Duman et al. and Ozgul et al. [38,39]; (c) Horizontal component in
the east–west direction. (d)Valley-perpendicular elevation profile extracted from (a); (e,f) are horizontal
and vertical velocity profiles extracted from (b,c) respectively.

In order to analyse the subsidence temporal evolution (Figure 8), we selected permanent scatterer
points located in an area that was previously detected as undergoing landslide activity, and where
the subsidence rate was among the highest observed in the present study. For the sake of consistency
between the datasets acquired from different viewing geometries, these selected PS points were from
an area where the horizontal velocity was considered negligible (see the circle in center of Figure 6), so
that the line-of-sight velocities were converted into vertical velocities by a simple geometrical equation.
The date of the first SAR image used here was taken as the reference time of the time series. As seen
in Figure 8, the three datasets used for the Haramidere valley and Avcilar area had different starting
dates and temporal coverage. For comparison, we set one reference time as 26 May 1992 for the three
datasets, and the time series that were mapped from the Envisat and Sentinel datasets were shifted
with a constant, which was calculated by assuming that the site was undergoing subsidence with a
constant rate (Figure 8).

Although the subsidence rates that were calculated from the ERS and Envisat datasets were
consistent with each other and matched well, the subsidence rates that were obtained from the Sentinel
datasets were slightly smaller. Two reasons might lie behind this difference. The first reason is related
to the relatively short duration of the SENTINEL 1 A/B time series, which could alter the accuracy of
the rate estimate. The second reason may be the retardation of the settlement due to a long-term decay
of the soil consolidation rate related to ground water extractions. Such an exponential decay of ground
subsidence was proposed to explain an InSAR time series on the Great Salt Lake in Utah [67].
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Ground subsidence in the Avcilar peninsula has been previously reported at a mean rate of
6 mm/yr using an InSAR analysis of ERS-1 and ERS-2 satellite images taken between 1992–1999 [17],
and at a rate of 10 mm/yr using ERS 1/2 and ENVISAT satellite images taken between 1992–2010 [64].
These authors concluded that the spatial coverage of the land subsidence in this area, which was
overall consistent with ours, was associated with partially saturated and unconsolidated shallow
layers of soil formation with a relatively weak lithological profile. The results of the present study
thus support the observation of land subsidence in Avcilar, at similar to higher rates. Such types of
lithology-controlled subsidence have also been observed in the Bandung basin on the island of Java
in Indonesia, using an ALOS-1 dataset, although at much higher rates (up to 12 cm/yr), along the
boundaries between consolidated rocks and unconsolidated sediments [25].

Figure 8. Time series of the vertical displacement at the selected PS points circled in center of Figure 6
(referenced to points in area labeled R in Figure 6).

5.3. Site 2: Ayamama River

Another subsidence zone lies along the dense settlements of the Ayamama stream banks in
the western part of Istanbul (site 2, Figure 4a). Here, the river has the typical morphology of a
delta, and the streambed is mostly composed of young alluvial deposits, varying in thickness in
the range 3–10 m [68]. The subsidence rates we measured were about 6 mm/yr at maximum in the
line-of-sight, corresponding to a maximum vertical subsidence rate of about 10 mm/yr (Figure 9).
The area affected by subsidence shrunk gradually (Figure 9) during the observation period, which we
interpreted as resulting from the flood prevention and remediation project of the river and stream
system, which started in 2008. The subsidence pattern along the Ayamama stream was firstly reported
by Walter et al. [33] with a more limited dataset, who suggested that the ongoing land subsidence in
the region is related to the sediment consolidation process, and that there might be direct or indirect
consequences of the destructive flood events, such as the one in 2009. This is thus consistent with our
interpretation of the recovery of the region following the restoration of the river and stream system.
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Figure 9. Spatiotemporal characteristics of subsidence along the Ayamama river valley study area.
(a) Mean displacement rates in line-of-sight (LOS) obtained from a track 336 ERS dataset. The black
dashed lines indicate two profiles, one in an area with an active subsidence (profile labeled 1–4), and the
other one with the same length in an area considered as stable and used as a reference (profile labeled
1′–4′). The inset map indicates the temporal and spatial pattern of subsidence for the region, from 1992
to 2017; (b–h) Rates along the profiles 1–4 (black) and 1′–4′ (red) taken for each track; (i) Temporal
evolution of the coastal subsidence of selected points around point 3 in Figure 9a.

5.4. Sites 4, 6, and 3

We also identified other sites along the terrestrial and coastal region of Istanbul undergoing
ground subsidence. The subsidence that we related to land reclamation in two recreational areas in
the Yenikapi neighbourhood (Figure 10a, site 4 in Figure 4a) and the Maltepe district (Figure 10d,
site 6 in Figure 4a), which were constructed in 2014, was observed at a vertical rate of 10 mm/yr.
This subsidence was presumably related to the compaction induced by the primary consolidation
process of the alluvial clay beneath the reclamation zone. The subsidence rates that were measured
in both reclamation areas were likely dependent on the physical characteristic and thickness of the
underlying alluvial deposit and used matrix of the filling material [68,69]. Another local subsidence
area related to a similar phenomena was observed along the shores of the Golden Horn (Haliç)
(Figure 10b, site 3 in Figure 4a). A significant part of this subsidence was located on reclamation areas
that have been transformed into parks and recreational facilities along both banks of the Golden Horn.
Besides that, the shorelines in this area have also undergone significant urban changes within the
frame of the renovation project of all of the waterfronts in Istanbul. During the renovation, sediments
made of loose clay deposits were removed from the shallowest parts of the Golden Horn, which might
have triggered subsidence in the nearby waterfront areas. The subsidence pattern along the Golden
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Horn that we observed was consistent with the coastal subsidence that was previously described in
the Figures 5 and 7 of [31], which, used a dataset of high-resolution TerraSAR-X SAR images covering
the period 2010–2012. In their analyses of subsidence evolution over the urbanised region of Istanbul,
these authors similarly concluded that the patterns of settlement along the Golden Horn shores were
caused by anthropogenic factors arising from unsustainable urban development.

 

Figure 10. Vertical velocities obtained by the decomposition of mean velocity fields of Sentinel 1 data
(T58 ascending track and T138 descending track) superimposed on a Google Earth image of Istanbul,
and the relevant time series of the vertical displacement. Black, red, and blue triangles represent the
ascending T58, descending T36, and descending T138 tracks, respectively. (a) Yenikapi coastal and
land reclamation area (circle 4 in Figure 4a). The color scale represents the vertical displacement of
the surface; (b) Golden Horn area (circle 3 in Figure 4a); (c) Highly urbanised area of Istanbul, with
subsiding persistent scatterer points clustered around the highest skyscraper of Istanbul (circle 5 in
Figure 4a); (d) Maltepe reclamation zone (circle 6 in Figure 4a).
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5.5. Site 5

High skyscrapers might suffer rapid settlement and declination, and cause local ground surface
subsidence due to the consolidation of the underlying soft soil deposits. In this study, we detected a
very localised subsidence pattern around a skyscraper built in 2010, and other high-rise buildings in
the Levent neighbourhood of Istanbul starting from 2016, with an average subsidence rate of about
15 mm/yr (Figure 10c). A time series analysis of the point targets surrounding the skyscraper showed
a very rapid increase of subsidence rate during the first four months of 2016, which might be related
to the groundwater lowering around the foundation of the building, which may cause a downward
movement of the surface surrounding the building.

6. Conclusions

Istanbul has been subject to intense industrialisation and population increase, especially since
the 1960s, which is causing very rapid urbanisation and heavy land-use changes. We identified
several sites along the terrestrial and coastal region of Istanbul that have been undergoing vertical
ground subsidence at rates ranging from 5 mm/yr to 15 mm/yr. In the present study, a PS-InSAR
time series analysis was performed using 291 C-band SAR images in order to characterise these
subsidence phenomena by combining multi-track/sensor InSAR datasets and provide insights into the
potential hazards induced by local soil conditions and human activities. Using the PS-InSAR technique,
enough time-coherent pixels were obtained over six different sites in Istanbul. The most extended,
clearly visible subsidence signals were detected over the western part of Istanbul consistently in all of
the frames. The spatiotemporal variability of the ground displacement was measured over the last
25 years in Avcilar, which suffered extensive damage during the 1999 Izmit earthquake and along the
Haramidere valley, where a long-lasting landslide history has been reported. The time series analysis
in this region revealed that the Haramidere valley banks are undergoing ground vertical subsidence at
a rate of 10 ± 2 mm/yr. Another subsidence area has been reported along the Ayamama river banks,
which is made of shallow alluvial deposits due to the local substratum consolidation process, at a
rate of 10 ± 1.8 mm/yr, and the surface area affected by subsidence has been shrinking gradually
following the restoration of the river and stream system, which started in 2008. The inter-comparison
of PS-InSAR measurements from different satellite sensors for the western part of Istanbul showed that
the correlation between the mean velocity fields were high between 1992–2011, and decreased with
time due to spatiotemporal changes in the ground deformation. Sentinel-1A/B InSAR measurements
acquired between 2014–2017 showed that reclaimed lands in both the European (Yenikapi reclamation
area) and Asian (Maltepe reclamation area) coastlines of Istanbul underwent significant subsidence of
up to 8 ± 1.3 mm/yr as a result of the primary consolidation process of the alluvial clay beneath the
filling material. Lastly, a very localised subsidence pattern was detected around a skyscraper, with
average subsidence rate of 15 ± 1.2 mm/yr.

On the whole, we can conclude that during the interseismic period, human-driven changes
produced a more significant control on the coastal subsidence in Istanbul than natural factors. In future
studies, such high-resolution SAR data over the very dense urban areas of Istanbul could help
continuously monitor the urbanised areas suffering from land subsidence. With this purpose, future
plans include the processing of high-resolution X-band sensors COSMO-Skymed and TerraSAR-X
datasets in order to better quantify the surface settlement and reveal the underlying causes of these
settlements, and thus provide more complete data to public organisations that are in charge of
sustainable urban policies and hazard mitigation.
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Abstract: Large-scale reclamation projects during the past decades have been recognized as one of the
driving factors behind land subsidence in coastal areas. However, the pattern of temporal evolution
in reclamation settlements has rarely been analyzed. In this work, we study the spatio-temporal
evolution pattern of Linggang New City (LNC) in Shanghai, China, using space-borne synthetic
aperture radar interferometry (InSAR) methods. Three data stacks including 11 X-band TerraSAR-X,
20 L-band ALOS PALSAR, and 35 C-band ENVISAT ASAR images were used to retrieve time series
deformation from 2007 to 2010 in the LNC. An InSAR analysis from the three data stacks displays
strong agreement in mean deformation rates, with coefficients of determination of about 0.9 and
standard deviations for inter-stack differences of less than 4 mm/y. Meanwhile, validations with
leveling data indicate that all the three data stacks achieved millimeter-level accuracies. The spatial
distribution and temporal evolution of deformation in the LNC as indicated by these InSAR
analysis results relates to historical reclamation activities, geological features, and soil mechanisms.
This research shows that ground deformation in the LNC after reclamation projects experienced three
distinct phases: primary consolidation, a slight rebound, and plateau periods.

Keywords: reclamation settlements; Lingang New City; time series InSAR analysis; terraSAR-X;
ENVISAT ASAR; ALOS PALSAR

1. Introduction

Reclamation is a potential solution to the growing demand for new land for living and
development in cities. Over the past decades, the Netherlands, China, the UK, Japan, Singapore,
and other coastal countries have extensively exploited sea enclosures and reclamation for coastal city
development [1]. Because reclamation usually consists of dumping un-compacted filling materials over
unconsolidated marine sediments, land subsidence has always been a significant issue in such areas,
and could lead to damage to structures and poses a threat to public safety and the environment [2].
Therefore, it is crucial to monitor land subsidence in reclaimed areas to facilitate an understanding of
the evolutionary processes so that proper measures can be taken to plan construction efficiently and
mitigate loss.
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Ground motion can be measured by geodetic techniques such as GPS or the leveling of specific
targets. However, this task is labor-intensive and time-consuming, and more importantly, it can only
provide discrete information at a limited number of points. In contrast to these traditional techniques,
repeat-pass space-borne synthetic aperture radar (SAR) interferometry (InSAR) permits large-scale
ground subsidence field retrieval without any prior knowledge, especially with the advent of time
series InSAR analysis [3]. These advanced InSAR methods [4–6] are capable of estimating time series
deformation through an analysis of phase signals over selected Coherent Points (CPs) and have become
a mature tool for land subsidence monitoring in urban areas, the reliability of which has been verified
by many studies [7,8]

Lingang New City (LNC), Shanghai, China, is the second-largest reclaimed area in the world.
Previous research [9,10] on subsidence monitoring in LNC focused on the data processing algorithm
for SAR data, rather than on the interpretation of the deformation observed through InSAR
results in relation to reclamation activities and geological features. Jiang et al [11] presented
InSAR-derived results with analysis of the reclamation activities in Hong Kong and Macao [12], but
the reclamation-induced subsidence in LNC is more complicated. The LNC was built in multi-phase
reclamation projects; therefore, the evolutionary process in the LNC is not clearly identified. To fill this
gap, we collected multi-band SAR data stacks and employed time series InSAR analyses to explore
the spatio-temporal patterns of land subsidence in LNC. The SAR data stacks include 11 X-band
TerraSAR-X, 20 L-band ALOS PALSAR, and 35 C-band ENVISAT ASAR images during the period
from 2007 to 2010. Using these data, we deduced the evolutionary process in the reclaimed area
through an analysis of the observed deformation, reclamation activities, and geological features in
LNC. Meanwhile, this research demonstrates that the results achieved from multi-source datasets
acquired by SAR satellites with different system configurations can provide a reference for selecting
appropriate SAR datasets for monitoring subsidence of the reclaimed area and in similar areas.

This paper is structured as follows. Section 2 presents the basic information of the study area. Data
and the methodology of retrieving deformation observations with time series SAR data are discussed
in Section 3. The InSAR-derived subsidence rate maps and time-series deformation map of the CPs are
shown in Section 4. Section 5 compares the results achieved from different SAR datasets, validates the
InSAR results with 13 leveling benchmarks, and discusses the correspondence between the observed
deformations and reclamation activities, geological features, and soil mechanisms. Some conclusions
are drawn in Section 6.

2. Study Area

The study area of Lingang New City (LNC) is geographically located at the south-eastern corner of
Shanghai and close to the intersection of Yangtze River and Hangzhou Bay (approximately longitudes
from 121.75◦E to 122◦E and latitudes from 30.84◦N to 31.05◦N). The LNC is 37 km from Pudong
International Airport and 80 km from Hongqiao Airport, as shown in Figure 1. The total planned
area of LNC is 311.6 km2, including 133.3 km2 (about 42 percent of total land area) created through
reclamation projects [13]. The planning area of LNC is nearly one-third of Hong Kong’s land area
(1104.43 km2) and around nine times as much as Macao’s land area (32.8 km2). Since 1973, five phases
of the reclamation project have been carried out in the coastal areas of Shanghai, with five dams named
by the year they were built: 1973, 1979, 1985, 1994 and the newest dam, built in 2002 [13]. Accordingly,
the LNC area consists of various zones formed over different periods.

Three Landsat TM/ETM+ images acquired on 3 November 1999, 16 December 2003, and 6 May 2009
show the changes of this area in Figure 2. The coastal land shown in Figure 2a was formed before the
new reclamation project. A new reclamation project was launched in 2003, and construction is scheduled
to be completed in 2020 [13]. Figure 2b shows the LNC at the beginning of the project in 2003. The new
land outside the coastline in 1999 was completed in 2009, and manmade features including a seawall,
watercourse, and artificial lake can be easily identified in the 2009 image (see Figure 2c). The LNC was
planned as a development area with multiple roles as an industrial area, shipping hub, and economic center.
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Figure 1. Geographic locations of LNC.

Figure 2. Landsat TM/ETM+ images over LNC in (a) 3 November 1999 and, (b) 16 December 2003,
and (c) 6 May 2009.

LNC also contributes to the urban ecological system. According to the land use plan for the
LNC in 2003 [13], less than 15% of the land is used for urban construction, around 55% of the land
is agricultural, and around 30% is undeveloped. Therefore, LNC has wetlands and rich vegetation,
which mitigates weather patterns and helps maintain ecological diversity.

3. Data and Methodology

3.1. Data

We collected 66 satellite SAR images in three stacks, including 11 Stripmap (SM) mode images
acquired by TerraSAR-X, 20 Fine Beam Single-polarization (FBS) and Fine Beam Dual-polarization
(FBD) mode images acquired by ALOS PALSAR, and 35 Image Mode Single Look Complex (IMS)
images obtained by ENVISAT ASAR. Figure 3a shows the coverage of the three data stacks, and
Table 1 summarizes the detailed parameters of these datasets. They are not fully overlapped in time.
The three data stacks are obtained by the ascending mode, which cannot extract the east-west and
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vertical (up-down) components of deformations by a combination of three ascending and descending
stacks. However, data stacks with slightly different imaging geometry provide a chance to cross-check
against estimated results to reveal the deformation behavior in LNC. Moreover, previous results
of LNC are based on C-band ENVISAT ASAR [9,10] from February 2007 to May 2010 and X-band
COSMO-SkyMed [10] from December 2013 to March 2016. Here, we attached more attention to the
results from X-band TerraSAR-X and especially L-band ALOS PALSAR.

Figure 3. (a) The coverage of TerraSAR-X, ALOS PALSAR, and ENVISAT ASAR data; (b) The detailed
map of LNC and the locations of leveling benchmarks. Black triangles indicate the locations of
benchmarks. The background figure is a Landsat TM/ETM+ image acquired on 1 November 2010.

Table 1. Basic parameters of the three SAR data stacks.

Satellite/Parameter TERRASAR-X ALOS PALSAR ENVISAT ASAR

Band (wavelength in cm) X (3.1) L (23.6) C (5.6)

Acquisition dates 20091225~
20101223

20070107~
20100718

20070206~
20100910

Number of images 11 20 35
Acquisition mode SM FBS&FBD IMS

Pass direction Ascending Ascending Ascending
Incident angle (◦) 26.5 36.8 22.1

Heading (◦) 349.24 347.21 346.80
Spatial coverage of full scene

(range in km × azimuth in km) 30 × 50 70 × 56 100 × 100

Slant range spacing (m) 0.9 4.7 (FBS)/9.4(FBD) 7.8
Azimuth spacing (m) 2.0 3.1 4.0

Nominal critical baseline (m) 4000 9800 930
Track and frame T5F167 T441F610 T497F603–621

The SAR data are paired to form interferograms with high coherence following small baseline
rules. The maximum perpendicular baselines and temporal baselines were set to 300 m and 120 days
for TerraSAR-X, 400 m; 210 days for Envisat ASAR; and 2800 m and 300 days for ALOS PALSAR.
In total, 139 pairs were selected to form interferograms, including 19 from TerraSAR-X, 46 from ALOS
PALSAR, and 74 from ENVISAT ASAR data stacks. The temporal distribution of all the interferograms
is illustrated in Figure 4. The distribution maps of perpendicular baselines and temporal baselines of
the three stacks are given as the supplementary material.
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Figure 4. Temporal distributions of interferograms generated from the three data stacks.

Another dataset used in this study is the in-situ leveling measurements. There are thirteen leveling
benchmarks, distributed along the seawall in the LNC area, as shown in the Figure 3b. Two leveling
measurement campaigns were carried out at all these 13 benchmarks on 9th January 2009 and 9th
January 2010. The leveling data was acquired by the Shanghai Institute of Geological Survey (SIGS)
following the specification of second-order leveling (±2 mm), and was processed with rigorous
adjustment based on the theory of least squares estimation. The reference of leveling measurements is
Chinese national height datum 1985. The height differences between two campaigns (one year interval)
of 13 benchmarks were converted to the yearly velocities so that they could be used for validating
InSAR results.

3.2. The SBAS-InSAR Technique

In this study, the SBAS-InSAR method [5,14] was employed to derive subsidence measurements
in the LNC from the three satellite SAR data stacks. The steps in time series SAR data processing
include differential interferograms generation, coherent point selection, network formation, phase
unwrapping, and temporal-spatial filtering.

Differential interferograms are generated by separately subtracting the flat earth and topographic
phase components from the original interferograms of the three data stacks. The phase observation at
pixel x in the ith differential interferogram gives:

ψint,x,i = W
{

φde f ,x,i + φatm,x,i + Δφθ,x,i + Δφorb,x,i + φn,x,i

}
(1)

where W is the wrapping operator that truncates phase into the interval [−π, π] by modulo 2π, and
φde f ,x,i is the phase component corresponding to the target movement along the satellite line-of-sight
(LOS) direction. The value φatm,x,i is the phase signal induced by the difference in atmospheric path
delay between two observations, Δφθ,x,i is the residual phase of look angle error, Δφorb,x,i is the phase
of residual inaccuracy orbit, and φn,x,i is the noise term.

CPs that maintain stable and strong backscattering signals over long time series observations
were extracted from each data stack for differential interferometric phase analysis. In the LNC, there
are a lot of vegetation-covered areas and built structures; thus, the phase noise is used as the indicator
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for CPs selection. It can identify reliable CPs in vegetated areas and areas with built structures. Phase
noise γx is defined as StaMPS [14]:

γx =
1
N

∣∣∣∣∣ N

∑
i=1

exp
{

j
(
ψint,x,i − ψ̃int,x,i − Δφ̂nc

θ,x,i
)}∣∣∣∣∣ (2)

where N is the number of images, ψ̃int,x,i is the wrapped estimated of the spatially correlated parts
of ψint,x,i, and Δφnc

θ,x,i is the uncorrelated spatial component of Δφθ,x,i. Supposing that φde f ,x,i, φatm,x,i,
and Δφnc

orb,x,i are spatially correlated over a certain distance, and Δφθ,x,i and φn,x,i are uncorrelated
over the same distance, then the uncorrelated spatial components of φde f ,x,i, φatm,x,i, and Δφorb,x,i are
small and are ignored. The phase noise of each pixel can be estimated by γx. Then, the CP candidates
exceeding the noise threshold (in this case, we used 0.2π) are eliminated. Afterwards, for each stack,
a triangulated irregular network (TIN) was built over the final CPs to establish the spatial network
for phase unwrapping. Phase observations of the final group of CPs are unwrapped in both spatial
and temporal dimensions to retrieve the deformation rates, as well as time series displacements.
The detailed estimation algorithm of SBAS can be found in [5,14].

3.3. Vertical Displacement Estimation

Displacements by SBAS are given with respect to a reference pixel P, and relative to one reference
acquisition time T. To compare results from different stacks, the three results must refer to a common
pixel at the same reference time. A reference pixel is a common, stable pixel appearing in all three sets
of results. In this work, the reference point is in the west corner of the Shanghai Ocean University,
located in the stable area as identified in the Shanghai geological environment bulletin based on
ground measurements including the leveling measurements [15,16]. A reference time is a common
date of the three data stacks. However, three satellites have different revisiting intervals (11 days for
TerraSAR-X, 35 days for ENVISAT ASAR, 46 days for ALOS PALSAR) and TerraSAR-X data covers
only from 2009 to 2010, hence there are no data acquired on the same date. A compromise method
is selecting acquisition dates adjacent to each other to achieve a common reference time. According
to the acquisition date of SAR data, we have chosen 11-July-2010 for TerraSAR-X, 18-July-2010 for
ALOS PALSAR, and 5-July-2010 for ENVISAT ASAR. Thus, the three sets of results refer to a generic
pixel and the same reference date, the displacements of pixel P in T is zero, and all measurements are
relative to this spatial-temporal reference point.

Furthermore, InSAR-derived displacements by SBAS are in LOS that must be converted to
geographic space. Displacement in the LOS direction is a projection of the real deformation in east-
west, north-south, and up-down directions. As SAR satellites are in a near-polar orbit with an angle
between the flight direction and the north direction close to 10 degrees, InSAR observations have
limited sensitivity to north-south displacement. Moreover, previous research indicated negligible
west-east deformation in LNC [9,10]. Hence, we convert all the LOS measurements into a vertical
direction according to incidence angles:

dv =
dLOS
cos θ

(3)

where dv is the vertical deformation, dLOS represents the displacements in the LOS direction, and
θ is the incidence angle. Polynomial model fitting then estimates the subsidence rates with the
extracted vertical deformation. For deformation decomposition, the optimal solution is combing the
ascending and descending orbit for extracting deformation components in the east-west, north-south,
and up-down directions. However, we do not have a descending data stack for this area during the
same observation period. Another possibility is that we can compare the results from data stacks with
slightly different imaging geometry to validate our assumption that vertical deformation is dominant.
Such conversion also enables the validation of results against in-situ leveling measurements.

190



Remote Sens. 2018, 10, 329

3.4. Results Validation

We evaluate the accuracy of InSAR-derived deformation measurements in two ways:
an inner-precision check by consistency analysis among results and validation with independent
ground measurements.

To perform consistency analysis among the results from the three SAR data stacks, we selected
CPs with high coherence identified within the LNC area for comparative analyses. The threshold of
coherence was set as 0.8 for initial candidate CP selection. In a given cross-stack CP pair (a, b), i.e.,
a and b are CPs chosen from two data stacks of A and B individually. If b is the nearest neighbor CP
from B in object space for a, and vice versa, then, a and b will be identified as a common CP subject, if
the Euclidean distance between them is less than 50 m. For each pair of data stacks, a linear fitting
model of the mean deformation rate derived from one stack with respect to one derived from the other
is established by least square estimation for the group of common CPs. The determination coefficient
R2, mean absolute difference, and standard deviation of absolute differences of CP pairs indicate the
consistency of the results.

The absolute accuracy of deformation measurements derived from the three SAR data stacks
is evaluated with respect to independent ground measurements. The leveling measurements are
obtained at the benchmarks along the seawall in LNC following the specifications for second-order
leveling (±2 mm) and were processed with rigorous adjustment based on the theory of least squares
estimation. Indeed, two epochs of leveling measurements for 13 benchmarks in LNC are insufficient
for evaluating all the InSAR results for multi epochs. However, these measurements do provide a
reference independent of SAR satellite observations. Moreover, the locations of benchmarks are along
the seawall, whose stability must be continuously monitored.

In consideration of the spatial and temporal mismatch between InSAR results and leveling
measurements, two preprocessing steps are taken to enable the absolute accuracy assessment.

First, since there are only two phases of leveling measurements in January 2009 and January 2010,
it is preferable to use InSAR-derived mean deformation rates over the same period for comparison.
For ASAR and PALSAR data stacks, the appropriate subsets of derived time series deformations
that are temporally closest to the leveling measurements are used to estimate the desired mean
deformation rates. However, for the TerraSAR-X data stack, such a selection is not possible because
there is almost no overlap in time between X-band observations and leveling measurements. Therefore,
the deformation rates derived from the full X-band data stack are used in the comparison by assuming
there is a linear deformation. Thus, the deformation rates of 2009 and 2010 are consistent.

Second, it is impossible to make direct one-to-one comparisons between CPs and leveling
benchmarks because they are not located at exactly the same geographic position. As an alternative,
a more practical average-to-one approach [17] is adopted to make the comparison. To be specific,
for each leveling benchmark bi, all CPs with a distance to bi that is less than a predefined threshold
Td are chosen to form a group. Then, the arithmetic average of mean deformation rates at all CPs
within this group is calculated as a representative to be used in comparison against the annual mean
deformation rate measured by leveling. In this study, the value of distance threshold Td was empirically
set at 100 m. The mean values of differences and the corresponding standard deviations of InSAR
results and leveling measurements are the indicators of absolute precision.

4. Results

4.1. Subsidence Rate Map

Using the method described in Section 3, we obtained the subsidence rates at selected CPs within
the LNC from the three data stacks, as shown in Figure 5. Negative values of deformation rates indicate
subsidence, while positive values represent uplift motions. In general, moderate (between −20 and
−5 mm/y) to strong (<−20 mm/y) subsidence was observed in the newly reclaimed land close to the
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coastline. In contrast, most areas in the western part of the LNC appeared quite stable (between −5
and 5 mm/y), while gentle uplifts (between 5 and 10 mm/y) were clustered in the middle zone.

Figure 5. Motion rates of LNC derived by time series analyses using: (a) X-band TerraSAR-X; (b) L-band
ALOS PALSAR; (c) C-band ENVISAT ASAR data stacks. Red Star indicates the reference point. Black
triangles indicate the locations of leveling benchmarks. The background is a mean amplitude map of
11 TerraSAR-X images.

Similar spatial variability also exists over the newly reclaimed land, with subsidence in the
northern part being more serious than in the southern part. According to a construction order [13],
we divided the study area into three zones, i.e., zone1 formed before 1973, zone 2 formed between
1973 and 1994, and zone 3 formed after 2002. Locations of the three zones are illustrated in Figure 6.
The southern part in zone 3 is the center of the LNC, and over the past decade, has developed more
rapidly than the northern part in zone 3 (see Figure 2). Many factories, office blocks, residential
buildings, and public infrastructures have been built in the southern part. Consequently, most CPs in
the southern part were identified from new buildings and roads constructed on relatively stable piled
foundations. Therefore, subsidence in the southern part is significantly slower than in the northern
part, where there is subsiding soil. The deformation rates derived from the three different stacks show
similar inhomogeneous spatial patterns as described. Furthermore, the distributions of selected CPs
are not uniform. The CP density in the offshore area is lower than that in the inland area. Such a
non-uniform spatial pattern can be largely attributed to the different stages of consolidation in the
reclaimed zones. The relationship between observed deformation and reclamation projects is discussed
in Section 5.3.
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Figure 6. Partition diagram of LNC, zone1 formed before 1973, zone 2 formed between 1973 and 1994,
and zone 3 formed after 2002.

SBAS analyses were implemented on CPs that maintained coherence over time; the number and
density of CPs will primarily determine the spatial sampling frequency. In general, a higher density of
CPs is more likely to afford details of single objects. In this study, the total number and mean density
(unit: CPs/km2) of CP points detected in the LNC area are 48872 and 128 for TerraSAR-X, 60683 and
112 for PALSAR, and 53783 and 70 for ASAR.

The highest mean density of CPs was detected in the urban area by the X-band TerraSAR-X data
stack, followed by L-band and C-band data stacks. Two factors are involved. First, TerraSAR-X data
has a higher spatial resolution than ASAR and PALSAR data, with which more details of ground
features can be observed and thus more CPs can be detected at the same target. Second, the high
density of detected CPs may benefit from the relatively short observation period, as well as from the
frequent TerraSAR-X acquisitions.

As shown in Figure 5, in the southern part of zone 3 where a residential urban area is located,
all the three data stacks manifested similar capabilities of detecting numerous CPs with stable and
strong backscattering signals. Nevertheless, the north part of zone 3, marked as A in Figure 5, in the
rural area covered with vegetation, an entirely different pattern appeared. Very few CPs were detected
from X- and C-band data stacks, whereas quite a few CPs were still identified from the L-band data
stack. Such an advantage of using L-band data can be attributed to its capabilities of deeper penetration
into vegetation and better resistance to temporal de-correlation related to the longer wavelength.

To examine more closely the performance of the PALSAR data stack, we focused on two marked
areas, A and B, shown in Figure 5. In the marked area A, few points are identified by X-band (Figure 5a)
and C-band (Figure 5c) data stacks, and most of the points were detected along the road. However, the
result of the L-band (Figure 5b) data stack provides detailed deformation rates except for the two small
ponds in this area. In the marked area B, results based on X-band (Figure 5a) and C-band (Figure 5c)
data stacks failed to detect the deformation in the marked area B because no CP was selected. The result
of the L-band (Figure 5b) data stack shows there is a severe subsidence. A quantitative comparison
among the three stacks and absolute precision validation will be elaborated in Sections 5.1 and 5.2.

4.2. Time Series Deformation of Selected CPs

To evaluate the spatial distribution and temporal evolution of deformation, six CPs were selected
in different zones: P1 in zone 1; P2 in zone 2; and P3, P4, P5, and P6 in zone 3. The locations of the
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selected CPs are shown in Figure 6. P1 is in the stable area shown in Figure 5, P2 is in the middle area
with slight uplifts, and P3, P4, P5, and P6 are in the newly reclaimed land that is close to the coastline.
There are three extra points selected in zone 3 because of the spatial variability of subsidence within
this area, as denoted in Figure 5.

Figure 7 shows the time series deformation of six CPs: (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, and
(f) P6 from ASAR, PALSAR, and TerraSAR-X data stacks. Time series deformation measured at CPs
reflects the detailed changes of the CPs in the observation period relative to the measurement in the
selected reference time. The data acquisition times of ASAR and PALSAR were from 2007 to 2010 and
TerraSAR data was collected from 2009 to 2010. Thus, the overlapping time in July 2010 was chosen as
the reference time. As indicated in Figure 7, P1 is quite stable as it underwent only a slight fluctuation
around zero from 2007 to 2010; whereas P2 shows a trend of gentle uplift before September 2009
and afterward zero-centered subtle fluctuation. The other four CPs (P3, P4, P5, and P6) experienced
linear subsidence at various velocities from 2007 to 2010, with the fastest and slowest subsidence
appearing at P6, located on the seawall, and P3 at a more inland location. However, such a subsidence
trend at all four points slowed down in 2009 and then transformed into a relatively mild pattern of
subsidence, which might indicate that the newly reclaimed land has entered the stage of long-term
slow compression. In Sections 5.3–5.5 we will further discuss the spatial distribution and temporal
evolution of deformation in LNC in joint analyses of reclamation activities, local geological data, and
the soil mechanisms.

Figure 7. Cont.
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Figure 7. Time series displacements at six typical CPs: (a) P1, (b) P2, (c) P3, (d) P4, (e) P5, and (f) P6
derived from ASAR, PALSAR, and TerraSAR-X data stacks.

5. Discussion

5.1. Consistency Analysis among InSAR-Derived Results

Consistency analysis among the results from the three SAR data stacks was carried out.
We estimated a linear fitting model of the mean deformation rate derived from one stack with
respect to a model derived from the other two stacks by least square estimation using the entire
group of common CPs. Scatter plots for these models are shown in Figure 8, with the corresponding
mathematical expressions and related statistics summarized in Table 2. When making comparisons
between TerraSAR-X and the other two data stacks, the time interval used for mean deformation rate
estimation was set as from late 2009 to middle 2010.

Figure 8. Comparison of mean deformation rates among the three data stacks: (a) TerraSAR-X vs.
PALSAR, (b) TerraSAR-X vs. ASAR, (c) ASAR vs. PALSAR.
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Table 2. Results of cross validation among the three SAR data stacks.

Satellite/Parameter
TERRASAR-X VS.

PALSAR
TERRASAR-X VS.

ASAR
ASAR vs. PALSAR

Number of common CPs 1863 2987 1866
Mathematical expression of linear model Y = 0.9x Y = 0.9x Y = 0.9x

Coefficient of determination R2 0.9 0.9 0.9
Mean absolute difference (mm/y) 0.9 0.7 0.2

Standard deviation of absolute differences
(mm/y) 3.6 3.4 3.9

From Figure 8 and Table 2, it can be seen that the three coefficients of determination are around
0.9, which indicates that highly similar spatial patterns in the mean deformation rate were detected
by the three SAR data stacks. The mean and standard deviation of absolute differences for the three
pairs were less than 1 mm/y and 4 mm/y, respectively, showing an overall good agreement among
the deformation measurements derived from the three SAR data stacks. Several CPs in areas with
relatively fast subsidence (mean deformation rate < −20 mm/y) were identified by both X-band
and L-band data stacks simultaneously. These were excluded from the groups of identical CPs for
linear fitting between the C-band result and that of X-band or L-band. This phenomenon might be
caused by the weaker capability of the ASAR data stack to detect fast deformation, as compared to the
TerraSAR-X and PALSAR observations used in this study.

This comparison was based on the extracted vertical displacement. Thus, the good agreement
among these InSAR-derived results also validates our claim that the east-west component of
displacements, with respect to the vertical deformation, is negligible.

5.2. Validation with Leveling

The absolute accuracy of deformation measurements derived from the three SAR data stacks was
evaluated with respect to independent ground measurements. The results of the absolute accuracy
assessment at 13 leveling benchmarks are plotted in Figure 9. According to the leveling measurements,
large subsidence (<−20 mm/y) occurred along the eastern section of the seawall in the LNC (from
DS43 to DS48), while in the southern section (from DS36 to DS42), only slight to moderate subsidence
was detected. Such a spatial variability was also revealed by InSAR results from the three data
stacks, showing overall good agreement with leveling measurements. The arithmetic mean values of
differences are 2.7, 1.5, and 0.2 (mm/y) for TerraSAR-X, PALSAR, and ASAR, respectively, and the
corresponding standard deviations are 4.7, 5.3, and 4 (mm/y). Therefore, we can conclude that all the
three data stacks achieved millimeter-level accuracy. The relatively larger differences for X-band data
are likely due to temporal mismatch, while the best performance by C-band data might be attributed
to its more frequent observations during the period.

Figure 9. Validation of InSAR-derived mean deformation rates at leveling benchmarks.
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5.3. Analysis of Observed Subsidence and Reclamation Evolution

We also explored the relationship between InSAR-observed ground subsidence and reclamation
evolution. As shown in Figure 6, we divided the study area into three zones considering that the
construction order for LNC Zone 1 was established before 1973, in zone 2 the construction order was
set between 1973 and 1994, and in zone 3, it was formulated from 2002.

As shown in Figure 5, many CPs were detected in zone 1 and zone 2. Since the reclamation
projects in these two zones have been completed for more than a decade, most CPs in these two
zones exhibited relatively good stability (between −5 and 5 mm/y). Compared to the stable older
zones, an overwhelming subsiding tendency with relatively high deformation rates (<−10 mm/y) was
detected in zone 3, reclaimed after 2002. The fillings used for reclamation in the LNC are characterized
by a high void ratio, large compressibility, and low strength. This zone was still experiencing a
consolidation procedure, consistent with the established Terzaghi theory which assumes that the
primary consolidation could last for a few years [18]. This situation was also verified by the time series
deformation of CPs in the three zones. As indicated in Figure 7, P1 in zone 1 was quite stable from 2007
to 2010, whereas P2 in zone 2 shows a slight uplift. P3, P4, P5, and P6 illustrate the spatial variability
of subsidence within zone 3.

To quantitatively evaluate the corresponding relationships between the reclamation phases and
observed subsidence, the mean deformation rates over the three zones derived from the three SAR
data stacks were calculated and summarized in Table 3. The mean deformation rates of points of the
three zones describe the main trends within each zone, and the standard deviations of zones illustrate
variation in the velocities of deformation in each zone and probable error. Therefore, the standard
deviation increase from zone 1 to zone 3 indicates that the spatial variation was the largest in zone
3. Moreover, the standard deviation of ALOS PALSAR is larger than the other two, which indicates
that the phase noise in the PALSAR data is larger. All the three mean values across zone 1 are around
±1 mm/y, which again confirms its relative stability. In the meantime, the moderate positive value and
large negative value of the mean deformation rate for zone 2 and zone 3 indicate, individually, a gentle
uplift and rapid subsidence during the study period. Therefore, it is evident that these three zones
were in different consolidation periods, corresponding to the reclamation activities at different times.

Table 3. Deformation rates of the three zones (unit: mm/y).

Mean Deformation Rate
(Standard Deviation)

SAR SENSOR

TERRASAR-X ALOS PALSAR ENVISAT ASAR

zone

1 −0.5
(3.9)

−0.8
(9.9)

1.3
(5.0)

2 2.4
(4.3)

4.8
(11.9)

6.1
(6.4)

3 −7.9
(9.1)

−12.1
(19.5)

−11.3
(20.3)

According to the spatial distribution and temporal evolution of deformation, we infer three stages
of surface changes in LNC after the reclamation project. For newly reclaimed areas such as zone 3,
the consolidation will last for a few years. This primary consolidation is the first stage of changes after
reclamation. Then, it enters the second stage, which is a slight rebound after long-term compression.
The second stage elaborates the changes in the area, which build for a while during a reclamation
project; zone 2 has been established for more than ten years. Finally, subsidence will stay at a steady
level after long-term changes. Zone 1 exhibits this stability, which has developed over a period of more
than 30 years.
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5.4. Geological Features

In this section, we further analyze the observed settlements with the geological features in the
LNC. The different components and lithology of the underlying soil are important factors influencing
the subsidence of LNC [15,16,19,20]. Soft soil in LNC can be divided into seven engineering geological
layers ( 1©– 7©) based on their geological ages, soil behaviors, and physical and mechanical properties.
Table 4 gives detailed information about each layer.

Table 4. The division of engineering geologic layers in LNC.

Geological Age
Layer Number and

Lithology
Deposit Type Distribution Area Foundation Conditions

Holocene
Qh

Q3
h

1©1 Dredger fill Artificial Whole area Not as foundation

1©3 Dredger fill Reclaiming project
The eastern and
southern part of

LNC
Prone to liquefaction

2©1 Silty clay Supralittoral The western part of
LNC Compression layer

2©3 Sandy silt Mesolittoral Whole area Prone to quicksand

Q2
h 4© Muddy clay Littoral-shallow sea Whole area Compression layer

Q1
h

5©1-1 Clay Supralittoral Whole area Compression layer

5©1-2 Silty clay Supralittoral Widely distributed Compression layer

5©2 Sandy silt Swampy Sporadically
distributed

Poor holding layer for
foundation5©3 Silty clay with silt Swampy Paleo-rivers area

Late Pleistocene
Qp3

Q2
p3

5©4 Silty clay Swampy Paleo-rivers area

6© Clay Plain-lake Mainly in LNC area
Good holding layer for

construction piles
7©1 Silt with silty Estuary Marina Whole area

7©2 Silt with silty Estuary Marina Whole area

The dredger fill layer 1©3 is mainly distributed in the eastern and southern part of the LNC.
Dredger fill is a kind of unconsolidated soil with a high water content, large void ratio, and high
compressibility. Therefore, land subsidence is prone to occur during the initial period of a reclamation
project. Moreover, the thickness of dredger fill is different as the LNC was built in a multi-phase
reclamation project. In the areas built before 1994 (zone 1 and zone 2), the thickness of the dredger fill
is around 2–3 m. The fill is in normal consolidation phase. The fill in zone 3, the area reclaimed after
1994, is unconsolidated with an increasing thickness of 3–6 m from the inland to the coast. Therefore,
most of the subsidence occurred in the eastern and southern part of LNC.

Silty clay 2©1 is mainly distributed in the west and north part of the LNC at a depth of 0.5–1.5 m
with a thickness of 0.5–2 m. A silty clay layer can be used as the natural foundation of small construction
due to its low water content, compressibility, and void ratio. This layer shows a relatively stable
engineering characteristic compared to 1©3. This agrees with our results that the western and northern
parts of the LNC are more stable than the southern and eastern parts of the LNC. Sandy silt 2©3 is
distributed across the whole area, which is prone to quicksand. The thickness of the shallow sand
layer is around 6 to 14 m and increases from the northwestern to southeast. Therefore, the different
consolidation stages of 1©3, and the distribution of 1©3 and 2©1, as well as the thickness changing of
shallow sand layer 2©3 together, contribute to the spatial variability of subsidence in the LNC.

The soft soil layer 4© and clay layer 5© were distributed in the whole LNC area. Muddy clay 4©
is a soft soil typical of Shanghai with a high water content and compressibility. It is easily deformed
during construction. Clay layers 5© are not a good foundation for buildings except the secondary hard
soil layer 5©4. The clay layer 5©1 and 5©2 are the compression layers of the larger construction projects.
Attention must be paid to the compaction of the soft soil layer 4© and clay layer 5© in civil engineering.
The widespread hard soil layer 6© and sand bed 7© originated in the late Pleistocene and are a suitable
foundation layer for structures, having nothing to do with the displacements in the LNC.
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Figure 10 shows a geological section map of a profile line I-I’ as indicated in Figure 6, from 45 m
below ground to several meters above ground. Gray represents layer 1©1, faint yellow represents
silty clay 2©1 and 5©4, cyan represents 1©3, orange with dark dots represents 2©3, blue represents 4©,
orange with oblique line represents 5©1-1, faint yellow represents 5©1-2, green represents 6©, beige with
dotted line represents 7©1, and yellow represents 7©2. Nine drill holes of the profile line are in different
zones: LGG35, LGG36, and LGG37 in zone 1; LGC90, LGL5, and LGC86 in zone 2; and LGC39, LGG38,
and LGG39 in zone 3. Hence, the changes in the geological section of nine drill holes describe the
underlying soil features of the area formed in different periods.

Figure 10. Engineering geologic layers of profile line I-I’. The location of profile line I-I’ is indicated in
Figure 6.
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As illustrated in Figure 10, the geological section of nine drill holes is roughly the same.
Specifically, the thickness of each layer of LGG35, LGG36, and LGG37 is relatively the same, which
indicates a stable geological condition; while the thickness of holes in zone 2 and zone 3 increases
relative to the holes in zone 1. Furthermore, the thickness changes are mainly in the compression
layers: topsoil of loose and newly deposited soil layers 1©3, Sandy silt 2©3, soft soil layers 4© and clay
layer 5©, and especially 5©1. The consolidation of underlying soil causes the subsidence in the LNC.
As described, the different consolidation stages of dredger fill 1©3, the distribution of the dredger fill
layer 1©3, relatively stable silty clay layer 2©1, the thickness changing of the shallow sand layer 2©3, soft
soil layer 4© and the clay layer 5© together, contribute to the spatial variation of subsidence in the LNC.

5.5. Compression Mechanism of Hydraulic Fill

In this section, we discuss the observed deformation with the compression mechanism of
hydraulic fill. The hydraulic fill in the LNC is mainly the soft alluvial soil [19,20]; therefore, the three
stages are explained by the compression mechanism of soft soil. There are two critical compressibility
indexes for soft soil: the compression index and resilience index. Previous studies [18,21,22] give the
relationship between soil matric suction and the compression index/resilience index of the Shanghai
area, which can be used for analyzing the spatial distribution and temporal evolution of deformation
in the LNC. Figure 11 gives the effects of soil matrix suction on the compression index and resilience
index. The compression index declines with soil matric suction growth, slowly arriving at a plateau.
While the resilience index first decreases with an increase in matric suction, it goes up as the suction
continuously increases.

Figure 11. The compressibility of Shanghai soft soil [21,22]: (a) relationship between compression index
Cc and matric suction S, (b) effects of matric suction S on the resilience index Ce.

We explain the temporal evolution of subsidence in the LNC with the compression mechanism
of hydraulic fill. We argue that the external forces in a newly reclaimed area are constant, but at
the beginning, the consolidation pressure increases as the matric suction increases. Thus, the void
ratio decreases gradually, which shows the continuous subsidence in the area during the first stage.
Meanwhile, the compression index first decreases and then reaches stability gradually, with an increase
in matric suction. However, the rebound index first decreases with an increase of matric suction.
When the matric suction is higher than a certain amount, it increases with the rise of matric suction.
The slight rebound in the area after a period of reclamation project reflects the growth in the rebound
index. Stability occurs when the rebound index and compression index reach equilibrium. Thus,
the third stage reflects the balance of rebound index and compression index, and this might take the
time to reach, in this case, more than 30 years.
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6. Conclusions

In this paper, time series InSAR analyses are carried out with X-, C-, and L-band SAR data
stacks to retrieve the subsidence velocity and time series of surface deformation at the LNC in the
Shanghai metropolis. A cross-comparison of the results of the three data stacks and validation with
leveling measurements demonstrates the performance of these data in land subsidence monitoring.
Furthermore, an evaluation of spatial distribution and temporal evolution of deformation in the LNC
was conducted by joint analyses of deformation measurements, historical reclamation activities, local
geological data, and soil mechanisms. The main conclusions are summarized as follows:

(1) Cross-comparisons of the three results suggest that PALSAR works at a longer wavelength,
which makes it much less affected by undesired temporal decorrelation and has advantages
when mapping newly reclaimed areas. Cross-validation shows a good agreement among mean
deformation rates measured at CPs shared by the three data stacks, with the coefficients of
determination around 0.9 and the standard deviations of inter-stack differences less than 4 mm/y.
The good agreement validates our argument of the negligibility of the east-west component of
displacement with respect to the vertical deformation. Validations with leveling data collected at
benchmarks along the seawall indicate that all the three data stacks achieved millimeter-level
accuracy. The mean values of differences were 2.7, 1.5, and 0.2 (mm/y) for TerraSAR-X, PALSAR,
and ASAR, respectively, and the corresponding standard deviations were 4.7, 5.3, and 4 (mm/y).

(2) The results from the three data stacks show a similar spatial variability of land subsidence across
the LNC area. Specifically, overall good stability was observed within the area built before 1973 in
the west of LNC, while moderate to large subsidence occurred within the coastal area built after
2002 in the east, and gentle uplift existed within the area built in 1994. A quantitative evaluation
of observed subsidence with the historical reclamation activities indicates the spatial variability of
land subsidence in the LNC, related to multi-phase reclamation and urban construction projects.

(3) The analysis of local geological data indicates that the consolidation of underlying soil causes
the subsidence in LNC. Specifically, the different consolidation stages of dredger fill 1©3,
the distribution of dredger fill layer 1©3, relatively stable silty clay layer 2©1, the thickness
changing of the shallow sand layer 2©3, soft soil layer 4© and the clay layer 5© together, contribute
to the spatial variation of subsidence in the LNC.

(4) Three stages of evolution in the reclaimed area were derived from the observed subsidence in
the LNC, verified by the soft soil mechanisms. The first stage is the primary consolidation stage,
which can last for a few years. The second stage is the slight rebound stage after long-term
compression. The final stage is a state of stable equilibrium.
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Abstract: The Terrain Observation with Progressive Scans (TOPS) acquisition mode of Sentinel-1A
provides a wide coverage per acquisition and features a repeat cycle of 12 days, making this
acquisition mode attractive for surface subsidence monitoring. A few studies have analyzed
wide-coverage surface subsidence of Wuhan based on Sentinel-1A data. In this study, we investigated
wide-area surface subsidence characteristics in Wuhan using 15 Sentinel-1A TOPS Synthetic Aperture
Radar (SAR) images acquired from 11 April 2015 to 29 April 2016 with the Small Baseline Subset
Interferometric SAR (SBAS InSAR) technique. The Sentinel-1A SBAS InSAR results were validated by
110 leveling points at an accuracy of 6 mm/year. Based on the verified SBAS InSAR results, prominent
uneven subsidence patterns were identified in Wuhan. Specifically, annual average subsidence rates
ranged from −82 mm/year to 18 mm/year in Wuhan, and maximum subsidence rate was detected
in Houhu areas. Surface subsidence time series presented nonlinear subsidence with pronounced
seasonal variations. Comparative analysis of surface subsidence and influencing factors (i.e., urban
construction, precipitation, industrial development, carbonate karstification and water level changes
in Yangtze River) indicated a relatively high spatial correlation between locations of subsidence bowl
and those of engineering construction and industrial areas. Seasonal variations in subsidence were
correlated with water level changes and precipitation. Surface subsidence in Wuhan was mainly
attributed to anthropogenic activities, compressibility of soil layer, carbonate karstification, and
groundwater overexploitation. Finally, the spatial-temporal characteristics of wide-area surface
subsidence and the relationship between surface subsidence and influencing factors in Wuhan
were determined.

Keywords: SBAS-InSAR; surface subsidence; Sentinel-1A; Wuhan; engineering construction;
carbonate karstification; water level changes
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1. Introduction

Surface subsidence is one of the main engineering geological problems worldwide, and
it is caused by consolidation and compression of underground unconsolidated strata because
of non-human-related (e.g., earthquake and natural consolidation of soil) or human-related
(e.g., groundwater extraction and underground construction) activities [1–3]. Surface subsidence is also
one of the major regional geological disasters that cause serious damage to buildings, infrastructures,
roads, and bridges and affect human safety in cities [4–6].

In recent years, Interferometric Synthetic Aperture Radar (InSAR) technique has been widely
used to investigate surface subsidence [7–9]. Compared with traditional monitoring methods, such
as Global Navigation Satellite System (GNSS) [10,11], leveling [12,13], geological and geophysical
investigation methods [14], InSAR can detect and monitor regional-scale surface subsidence at low
costs with centimeter-to-millimeter accuracy [9,15]. However, problems accompany InSAR due to
scatterer changes with time [16,17]. This phenomenon leads to signal decorrelation (e.g., temporal and
spatial decorrelation) and reduces monitoring accuracy of InSAR [18]. To overcome limitations
of this technique, time-series InSAR (TS-InSAR) has been proposed [19–21]. TS-InSAR extracts
deformation information by simultaneously processing multi-SAR images obtained on different
dates. Ferretti et al. [22] proposed a TS-InSAR method, which was referred to as Persistent Scatterer
InSAR (PS InSAR), that can overcome decorrelation and atmospheric delay problems by identifying
and analyzing point-like stable reflectors (PSs). Small Baseline Subset InSAR (SBAS InSAR) [23] is
another TS-InSAR method that effectively mitigates decorrelation phenomena by analyzing distributed
scatterers (DSs) with high coherence based on an appropriate combination of interferograms [24].
To combine advantages of PS InSAR and SBAS InSAR, Multi-temporal InSAR (MTInSAR) [25], which
can simultaneously detect PSs and DSs, was presented to retrieve surface subsidence. Aside from the
above-mentioned TS-InSAR methods, other approaches, e.g., the Temporally Coherent Point InSAR
(TCPInSAR) [26], the Quasi-PS (QPS) [27], and the Intermittent SBAS (ISBAS) [28], were proposed for
different monitoring situations. These TS-InSAR methods have been widely applied in urban surface
subsidence monitoring in Beijing [2,29], Mexico [30], Hanoi [31], Shanghai [32,33], and Jinan [34].

Wuhan, as a central city in Central China, has suffered from serious surface subsidence over
the past decades because of rapid urban development [35]. Surface collapse in Wuhan was first
recorded in 1931 [36]. This surface collapse caused the Yangtze River dike to burst and to flood the
Baishazhou area. Since 1978, varying scales and degrees of surface collapses intermittently occurred in
various areas (e.g., Hanyang Steel Mill, Wuchang Lujia Street Middle School, Fenghuo Village, and
Qingling (QL) Township) in Wuhan [37]. In recent years, owing to groundwater overexploitation,
metro construction, and karst collapse, multiple subsidence areas (e.g., Houhu (HH) and Jianghan
(JH) subsidence areas) have formed in Wuhan [38], and settlement range and magnitude of these
subsidence areas gradually expanded. At present more than 300 benchmarks were arranged in
Wuhan by Wuhan Geomatics Institute to monitor surface subsidence. However, given the low spatial
resolution and high cost of leveling, difficulty arises from obtaining regional subsidence information
and distribution of subsidence bowl. Consequently, effective data (e.g., SAR data) and methods are
needed to monitor surface subsidence distribution and state in Wuhan for disaster prevention and
sustainable development. Several studies have monitored and analyzed subsidence in Wuhan using
TS-InSAR methods with SAR data. Bai et al. [35] retrieved surface subsidence in Wuhan from October
2009 to August 2010 using TerraSAR-X images based on MTInSAR. Results indicated that subsidence
rates ranged from −63.7 mm/year to 17.5 mm/year in the study area. Costantini et al. [38] investigated
spatial-temporal characteristics of subsidence in Hankou District, Wuhan, from June 2013 to June 2014
with COSMO-SkyMed SAR images. However, the above-mentioned studies adopted high-cost SAR
data to extract deformation information in Wuhan before 2014 and only investigated major urban
areas in Wuhan, neglecting large non-central regions where various surface subsidence patterns also
exist. Prior to this study, wide-coverage surface subsidence information in Wuhan was still little
known. Fortunately, Sentinel-1A data are easily and freely accessible. The Interferometric Wide swath
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(IW) products of Sentinel-1A, which images three sub-swaths by adopting the Terrain Observation
with Progressive Scans (TOPS) SAR technique, offer SAR images at 5 m × 20 m (range × azimuth)
spatial resolution around a 250 km-wide area [39–41]. Owing to large swath width, surface subsidence
monitoring of large areas can be easily realized using Sentinel-1A SAR images. Therefore, in this
study, Sentinel-1A IW single-look complex (SLC) products are used to capture wide-area subsidence
information in Wuhan, and the relationship between surface subsidence and influencing factors
(e.g., urban construction, industrial development, carbonate karstification, and water level changes)
were analyzed in detailed based on leveling data, daily water level changes data on Yangtze River, and
distribution data of carbonate rock belt and industrial areas, etc.

In this study, to analyze spatial-temporal characteristics of wide-area surface subsidence in Wuhan,
we first adopted the SBAS InSAR method to derive surface subsidence rate and time series using
leveling data and 15 free Sentinel-1A TOPS images acquired between 11 April 2015 and 29 April
2016. Subsequently, 110 leveling benchmarks were used to verify the SBAS InSAR-derived results.
Water level changes in Yangtze River, precipitation, groundwater, urban construction, and geological
conditions were considered influencing factors, and mechanisms underlying their effects on surface
subsidence were studied. Finally, the correlation between surface subsidence and these influencing
factors were analyzed in detail.

2. Study Area and Data

2.1. Study Area

Wuhan is the central city of Central China. This city is located in the east of Jianghan Plain
and southern slope of Ta-pieh Mountains (Figure 1a). Geographical coordinates of Wuhan include
113◦41′–115◦05′E and 29◦58′–31◦22′N. Yangtze and Han rivers pass through the central urban area
of Wuhan and divide it into three main regions, i.e., Hankou (HK), Wuchang (WC), and Hanyang
(HY). Many lakes (e.g., East Lake, Tangxun Lake, and Liangzi Lake) and rivers are distributed in
Wuhan, in which water areas account for 25.79% of total area of the city. The study area is outlined by
red rectangle in Figure 1a, covering most of Wuhan City. Figure 1b shows SAR mean intensity map
of the Sentinel-1A, the map covers the study area. Length of mean intensity map in east–west and
south–north directions measures approximately 46.62 and 34.22 km, respectively.

The general terrain in Wuhan is low in south and high in the north. The northern part features
low mountain and hilly regions with elevation ranging from 100 m to 500 m. The middle part is mainly
the relatively flat middle reaches of the Yangtze River Plain. The southern part is surrounded by
hills and mounds, and its average elevation reaches approximately 55 m. Six independent carbonate
rock belts with the trend of WNW to ESE are distributed in Wuhan, and its distribution area reaches
1100 km2 [37]. Since 1931, at least 15 karst surface collapse disasters have been recorded in Wuhan [36].
Wuhan also serves as an important industrial base, science and education base, and comprehensive
transportation hub in China due to its geographical location. In recent years, in line with economic
development, numerous buildings and subways were constructed and have gradually led to multiple
surface inhomogeneous subsidence areas (e.g., Hankou subsidence area) in Wuhan.

2.2. Data

In this paper, 15 ascending Sentinel-1A TOPS SAR images (C-band) acquired from 11 April
2015 to 29 April 2016 covering Wuhan were selected to estimate vertical average surface subsidence
velocity and subsidence time series. Specific parameters of Sentinel-1A data are illustrated in Table 1.
The three arc-second Shuttle Radar Topography Mission (SRTM) DEM provided by the National
Aeronautics and Space Administration (NASA) was adopted to remove topographic phases. Precise
Orbit Determination (POD) data released by the European Space Agency (ESA) were used to the orbital
refinement and phase re-flattening. To validate SBAS InSAR-derived results, 110 benchmarks (location
distribution of benchmarks will be illustrated in Section 5.1) provided by the Wuhan Geomatics
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Institute were used, and the leveling data were acquired from 2013 to 2016. Daily water level changes
in Yangtze River collected from 11 April 2015 to 29 April 2016 were provided by Changjiang Wuhan
Waterway Bureau. These information and precipitation data from meteorological station of Wuhan
were utilized to investigate the relationship between surface subsidence and water level changes.

 

 

Figure 1. Location of study area and Sentinel-1A TOPS SAR data coverage: (a) the study area is
outlined by a red rectangle; and (b) a SAR mean intensity image of Sentinel-1A covering the study area.

Table 1. Specific parameters of Sentinel-1A TOPS data.

Parameters Description

Product type Sentinel1 SLC IW
Track number 113

Central incidence angle on the test site (degree) 41.9
Azimuth angle (degree) 90

Slant range resolution (m) 2.3
Azimuth resolution (m) 13.9

Orbit direction Ascending
Polarization VV

3. Methodology

3.1. Fundamental Principle of SBAS-InSAR Technique

First, the SBAS-InSAR technique generates an appropriate combination of differential
interferograms produced by SAR data pairs based on baseline threshold values. Then, this technique
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estimates deformation information of every single differential interferogram and regards them as
observed values. Finally, SBAS-InSAR retrieves deformation rate and time series based on observed
values acquired in the previous step [23,42].

Considering a set of N + 1 SAR acquisitions acquired at ordered times (t0, · · · , tN) covering
the study area, M interferograms are generated based on baseline threshold values. M satisfies the
following inequality:

N + 1
2

≤ M ≤ N
(

N + 1
2

)
(1)

Assuming interferogram j is generated by combining SAR acquisitions at times tA and tB

(tB > tA), after removing flat-earth and topographic phases, the interferometric phase in pixel of
azimuth and range coordinates (x, r) can be expressed as follows [43]:

δφj(x, r) = φ(tB, x, r)− φ(tA, x, r)
≈ φde f ,j(x, r) + φtopo,j(x, r) + φatm,j(x, r) + φnoise,j(x, r)

(2)

where φ(tB, x, r) and φ(tA, x, r) represent phase values of SAR images at tB and tA, respectively.
φde f ,j(x, r) refers to deformation phase between times tB and tA. φtopo,j(x, r) corresponds to residual
phase due to inaccuracies in reference DEM. φatm,j(x, r) depicts atmospheric phase error. φnoise,j(x, r)
denotes random noise phases (e.g., orbital errors, thermal noise, and spatial decorrelation).

To achieve deformation information, components φtopo,j(x, r), φatm,j(x, r), and φnoise,j(x, r) should
be separated from δφj(x, r). After removing the above-mentioned components, a system of M equations
in N unknowns can be obtained from Equation (2). The matrix form of the system can be expressed
as follows:

Aφ = δφ (3)

where A corresponds to an M × N coefficient matrix, ∀j = 1, · · · M. M and N represent the numbers
of interferograms and SAR acquisitions, respectively. φT = [φ(t1), · · · , φ(tN)] denotes the vector of
unknown phase values related to high-coherence pixels. δφT = [δφ1, · · · , δφN ] represents the vector of
unwrapped phase values associated with differential interferograms.

To retrieve deformation rates of high-coherence pixels, Equation (3) can be organized as follows:

Bv = δφ (4)

where B represents an M × N coefficient matrix, and vT can be expressed as follows:

vT =

[
v1 =

φ1

t1 − t0
, · · · , vN =

φN − φN−1

tN − tN−1

]
(5)

Deformation rate can be achieved from Equation (4) by least squares (LS) or singular value
decomposition (SVD) method [44]. Finally, the corresponding deformation time series can be derived
according to the time span between SAR acquisitions.

3.2. Data Processing

In this study, to obtain surface subsidence rate and time series in the Wuhan region, we adopted
the SBAS-InSAR technique to process 15 Sentinel-1A TOPS SAR images over the study area. The main
steps are as follows:

3.2.1. Generation of Multiple Differential Interferograms

The image acquired on 20 October 2015, was selected as super master image for the interferometric
combinations, and all slave images were co-registered and resampled to the super master image.
Interferometric pairs were selected based on the spatial baseline shorter than 300 m and temporal
baseline less than 200 days. The longest temporal baseline used in the analysis was 155 days.
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Meanwhile, interferometric pairs with low coherence and poor unwrapping were removed. Finally,
a combination with 92 differential interferograms was generated (Figure 2).

 

Figure 2. (a) Time–position of Sentinel-1A image interferometric pairs; and (b) time–baseline of
Sentinel-1A image interferometric pairs. The red diamond denotes the super master image. Blue lines
represent interferometric pairs. Green diamonds denote slave images.

3.2.2. Removal of Flat-Earth and Topographic Phases

POD data released by the ESA were adopted to remove the flat-earth phase. Topographic phase
was eliminated using the three arc-second SRTM DEM provided by the NASA.

3.2.3. Orbital Refinement and Phase Re-Flattening

In this study, after adaptive filtering [45] and phase unwrapping (using Delaunay minimum
cost flow), based on leveling data provided by the Wuhan Geomatics Institute, 24 stable points
distributed in the study area were selected to execute orbital refinement and phase re-flattening for all
interferometric pairs.

3.2.4. Subsidence Rate and Time Series Retrieval

No isolated interferogram clusters existed during combination of differential interferograms.
Hence, subsidence rates were estimated using the LS method [25]. To retrieve subsidence time
series, the estimated linear subsidence was subtracted first from raw subsidence time series.
The remaining components comprised atmospheric phase, random noise phases, and nonlinear
subsidence. Atmospheric and noise phases components are characterized by high spatial correlation
but show a notably low temporal correlation. Subsequently, nonlinear subsidence component was
separated through spatial and temporal bandpass filtering [46]. Finally, subsidence time series were
retrieved by adding up linear subsidence and nonlinear subsidence components.

4. Results

4.1. Subsidence Rate Map

Figure 3 shows the subsidence rate map derived using SBAS InSAR; the map is superimposed on
the Google Earth image of Wuhan acquired in 2016. Based on collected leveling data, a stable point
located at 30◦30′25′ ′N and 114◦22′44′ ′E (red triangle in Figure 3) was selected as reference point, and
subsidence rates in the study area were considered based on the reference point. Positive values of
rate map indicate that the surface is uplifting in the vertical direction, whereas negative values denote
surface subsidence in the vertical direction. Total number of PS points extracted from Sentinel-1A
TOPS dataset by SBAS InSAR technique reached 2,101,453. Average density of PS points in the study
area totaled 1317 PS points/km2. SBAS InSAR-derived results in Figure 3 reveal that annual average
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subsidence rates in Wuhan range from −82 mm/year to 18 mm/year, and the largest subsidence rate
was detected in HH region, Hangkou District (HK).

As shown in Figure 3, prominent uneven subsidence patterns were identified in Wuhan. The major
subsidence areas include Region S1 (i.e., HK), Region S2 (mainly includes Qingshan (QS) and Yangluo
(YL) Districts), Region S3 (i.e., WC), and Region S4 (mainly include QL Township, HY and Hongshan
(HS) Districts). Regions S1 and S3 are central urban areas of Wuhan. The main large-scale industrial
areas of Wuhan, e.g., Wuhan Iron and Steel Company (WISC), Sinopec Wuhan Company (SWC), and
Huaneng Yangluo Power Plant (HYPP), are located in Region S2. Among the above-mentioned four
regions, Region S1 features the most number of subsidence bowls, and most of the serious subsidence
bowls are also distributed in Regions S1. Region S4 features the smallest subsidence bowls, but its
subsidence range is gradually expanding. Additionally, these subsidence areas are mainly distributed
along the Yangtze River. In addition to Regions S1–S4, other areas in study area present small surface
subsidence, and most subsidence rates are less than 10 mm/year. More detailed subsidence analysis
and explanation for Regions S1–S4 will be discussed in Section 5.

 

Figure 3. Vertical deformation rates derived by SBAS InSAR for the whole study area during the
period from 11 April 2015 to 29 April 2016. The background is a Google Earth image acquired in 2016.
Red triangle and blue square denote locations of reference point and Hankou hydrological station,
respectively. Regions S1–S4 marked with black rectangles are major subsidence areas in Wuhan. These
areas will be further analyzed in the discussion section. HK, HH, WC, QS, YL, HY, and QL are the
abbreviations of Hankou, Houhu, Wuchang, Qingshan, Yangluo, Hanyang, and Qingling, respectively.

4.2. Subsidence Time Series

Figure 4 shows surface cumulative subsidence time series in Wuhan from 11 April 2015 to 29 April
2016. The Sentinel-1A TOPS SAR image acquired on 11 April 2015 was considered reference time of
the time series in SBAS InSAR method. Maximum cumulative subsidence in this period is −86 mm,
and it was noted at HH in HK, as marked by the black rectangle in Figure 4n. Eastern and western
parts of Wuhan are relatively stable, and most of the cumulative subsidence in these areas range from
−10 mm to 10 mm. Magnitude of subsidence in major subsidence areas (i.e., Regions S1–S4) gradually
increased with time. Size of these subsidence areas also gradually expanded. However, changes in
subsidence magnitude and range were small between May 2015 and July 2015. Wuhan experienced
heavy rainfall in May, June, and July 2015, which possibly recharged groundwater effectively during
the indicated months. Consequently, surface subsidence in Wuhan was possibly affected by rainfall
and shows nonlinear subsidence with pronounced seasonal variations.
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Figure 4. Cumulative subsidence (in the vertical direction) time series from 2015 to 2016. The image
acquired on 11 April 2015 was not shown because it was selected as a reference image. The background
is Sentinel-1A TOPS mean intensity image of Wuhan. (a–n) Cumulative subsidence in 14 stages in
Wuhan. (a) 11 April 2015–5 May 2015; (b) 11 April 2015–29 May 2015; (c) 11 April 2015–16 July 2015;
(d) 11 April 2015–9 August 2015; (e) 11 April 2015–2 September 2015; (f) 11 April 2015–26 September
2015; (g) 11 April 2015–20 October 2015; (h) 11 April 2015–13 November 2015; (i) 11 April 2015–
7 December 2015; (j) 11 April 2015–31 December 2015; (k) 11 April 2015–24 January 2016; (l) 11 April
2015–17 February 2016; (m) 11 April 2015–5 April 2016; (n) 11 April 2015–29 April 2016. HH region in
HK is marked by black rectangle in (n).

4.3. Internal Precision Checking

To assess internal precision of subsidence rates extracted from Sentinel-1A TOPS data by SBAS
InSAR technique, standard deviations of subsidence rates were statistically analyzed. Figure 5 shows
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distributions of standard deviations of subsidence rates. The standard deviations were obtained by
computing the deviations of the linear fitting of velocities. If a PS point shows a strong nonlinear
motion, it resulted in a large residual with respect to the linear model, i.e., in a high standard deviation
value. Standard deviation of SBAS InSAR-derived results using Sentinel-1A TOPS data is 3 mm/year.
Maximum standard deviation of PS point reaches 11 mm/year, and standard deviations of subsidence
rates of 86.27% PS points are less than 6 mm/year. According to the above analysis, surface subsidence
derived by SBAS InSAR technique using Sentinel-1A TOPS data features high reliability and precision.
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Figure 5. Distributions of standard deviations of subsidence rates.

5. Discussion

5.1. Validation with Leveling

To further quantitatively verify accuracy of surface subsidence monitoring using Sentinel-1A TOPS
data by SBAS InSAR, a comparative analysis of differences between SBAS InSAR- and leveling-derived
results was performed. A total of 110 benchmarks (i.e., BM1–BM110) were used in validation. Figure 6
shows location distribution of benchmarks for monitoring surface subsidence. Before validation,
overlapping period data of Sentinel-1A TOPS and leveling data were selected. Given the limited
opportunities for a benchmark and corresponding PS point located in the same place, Kriging method
was adopted using ArcGIS 10.2 software and its geostatistical analyst extension to extract subsidence
of the PS point corresponding to the nearest benchmark.

The linear regression of average subsidence rate was performed between SBAS InSAR- and
leveling-derived results, as illustrated in Figure 7a. SBAS InSAR and leveling rates present a relatively
high correlation, with a correlation coefficient value of 0.72. Figure 7b shows differences between SBAS
InSAR- and leveling-derived results. Differences mainly ranged from −10 mm/year to 10 mm/year.
Table 2 lists statistical results of differences. Mean error, maximum (MAX) and minimum (MIN)
errors totaled −1, 11, and −13 mm/year, respectively. Root-mean-square error (RMSE) of differences
averaged 6 mm/year. Therefore, validation results suggest that SBAS InSAR-derived results agree
well with results obtained by leveling data, and SBAS InSAR technique can successfully extract surface
subsidence information in Wuhan using Sentinel-1A TOPS data with an accuracy of 6 mm/year.
This accuracy is similar to the subsidence monitoring accuracies derived by Luo et al. [47] and
Zhang et al. [48].
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Figure 6. Distribution of benchmarks for surface subsidence monitoring over Wuhan. The red circle
and triangle denote leveling point and reference point, respectively.
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Figure 7. (a) Regression analysis between surface vertical deformation rates derived by SBAS InSAR
and leveling; and (b) differences between SBAS InSAR- and leveling-derived results.

Table 2. Comparison of average subsidence rates between SBAS InSAR- and leveling-derived results.
Mean error is the mean of the differences between SBAS InSAR- and leveling-derived rates. RMSE
represents the standard deviation of the differences between SBAS InSAR- and leveling-derived rates
(unit: mm/year).

Method Mean Error RMSE MAX Error MIN Error

Kriging −1 6 11 −13

5.2. Surface Subsidence Associated with Urban Construction and Precipitation

In recent years, as the largest land and water transportation hub city in central China, Wuhan
has witnessed significant changes, especially in urban construction. At present, Wuhan is in a critical
period of urban development, and over 10,000 construction sites simultaneously operate throughout
the city. HK (Region S1) and WC (Region S3) (Figure 3) are economic and cultural centers of Wuhan,
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respectively, and most urban construction activities are concentrated in these areas. Remarkable
uneven subsidence patterns were detected in these regions (Figure 3). Therefore, the relationship
between surface subsidence and urban construction corresponding to Regions S1 and S3 was analyzed
in detail. Figures 8a and 9a show zoomed subsidence rate maps of Regions S1 and S3, respectively.

As shown in Figure 8a, four significant subsidence areas were detected in Regions S1, i.e., HH,
Jianghan District (JH), Sun Yat-Sen Street (SYSS), and Wuhan Central Business District (CBD). Their
surface subsidence distribution is similar to results extracted by Costantini et al. [38]. The most serious
subsidence area is HH, where maximum subsidence rate exceeds −80 mm/year. Maximum subsidence
rates in JH and SYSS reach −51 and −65 mm/year, respectively. Additionally, many large-scale
buildings (e.g., Wuhan Center, a 438 m-tall skyscraper under construction) were constructed in the
CBD area during the study period. As a result, density of PS points in CBD area was sparse, and
detected maximum subsidence rate totaled −59 mm/year. HH, JH, and SYSS subsidence areas are
mainly distributed along Metro Line 6, which is still under construction, and these subsidence areas
gradually connect into a continuous area. To validate the uneven subsidence, fieldwork was carried
out on HH, SYSS, and CBD areas in October 2016. Figure 8c–e illustrates significant effects caused by
uneven subsidence observed in two buildings and a road.

In Region S1, extensive urban construction activities, including those for Metro Line 6 and Wuhan
World Trade Center, were simultaneously under development during the study period (Figure 8a).
During excavation of deep foundation pit and underground structure, groundwater level was often
higher than construction surface. To ensure smooth excavation and avoid underwater operation,
the foundation pit should be discharged of water. The entire Metro Line 6 and various buildings
in CBD area were simultaneously under construction. Hence, a large volume of groundwater was
extracted, and groundwater level gradually declined. This phenomenon reduced uplift pressure of
groundwater in soil layer for the aboveground structures, compressed the soil, and finally led to
surface subsidence. Region S1 is mainly located in the alluvial plain formed by joint actions of Yangtze
River, Han River, and lakes, so that compressibility of alluvial deposit in this area is high. The above
analysis indicates that extensive urban construction plays a dominant role in surface subsidence in
Region S1. Surface subsidence is also affected by compressibility of soil layer.

Thus, to analyze temporal evolution of surface subsidence and the relationship between surface
subsidence and precipitation, subsidence time series of four PS points (i.e., A, B, C, and D shown in
Figure 8a) and monthly average precipitation during the study period were compared and analyzed.
Figure 8b illustrates obtained results. Subsidence time series of selected PS points showed a nonlinear
decline with seasonal variability. Accumulated subsidence of selected point is different depending
on their spatial location. Accumulated subsidence of A located in HH area (approximately −80 mm)
is significantly larger than that of other points, and it is related to poor soil-bearing capacity of the
silt layer in HH area [49]. Subsidence of selected points from May 2015 to July 2015 was visibly small.
As illustrated by the red line in Figure 8b, monthly average precipitations from May to July were the
highest during the study period in Wuhan. These precipitations effectively replenished groundwater
and slowed down surface subsidence rate. After July, precipitation declined noticeably, and subsidence
increased as the temperature and domestic water consumption in Wuhan increased significantly, and
groundwater was increasingly extracted, leading to increase in surface subsidence rates after July 2015.
Comparative analysis suggests the following: surface subsidence in Region S1 experiences pronounced
seasonal variations; surface subsidence is correlated not only to precipitation but also to other factors;
and precipitation is a dominant factor influencing seasonal component of surface subsidence.
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Figure 8. Surface vertical deformation rate map derived by SBAS InSAR superimposed on Google
Earth image covering (a) Region S1. Black lines denote Wuhan Metro Lines, including metro lines in
operation and under construction. Red circles represent leveling points distributed along Metro Line 6,
which is under construction. Black and red triangles denote Wuhan Center and Wuhan World Trade
Center, respectively. (b) Surface subsidence (in the vertical direction) time series with respect to PS
points (marked by black crosses in Figure 8a) labeled as A, B, C, and D in Figure 8a versus average
monthly precipitation of Wuhan area. (c–e) Structural damage caused by surface subsidence.

Figure 9 shows zoomed subsidence rate map of Region S3. In comparison with Region S1,
subsidence rates in this region are much lower, and maximum subsidence rate just exceeds
−40 mm/year. Two significant subsidence areas, namely, Xudong (XD) and Hubei University (HBU)
subsidence areas (red ellipses in Figure 9), were identified in Region S3. The Metro Line 8 under
construction runs through XD area along a northwest–southeast direction. The HBU area is located in
the northern region of Sha Lake, where multiple super-tall residential communities are distributed
along the lake. Distribution of settlement areas indicates that surface subsidence in Region S3 correlates
with urban construction.
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Figure 9. Surface vertical deformation rate map derived by SBAS InSAR superimposed on Google
Earth image covering Region S3. Black lines denote the Wuhan Metro Lines, including the metro lines
in operation and under construction. Red ellipses represent the two subsidence areas, i.e., XD and HBU
subsidence bowls.

5.3. Effects of Surface Subsidence coupled with Industrial Development

Wuhan is one of the important old industrial bases in China. Many important industries are
distributed in Wuhan. Multiple large-scale industrial plants (e.g., WISC, SWC, Yangluo Cement Plant
(YCP), and HYPP) are located in Region S2. As shown in Figure 10a, severe subsidence areas are
mainly yellow or red areas, and the most severe subsidence area is situated in SWC (white polygons
in Figure 10a). The SWC subsidence area features the most serious subsidence rate, with maximum
exceeding −46 mm/year. The subsidence bowl and the industrial area in WISC are consistent to some
extent, although the distribution range of the subsidence bowl is smaller than that of the industrial
area.The spatial distribution of the subsidence bowl overlaps the industrial regions in SWC, YCP and
HYPP. In addition to industrial districts, a subsidence area has formed east of the YL urban area, and
its highest subsidence rate reaches up to −32 mm/year.

Fieldwork was implemented in severe subsidence areas of Region S2 in October 2016. Figure 10b
shows an approximately 2 cm-width crack on the step of a building located in YCP subsidence area.
Figure 10c illustrates a 1.5 cm-wide crack on the roadside step caused by differential settlement situated
in YL urban area.

Three profiles in representative areas were selected for subsidence analysis (A-A′, B-B′, and
C-C′ in Figure 10). From A-A′ in Figure 11a, two remarkable subsidence bowls formed in the WISC
area, and the largest subsidence along profiles A-A′ reaches up to −23 mm. In this area, the main
factor inducing surface subsidence is groundwater overdraft caused by industrial development.
By combining Figures 10a and 11b, we can conclude that a large subsidence bowl has formed in SWC
area. The profile length reaches approximately 2.6 km, and maximum subsidence along profile B-B′

totals −36 mm. Figure 11c illustrates subsidence variation along a profile through the YL urban area
in approximately east–west direction. Maximum subsidence measures −31 mm, which is close to
point C′.
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(a) 

(c)

(b)

Figure 10. Surface vertical deformation rate map superimposed on Google Earth image covering
(a) Region S2. Red, white, blue and black polygons denote the industrial areas of WISC, SWC, YCP,
and HYPP, respectively. Black lines represent subsidence profiles that will be further analyzed in the
Section 5.3. (b,c) Structural damage due to surface subsidence.
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Figure 11. (a–c) Variation in accumulated subsidence (in the vertical direction) during the period from
11 April 2015 to 29 April 2016 along profiles A-A′, B-B′, and C-C′ (in Figure 10). Black dotted lines
mark locations of the largest accumulated subsidence of profiles.

Overall, as multiple large-scale industrial plants are distributed in Region S2, high amounts of
groundwater are pumped for industrial production, reducing pore water pressure in the aquifer of the
overlaying soil and leading to uneven surface subsidence. A relatively high spatial correlation also
exists between locations of surface subsidence bowl and that of industrial area.
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5.4. Correlation between Surface Subsidence and Carbonate Karstification

Covered karst is widely distributed in Wuhan, and the area covered by quaternary loose sediments
on the karst can easily induce surface collapse [50]. The covered karst area of the first terrace on
both sides of Yangtze River are extremely prone to surface subsidence. Karst surface collapse is
mainly distributed in HS, HY, and WC Districts. From 1977 to 2014, 29 karst surface collapses
occurred in various locations in Wuhan, with 22 occurring in Region S4 (red squares in Figure 12) [51].
The Baishazhou Carbonate Rock belt (the area enclosed by red lines in Figure 12) is located in Region
S4, where karst cave encountering rate of borehole and linear karst rate of borehole total 46.0% and
6.0%, respectively, and silty-fine sand is directly located above carbonate formations [52]. Cohesion of
holocene silty-fine sand is small or equal to zero. Hence, silty-fine sand can easily enter the underlying
karst channel under the influence of gravity and seepage force, thereby resulting in surface subsidence
or karst surface collapse.

 

Figure 12. Surface vertical deformation rates map derived by SBAS InSAR superimposed on Google
Earth image covering Region S4. Black lines denote the Wuhan Metro Lines, including metro lines in
operation and under construction. The area enclosed by red line represents the Baishazhou Carbonate
Rock belt. The red square denotes karst surface collapse. Areas 1, 2, 3, 4, and 5 marked with black
rectangles are significant subsidence areas in Region S4.

As illustrated in Figure 12, uneven settlement is notable in Region S4, and five significant
subsidence bowls were detected, namely, areas 1, 2, 3, 4, and 5, as labeled in Figure 12. Maximum
subsidence rates in subsidence bowls 1, 2, 3, 4, and 5 reach up to −20, −29, −48, −53, and
−35 mm/year, respectively. Subsidence rates in HY located west of the Yangtze River are small
compared with that of the east, and subsidence areas are mainly distributed along Metro Line 6, which
is under construction. Most subsidence bowls and surface collapses are located in the Baishazhou
Carbonate Rock belt in the eastern part of Yangtze River (Figure 12). Groundwater level in this area
is closely related to water level in Yangtze River, whereas active water level variations in Yangtze
River can exacerbate groundwater cycle and promote development of underground karst caves. This
situation can easily lead to surface subsidence and then surface collapse. The above analysis suggests
that surface subsidence in Region S4 is seriously affected by carbonate karstification. Both water
level variations of Yangtze River and urban engineering construction influence surface subsidence in
this area.
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5.5. Comparison between Surface Subsidence Changes and Water Level Changes

To analyze the relationship between surface subsidence and water level changes in Yangtze River,
six PS points distributed along the sides of Yangtze River (the five-pointed star in Figure 13) and data
on daily water level changes observed by Hankou hydrological station (black square in Figure 13)
were selected to compare and analyze their changes time series.

 

Figure 13. Surface vertical deformation rate map superimposed on Google Earth image covering
both sides of the Yangtze River. The black square and five-pointed star denote the Hankou
hydrological station and PS point, respectively. JH and XD are the abbreviations of Jianghan and
Xudong, respectively.

As illustrated in Figure 14a, water level changes in Yangtze River exhibit obvious seasonal
variability during the study period. Water level was typically high from May to July but low from
January to March. On the other side, surface subsidence time series of the six PS points also showed a
nonlinear decline with seasonal oscillation. Water level was high from May to July, and subsidence was
low because of high water level in Yangtze River during this period. These conditions can effectively
replenish groundwater and mitigate surface subsidence. From July 2015 to March 2016, water level
dropped by 9 m, and average accumulated subsidence of six PS points reached approximately −19 mm.

To quantitatively analyze the relationship between surface subsidence and water level changes,
we adopted the grey relational analysis (GRA) [53,54] to analyze proximity between subsidence and
water level changes. Proximity is described by the grey relational grade (GRG), which is regarded
a measure of similarities of discrete time-series data [55,56]. Temporal samplings of Sentinel-1A
TOPS and water level data differ. Hence, we first interpolated subsidence time-series data to the
same temporal sampling as water level data. Subsequently, we adopted GRA to calculate the GRG
between subsidence and water level time series and the GRG between detrended subsidence and
water level time series (results are listed in Table 3). The GRG indicates the magnitude of correlation
between subsidence and water level time series. The closer the GRG value is to 1, the better the
correlation [57,58]. Table 3 lists the standard deviation of subsidence with respect to the six PS points
(i.e., PS1–PS6) and the standard deviations of the six selected PS points are approximately 1 mm.
All GRGs between subsidence and water level time series are greater than 0.8, it is concluded that
subsidence of PS points in Figure 14a is relatively highly related to the decline of water level.
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Figure 14. (a) Surface vertical deformation time series with respect to PS points labeled as PS1–PS6 in
Figure 13 versus water level (WL) changes (red-dotted line) in Yangtze River; (b) Detrended surface
vertical deformation time series relevant to the above PS points versus detrended water level changes
(red dotted line) in Yangtze River.

Table 3. The GRG between the subsidence and water level of Yangtze River before and after the linear
trend is removed and the standard deviations of displacement with respect to the six PS points.

PS Points
GRG Standard Deviation

Time Series Detrended Time Series Displacement (mm)

PS1 0.82 0.92 1.2
PS2 0.91 0.97 0.7
PS3 0.87 0.96 0.7
PS4 0.88 0.94 1.1
PS5 0.92 0.96 1.1
PS6 0.88 0.96 1.4

To further analyze the relationship between surface subsidence changes and water level changes,
linear trends in surface subsidence changes and water level changes were removed by the least squares
(LS) method. After removing the linear trend, the settlement changes of these PS points exhibit a
certain periodic characteristics, as shown in Figure 14b. The peaks between detrended water level
changes and subsidence changes show a similar pattern, but subsidence reaches its peak later than the
water level. Furthermore, the GRGs between detrended subsidence and water level time series are
close to 1, as shown in Table 3, indicating changes of subsidence may be closely related to that of water
level. Therefore, we infer that seasonal signal is present in subsidence changes time series. In addition,
as shown in Figure 14b, the fluctuation magnitude of displacement curves is about 3–4 mm, which
is larger than the standard deviation of subsidence of the six selected PS points. This is because the
curves shown in Figure 14b include nonlinear variations and error (i.e., the incompletely removed
systematic error). While the standard deviation of subsidence were derived from the systematic error.

Overall, surface subsidence along sides of the Yangtze River correlated with water level changes.
Specifically, seasonal component of subsidence time series is probably influenced by water level
changes. Because of insufficient data, we cannot investigate the seasonal variations in subsidence time
series in detail. In addition, longer time series will help to confirm the correlation between surface
subsidence and water level changes. Therefore, we will study the periodic characteristics of signals
using more data in the future research.

6. Conclusions

This paper presented spatial-temporal distribution of wide-area surface subsidence in Wuhan
as derived by 15 Sentinel-1A TOPS SAR images using SBAS-InSAR technique. Cross-validation was
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conducted between InSAR- and leveling-derived results. The relationship between surface subsidence
patterns and anthropogenic activities (e.g., metro construction, large-scale building construction and
industrial development) and natural factors (e.g., precipitation, carbonate karstification and water
level changes) were analyzed in detail, based on Sentinel-1A data, leveling data, daily water level
changes data on Yangtze River, and distribution data of carbonate rock belt and industrial areas, etc.
The main conclusions are as follows:

(1) Surface subsidence in Wuhan is remarkably uneven, and four significant subsidence areas
were detected in Wuhan. These surface subsidence areas are mainly distributed in the central
urban areas of Wuhan (i.e., HK and WC Districts), industrial areas in QS and YL Districts,
and Baishazhou Carbonate Rock belt. Annual average subsidence rates in Wuhan range from
−82 mm/year to 18 mm/year. The most serious subsidence bowl was identified in HH area with
a maximum rate exceeding −80 mm/year. Additionally, surface subsidence time series shows
nonlinear subsidence with pronounced seasonal variations.

(2) Internal precision checking indicated that standard deviation of Sentinel-1A SBAS InSAR results
in the study area is 3 mm/year, and 86.27% of the PS point standard deviations are within
6 mm/year, implying high reliability and precision of surface subsidence derived by SBAS InSAR
technique using Sentinel-1A data. Results obtained by SBAS InSAR and leveling showed good
agreement. Specifically, RMSE and mean error reach 6 and −1 mm/year, respectively.

(3) Surface subsidence in Wuhan is seriously affected by urban construction and industrial
development, and spatial distribution of subsidence bowl is relatively highly correlated to
that of engineering construction and industrial areas. In addition, carbonate karstification in
Wuhan also plays a significant impact factor in surface subsidence. Seasonal variations in surface
subsidence are correlated to water level changes and precipitation. The GRGs between detrended
subsidence and water level time series are close to 1, indicating changes of subsidence may
be closely related to that of water level. However, anthropogenic activities pose more notable
influence on surface subsidence in Wuhan than natural factors.
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Abstract: The estimation of deformation parameters using persistent scatterer interferometry (PSI) is
limited to single dominant coherent scatterers. As such, it rejects layovers wherein multiple scatterers
are interfering in the same range-azimuth resolution cell. Differential synthetic aperture radar (SAR)
tomography can improve deformation sampling as it has the ability to resolve layovers by separating
the interfering scatterers. In this way, both PSI and tomography inevitably require a means to detect
coherent scatterers, i.e., to perform hypothesis testing to decide whether a given candidate scatterer is
coherent. This paper reports the application of a detection strategy in the context of “tomography as
an add-on to PSI”. As the performance of a detector is typically linked to the statistical description of
the underlying mathematical model, we investigate how the statistics of the phase instabilities in the
PSI analysis are carried forward to the subsequent tomographic analysis. While phase instabilities in
PSI are generally modeled as an additive noise term in the interferometric phase model, their impact
in SAR tomography manifests as a multiplicative disturbance. The detection strategy proposed
in this paper allows extending the same quality considerations as used in the prior PSI processing
(in terms of the dispersion of the residual phase) to the subsequent tomographic analysis. In particular,
the hypothesis testing for the detection of coherent scatterers is implemented such that the expected
probability of false alarm is consistent between PSI and tomography. The investigation is supported
with empirical analyses on an interferometric data stack comprising 50 TerraSAR-X acquisitions in
stripmap mode, over the city of Barcelona, Spain, from 2007–2012.

Keywords: synthetic aperture radar (SAR); SAR tomography; deformation monitoring; persistent
scatterer interferometry (PSI); urban deformation monitoring; radar interferometry; displacement
mapping; spaceborne SAR; differential interferometry; differential tomography

1. Introduction

Persistent scatterer interferometry (PSI) [1–7] is nowadays an operational geodetic technique
for the monitoring of surface deformation with spaceborne synthetic aperture radar (SAR) data
stacks. These stacks typically comprise several repeat-pass SAR acquisitions, spanning from months
to years. PSI techniques attempt to extract the interferometric phase components correlated with the
scatterer motion. The quality of the deformation estimates is tied to the precision of the interferometric
phases. Temporal and geometric decorrelation, as well as uncompensated platform motion and
atmosphere-induced optical path delay variations, are among the factors that cause random instabilities
in phase. For these reasons, a quality control is necessary during the processing as well as when
reporting the final results.
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The single dominant scatterers that exhibit long-term phase stability are generally termed as
persistent scatterers (PS). PSI processing approaches often use a classifier to identify a priori a set
of PS candidates, e.g., the permanent scatterers [1] approach uses the dispersion index as a proxy
for phase stability. The PSI approaches based on the interferometric point target analysis (IPTA)
framework, as in [3,8], employ low spectral diversity [3,9–11] as a proxy for phase stability in addition
to the stability of the backscattering amplitude. Low dispersion index and low spectral diversity are
indicative of good phase quality. The observed differential interferometric phases are fit to a phase
model and the unknown parameters, such as the deformation velocity and the residual topography,
are thereby estimated. The dispersion of the residue of the fit is a means to characterize the quality of
the estimates. It is often used to compute the multi-interferogram complex coherence (MICC) [1,12,13]
which can in turn be used as a test statistic to perform statistical detection i.e., to decide among the
hypotheses whether a given PS candidate is a phase coherent single scatterer or if it comprises noise
only. The statistics of the noise impact the probability of false alarm in the detection process.

An inherent limitation associated with PSI techniques is the fact that a phase-only model
cannot consider multiple coherent scatterers with different complex reflectivity interfering in the
same range-azimuth resolution cell. The cumulative phase response in this case is mismatched
to the interferometric phase model, which is essentially based on the assumption of a single
scatterer. Consequently, it may lead to erroneous estimation of the deformation parameters.
Therefore, PSI processing approaches typically reject the cells that contain backscattering contributions
from multiple scatterers, as for the case of layovers.

The aforementioned limitation can be alleviated by SAR tomography [14–17], which exploits both
the amplitude and the phase of the received signal, thereby permitting a higher order analysis [18].
It allows 3-D reconstruction of the scene reflectivity—a feature that renders it possible to resolve
the layover problem [19–22]. Additionally, differential SAR tomographic methods [23–25] allow
a joint spatio-temporal inversion of the coherent scatterers in layover, i.e., the position along the
elevation axis as well as the deformation velocity of the interfering scatterers are simultaneously
estimated. Therefore, differential SAR tomography has been proposed as an add-on to PSI techniques
to improve deformation sampling by resolving the scatterers in layover that are rejected in the PSI
processing [26–29]. Inevitably, a detection strategy is again required to classify whether the detection
of one or more scatterers in the same resolution cell is true or false. In this context, it is pertinent to
carry forward the same quality criteria as used in the prior PSI analysis so that the combined use of
PSI and tomography holds compatibility.

The prevailing detection mechanisms for SAR tomography, such as the generalized likelihood
ratio tests in [13,24,30], consider an additive noise model for the received complex signal vector.
The source of the noise is attributed to the clutter in the resolution cell. However, the instabilities in
the observed interferometric phases, albeit considered additive in the phase-only model, naturally
represent themselves as multiplicative noise in the tomographic signal model. Therefore, in order to
carry the impact of the phase instabilities from an interferometric to tomographic analysis, the detection
strategy employed for hypothesis testing needs to account for the phase instabilities as a multiplicative
disturbance in tomographic inversion.

Keeping in view the aforementioned concerns, this paper describes a strategy for the detection of
single and double scatterers with SAR tomography whereby the hypothesis testing is directly linked
to the MICC-based test statistic for PS detection in the prior PSI processing. As a whole, this paper is
a follow-up to the earlier works in [12,27,31]. Section 2 presents the mathematical models typically used
for SAR interferometry and tomography, as well as the associated detection mechanisms. Section 3
presents the processing methodology adopted in the paper. The data stack for empirical analysis is
introduced in Section 4. The results obtained are presented in Section 5, followed by a discussion in
Section 6.
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2. Models

We consider the availability of a coregistered, single-reference interferometric SAR data
stack comprising M layers of repeat-pass interferograms. For a given range-azimuth resolution
cell in an interferometric layer, we denote the received single-look complex (SLC) signal as
ym = zm exp (−jϕm), where zm = |ym| ∈ R is the amplitude of the received signal, and ϕm is
the observed interferometric phase. The subscript m, where m ∈ {0, 1, . . . , M − 1}, is used to indicate
a specific layer in the interferometric stack. In the following text, an underlined symbol represents
a quantity that has been modeled as stochastic, or when the distinction between observables versus
observations is emphasized. Bold symbols represent vectors, or matrices when capitalized.

2.1. Interferometric Phase Model

The interferometric phase observable, ϕ
m

, is generally modeled as a sum of several phase
contributions [32,33]:

ϕ
m
= ϕ

disp
m + ϕ

geo
m + ϕ

th.exp
m + ϕatm

m
+ ϕdecor

m
+ 2πp, (1)

where ϕdisp is the phase change due to the linear displacement of the target as a function of time within
the resolution cell:

ϕ
disp
m =

4π

λ
vtm. (2)

λ is the wavelength, v is the deformation velocity in the line of sight (LOS), and tm is the temporal
baseline for the mth interferogram. ϕgeo is the phase variation due to sensor-to-target geometry.
Neglecting higher order terms [16,34],

ϕ
geo
m ≈ − 4πb⊥m s

λ
(

ρ0 − b‖m
) , (3)

where b⊥m and b‖m are the orthogonal and parallel components of the spatial baseline for the mth
interferogram, respectively. ρ0 is the range distance from the sensor to the target location for the
reference acquisition. s represents the elevation, i.e., the position of the target in the axis perpendicular
to the LOS. In case of thermal expansion, the additional phase variations are linearly modeled as
follows [27,35]:

ϕ
th.exp
m = ηTm, (4)

where Tm is the temperature change (with respect to the temperature for the reference layer), and η

is the phase-to-temperature sensitivity. The term 2πp, where p ∈ Z, is added to account for phase
wrapping. The phase variations ϕatm

m
are due to the optical path length variations while propagation

through the atmosphere. They are modeled as stochastic variables due to the temporally varying
nature of atmospheric refractivity [36–39]. The phase decorrelation term, ϕdecor

m
is, by definition,

a random quantity, which is typically modeled as an additive phase noise. The parameters s, v and η

are treated as deterministic unknowns in this work.
The interferometric phase model in Equation (1) is implicitly assuming the presence of a single

coherent scatterer in the resolution cell. In case of multiple coherent scatterers in the same resolution
cell, it is not possible to write the interferometric phase, ϕ

m
as a sum of the aforementioned sources of

phase variations, independently of the reflectivity of the individual scatterers.
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2.2. PSI: Model of Observation Equations

While several approaches to parameter estimation with PSI have been proposed over time,
as in [1–6], the functional model of interferometric phase observation equations common to these
approaches is as follows [33]:

ϕ = Ap + w, (5)

where ϕ is the M × 1 vector of interferometric phase observables, A is the design matrix, and p is the
vector of the aforementioned unknown parameters. w is the M × 1 vector of phase residuals which
collectively represent the phase instabilities owing to decorrelation, uncompensated atmospheric
phases and model imperfections. The residuals in each layer are assumed to be zero-mean and
independent random variables: E {w} = 0; and D {w} = E

{
wwH} = Qww is the covariance matrix

for the residuals. If it can be assumed there are no phase unwrapping issues, and the data stack can
be phase calibrated by compensating for the atmospheric phase with external data—although both
assumptions are simplistic—then the remaining unknowns are s, v and η. The design matrix is then
constituted by the coefficients of these parameters (from Equations (2–4)) [1,33]. Under Gauss-Markov
conditions, the best linear unbiased estimate of the parameter vector using weighted least squares is
given as [33]:

p̂ =
(

AT Q−1
ww A

)−1
ATQ−1

wwϕ. (6)

The covariance matrix of the estimated parameter vector, Q p̂ p̂ = D
{

p̂
}

is as follows:

Q p̂ p̂ =
(

AT Q−1
ww A

)−1
. (7)

The quality of the estimates is, therefore, dependent on the dispersion of the residuals. The vector
of the estimated phase residuals is as shown below:

ŵ = ϕ− Ap̂. (8)

2.3. PSI: Statistics for PS Detection

For each PS candidate, we distinguish between the following two hypotheses:

H0 –the null hypothesis. The range-azimuth resolution cell does not contain any coherent scatterer
and comprises merely clutter;

H1 –the alternative hypothesis. The cell contains a phase coherent single scatterer, i.e., a PS.

In the presence of a coherent scatterer whose phase response is well-matched to the model in
Equation (1), the phase residuals are expected to have a low dispersion around the expected value
of zero. Contrarily, in the absence of a coherent scatterer, the observed phase and the residuals are
expected to have a wider dispersion. With these considerations, we assume that the phase residuals
generally follow a von Mises (circular normal) distribution. The probability density function (PDF) is
given by [40]:

g (w; μ, κ) =
1

2π Io (κ)
eκ cos(w−μ), (9)

where the support of the distribution is any 2π interval. The parameter μ = E {w} represents the
‘preferred direction’, which we consider to be zero under both H0 and H1. The support is then the
interval [−π, π) and the distribution is symmetric about zero. The parameter κ ≥ 0 is a measure
of ‘concentration’ of the distribution around the mean value, i.e., κ−1 behaves analogously to the
dispersion of a linear random variable. Io (κ) is the modified Bessel function of the first kind and order
zero. Under H1, we consider the residuals to exhibit a higher concentration around μ.
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NB: The term circular distribution as used in this paper refers to a directional distribution with
support on the circumference of unit circle [40].

2.3.1. Test Statistic

A commonly used statistic to test among the two hypotheses is the ensemble coherence, as defined
below [5,32]:

γ � E {exp (jw)} . (10)

An unbiased estimator of the coherence, given M interferometric layers, is the multi-interferogram
complex coherence (MICC) [12,32]:

γ̂ =
1
M ∑

m
exp (jŵm) (11)

=
1
M

(
∑
m

xm + j ∑
m

ym

)
(12)

=
1
M

(X + jY) (13)

= X̄ + Ȳ = |γ̂|ejμ̄, (14)

where X and Y are the sum of cosine and sine terms in the expression, respectively, and the length
of the resultant, R =

√
X2 + Y2. The overscore indicates sample mean. Hereafter, we refer to MICC

simply as the sample coherence. The phase residuals ŵm are assumed to be independent and identically
distributed (i.i.d.) random variables.

In the context of interferometry, we typically use the coherence values normalized between 0
and 1, i.e., |γ̂|, instead of the resultant R = M|γ̂|. However, in the directional statistics literature,
the use of the term R is more common. Here, we state both to facilitate cross-referencing with the
literature. The sample mean direction μ̄, computed with sample coherence for any random sample
(w1, w2, . . . , wm) from a von Mises population, is the maximum likelihood estimator of the preferred
direction μ when R̄ is well-defined [41,42]. This property is characteristic of von Mises populations on
a circle, analogous to a similar property holding for Gaussian distribution on a real line whose location
parameter is estimated with maximum likelihood by the sample mean [40,43].

2.3.2. Statistics under H0

The statistics of the sample coherence depend on the distribution of the phase residuals.
With reference to Equation (11), the phase residuals can be considered as angles subtended by phasors
of unit length. Under H0, when the phasors have no preferred direction, we consider the limiting case
of von Mises distribution when κ → 0 [40]:

lim
κ→0

g
(

w; μ = 0,H0
)
= U (w) =

1
2π

, −π ≤ w < π, (15)

where U (w) is the circular uniform distribution. In this case, E {x} = E {y} = 0; therefore, E
{

γ̂
}
= 0.

The second order moments are E
{

x2;H0} = E
{

y2;H0} = 1
2 . The terms x and y are not independent

(as x2 + y2 ≡ 1), but they are uncorrelated as E {x · y} = 0 [12,40]. The variance of the addends in the
Equation (12) is finite. Therefore, under the assumption of a large sample size, multivariate central
limit theorem holds, and we consider the joint distribution of (X̄, Ȳ) to be converging to a Gaussian
distribution, N2

(
0, Σγ̂

)
where

Σγ̂ =

⎡⎢⎣ 1
2M

0

0
1

2M

⎤⎥⎦ .

228



Remote Sens. 2018, 10, 1014

R is then approximately Rayleigh-distributed, and its PDF is as follows [40]:

fγ̂

(
r;H0

)
� 2r

M
exp

(
− r2

M

)
, (16)

where 0 ≤ r ≤ M. Referring to [12,40], the probability of false alarm can be computed as the upper tail
of the Rayleigh distribution, as follows:

Pr{R > rth| H0} = exp

(
− r2

th
M

)
. (17)

It can be equivalently expressed as

Pr{
∣∣∣γ̂∣∣∣ > Tγ| H0} = exp

(
−MT2

γ

)
, (18)

where Tγ is the detection threshold such that 0 ≤ Tγ ≤ 1.

2.3.3. Statistics under H1

In case of H1, the probability distribution of R is given by [40],

f (r) =
Io (κr)
IM
o (κ)

r
∞∫

0

J0 (rt) JM
0 (t) tdt. (19)

J0 is the Bessel function of the first kind and zero-order. A closed form expression for the PDF is
not available. We again assume a large sample size and invoke the multivariate central limit theorem.
It allows us to consider the joint distribution of X̄ and Ȳ to be asymptotically normal, and expectation
and the variance of the sample coherence can be approximated as follows [44]:

E {|γ̂|} � ν1, (20)

var {|γ̂|} � 1 − 2ν2
1 + ν2

2M
, (21)

where νj = E {cos (jw)}:

ν1 =
I1 (κ)

I0 (κ)
, (22)

ν2 = 1 − 2
(

I1 (κ)

κ · I0 (κ)

)
. (23)

For sufficiently large κ, the von Mises distribution for the phase residuals can be approximated by
a linear normal distribution with σ2

w = κ−1 [40]. The coherence in this case is given by [12,31]:

E {|γ̂|} = E {γ̂} = exp
(
−σ2

w
2

)
. (24)

For a discussion on the details about the corresponding probability of detection, interested readers
are referred to earlier works in the literature [12,13].

Since exact closed-form expressions for the PDF of |γ̂| are not available, we resort to numerical
methods to compare the estimate of the coherence magnitude for the general case of κ > 0 against
the estimate in case of the aforementioned linear normal approximation. For selected values of κ

between [1, 10], we perform 105 Monte Carlo simulations of the residual phase vector, w (comprising
M instances of von Mises distributed random variables), and compute the coherence magnitude.
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The results are shown in Figure 1 for three different values of M. The estimate under the
normal approximation (Equation (24)) is also shown. It can be seen that the normal approximation
for the limiting case tends to overestimate the coherence magnitude. The overestimation decreases
for increasing values of κ. For κ > 3, the difference between the coherence estimate under the
assumption of von Mises distribution and the normal approximation is less than 5% on average.
With increasing number of acquisitions, the variance in the estimation of the coherence magnitude
decreases (in agreement with Equation (21)).

Figure 1. Estimates of the coherence magnitude obtained with 105 Monte Carlo iterations assuming
the residual phases have a von Mises distribution with concentration parameter, κ. Each solid line
indicates the estimates for a specific number of acquisitions, M in the data stack. The vertical bars
represent ± 1-σ from the mean. The dashed line shows the coherence magnitude under the assumption
that the residual phases follow a linear normal distribution, cf. Equation (24) (assuming σ2

w = κ−1).

2.4. SAR Tomography: Mathematical Model

In the absence of noise, for a given range-azimuth resolution cell, the mathematical model for
SAR tomography (3-D SAR) can be written as [16,19,21,26,45]:

ym =
∫
Is

α (s) exp
[
−jϕgeo

m (s)
]

ds, (25)

where α is the complex reflectivity and Is is the support of s. This model assumes there has
been no displacement in the line of sight during the observation time period. Differential SAR
tomography [23,25] with extended phases models [25,27,46] allows modeling linear displacement
as well as seasonal or temperature-induced motion:

ym =
∫∫∫

IsIvIη

α (s, v, η) exp {−j [ψm (s, v, η)]}dsdvdη, (26)
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where ψm is the sum of the deterministically modeled phase components as a function of the unknown
parameters, i.e.,

ψm (s, v, η) = ϕ
geo
m (s) + ϕ

disp
m (v) + ϕ

th.exp
m (η) . (27)

It is assumed that the phase terms (and hence the spatial and temporal baselines, and temperature
changes) are mutually independent of each other. A general mathematical model for SAR tomography
can be defined as follows [27,47]:

ym =
∫
P

α (p) exp [−jψm (p)]dp, (28)

where P represents the support of the parameter vector (i.e., the parameter space), and p ∈ P. It is
analogous to a multi-dimensional Fourier transform [48]. In case the resolution cell contains a single
point source with dirac delta response, α(p) = τ1δ(p − p1), with τ1 ∈ C, Equation (28) reduces to
the following:

ym = τ1 exp [−jψm (p1)] . (29)

For the general case of Q point sources in the presence of clutter, the tomographic model is further
extended as follows:

y
m
=

Q

∑
q=1

τq exp
[
−jψm(pq)

]
+ nm (30)

= dm + nm, (31)

where nm represents additive noise which is typically modeled as zero-mean complex Gaussian (with
symmetric variances for the real and imaginary parts). We assume the noise samples are i.i.d. across the
stack, i.e., D {n} = σ2

n IM, with σ2
n > 0. dm represents the coherent sum of the deterministic components

in the signal vector. τq is the reflectivity, and ψm(pq) is the modeled phase for the qth scatterer.

2.5. SAR Tomography: Model Inversion and Parameter Estimation

We use single-look beamforming for the inversion of the general tomographic model to estimate
the unknown scatterer reflectivity as a function of the parameter vector p for a given range-azimuth
resolution cell as follows [13,16]:

α̂ (p) =
1
M

〈y, a (p)〉 , (32)

where 〈., .〉 represents the inner product, a (p) is the steering vector as a function of p, and y is the
vector comprising the SLC observations:

y =
[

y0 y1 . . . yM−1

]T
. (33)

The steering vector is structured as follows:

a (p) =
[

e−jψ0(p) e−jψ1(p) . . . e−jψM−1(p)
]T

. (34)

For the estimation of the unknown parameters, we use the estimated absolute reflectivity as the
objective function in the following maximization:

p̂1 = arg max
p∈P

(|α̂ (p)|) . (35)
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As more than one coherent scatterer may be present in the same resolution cell, successive maxima
after the global maximum may indicate the presence of more scatterers. Assuming a maximum of two
scatterers, an estimate of the parameter vector for the second scatterer is obtained as follows:

p̂2 = arg max
p∈P\{p̂1±δp}

(|α̂ (p)|) , (36)

where δp indicates the Rayleigh resolution for the tomographic profile along each of the
unknown parameters.

Equation (32) implies that noise in the SLC vector will cause errors in the reconstructed target
reflectivity. As a consequence, errors will propagate in the estimation of the parameters using the
aforementioned maximizations. Therefore, a scatterer detection strategy is needed to classify whether
a given resolution cell contains one or more phase coherent scatterers, or is merely clutter.

2.6. SAR Tomography: Statistics for Scatterer Detection

A commonly used test statistic for coherent scatterer detection in the context of tomography
is the absolute value of the estimated reflectivity, |α̂|. The same hypotheses are carried forward as
introduced in Section 2.3, except for the change that now we consider them for multiple coherent
scatterer candidates for each pixel. We consider a maximum of two candidates per pixel. In case only
one of the candidates fulfills H1, we call the pixel a single scatterer. In case both the candidates fulfill
H1, the pixel is called a double scatterer.

2.6.1. Statistics under H0

In case the received signal is merely clutter, the received signal vector y = n. Using Equation (32),

E
{

α̂ (p) ;H0
}
=

1
M

E {〈n, a (p)〉} (37)

=
1
M

E {ǹ} (38)

=
1
M

E {n} = 0, (39)

where the third equality follows from rotational invariance of the Gaussian distributed samples,
and, therefore, the inconsequential difference between ǹ and n will be dropped. Since ϕ

m
= ∠nm

under H0, the observed interferometric phase (and the residual phase in this case) follows a uniform
distribution [12]. Along similar lines as in Section 2.3, the joint distribution of the real and imaginary
parts of α̂ is a zero-mean Gaussian with the following covariance matrix:

Σα|zm =

⎡⎢⎢⎣
1

2M2 ∑
m

z2
m 0

0
1

2M2 ∑
m

z2
m

⎤⎥⎥⎦ .

The PDF of |α̂| in this case is Rayleigh, and the right tail probability to compute the probability of
false alarm is as follows:

Pr{|α̂| > Tα| H0, y} = exp

(
−M2T2

α

‖y‖2
2

)
, (40)

where ‖y‖2
2 = ∑m z2

m is the squared L2-norm of the observed signal vector.
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2.6.2. Statistics under H1

In general, the received signal contains clutter besides the possibility of backscattering contribution
from point-like sources. We assume that, under H1, the deterministic backscatter from the point sources
is dominant over the clutter, i.e., |dm| � |nm| ∀ m. This assumption allows us to consider that the
observed phase owes primarily to the vector sum of the backscatter from point-like sources (and not
the clutter). Using Equations (30) and (32), the expression for the estimated reflectivity can then be
stated as follows:

α̂ (p) =
1
M

〈d, a (p)〉+ 〈n, a (p)〉 (41)

=
1
M ∑

m
|dm| exp

{
−j[ϕ

m
− ψm (p)]

}
+ n (42)

=
1
M ∑

m
|dm| exp {jŵm (p)}+ n. (43)

Formally, the origin of phase instability, ŵm in Equation (43) is not the clutter, rather it is phase
disturbances such as uncompensated atmospheric phase delay variations or residual motion [31],
or phase model imperfections. Using Equations (10) and (39),

E
{

α̂ (p) ;H1
}
=

1
M ∑

m
|dm| E {exp[jŵm (p)]} (44)

=
1
M ∑

m
|dm| γ. (45)

From Equation (44), it is clear that phase instability is disturbing tomographic reconstruction
in a multiplicative sense. The ensemble coherence has a direct impact on the expected value of the
retrieved reflectivity profile, and thereby on the hypothesis testing. Closed-form expression s for
the PDF of |α̂| are not available when the residuals are assumed to follow a von Mises distribution
with κ > 0. A Rician approximation can be taken, as suggested in [31], when the residuals can
be considered to be normally distributed (i.e., the limiting case when κ → ∞). The probability of
detection, fD for a fixed false alarm rate can then be studied as the area under the upper tail of the
Rician distribution [49].

Nonetheless, we resort to Monte Carlo simulation to study the probability of detection numerically
in terms of the inverse coefficient of variation (iCV) as defined below for the text statistic α̂:

iCV2 �
∣∣E {α̂ (p) ;H1}∣∣2
var {α̂ (p) ;H1} . (46)

This definition has been referred to as the signal-to-noise ratio (SNR) in [31]. Although, in the
field of signal processing iCV is often referred to as the SNR, we avoid referring it so. In our context,
formally the denominator in Equation (46) is not representing the noise power, neither additive (σ2

n)

nor multiplicative (σ2
w), but rather the dispersion of the test statistic.

Considering n ≈ 0, and dropping the dependence on p to simplify notation,

var
{

α̂;H1
}
=

1
M2

M

∑
l=1

M

∑
k=1

|dl | |dk| · cov
{

ejŵl , e−jŵk
}

. (47)

Using the assumption that the residual phases are i.i.d. random variables, the covariance term in
Equation (47) simplifies as follows:

cov
{

ejŵl , e−jŵk
}
= (1 − |γ|2) · δ [l − k] , (48)
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where δ [�] is the unit sample function. Using this result, Equation (47) reduces to the following [31]:

var
{

α̂;H1
}
=

1 − |γ|2
M2 ∑

m
|d|2m . (49)

Therefore,

iCV2 =
|(∑m |dm| γ)|2

(1 − |γ|2)∑m |d|2m
=

(
|γ|2

1 − |γ|2
)

‖y‖2
1

‖y‖2
2

. (50)

Since ‖y‖2 ≤ ‖y‖1 ≤ √
M ‖y‖2 [50], we reach the following bounds on the iCV for a given level

of coherence:
|γ|2

1 − |γ|2 ≤ iCV2 ≤ M · |γ|2
1 − |γ|2 . (51)

iCV is a function of the ensemble coherence as well as on the ratio of the L1 to L2 norm of the
signal vector. While the coherence is in turn a function of the concentration of the phase residuals
(as shown in Figure 1), the L1–L2 ratio is influenced by the (1) number of acquisitions and (2) the
number of point-like scatterers in the same resolution cell. Figure 2 shows the variation of the
empirically estimated iCV against the concentration parameter for different numbers of scatterers,
for M = 50 acquisitions as an example. In addition, 105 realizations of the phase residue are generated
under a von Mises distribution for each value of κ selected between (0, 20]. The dashed lines in
Figure 2 highlight the upper and lower bounds on iCV. The upper bound is reached theoretically when
‖y‖1 =

√
M ‖y‖2. Therefore, the greater the number of acquisitions, the higher is the achievable iCV.

At a given concentration of phase residuals, the iCV decreases for an increasing number of scatterers.
The iCV estimates for Q = 1 converge at the upper bound. The impact of the number of scatterers on
the iCV is further discussed in Appendix A.

Figure 2. Empirically estimated inverse coefficient of variation (iCV) of the test statistic α̂ against
concentration parameter for von Mises distributed phase residuals, for different number of scatterers,
Q in the same resolution cell. The dashed lines enclosing the gray region indicate the theoretical bounds
on the iCV (cf. Equation (51)) , where ν1 =

I1(κ)
I0(κ)

(Equation (22)).
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Figure 3a is a plot of the numerically estimated fD against the iCV. The detection thresholds
are set to ensure a fixed level of probability of false alarm, fF ∈ {10−2, 10−3, 10−4} given M = 50
acquisitions. Lower levels of fF provide higher fD, indicating the trade-off typically observed for
statistical detectors [49]. At the same time, we observe a slight dependency of fD on the number
of scatterers. Even for a fixed level of iCV, the fD is lower for a higher number of scatterers.
However, this dependency diminishes as the level of the false alarm is relaxed.

Figure 3b shows fD against iCV while fixing fF at 10−3 for single and double scatterers,
for different number of acquisitions in the stack, M ∈ {25, 35, 50, 75}. We observe slight dependency
of fD on M, though it tends to diminish as the number of acquisitions in the stack grow larger.

(a) (b)

Figure 3. Numerically estimated probability of detection against inverse coefficient of variation (iCV) of
the test statistic α̂, using 105 Monte Carlo realizations of the phase residuals, (a) for M = 50 acquisitions
and fixed levels of false alarm, fF ∈ {10−2, 10−3, 10−4}, and number of scatterers, Q ∈ {1, 2, 3}; (b) and
for different number of different number of acquisitions, M ∈ {25, 35, 50, 75} when fF = 10−3.

The aforementioned simulations have been performed in the absence of clutter. We repeat them
next with varying levels of clutter, expressed in terms of the signal-to-clutter ratio (SCR): ‖d‖2

2 /σ2
n .

Samples to simulate clutter are generated as instances of zero-mean Gaussian noise with variance
σ2

n . Figure 4a shows the iCV observed for the case of single and double scatterer for three different,
but fixed, levels of SCR ∈ {6, 3, 0} dB. As expected, the iCV decreases with decreasing SCR. The case
of SCR = 0 dB, i.e., when the intensity of the deterministic backscatter from point scatterers equals that
of the clutter, contradicts the assumption used in deriving Equation (43). Nonetheless, we perform
the simulation as a worst-case analysis. Figure 4b shows fD against the iCV for this case. The plots
shown are nearly identical to those shown in Figure 3a. This is an auspicious finding as it implies
that, for fixed levels of iCV, fD can be characterized nearly independently of the origin (additive or
multiplicative) and level of noise.

The simulation results in Figures 3 and 4 collectively imply that when the number of acquisitions
are sufficiently large and the false alarm setting is not too strict, the empirically estimated iCV can be
considered to fully characterize the fD, even in the presence of clutter.
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(a) (b)

Figure 4. Numerical analysis of the inverse coefficient of variation (iCV) of the test statistic α̂ when
point scatterers are embedded in different clutter levels, for M = 50 acquisitions. (a) iCV against
concentration of the phase residuals for different levels of signal-to-clutter ratio (SCR) and number
of scatterers, Q ∈ {1, 2}; (b) probability of detection against iCV for fixed levels of false alarm,
fF ∈ {10−2, 10−3, 10−4}, and Q ∈ {1, 2, 3}.

3. Methods

This section presents the overall methodology adopted for the interferometric and tomographic
processing of a real interferometric data stack. The models discussed in the previous section form
the basis of this methodology. The data undergoes several preprocessing steps. A reference scene is
selected, and a multilooked intensity image of the reference scene is used to geocode and coregister all
the acquisitions in the stack. An external digital elevation model (DEM) is used in the process [51,52].
A suitable reference point is selected to compute double-differenced interferograms.

3.1. Interferometric Processing with IPTA

We use the IPTA [3,8] framework for the PSI processing, whereby parameter estimation and
phase calibration of the data stack are performed side by side using an iterative approach to least
squares regression. An initial list of PS candidates is prepared on the basis of high temporal stability of
the backscattering and low spectral diversity. The phase model assumed is as given in Equation (1).
Point differential interferograms are obtained by subtracting the topographic phase computed using
the DEM. A multiple linear regression is used for each candidate to obtain an initial estimate of s and v,
as well as the phase unwrapping integer, p. The quality of the estimates is assessed in terms of the
root-mean-square (RMS) phase deviation, σ̂w of the residual phase. At the initial stage, atmospheric
phases in each interferometric layer have not be corrected, and the possible temperature-induced phase
variations of candidates on structures experiencing thermal expansion have also not been accounted for.
Therefore, the residual phase typically exhibits a high dispersion. The PS candidates for which σ̂w is
higher than a pre-selected threshold, σc are masked out. The residue of the remaining candidates is
analyzed further. Assuming the atmospheric phase screen (APS) to be spatially low-frequency and
temporally uncorrelated, we estimate it by spatial filtering and unwrapping of the phase residue in the
neighborhood of the candidates that satisfied the quality criterion. The estimated APS is subtracted
and point-differential interferograms are re-computed for the full list of PS candidates, and this time
the phases related to the initial estimates of residual height, linear deformation and the atmospheric
phase are subtracted as well. The resulting point differential interferograms are unwrapped and the
regression is iterated. It is expected that the quality of the candidates would improve since an estimate
of the atmospheric phase has been subtracted prior to the regression. σw is computed again for all the
candidates, and compared against σc to mask out those with relatively low quality. For the retained
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candidates, the newly estimated regression coefficients (residual height and deformation velocity) act
as ‘corrections’ on the previous estimates. The new phase residue is added to the previous estimate of
the atmospheric phase, re-filtered and unwrapped to give a new estimate of the atmospheric phase.
The process is iterated several times. In this way, there is progressive improvement in the quality of
the estimates in consecutive iterations. For more details on various time-series processing strategies
using the IPTA framework, the interested readers are referred to earlier works [3,8,9,53].

For the candidates that are potentially undergoing thermal expansion, another regression-based
routine is used that models it assuming that the corresponding phase variations are linearly dependent
on the temperature changes [54–56]. The estimated regression coefficient is the phase-to-temperature
sensitivity, η̂. Further details are available in the earlier work in [35].

After several iterations, the APS is well isolated and we obtain iteratively-refined estimates of
the parameter vector p̂ for the PS candidates that satisfy the quality criterion. Assuming that these PS
are of sufficiently good quality that the limiting case of von Mises distribution for the phase residuals
being approximated by a linear normal distribution is justified, we compute the sample coherence
threshold corresponding to σc using Equation (24) as follows:

Tγc = exp
(
−σ2

c
2

)
. (52)

In turn, the corresponding probability of false alarm (theoretical) is computed using Equation (18).
It is important to mention here that the aforementioned assumption is not mandatory to choose the
threshold; in fact, a threshold can be set directly on the coherence (as typically done for interferometric
processing) [2,12,57]. In our context where we perform PSI processing with the IPTA toolbox (which
allows quality assessment in terms of the residual phase statistics), the relation in Equation (52)
provides a means to compute the coherence threshold corresponding to the quality criteria in our
PSI processing.

3.2. Single-Look Differential SAR Tomography with Extended Phase Model

Prior to tomographic inversion, the interferometric data stack requires a precise phase calibration.
For the pixels containing PS, we already have an estimate of the atmospheric phases from the PSI
processing. Given a sufficient distribution of the PS over the imaged scene or the region of interest,
we interpolate these phases over the surrounding pixels that may or may not have been PS candidates.
Single-look differential tomographic inversion is applied for each pixel. The extended phase model,
given in Equation (27), is used to set up the steering vectors. The reflectivity profile, α̂ (p) is estimated
as a function of the unknown parameters. Scatterer localization and parameter estimation for
a maximum of two scatterers in each resolution pixel is performed, as stated in Equations (35) and (36).
The amplitude of the estimated reflectivity is compared against a threshold for each potential scatterer
to accept or reject the null hypothesis.

We propose to set the detection threshold in such a way that the desired probability of false alarm
from PSI processing is carried forward for the detection of coherent scatterers at this stage. Equating
the Equations (18) and (40), we set the detection threshold for tomography as follows:

Tαc =
Tγc ‖y‖2√

M
. (53)

In turn, the decision between H1 and H0 is made for each candidate as follows:

|α̂| (p)
H1

≷
H0

Tαc . (54)
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In this way, the same quality criterion that is used for setting the threshold Tγc in the PSI processing
also determines the threshold for scatterer detection in tomographic processing. Hence, a consistency
is achieved for the synergistic use of tomography as an add-on to PSI.

It is to be noted that Equation (53) is independent of how the threshold Tγc for PSI processing was
selected, whether as a direct choice on the coherence, or using the standard deviation of the residual
phase according to Equation (52) under the assumption of linear normal distribution of the residual
phases for the PS. Therefore, this assumption is not a limiting factor for the application of the proposed
detection strategy in general.

4. Data

The interferometric data stack used in the work comprises 50 TerraSAR-X stripmap acquisitions
over the city of Barcelona, Spain in repeated passes. It is the same stack as used in our earlier work
in [27]. The temporal span of the acquisitions extends from 2007 to 2012. The images have been
oversampled by a factor of 2 to allow for more accurate coregistration. The resolution in range and
azimuth is 1.2 m and 3.3 m, respectively. The orthogonal component of the total spatial baseline
is 503 m, which provides resolution in elevation axis of ∼19 m. The distribution of the spatial and
temporal baselines, as shown in Figure 5a, is highly non-uniform. The corresponding 2-D point spread
function (PSF) is shown in Figure 5b. The PSF represents the impulse response of the tomographic
system for the given distribution of the baselines, for an ideal point scatterer at zero elevation and with
no deformation. The footprint of the acquisitions in map coordinates is shown in Figure 5c. Apart from
a dense urban stretch, some part of the viewed scene extends over the Balaeric sea.

Figure 5. Data characteristics. (a) distribution of spatial (orthogonal component) and temporal
baselines; (b) 2-D point spread function (PSF); (c) footprint of the reference acquisition over
Barcelona, Spain.

5. Results on Real Data

This section presents the results obtained on the real interferometric data stack introduced in the
previous section.

5.1. Interferometric Processing

An initial list of PS candidates was prepared on the basis of low spectral diversity and high stability
of the backscattering amplitude that is characteristic of single dominant scatterers [3]. There was no
candidate in unexpected areas, such as the water surface or radar shadows. After several iterations
of the least squares regression within the IPTA framework, as outlined in Section 3.1, a subset of
the initial candidates is retained such that σw ≤ σc = 1.1 rad for each candidate. Figure 6 shows
these candidates from the last iteration. These are 936,649 in number, and spread over an area of
nearly 4 km2. In sub-figure a–c, the color coding represents the estimated parameters, namely residual
height, deformation velocity in the LOS and phase-to-temperature sensitivity, respectively. The sample
coherence for these candidates is as shown in sub-figure d.
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Corresponding to σc = 1.1 rad, the coherence threshold Tγc = 0.55 according to Equation (52),
and the theoretical probability of false alarm according to Equation (18) is 3.3 × 10−7. As stated in
Section 3.1, the use of Equation (52) to convert a threshold in terms of residual phase standard deviation
to corresponding threshold on coherence requires the assumption that the von Mises distribution can be
approximated by a linear normal distribution (for the case of ideal, noise-free PS, with κ → ∞). In order
to assess the suitability of this assumption, we require estimates of the concentration parameter.

Figure 6. PSI solution obtained with iterative least-squares regression-based processing using the
interferometric point target analysis (IPTA) toolbox. The colored dots are the PSs identified in the PSI
processing. (a) estimated height, relative to the WGS-84 reference ellipsoid; (b) deformation velocity
in the line-of-sight; (c) phase-to-temperature sensitivity; (d) sample coherence, and histogram of the
estimated concentration parameter (shown as inset).
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Using Equations (20) and (22), E {|γ̂|} � I1(κ)
I0(κ)

; to estimate κ, this expression needs to be inverted,
which involves inversion of the ratio of modified Bessel functions (first kind) of first and zero order.
We do not have a closed-form expression for such an inverse relation; we use the following piece-wise
defined approximation [43,58]:

κ̂ �

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2 |γ̂|+ |γ̂|3 + 5

6
|γ̂|5 |γ̂| < 0.53,

−0.4 + 1.39 |γ̂|+ 0.43
1 − |γ̂| 0.53 ≤ |γ̂| < 0.85,

1

3 |γ̂| − 4 |γ̂|2 + |γ̂|3 |γ̂| ≥ 0.85.

(55)

The concentration parameter is estimated for each PS, and a histogram of the parameters is shown
as an inset in Figure 6d. The mean and the median values are 5.4 and 4.1, respectively. In existing
literature in the field of directional statistics, we can find precedence where concentration parameters
greater than 2 are considered reasonable to approximate von Mises distribution as wrapped normal
distribution (i.e., linear normal distribution wrapped between −π to π rad) [58].

5.2. Tomographic Processing and Empirical Analysis of False Alarms

The APS isolated in the IPTA-based PSI processing is extrapolated over the scene and compensated
for over the entire scene in each layer of the interferometric stack. In this way, each pixel is considered
to be phase calibrated so that tomographic inversion can be applied next. Given that the city of
Barcelona has several high-rise buildings, the elevation extent, Is is set as [−60, 300] m. The parameter
space for the deformation parameters is as follows: Iv ∈ [−10, 10] mm/yr and Iη ∈ [−1, 1] rad/K.
The discretization in each dimension is 1/2.5 times the Rayleigh resolution, followed by a local
refinement of the estimated reflectivity around the two candidate peaks at one-tenth the resolution.
Using Equations (52) and (53), and keeping σc = 1.1 rad, we threshold the reflectivity of the two
candidates to perform the detection process. The point cloud of single scatterers thus detected is
shown in Figure 7. 1454 false alarms occur over the water surface.

Figure 7. Point cloud of single scatterers obtained with differential SAR tomography. The detection
threshold is set corresponding to σc = 1.1 rad under the proposed detection scheme (see Equations (52)
and (53)). The color coding represents the estimated height. Some false alarms can be seen over the
water surface , as highlighted in the inset.

A significant portion of the viewed sea extends over the sea, which is favorable in our context as
it can be used as a test bed to conduct an empirical analysis of the false alarm rate. We perform sample
coherence-based detection, as well as tomographic inversion and detection, for the range-azimuth
pixels over the sea and observe the variation of the false alarm rate. These pixels constitute 1.4 million
independent resolution cells. The results are shown in Figure 8. The solid lines in the figure represent
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different cases of tomographic inversion and detection: (1) [α̂ (s, v, η); 3-D inv.]: 3-D inversion and
detection on the reflectivity, α retrieved as a function of elevation (s), deformation (v) as well as
thermal expansion (η) where the support in each dimension is as for the results shown in Figure 7,
(2) [α̂ (s, v); 2-D inv.]: 2-D inversion i.e., thermal expansion is not considered, (3) [α̂ (s); 1-D inv.]:
1-D inversion, whereby the reflectivity is retrieved only along the elevation profile, (4) [α̂ (s); reduc.
supp.]: 1-D inversion with the elevation support reduced to [−25, 50] m, and (5) [α̂ (no fitting)]: 1-D
inversion without the maximizations to detect peaks in the reflectivity, i.e., no fitting is performed
in the parameter space to estimate the unknown elevation and deformation parameters. (6) [γ̂ (no
fitting)]: The dot-dashed line represents the PSI case whereby the thresholds are applied on the sample
coherence without any parameter fitting. (7) [γ̂ (analytical)]: The black curve with diamond symbols
shows the probability of false alarm (theoretical) according to the Equation (18). The bottom x-axis in
the figure shows the detection thresholds, Tγ and Tα (normalized between 0 and 1 as per Equation (53)),
while the top x-axis shows the equivalent standard deviation of the residual phase according to
Equation (52). The area shaded in gray indicates the region in the figure where the results may not
be sufficiently accurate due to a limited number of independent range-azimuth resolution cells over
the water surface. Given we have only 1.4 million of these cells, and assuming the test statistics are
normally distributed over the scene, we can estimate a probability of false alarm no less than 1.1× 10−3

with a relative absolute error of 5% for 95% of the time [49].

Figure 8. False alarm rate observed over the sea patch in the viewed scene at different detection
thresholds. The colored solid lines represent the case of 3/2/1-D tomographic inversion. The detection
is performed on the retrieved reflectivity, |α̂| according to Equation (53). The dot-dashed lines shows
the case of PSI whereby the detection is performed on the sample coherence, |γ̂| without fitting any
phase model to the observed interferometric phases.

Figure 9 shows the point cloud of single scatterers obtained with tomographic inversion and
detection with σc = 1.0 rad. In comparison with Figure 7, we can see a reduction in the false
alarms. Now, we observe only 194 false alarms. 3-D tomographic inversion has been applied with
the same support in each dimension as for the results shown in Figure 7. We have estimates of height,
deformation velocity as well as the phase-to-temperature sensitivity. Figure 10 shows the point cloud of
double scatterers obtained with the same threshold. They are separated as lower and upper scatterers,
according to the estimated height for each of the two scatterers in layover. 2.14 × 106 single scatterers
and 1.01 × 104 double scatters (lower + upper) have been detected. The inset in the sub-figures in
Figure 10 shows a commercial complex, namely Diagonal Mar, in focus. The red polygon encloses
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a high-rise building, which is partly in layover with the roof of a nearby building. These are the same
test sites as in our earlier work in [27].

Figure 9. Point cloud of single scatterers obtained with differential SAR tomography. The detection
threshold is set corresponding to σc = 1.0 rad under the proposed detection scheme, see Equations (52)
and (53). (Top) Estimated height, relative to the WGS-84 reference ellipsoid. (Middle): Deformation
velocity in the line-of-sight. (Bottom) Phase-to-temperature sensitivity. In comparison with Figure 7
where a more relaxed detection threshold (corresponding to σc = 1.1 rad) is used, fewer false alarms
are observed here, as highlighted in the inset.

6. Discussion

This section provides an itemized discussion of the results presented in the previous section.

6.1. Interferometric Processing

The PSI solution, as shown in Figure 6, provides a good coverage over the viewed scene, which is
typical with high resolution X-band interferometric imagery over urban areas such as Barcelona
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city [59,60]. The PS heights fit reasonably with actual 3-D structures, as shown for selected buildings
in our earlier work in [26,27]. The PSI solution reveals deformation along the shoreline, which was
partly observed in [59] as well. Several PS on high-rise buildings show temperature-dependent
phase variations, which can be attributed to thermal expansion of the structures [30,35,46,61,62].
The observed coherence is high, and the estimated concentration parameters are all non-zero. With
reference to Figure 1, the fact that the mean and the median value of κ̂ are greater than 3 substantiates
the assumption of linear normal statistics for the PS (since the approximation of von Misses as linear
normal distribution is accurate to within 5% error on average).

Interestingly, we do not observe false alarms over the sea patch in the scene. This is due to the
fact that we have used high stability of the backscattering amplitude and low spectral diversity as
pre-classifiers to set up the initial PS candidate list. These classifiers are proxies for temporally coherent,
single dominant scattering; therefore, they already preclude PS candidates from appearing on the
water surface. Hence, no PSI solution has been sought (no regression fitting) on the pixels over the
sea patch. In the context of tomography, these pre-classifiers cannot be used since they would tend to
reject double scatterers as well.

6.2. Tomographic Processing and Empirical Analysis of False Alarms

We applied tomographic processing over the entire scene, regardless of any surface classification.
The point cloud shown in Figure 7 is obtained using the same cut-off phase standard deviation,
σc = 1.1 rad, as for the iterative least squares based PSI processing. Nevertheless, several false alarms
are visible over the sea patch. A simple mask (based on SAR multi-look intensity with spatial
constraints for example) could have allowed us to remove the sea patch from the processing, but we
choose to show these false alarms to highlight that similar false alarms may arise (due to noise) within
the urban stretch as well though they may remain unnoticed.

Figure 8, which shows the results of a false alarm analysis exclusively conducted over the sea patch,
reveals that the false alarm rates can typically be higher in practice in comparison with the theoretical
probability of false alarm (as the area under the upper tail of Rayleigh distribution). The maximizations
(Equations (35) and (36)) allow degrees of freedom to fit the data; when the noise is fit incorrectly
with the data model, it may lead to a false alarm. The false alarm rate can be seen to decrease from
3-D to 2-D inversion, as reducing the dimensionality reduces the degrees of freedom to fit the data.
Similar reduction in false alarms is observed when moving from 2-D to 1-D inversion, or when we
reduce the support of the elevation in case of 1-D inversion. These findings imply that in case some
a priori information is available—e.g., if significant thermal expansion is not expected (as is usually
the case for buildings of low height [27]), or if the support of deformation velocity can be reduced on
the basis of local leveling measurements, or if the support for height corrections can be reduced given
a digital surface model is available—then a reduction in false alarm rate can be achieved in practice.

Figure 8 also shows the case where no parameter fitting is performed, for both tomography as
well as sample coherence based detection. The latter case, i.e., [γ̂ (no fitting)], matches closely with
the theoretical relationship in Equation (18), indicating that the area under the upper tail of the PDF
of |γ̂| approaches that of a Rayleigh distribution. However, in the former case, i.e., [α̂ (no fitting)],
it can be observed that the estimated false alarm rate is slightly lower than the probability of false
alarm according to the analytical expression for MICC-based detection, in turn implying deviation
from the statistics of a Rayleighian process. It can be explained following the findings in an earlier
work in [13]. In this work, a generalized likelihood ratio test (GLRT) was compared against MICC
for scatterer detection in the presence of additive noise with Gaussian statistics. It is to be noted
that in our case the false alarm analysis is conducted on cells over the water surface; therefore, the
origin of noise in the observed SLC values lies in the backscattering characteristics (rather than phase
mis-calibration). In this particular context, an additive noise model is appropriate, and, consequently,
the detection for a scatterer under Equation (54) in our work becomes identical to the GLRT in [13].
It was found in [13] that the GLRT provides a lower probability of false alarm compared to MICC (as
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we observed). For a discussion on the performance analysis of radar detectors where the actual PDF
of the amplitude of complex-valued noise/clutter deviates from Rayleigh statistics, interested readers
are referred to [63–66].

Figures 9 and 10 show the single and double scatterers, respectively, detected with σc = 1.0 rad.
As expected, we observe fewer false alarms, and at the same time fewer scatterers are detected. Double
scatterers constitute <1% of the total scatterers detected over the scene. The gain in deformation
sampling due to double scatterer detections [27], relative to the PSI solution, are around 2% for Diagonal
Mar complex and 4% for the selected building marked in red, respectively. If the threshold is relaxed
to σc = 1.1 rad, the gain improves to 6.4% for Diagonal Mar and 17% for the individual building.

Figure 10. Point cloud of double scatterers obtained with differential SAR tomography. The detection
threshold is set corresponding to σc = 1.0 rad under the proposed detection scheme. (Top) Estimated
height, relative to the WGS-84 reference ellipsoid. (Middle) Deformation velocity in the line-of-sight.
(Bottom) Phase-to-temperature sensitivity. The left column shows the lower layer and the right column
shows the upper layer of the double scatterers, respectively. The inset focuses on a commercial complex
(Diagonal Mar). The red polygon encloses a single building, part of which is in layover with a nearby
building of shorter height.
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The interferometric data stack and the test sites in this work are the same as in our earlier work
in [27]. The detection strategies are, however, different. The sequential GLRT with cancellation
(SGLRTC), as proposed in [24], was used for hypothesis testing in the earlier work. The quality of
the detected scatterers was empirically evaluated only after the detection, and in turn compared
with the quality of the PS (obtained independently in the prior PSI processing). In other words, the
detection threshold for hypothesis testing had to be adjusted a posteriori to achieve comparable quality.
The results thus obtained in [27] show a gain in deformation sampling of around 2.5% for Diagonal
Mar complex and 10% for the selected building. On the other hand, the detection strategy proposed
in this work allows the use of quality criterion during the hypothesis testing itself. Nonetheless,
it needs to be noted that the SGLRTC and the proposed strategy are not directly comparable. SGLRTC
explicitly assumes an additive noise model for SAR tomography, thus it cannot formally address
multiplicative noise arising due to phase instabilities such as atmospheric disturbances. Moreover,
it is a subspace method where the first scatterer is canceled out before a second scatterer is searched
for [24]. Therefore, the test statistics (and the corresponding threshold settings) for double scatterer
detection under the proposed detection strategy are not the same as in SGLRTC.

7. Conclusions

In the context of SAR tomography as an add-on to PSI to potentially improve deformation
coverage, following the directions set in earlier works in [12,27,31], this paper reports the application
of a detection strategy that allows for extending the same quality considerations to tomography as
used in the prior PSI processing. In interferometric processing, the quality is typically assessed on
the basis of the residual phase, either in terms of the phase dispersion (phase standard deviation)
or the ensemble coherence computed using the residue of the fit. In both cases, under the proposed
detection strategy, the quality parameters can be used to set up the threshold for hypothesis testing of
coherent scatter candidates following tomographic inversion. Moreover, the theoretical probability
of false alarm remains the same between the PSI and tomography. The paper also highlighted that
while the instabilities in phase are typically modeled as additive noise, their impact on tomography
is multiplicative in nature. The experiments performed in this work with simulated data consider
both multiplicative noise as well as additive disturbances (clutter) in the tomographic model. It is
shown that the inverse coefficient of variation is a suitable parameter to assess the probability of
detection, irrespective of the origin of noise. The proposed detection strategy is also tested on real data.
An assessment of the variation of the observed false alarm rates against the thresholds set according
to the proposed detection strategy has been conducted. An interferometric data stack comprising
50 Terra-SAR-X acquisitions over the city of Barcelona, Spain is used. Single-look beamforming for
1/2/3-D tomographic inversion, depending on whether the phase model used considers only the
scatterer height, or height plus deformation velocity, or additionally thermal expansion, is performed.
The results show that higher dimensionality and larger support sizes in each dimension lead to
higher false alarm rates due to larger parameter space that may incorrectly fit noise to the data
model. These results also suggest that in case a priori information can reduce the dimensionality
and/or support sizes, it should be adopted by the user to reduce the false alarm rate in practice.
For the case of 3-D tomographic inversion, with detection thresholds set in accordance with residual
phase standard deviation below 1.1 rad for the prior PSI processing, the empirically estimated false
alarm rate is <1.1 × 10−3. The gain in deformation sampling (due to layover resolutions) is 17%
for a selected high-rise building. For a commercial complex in Diagonal Mar locality, it is 6.4%.
As a whole, the number of double scatterers detected in the urban scene are <1% of the total detected
scatterers. These results show that, for urban areas like Barcelona, when using interferometric data
stacks comprising the typical stripmap products, the application of SAR tomography as an add-on to
PSI is mainly useful for a detailed analysis of selected urban zones or individual buildings in layover.
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Abbreviations

The following abbreviations are used in this manuscript:

APS Atmospheric phase screen
DEM Digital elevation model
GLRT Generalized likelihood ratio test
iCV Inverse coefficient of variation
IPTA Interferometric point target analysis
MICC Multi-interferogram complex coherence
PDF Probability density function
PS Persistent scatterer
PSF Point spread function
PSI Persistent scatterer interferometry
SAR Synthetic aperture radar
SCR Signal-to-clutter ratio
SGLRTC Sequential generalized likelihood ratio test with cancellation
SLC Single-look complex

Appendix A

The equality in Equation (51) holds when all elements in the vector y are identical. In our context,
theoretically, it occurs for the case of a single point scatterer in the given range-azimuth resolution
cell [31]. Interestingly, it is the PSI case wherein the PS is defined to be a single point-like scatterer. It can
be explained by considering the SLC values as samples of the Fourier spectrum of the target situated
along the elevation axis [14]. In case of point (dirac delta) scattering, the absolute value of the spectrum
is a constant, and therefore, all samples (magnitude of the SLCs) are identical. Conversely, for a target
that is extended continuously along the elevation axis, albeit deterministically, its spectrum is delta-like.
In other words, the target can be considered as closely spaced sequence of several point-like scatterers
along the elevation axis, in the same range-azimuth resolution cell. This is the case when the vector
y tends to be 1-sparse, and, in turn, the ratio ‖y‖1 / ‖y‖2 approaches 1. A real example of such an
extended scatterer can be a mountain slope with a nearly zero local incidence angle (considering it to
be vegetation-free and exhibiting a stable response).
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Abstract: Synthetic Aperture Radar (SAR) Tomography (TomoSAR) allows extending the 2-D
focusing capabilities of SAR to the elevation direction, orthogonal to the azimuth and range.
The multi-dimensional extension (along the time) also enables the monitoring of possible scatterer
displacements. A key aspect of TomoSAR is the identification, in the presence of noise, of multiple
persistent scatterers interfering within the same 2-D (azimuth range plane) pixel. To this aim, the use
of multi-look has been shown to provide tangible improvements in the detection of single and
double interfering persistent scatterers at the expense of a minor spatial resolution loss. Depending
on the system acquisition characteristics, this operation may require also the detection of multiple
scatterers interfering at distances lower than the Rayleigh resolution (super-resolution). In this work
we further investigated the use of multi-look in TomoSAR for the detection of multiple scatterers
located also below the Rayleigh resolution. A solution relying on the Capon filtering was first
analyzed, due to its improved capabilities in the separation of the responses of multiple scatterers
and sidelobe suppression. Moreover, in the framework of the Generalized Likelihood Ratio Test
(GLRT), the single-look support based detection strategy recently proposed in the literature was
extended to the multi-look case. Experimental results of tests carried out on two datasets acquired by
TerraSAR-X and COSMO-SkyMED sensors are provided to show the performances of the proposed
solution as well as the effects of the baseline span of the dataset for the detection capabilities of
interfering scatterers.

Keywords: multi-look SAR tomography; multiple PS detection; Capon estimation; Generalized
Likelihood Ratio Test

1. Introduction

Synthetic Aperture Radar (SAR) provides high resolution 2-D (azimuth and range) microwaves
images of the illuminated scene at night and day and in all-weather conditions. This results in a
systematic acquisition capability, which is an essential feature with reference to the environmental risk
monitoring applications.

Advanced Differential Interferometric SAR (A-DInSAR) [1] techniques are routinely used for the
accurate monitoring of slow, long-term displacements of ground targets. Among them, the class of
Persistent Scatterer Interferometry (PSI) methods, typically operating at full resolution [2], relies on the
assumption that the scattering response is spatially concentrated and persistent over the observation
time interval, hence the name of Permanent Scatterer (PS). This scattering assumption, along with
the use of a multi-acquisition model, allows accurately estimating the scatterers parameters, which are
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the residual topography (RT) and the related deformation parameters, typically given by the mean
deformation velocity (MDV) and the thermal dilation (TD).

SAR Tomography (TomoSAR or 3-D imaging) [3] is a method that exploits multiple observations
over different orbits typically achieved by repeated passes to synthesize a large antenna also along the
direction orthogonal to the azimuth and range, referred to as elevation or slant height. The resulting
fine-beam can be steered (by ground data processing) to scan the object of interest to achieve a high
(meter) resolution of the scattering profile along slant height. Upon extension to the time and more
dimensions (Multi-D imaging) [4], similar to PSI, TomoSAR allows the estimation of the scatterers
parameters related to possible deformations (i.e., MDV and TD) as well.

A simple algorithm to reconstruct the vertical scattering profile is based on Beam-Forming (BF) [5]:
its capability of separating the responses of multiple scatterers along the elevation is however limited to
the so-called Rayleigh resolution [6]. Alternative methods, e.g., Compressive Sensing (CS) [7,8] Capon
filtering [9] or based on proper transformation [10], allow improving such a separation and at the same
time achieving better sidelobe suppression. Different from CS, Capon is typically characterized by a
spatial (azimuth and range) resolution loss, although a full resolution version has been proposed [11].

Low frequency (L- or P-Band) TomoSAR applications regard the imaging of volume scattering,
such as forests and ice mapping [3,12,13]. However, even in the case of limited microwaves penetration
capability (e.g., X-Band), TomoSAR allows achieving improved 3-D reconstruction and monitoring in
complex scenes, such as urban areas, due to the geometric distortions (layover) induced by the vertical
development of the scattering [8]. In this case, TomoSAR extends PSI, improving the PSs identification
and the estimation of the parameters of interest.

PSs identification, i.e., the discrimination in each image pixel of different and interfering PS
mechanisms, is a key problem in PSI and TomoSAR. Such a problem can be approached in the
framework of the detection theory, thus exploiting algorithms (detectors) that allow controlling the
false alarm rate (FAR). Among them, the Generalized Likelihood Ratio Test (GLRT) achieves, at least
asymptotically, the best Detection Rate (DR) for a given FAR. For a simple model assuming a single
(dominant) PS immersed in additive white Gaussian noise, it has been shown in [14] that the GLRT
statistic is simply provided by a normalization of the BF reconstruction.

The extraction of multiple (typically two) scatterers, interfering in the same image pixel, is a more
complex issue and different solutions have been proposed in the literature. A simple strategy, based
on sequential projections, has been proposed in [15]. Such approach, referred to as sequential GLRT
with cancellation (SGLRTC), is affected by low detection performances when the interfering scatterers
are located at elevation differences close to or lower than the Rayleigh resolution. It also suffers from
the effects of leakage related to the influence of sidelobes.

More effective approaches for the detection of multiple scatterers are based on the joint testing of
multiple directions in the data space. The support based GLRT (sup-GLRT) [16], which performs a
Maximum Likelihood Estimation (MLE) of the elevation support, has been proposed as a refinement
of the SGLRTC for improving the performances in the scatterers detection for elevation separation
below the Rayleigh resolution. Its disadvantage is the higher computational requirement, related to
the need to test the data power distribution in subspaces spanned by multiple directions. The fast
sup-GLRT approach [17] provides an interesting improvement that allows retaining almost the same
computation efficiency of SGLRTC while keeping, to some degree, the super-resolution capability of
sup-GLRT. The rationale of this method relies on testing the signal power in higher dimensionality
subspaces by sequentially adding a single direction starting from the first one provided by BF.

Inspired by the small baseline approach [18], which improves the interferometric analysis
by increasing the signal to noise ratio through a spatial multi-look, recent PSI-based methods
have included local averaging. The SqueeSAR approach [19] and the Component extrAction and
sElectionSAR (CAESAR) [20], which is based on the Principal Component Analysis, are examples
along this line.
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With reference to the TomoSAR context, the use of local spatial averaging has been shown
to significantly improve the detection performances as well as the accuracy in the estimation of
the scatterers parameters, obviously at the expense of a spatial resolution loss. This is the case of
the CAESAR based tomographic processing [21] and of the noise robust multi-look version of the
single-look GLRT, hereafter referred to as M-GLRT [22]. M-GLRT is based on a proper normalization
of the multi-look BF and shows (asymptotically) optimal performances on the detection of single
scatterers. Following the line of the single-look SGLRTC, a M-GLRT detection scheme accounting
for the presence of multiple scatterers has also been investigated [22]. Significant improvements in
the detection performances have also been observed in this case. However, similar to its single-look
counterpart, such a detection scheme does not allow achieving super-resolution and may suffer of the
effects of leakage.

To fully address the issue of effective detection of multiple scatterers, in this work, we deepened
the investigation of noise robust detection schemes with reference to their capability of separating
scatterers located also below the Rayleigh resolution (super-resolution).

In the context of multi-look SAR Tomography, the Capon filtering is known to guarantee sidelobes
reduction and improve separation of the responses of multiple scatterers. For this reason, the Capon
based detection algorithm in [23] was first analyzed and framed in the context of the GLRT detection,
to investigate the possible effects of the improved separation in terms of super-resolution detection.
Limitations of such a super-resolution tomographic detection method were highlighted. Accordingly,
a multi-look extension of the sup-GLRT, the M-sup-GLRT, was therefore proposed along with its fast
(computationally efficient) version. It benefits from the super-resolution capabilities of the sup-GLRT
as well as the improvements achieved by use of multi-look. This scheme was tested on two datasets
acquired by Very High Resolution (VHR) SAR systems with different baseline spans, i.e., elevation
resolutions, to appreciate on real data the different detection performances.

The paper is organized as follows. Section 2 presents a review of the multi-look TomoSAR, with a
particular emphasis to the Capon and BF reconstruction algorithm. The problem of PSs detection is
then addressed, summarizing the GLRT schemes already derived at full (single-look) and reduced
(multi-look) spatial resolution and providing a deeper analysis of the Capon based detector proposed
in [23]. The multi-look extension of the sup-GLRT detector derived in [16] is described in Section 2.5.
Section 3 is devoted to the analysis of the estimation and detection results on data acquired by operative
systems. Conclusions and suggestions for further developments are provided in Section 4.

2. Material and Methods

2.1. Multi-Look SAR Tomography: Problem Formulation and Filter Design

Let us consider a stack of N azimuth-range focused SAR images, co-registered with respect to
a given reference (master) image. We assume that the dataset has compensated for the atmospheric
phase screen (APS) as well as for possible nonlinear deformation resulting from a small scale (lower
resolution) analysis. In a given image pixel, the signal is a noisy version of the integrated backscattering
function over the so-called multi-dimensional parameter space.

The vector collecting the parameters of interest (i.e., RT for 3-D case; RT and MDV for 4-D case;
and RT, MDV, and TD for the 5-D case) is referred to as parameter vector p. It spans the parameter
space, which is discretized in K bins, corresponding to the parameter vectors p1, . . . , pk. RT can be
referred to the elevation direction (orthogonal to the range and azimuth) or to the vertical direction: in
the following, both definitions are used and specified according to the context.

In a given pixel, the N-length data vector, e.g., g, is modeled as

g = Aγ + w (1)
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where the dependence on the pixel has been omitted for sake of simplicity. In Equation (1), the K-length
vector

γ = [γ1, . . . , γK]
T (2)

where (·)T is the transposition operator, collects the samples of the backscattering distribution function
over the bins (backscattering coefficients), whereas w is the additive noise contribution. Furthermore,
A is the N × K system matrix whose columns are referred to as steering vectors.

With reference to the kth bin, the corresponding steering vector, e.g., a(pk), is a structured versor
(‖a(pk)‖ = 1) whose nth component is

{a(pk)}n =
1√
N

exp
(
−j2πξT

n pk

)
(3)

where ξn is the vector collecting the Fourier mate variables of the parameter vector. Such variables,
whose spans determine the Rayleigh resolution (i.e., the resolution capability of the imaging system),
depend on the adopted system parameters (transmitted wavelength, spatial baseline distribution,
acquisition epochs, and so on) (see references [4,24,25] for the 3-D, 4-D, and 5-D cases, respectively).

At this point, it is worth noting that Equation (1) models the signal component as a superposition
over the bins of contributions (steering vectors) weighted according to the corresponding backscattering
coefficients. On the one hand, along the elevation dimension, a real scenario can certainly involve
the superposition of contributions associated to different bins corresponding to physically distinct
scatterers. The same reasoning cannot be extended along the velocity and thermal dilation. For instance,
for the 4-D case, the velocity can be interpreted as a spectral variable describing the harmonic content
composing a generic, non-linear scatterer deformation. For PSI/TomoSAR it follows that, along the
velocity (4-D) and thermal dilation (5-D) directions, the presence of backscattering distribution over
multiple bins does not imply the presence of multiple (physical) PS, but only a spreading of the
backscattering contribution associated with a deformation of a (physical) PS that cannot be described
by a linear motion (4-D) or linear motion and a thermal dilation (5-D) according to the available
temperatures. For the sequel, we assume that, for a given elevation, the backscattering is impulsive
along the velocity and thermal dilation directions.

It is as well as understood that Equation (1) neglects the presence of decorrelation across
the data-stack.

From a statistical point of view, the data vector is typically modeled as a zero-mean complex
circular Gaussian random vector, with covariance matrix

Rg = E(ggH) =
K

∑
k=1

σ2
γk

a(pk)a
H(pk) + σ2

wIN (4)

where σ2
γk

and σ2
w are the variance of the backscattering coefficient corresponding to the kth bin

contribution and the power spectral density (PSD) of the (white) noise contribution, respectively;
E(·) and IN are the statistical expectation operator and the N × N identity matrix, respectively; and (·)H

stands for hermitian operator. Notice that, according to the previous assumption on the backscattering
distribution, the variance σ2

γk
turns out to be concentrated in a single bin along the additional directions

with respect to the elevation (4-D/5-D spaces).
Multi-look SAR tomography is aimed at reconstructing, pixel by pixel, the backscattering

distribution along the bins (γ) from a set of L independent and homogeneous looks, e.g., g1, . . . , gL.
A proper filter, e.g., hk, is exploited to carry out, look by look, an estimate γ̂k,l = hH

k gl of the
backscattering coefficient γk. To mitigate the noise effect, such an estimate is subsequently averaged
over all the looks, although this leads to an unavoidable spatial (range-azimuth) resolution loss.
The multi-look reconstruction is thus

|γ̂k|2 = hH
k R̂ghk (5)
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where

R̂g =
1
L

L

∑
l=1

glg
H
l (6)

is the sampling covariance matrix of the data. It is worth noting that, under the Gaussian assumption,
the sampling covariance matrix in Equation (6) is also the Maximum Likelihood Estimate (MLE) of the
statistical covariance matrix in Equation (4).

Since the data and the unknowns in Equation (1) are related by a (typically non-uniformly
sampled) Fourier operator, some filter design criteria coming from the spectral estimation theory
have been effectively exploited. Among them, the minimum output energy (MOE) criterion allows
recovering the spectral component corresponding to the kth bin while limiting as much as possible the
effects of interfering contribution. The problem is cast as:

hk = argmin
ζ

ζHRgζ

subject to ζHa(pk) = 1
(7)

Rg being the statistical covariance matrix in Equation (4).
The Capon filter [26] is the solution of the problem in Equation (7). Standard Lagrangian

optimizations lead to the expression

hC(pk) =
R−1

g a(pk)

aH(pk)R
−1
g a(pk)

(8)

showing that the Capon is an adaptive (data dependent) filter, because of the presence of the (inverse)
statistical covariance matrix. In practical situations, the matrix Rg is unknown and, therefore,
its sampling (multi-look) estimation R̂g, defined as in Equation (6), is exploited. Accordingly,
by substituting the filter expression in Equation (8) within the multi-look reconstruction in Equation (5),
the Capon reconstruction can be written as:

|γ̂k|2C =
1

aH(pk)R̂
−1
g a(pk)

(9)

A consideration is now in order.
The use of the inverse sampling covariance matrix makes the Capon filter to be intrinsically

a multi-look processing. In other words, the Capon reconstruction in Equation (9) cannot be
straightforwardly specialized to the single-look case, although a single-look Capon based TomoSAR
algorithm has been proposed in paper [11].

A much simpler nonparametric filter usually exploited for the reconstruction of the backscattering
profile is Beam Forming (BF). Interestingly, BF can be considered as the solution of the problem in
Equation (7) when the data are assumed to be a white process, that is, when Rg is proportional to the
identity matrix. Such a condition leads in fact to the solution:

hBF(pk) = a(pk) (10)

which provides the multi-look reconstruction

|γ̂k|2BF = aH(pk)R̂ga(pk) (11)

obtained by substituting Equation (10) into Equation (5).
Differently from the Capon, the BF in Equation (10) is a non-adaptive (data independent filter).

To emphasize this aspect, the Capon is sometimes referred to as adaptive BF (ABF). Moreover, the BF
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reconstruction in Equation (11) can be straightforwardly specialized to the single-look case (L = 1),
which makes it preferable to the Capon when a full spatial resolution analysis is required.

However, despite its implementation complexity compared to the BF, the ABF is expected to
provide better sidelobes suppression and, as a consequence, mitigation of the leakage between
interfering scatterers as well as (tomographic) super-resolution [5,23].

2.2. Multi-Look Detection in SAR Tomography: Problem Formulation and Solution Strategies

The assumed correspondence between (physical) PSs and bins allows identifying the presence of
the stronger PSs interfering in the same pixel and estimating their tomographic parameters by selecting
the highest peaks of the tomographic reconstruction.

However, the disturbance (noise and clutter) in the processed data along with the leakage level
introduced by the exploited reconstruction technique could determine a misinterpretation of the results
that makes necessary a further processing aimed at testing the reliability of the revealed PSs.

In this context is framed the TomoSAR detection problem, which in the multi-look case consists
of determining, pixel by pixel, the number m ≤ M of present PSs and estimating the corresponding
parameters vectors from a set of L independent and homogeneous looks. Such a problem can be
conveniently cast in terms of the multiple (composite) hypothesis test

H0 : gl = wl
Hm : gl = Amγm,l + wl

l = 1, . . . , L and m = 1, . . . , M
(12)

where g1, . . . , gL are the exploited looks. The mth hypothesis in Equation (12) assumes the
presence of m PSs, characterized by the (unknown) parameters vectors p1, . . . , pm which are
look-independent because of the looks homogeneity. The corresponding steering vectors are collected
by the system matrix

Am = [a(p1), . . . , a(pm)] (13)

whereas the backscattering coefficients form the look-dependent vector

γm,l = [γ1,l , . . . , γm,l ]
T (14)

Finally, each look is corrupted by an additive noise contribution wl , usually modelled as a white
complex circular Gaussian random vectors, with (unknown) PSD σ2

w.
In the following, Equation we deal with the problem of detecting up to two interfering scatterers

(i.e., M ≤ 2).
From a statistical point of view, the joint probability density function (pdf) of the looks can

be modeled according to two different complex multivariate Gaussian distributions. The first one
leads to the zero-mean model, which characterizes the backscattering coefficients in Equation (14) as
uncorrelated zero-mean complex circular Gaussian random variables with (unknown) variances σ2

γk
,

k = 1, . . . , m The second one corresponds to the nonzero-mean model, which considers, instead, the
backscattering coefficients in Equation (14) as (unknown) deterministic parameters.

Different detection strategies can be followed.
A first possibility is to start from the tomographic reconstruction and exploit proper indexes to

extract the information about peaks corresponding to possible persistent scatterers. In this case, the
exploited reconstruction technique plays a key role in terms of achievable tomographic resolution and
estimation accuracy: a particular interest is thus for the Capon based algorithms.

A second strategy is strictly framed in the detection theory context and exploits schemes based on
the Generalized Likelihood Ratio Test (GLRT). In this case, according to the assumed statistical model,
the estimates of the unknown parameters are based on the Least Squares (LS) criterion that, in the
case of single scatterers, provides the same solution achievable by selecting the highest peak of the BF
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reconstruction. Moreover, this strategy also has the advantage of allowing to control the false alarm
rate (FAR).

2.3. GLRT Detection

The multi-look GLRT for the binary hypotheses test
(Hi, Hj

)
is:

max
θi

f (g1, . . . , gL;θi|Hi)

max
θj

f (g1, . . . , gL;θj|Hj)

Hi
≷
Hj

T (15)

where, under Hk (k = i, j), f (·|Hk ) is the joint pdf of the looks and θk is the vector collecting all the
unknown parameters. Moreover, T is the detection threshold, set according to the desired FAR.

As for the detection of single scatterers, the single-look and, more recently, the multi-look GLRT
detector for the binary hypothesis test (H1,H0 ) have been derived in references [14,22] respectively.

By assuming the zero-mean model for the joint pdf of the looks, the test in Equation (15) leads to
the multi-look GLRT detector [22]:

L
∑

l=1

∣∣gH
l a(p̂)

∣∣2
L
∑

l=1
‖gl‖2

=
aH(p̂)R̂ga(p̂)

tr(R̂g)

H1
≷
H0

T (16)

where
p̂ = argmax

ζ

[
aH(ζ)R̂ga(ζ)

]
(17)

is the multi-look MLE under H1 of the parameter vector p associated with the present PS and R̂g is the
sample covariance matrix, defined as in Equation (6).

It is worth noting that the test in Equation (16) is a BF-based detector, since its statistic represents
the highest normalized peak (belonging to the interval [0, 1]) of the BF reconstruction in Equation (11).
It can be rewritten as

ρBF =
tr[R̂ga(p̂)aH(p̂)]

tr(R̂g)tr[a(p̂)aH(p̂)]
(18)

which is the correlation index (according to the Frobenius inner product) between the estimated
(sample) covariance matrix R̂g and the estimated, so-called signature matrix a(p̂)aH(p̂), associated with
the ideal response (signature) a(p̂) of a PS with parameter vector p̂ [22]. Equation (18) is also referred
to as BF correlation index, because of the relation hBF(p̂) = a(p̂) that defines the BF filter at the bin p̂.

It can be easily shown that, under H1, the test statistic ρBF in Equation (18) increases with the
signal to noise ratio (SNR) of the present PS, defined as

SNR =
σ2

γ

σ2
w

(19)

As final remarks, it is worth underlining that the detector in Equation (16) has the CFAR property
that reflects in the possibility to use the same detection threshold for processing all pixels with the
same (constant) FAR. Moreover, the reduction of the noise effect induced by the multi-look processing
translates in a higher detection rate (DR). It has been demonstrated, indeed, that, for a fixed FAR,
the DR increases with the number L of the exploited looks [22].

As for the double scatterers case, a GLRT-based detector for the ternary hypothesis test
(H0, H1, H2) has been proposed for the single-look case in [15] and subsequently extended to the
multi-look case in [22]. It is a simple and efficient two-stage scheme, referred to as sequential GLRT
with cancelation (SGLRTC), that sequentially tests the pairs of hypotheses

(H2, H2
)

and (H1,H0),
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where H2 denotes the complement of H2 (i.e., H1 or H0). At the first stage, aimed at testing the
presence of two scatterers, the decision rule from Equation (16) is applied to the vector obtained by
canceling from the data the contribution of the dominant scatterer. The latter is in turn provided by
the highest peak of the BF reconstruction. If hypothesis H2 is selected, the final decision is demanded
to the second stage that select among the null and the single scatterer hypothesis, again according to
the rule in Equation (16).

The SGLRTC results to be in practice CFAR. Moreover, from the computational point of view, it is a
very efficient detection scheme, since the cancelation step allows just doubling the effort required by the
GLRT detector for single scatterers. Unfortunately, this is paid for by a reduction of the (tomographic)
resolution capabilities, since the cancellation process does not allow locating scatterers whose distance
in the parameter space is below the Rayleigh resolution. Moreover, it has limited capabilities in
contrasting the leakage.

To provide super-resolution capabilities, a single-look double-stage GLRT-based detector, referred
to as sup-GLRT (since it deals with a signal support estimation problem), has been proposed in [16].
Similar to the single-look SGLRTC, the sup-GLRT assumes the nonzero-mean model for the pdf of
the data. However, differently from the SGLRTC that implements the binary tests starting from the
higher hypothesis, the sup-GLRT sequentially tests the pairs of hypotheses

(H0, H0
)

and (H1,H2)

(H0 being the complement of H0), thus starting from the lower hypothesis. More specifically, letting g

be the (single) exploited look, the first stage implements the rule

gHP(p̂1, p̂2)g

‖g‖2 = 1 − gHP⊥(p̂1, p̂2)g

‖g‖2

H0
≷
H0

T1 (20)

where
(p̂1, p̂2) = argmin

ζ1,ζ2

[
gHP⊥(ζ1, ζ2)g

]
(21)

is the joint MLE of the parameter vectors associated with the two present PSs under H2,

P⊥(p̂1, p̂2) = IN − P(p̂1, p̂2) (22)

is the projector in the noise subspace, which is the orthogonal complement to the signal subspace
spanned by the two estimated directions a(p̂1) and a(p̂2), and

P(p̂1, p̂2) = A(p̂1, p̂2)[A
H(p̂1, p̂2)A(p̂1, p̂2)]

−1
AH(p̂1, p̂2) (23)

is the projector in the signal subspace, A(p̂1, p̂2) being the matrix collecting the two estimated
directions.

The second stage acts when the first one selects H0. It implements the rule

1 − gHP⊥(p̂1, p̂2)g

gHP⊥(~
p1)g

H2
≷
H1

T2 (24)

where p̂1 and p̂2 are still given by Equation (21), and

~
p1 = argmin

ζ

[
gHP⊥(ζ)g

]
(25)

is the MLE of the parameter vector associated with the present PS under H1. Moreover,

P⊥(~
p) = IN − a(

~
p1)a

H(
~
p1) (26)
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is the projector in the noise subspace, which is the orthogonal complement to the signal subspace
spanned by the estimated direction a

(
~
p1

)
.

The sup-GLRT is a CFAR detection scheme, and very effective compared to SGLRTC in terms
of resolution capability. Indeed, by exploiting the join estimation procedure from Equation (21),
it is also able to detect scatterers whose separation in the parameter space is below the Rayleigh
resolution. Moreover, for separation above the Rayleigh resolution, the avoidance of the cancellation
step exploited in the SGLTRC allows improving the handling of leakage associated to sidelobes.
However, the super-resolution capability is paid for by a high computational effort, which turns out
to be combinatorial [16]. Accordingly, the sup-GLRT is very computationally demanding, especially
when the dimensionality of the parameter space increases and its discretization is carried out with a
high number of bins [27].

To overcome the high computational complexity limitation of the sup-GLRT, the so-called
(single-look) fast-sup-GLRT is introduced in [17]. The basic idea is on splitting the joint estimate
(p̂1, p̂2) of the two parameters vectors, performed as in Equation (21), into two decoupled estimates

~
p1

and
~
p2. To this aim, the estimate

~
p1 is firstly carried out by Equation (25). Subsequently, the estimate

~
p2 is performed as

~
p2 = argmin

ζ

[
gHP⊥(~

p1, ζ)g
]

(27)

The reduction of the computational effort is paid for by a higher leakage effect on the dominant
scatterer when a secondary scatterer is present. Nevertheless, the fast sup-GLRT has been demonstrated
to achieve better detection performances with respect to the SGLRTC. This improvement depends on
the fact that, differently from the cancelation carried out by the SGLRTC, the estimation procedure in
Equation (27) does not constrain the steering vectors associated with

~
p1 and

~
p2 to be orthogonal.

2.4. Capon-Based Detection

The attractive characteristic of the Capon reconstruction related to the mitigation of the leakage
effect has encouraged the derivation of multi-look Capon-based detectors which should be able to
achieve better performances in presence of multiple PSs interfering in the same pixel. One possibility
could be the modification of the GLRT in Equation (16), which is a BF-based detector, in a Capon-based
detection scheme. To this aim, the BF correlation index from Equation (18) could be substituted with
the Capon correlation index

ρC =
tr[R̂ghC(p̂)h

H
C (p̂)]

tr(R̂g)tr[hC(p̂)h
H
C (p̂)]

(28)

where hC(p̂) is the Capon filter at the bin p̂ corresponding to the highest peak of the Capon
reconstruction. Unfortunately, because of the presence of the inverse sampling covariance matrix in the
filter (see Equation (8)), the use of the index in Equation (28) results to be critical in terms of numerical
instability related to the finite precision number representation, especially for high values of SNR.

Another possibility is given by the multi-look Capon-based iterative detector addressed in [23].
It exploits the L looks g1, . . . , gL to sequentially test the hypotheses in Equation (12), that is

Hm : gl = Amγm,l + wl (29)

m ≥ 1, where the matrix Am = [a(p̂1), . . . , a(p̂m)] accounts for the vector parameters p̂1, . . . , p̂m

corresponding to the m highest peaks of the Capon reconstruction.
The mth iteration verifies the presence of a further scatterer with respect to the m−1 already

detected in the previous one, by ending the algorithm if the additional scatterer is declared to be absent.
To this aim, the following joint condition is tested

(εm < T1) ∩ (SNRm > T2) (30)
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where εm is a properly defined fitting error exploited to limit the FAR,

SNRm =
σ2

γm

σ2
w

(31)

is the SNR corresponding to the mth scatterer, and T1 and T2 are two fixed (independent from m)
thresholds.

The fitting error is a normalized index accounting for the data contribution within the noise
subspace, i.e., the orthogonal complement to the signal subspace

εm =

L
∑

l=1

∥∥gl − Amγ̂m,l
∥∥2

L
∑

l=1
‖gl‖2

(32)

where
γ̂m,l = (AH

mAm)
−1

AH
mgl (33)

is the least squares (LS) estimate of the vector γm,l .
It is worth noting that, by increasing the iteration number m, which represents the dimensionality

of the signal subspace, the fitting error from Equation (32) decreases. Accordingly, it is enough to
verify the fitting error condition just for m = 1, whereas for m > 1 the detection rule in Equation (30)
reduces to

SNRm > T (34)

As for the SNR in Equation (31), the power σ2
γm of the mth scattarer is evaluated as

σ̂2
γm =

1
L

L

∑
l=1

∣∣γ̂m,l
∣∣2 (35)

where γ̂m,l is the last (mth) component of γ̂m,l in Equation (33).
Regarding to the noise power σ2

w, in [23] the authors did not provide any information on the
adopted estimation strategy. However, assuming the nonzero-mean Gaussian model for the looks
(see Section 2.1), Equation (33) turns out to be the MLE of the backscattering coefficients and, thus,
the MLE of the noise level can also be exploited [15]

σ̂2
w =

1
L

L

∑
l=1

‖gl − Amγ̂l‖2

N − m
(36)

Some considerations are now in order.
It can be shown that, for m = 1, the fitting error condition is equivalent to the one on the SNR,

thus the test turns out to always be equivalent to that in Equation (34) or, in other words, the condition
on the fitting error is redundant.

Furthermore, it can be shown that the test in Equation (34) is equivalent to the multi-look GLRT
for the pair (Hm−1,Hm) derived by assuming the looks following the nonzero-mean Gaussian model.
However, differently from the GLRT, which exploits the MLEs of all the unknown parameters, the test
in Equation (34) makes use of the parameter vectors provided by the highest peaks of the Capon
reconstruction. It has been empirically demonstrated, however, that simple peaks location leads to
the worst results in terms of resolution even with respect to the method based on signal orthogonal
projections. Additionally, the corresponding test statistic is always lower than the one of the “full”
GLRT rule (which is maximized by the MLEs).

These considerations make evident the difficulty to derive, in the context of super-resolution
multi-look detection, an effective Capon-based detection scheme. On the other hand, multi-look
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SGLRTC does not provide super-resolution capabilities, differently from the sup-GLRT proposed
in article [16], which however has been designed for the single-look case. Accordingly, in the next
subsection, we derive the multi-look version of the sup-GLRT.

2.5. Proposed Multi-Look Sup-GLRT Detection Algorithm

The single-look sup-GLRT detector and its fast implementation proposed in references [16,17],
respectively, are described in Section 2.3. Such schemes carry out the estimation of the parameters
vector without imposing the orthogonally of the corresponding directions, thus achieving satisfactory
performances also when multiple interfering PSs below the (tomographic) Rayleigh resolution are
present in the same pixel. Accordingly, to profitably exploit such feature also when the processed
datasets are characterized by low SNRs, in this section, we propose the extension of the sup-GLRT
detector to the multi-look case. Additionally, for the fast implementation of the multi-look sup-GLRT,
a Capon reconstruction is also proposed.

Let us consider a set of L independent and homogeneous looks, modeled according to the
nonzero-mean statistical characterization (see Section 2.1), which extends the model exploited in [16] to
the multi-look case. By supposing the presence of up to two scatterers, the first stage of the multi-look
sup-GLRT implements the decision rule

1 − trace
[
P⊥(p̂1, p̂2)R̂g

]
trace

[
R̂g

] H0
≷
H0

T (37)

where R̂g, defined as in Equation (6), represents the sampled correlation matrix of the exploited looks,
and P⊥(p̂1, p̂2) is given by Equation (22). Moreover,

(p̂1, p̂2) = argmin
ζ1,ζ2

trace[P⊥(ζ1, ζ2)R̂g] (38)

is the joint MLE of the parameters vector under H2.
The second stage, instead, operates the decision according to the rule

1 − trace[P⊥(p̂1, p̂2)R̂g]

trace[P⊥(~
p1)R̂g]

H2
≷
H1

T (39)

where p̂1 and p̂2 are still given by Equation (21), and

~
p1 = argmin

ζ
trace[P⊥(ζ)R̂g] (40)

is the MLE of the parameter vector under H1.
It is worth noting that, assuming the zero-mean statistical model for the exploited looks, Equations

(37) and (39) can be shown to be still the decision rules of the multi-look sup-GLRT only if σ2
γ1

= σ2
γ2

(scatterers with the same power level).
Similar to the single-look counterpart, a fast implementation of the proposed multi-look detector

can be obtained by splitting the joint estimate (p̂1, p̂2) into two decoupled estimates
~
p1 and

~
p2, the latter

performed as
~
p2 = argmin

ζ
trace[P⊥(~

p1, ζ)R̂g] (41)

The estimate
~
p1 is given, instead, by the position corresponding to the highest peak of

the multi-look tomographic reconstruction. However, differently from the (single-look) fast
implementation proposed in [17,27] which exploits the Beam-Forming reconstruction, we prefer
to use the Capon reconstruction carried out on the selected looks. Indeed, the capability of the Capon
filter to mitigate the leakage effect should guarantee a better estimate of the parameters vector

~
p1 when
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multiple interfering PSs are actually present in the same pixel, thus improving also the subsequent
estimate in Equation (41).

3. Results

To test the effectiveness of the proposed detection scheme, experiments were carried out on
two datasets involving highly urbanized environments. The first dataset was acquired by the
TerraSAR-X sensors over the city of Bucharest in the area of the national arena; the second one by the
COSMO-SkyMED sensor on the city of Rome. Sensors and datasets characteristics are summarized in
Table 1.

Table 1. Detected single and double PSs for single-look (SL) and multi-look (ML) sup-GLRT.

TSX CSK

number of acquisitions 32 29
time span July 2011–December 2012 April 2011–October 2012
incidence angle 37.32◦ 34◦
range resolution 1.17 m 1.47 m
azimuth resolution 3.3 m 3 m
Rayleigh resolution 23 m 7.89 m
wavelength 3.1 cm 3.1 cm
sensor altitude 500.54 km 628.15 km
beam ID strip_010 H4-05
acquisition mode stripmap stripmap
orbit direction descending ascending

The two datasets were analyzed with both single- and multi-look sup-GLRT. The estimate of
the parameter vector associated to the dominant was used for implementing the fast version of the
detector. In the proposed multi-look solution, this vector was provided by the Capon reconstruction,
which is expected to reduce the leakage effect. With this regard, before starting with the analysis of the
detection performances, a comparison of the elevation estimates achieved by Capon and BF was first
performed with reference to the Bucharest dataset, which is characterized by a poor vertical resolution.

The TerraSAR-X dataset over the Bucharest national arena area is composed by 32 (SLC) images of
800 (azimuth) × 1200 (range) pixels, acquired between July 2011 and December 2012 with the system
operating in the stripmap, single polarization mode. Orbits are descending, the spatial 2-D resolution
is 2 m in azimuth and 1 m in range. Figure 1 shows the (temporal) multi-look amplitude image
corresponding to the investigated area, i.e., the result of an averaging on all the available acquisitions.
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Figure 1. Amplitude of the test area from the TerraSAR-X dataset (National Arena in Bucharest,
Romania), averaged across dataset’s acquisitions.

The acquisitions are distributed on the so-called spatial/temporal baselines domain, as shown in
Figure 2, with a span of 432 m and 528 days. The corresponding Rayleigh elevation resolution is about
23 m; this number converts vertically to about 14 m, which compares with the average building height
in the area. The Rayleigh resolutions along the linear deformation rate and thermal dilation equals
1 cm/year and 0.35 mm/◦C, respectively. Based on the limited spatial extension of the analyzed area,
the data were calibrated for the APS by compensating for a constant phase offset.

Figure 2. Distribution of the acquisitions, depicted as circles, in the temporal/spatial baseline domain.
Red circle corresponds to the master acquisition.

The adaptive (spatial) multi-look operation was carried out via a Kolmogorov–Smirnov (KS)
test [19,28]: The search window was set to 9 × 9 pixels and 25 pixels were selected inside each window.

The reconstructions in Equations (9) and (11) were carried out in the 4-D space, by exploiting the
statistically similar looks selected as described above for the covariance matrix estimation. The RT
(elevation) interval was scanned in the [−60, 60] m interval with a 3 m spacing, the MDV interval was
set to [−2.5, 2.5] cm/year with a spacing of 0.25 cm/year.
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The elevation map of the dominant scatterers, i.e., for each pixel, the positions of the highest peak
of the tomographic reconstruction, is shown in Figure 3 for the Beam-Forming (Figure 3a) and Capon
(Figure 3b). The comparison of the two maps shows that the better leakage mitigation associated
with Capon leads to a generally less noisy reconstruction with respect to the plain BF. For this reason,
although characterized by a higher computational cost due to the inversion of the covariance matrix,
the Capon filter is considered in the implementation of the detection multi-look fast sup-GLRT scheme.

This detection scheme was then applied to select the monitored PSs. The adaptive KS test was
again used for the R̂g estimation. Due to the presence of metallic structures in the test area, which can
be sensitive to the phenomenon of thermal dilations, the 5-D case was considered. The TD coefficient
interval [−1.6, 1.6] mm/◦C was scanned with a sampling step of 0.2 mm/◦C.

Figure 3. Maps of the estimated dominant scatterers elevation, corresponding to the peaks of the BF (a)
and Capon (b) reconstructions. Colormap is in meters and set according to the estimated elevation.

Figure 4 shows the maps of the detected single (Figure 4a,b) and higher double (Figure 4c,d) PSs,
when the single-look (Figure 4a,c) and multi-look (Figure 4b,d) fast sup-GLRT were used. Colormaps
were set according to the estimated RT (elevation). The results show a significant increase of the
detection performance achieved by the multi-look detector with respect to the single-look processing.
This increase is particularly evident for the double scatterers, which were mainly identified on almost
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all the structures extending vertically. All pixels belonging to the top of the stadium, as well as to
the roofs of the residential buildings in the neighborhood, were in fact detected as double scatterers,
whereas single scatterers were mostly located on the ground. The thermal dilation map of the detected
PSs, which is not reported for sake of brevity, shows that the highest values corresponded to the
metallic structures, including the stadium.

  
(a) (b) 

  
(c) (d) 

Figure 4. Distribution of the detected single scatterers (a,b) and higher double (c,d) scatterers, for
single-look (a,c) and multi-look (b,d) analysis. Colormap is in meters and set according to the
estimated elevation.

The COSMO-SkyMED dataset over the city of Rome is composed by 29 (SLC) images of 500
(azimuth) × 700 (range) pixels, acquired between April 2011 and October 2012 by the Cosmo-SkyMed
constellation, operating in the stripmap image mode on ascending orbits, with a resolution of 3 m in
azimuth and 1.45 m in range.

Figure 5 shows multi-look master image amplitude of the investigated area. The adaptive
multi-look method based on the KS test was implemented also in the case of this dataset, again by
setting the search window to 9 × 9 pixels and selecting 25 pixels inside each window. The acquisitions
are distributed on the spatial/temporal baselines domain as in Figure 6, with a span of 1469.2 m and
556 days. The Rayleigh resolution is equal to 7.89 m in elevation and therefore much better than the
Bucharest case. For linear deformation (MDV), the resolution is 1 cm/year, hence comparable to the
previous case, whereas for the thermal coefficient the resolution decreases to 0.8 mm/◦C.
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Figure 5. Amplitude of the test area from the COSMO-SkyMED dataset relevant to the Basilica S. Paolo
area in Rome, Italy, averaged across dataset’s acquisitions.

Figure 6. Distribution of the acquisitions, depicted as circles, in the temporal/spatial baseline domain.
Red circle corresponds to the master acquisition.

The APS was compensated in this case by exploiting a two-scale analysis: APS was extracted at
the stage of low resolution processing (see reference [5]).

The estimation and detection processes were carried in 5-D space, over a uniformly discretized
grid, picked over the RT (elevation) interval [−60, 60] m with a spacing of 1 m, the MDV interval
[−2.5, 2.5] cm/year with 0.25 cm/year spacing and the TD coefficient interval [−1.6, 1.6] mm/◦C with
a spacing of 0.4 mm/◦C.

Figure 7 shows the maps of the detected single (Figure 7a,b) and higher double (Figure 7c,d) PSs,
for the single-look (Figure 7a,c) and multi-look (Figure 7b,d) cases. Colormaps are set again according
to the estimated RT (elevation).
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(a) (b) 

  
(c) (d) 

Figure 7. Distribution of the detected single scatterers (a,b) and higher double (c,d) scatterers,
for single-look (a,c) and multi-look (b,d) analysis Colormap is in meters and set according to the
estimated elevation.

4. Discussions

Results achieved by the processing of the two datasets shows the capabilities of multi-look
sup-GLRT in providing higher densities of detected PS. Moreover, detected double scatterers well
matched the building and structures developed vertically, which are subject to the effects of layover.

To quantitatively compare the detection performance of the proposed multi-look detector with
that of its single-look counterpart, the number of detected single and double PSs and their percentages
with respect to the total number of pixels interested by the detection of at least one stable target are
synthetized in Table 2 for both processed datasets.

Table 2. Detected single and double PSs for single-look (SL) and multi-look (ML) sup-GLRT.

Dataset PS SL Detections ML Detections SL Percentage ML Percentage

TSX
single 11,6065 25,0899 97.17% 76.7%
double 3380 7,5934 2.83% 23.3%

CSK
single 5,3415 7,2279 91.99% 59.9%
double 4648 4,8220 8.01% 40.1%

Table 2 shows that, with respect to the single-look, the multi-look processing provides a significant
increase on the total number of the detected scatterers (singles plus twice the doubles). Moreover,
the percentages highlight the better capability of the multi-look processing in detecting the double PSs,
also with respect to the single-look analysis reported in the literature [29,30]. The numerical results in
Table 2, along with the visual evidence in Figures 4 and 7, allow concluding that many single scatterers
detected by the single-look processing were detected as double scatterers by the multi-look processing.
Table 2 also shows a significant increase of the detected double scatterers in the case of Cosmo-SkyMed
dataset with respect to the TerraSAR-X case: this can be ascribed to the higher elevation resolution.
Lower Rayleigh resolution along the elevation calls for super-resolution detection capability but this
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impacts negatively the detection rate, as demonstrated in reference [25] where an analysis of the
detection rates as a function of the super-resolution ratio is performed for the single-look case.

In the following, we follow lines for a validation of the results.
First, it is worth noting that a visual comparison of the estimated heights for the single- and

multi-look case achieved on both datasets, shown in Figure 4 for TerraSAR-X and Figure 7 for the
COSMO-SkyMED case, provides evidence of a spatial consistency of the results for the single as
well as double scatterers. For both single- and multi-look processing, high estimated heights for the
double scatterer case are located in areas where single scatterers also show the presence of buildings.
This aspect can be analyzed on those pixels where the single-look processing declares the presence of
single PSs, whereas the multi-look processing detects double PSs. It is reasonable to expect that the
noise reduction induced by the multi-look enables to revealing the presence of an additional (weaker)
scatterer, which the single-look (noisier) processing cannot detect. This is confirmed by the results in
Figure 8, which is related to the COSMO-SkyMED dataset. It shows the histogram of the difference,
on a common grid of pixels, between the heights associated with the single scatterers detected by the
single-look processing and the closest (Figure 8a) and farthest (Figure 8b) double scatterers detected
by the multi-look scheme.

(a) 

(b) 

Figure 8. Histograms of the differences on a common grid of pixels between the residual topography
(height) associated with the single scatterers single-look and the closest (a) and farthest (b) double
scatterer resulting from the multi-look processing.

Mean and standard deviation of the differences are −0.04 m and 2.6 m for the closest case, whereas
for the farthest case are −0.26 m and 10.5 m, respectively. The presence of pronounced peeks in the first
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histogram is an indication of the consistency of the results corresponding to the single scatterers and
double scatterers. Moreover, the distribution of the RT (height) separation for the farthest scatterers in
the bottom histogram in Figure 8 compares well to the distribution of the heights of the buildings in
the analyzed area.

Furthermore, a quantitative validation of the results, though not exhaustive, was carried out on
both the processed datasets.

For the National Arena of Bucharest (TerraSAR-X dataset), 15 buildings were selected with heights
between 6 and 35 m. Heights derived by Google Earth were compared with the building heights
estimated by the multi-look processing. Mean and standard deviation of the absolute height differences
result to be 0.65 and 0.5 m, respectively, thus confirming the effectiveness of the estimation process.

A different validation procedure was carried out on the Rome (COSMO-SkyMED) dataset.
The detected targets over a proper selected area were geocoded and overlapped to the Google

Earth layer corresponding to the same area. The results of this operation are shown in Figure 9. Single
PSs are shown in Figure 9a,b, whereas all (single and double) PSs are shown in Figure 9c,d. Figure 9a,c,
and Figure 9b,d, instead, shows single-look and multi-look processing, respectively.

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 9. Geocoded scatterers detected on Rome dataset for the single-look (a,b) and multi-look (c,d)
cases for the single scatterers (a,c) and both single and double scatterers (b,d).

The tomographic geocoded points fit well the shape of the buildings in the optical layer, thus
providing evidence of the reliability of detected targets and excluding the presence of substantial errors
in the estimated height parameters.
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5. Conclusions

The use of multi-look allows providing improved detection of multiple scatterers with reference
to the application of SAR tomography to the context of building reconstruction and monitoring.
Depending on the system resolution along the elevation direction and the scene height distribution,
the identification of multiple scatterers may be affected by the limitations in the detection of interfering
scatterers below the Rayleigh resolution as well as by the effects of leakage.

This study deepened the investigation of possibilities related to the use of multi-look for improved
detection of multiple persistent scatterers even below the Rayleigh resolution. A multi-look extension
of the so-called sup-GLRT, which in the single-look case has been shown to have super-resolution
capabilities, was derived. Following the literature for single-look, a fast version of such a detector was
considered. The Capon inversion was exploited in this case for the reconstruction of the backscatter
distribution in the tomographic domain to take benefit of its leakage mitigation characteristics.
The detector showed good performance in urban areas, being able to achieve the discrimination
of double interfering scatterers associated with the layover phenomenon, typically affecting highly
urbanized areas. In particular, the double scatterers detection scheme was tested on TerraSAR-X
data characterized by poor elevation resolution. Application of the method to Cosmo-SkyMED data,
characterized by higher resolution along the elevation, further showed the importance of handling
the layover problem in urban areas. Reported densities of double scatterers compare favorably to
percentages reported in the literature for the single-look case.
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Abstract: In this paper, persistent scatterer interferometry and Synthetic Aperture Radar (SAR)
tomography have been applied to Sentinel-1 data for urban monitoring. The paper analyses the
applicability of SAR tomography to Sentinel-1 data, which is not granted, due to the reduced
range and azimuth resolutions and the low resolution in elevation. In a first part of the paper,
two implementations of the two techniques are described. In the experimental part, the two techniques
are used in parallel to process the same Sentinel-1 data over two test areas. An intercomparison of the
results from persistent scatterer interferometry and SAR tomography is carried out, comparing the
main parameters estimated by the two techniques. Finally, the paper addresses the complementarity
of the two techniques, and in particular it assesses the increase of measurement density that can
be achieved by adding the double scatterers from SAR tomography to the persistent scatterer
interferometry measurements.

Keywords: synthetic aperture radar; persistent scatterers; differential interferometry; tomography;
radar detection; generalized likelihood ratio test; sparse signals

1. Introduction

The European Union and the European Space Agency (ESA), with the Copernicus program [1],
and, in particular, the free availability of data from the Sentinel satellite missions, have pushed the
interest in developing advanced techniques for earth monitoring. This work is focused on the data
of the Sentinel-1 radar mission. Sentinel-1 [2] acquires images in C-band, covering 250 by 180 km in
its standard data acquisition mode (interferometric wide swath). Sentinel-1 data are characterized
by high temporal resolution (revisiting cycle of 6 days) and moderate spatial resolution (pixel size of
14 by 4 m). This new sensor offers an improved data acquisition capability for deformation monitoring
with respect to previous C-band sensors (ERS-1/2, Envisat, and Radarsat), considerably increasing the
monitoring potential. The Sentinel-1 coverage is well suited for wide-area monitoring using differential
nterferometric synthetic aperture radar (DInSAR) and persistent scatterer interferometry (PSI).

DInSAR involves the exploitation of at least a pair of complex synthetic aperture radar (SAR)
images to measure surface deformation. Several DInSAR techniques have been developed in the last
couple of decades. The PSI methods, which are based on large stacks of complex SAR images, have
proven to be effective and are extensively applied [3]. Both the DInSAR and PSI techniques exploit
the phase of the SAR images. Most of the PSI techniques assume the presence of only one dominant
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scatterer per resolution cell [4–12]. This assumption can be invalid when observing ground scenes with
a pronounced extension in the elevation direction, for which more than one scatterer can fall in the
same range–azimuth resolution cell. This, for instance, occurs in the presence of buildings of different
heights, whose backscattered signals interfere in the same resolution cell, or in urban layover areas [13].
In such areas, the PSI techniques that assume one dominant scatterer usually experience a loss of
deformation measurements. This potential limitation can be overcome by using the TomoSAR [14]
techniques. In fact, in such techniques, the use of a stack of complex-valued interferometric images
makes the separation of the scatterers interfering within the same range–azimuth resolution cell
possible. This is achieved by synthesizing apertures along the elevation direction, which results
in an elevation resolution, so as to provide the full scene reflectivity profile along azimuth, range,
elevation, and average deformation velocity [15]. With respect to PSI techniques, TomoSAR, in addition
the scatterers’ position in 3D space and their average deformation velocity, also provides their intensity
distribution in 3D space, which is additional information that can be conveniently used for selecting
the most reliable scatterers in the reconstructed scene. Tomographic processing techniques exploit both
the phase and amplitude of the backscattered signal and consist of resolving an inversion problem [16].

The aim of this paper is to show the applicability of TomoSAR to Sentinel-1 data in performing
deformation monitoring. Then, an intercomparison of the results from TomoSAR and the more
mature and experimented technique of persistent scatterer interferometry are carried out. For this
purpose, two study areas were analyzed using Sentinel-1 data, which include a portion of the Port of
Barcelona (Spain) and a part of the city center. The contributions of the paper can be summarized as
follows. Firstly, the paper presents the first analysis concerning the performance of TomoSAR applied
on Sentinel-1 data, which, exhibiting reduced range and azimuth resolutions and low resolution
in elevation, do not seem well suited for TomoSAR. Secondly, it compares the TomoSAR and PSI
estimates, i.e., height, deformation velocity, and thermal dilation. Finally, it explores how TomoSAR can
complement the PSI measurements, increasing the measurement density. This paper is organized as
follows. Section 2 recalls the essential characteristics of the PSI approach used in this work. In Section 3
an introduction to the TomoSAR used in this work is provided. The comparison of the results obtained
in the study area is discussed in Section 4. Conclusions follow in Section 5.

2. A PSI Technique

The purpose of this section is to describe the PSI technique used in this work. The basics of
DInSAR and PSI are recalled in Reference [3]. The observation equation used in this work is:

ΔϕD−Int = ΔϕInt − ϕTopo_simu = ϕDispl + ϕTher + ϕRTE + ϕAtmo + ϕNoise + 2 · k · π, (1)

where ΔϕInt is the interferometric phase, ΔϕD−Int is the so-called DInSAR phase, ϕTopo_simu is the
simulated topographic component (using an external digital elevation model (DEM) of the scene),
ϕDispl is the terrain deformation component, ϕTher is the thermal expansion component, ϕRTE is the
residual topographic error (RTE) component, ϕAtmo is the atmospheric phase component, and ϕNoise is
the phase noise. The last term, 2 · k · π, where k is an integer value called phase ambiguity, is a result of
the wrapped nature of ΔϕD−Int.

The main goal of the PSI techniques is to estimate ϕDispl from the ΔϕD−Int. This implies separating
ϕDispl from the other phase components. This can only by accomplished if the pixels to be processed are
characterized by small ϕNoise. A common way to select such pixels is to use the amplitude dispersion
criterion [4]. This criterion tends to select pixels where the response to the radar is dominated by
a strong reflecting object and is constant over time. These pixels are called persistent scatterers (PSs).
This is the selection method used in our PSI procedure. The main steps of the PSI procedure used in
this work are briefly summarized below, see for details Reference [9].

1. The first processing step consisted of collecting a stack of N interferometric SAR images covering
the area of interest. This was followed by image co-registration and the generation of a redundant

272



Remote Sens. 2018, 10, 1986

set of M interferograms, obtained combining different couples of images (then M ≤ N(N − 1)/2
with M >> N − 1).

2. The PS candidates were then selected using the amplitude dispersion criterion [4].
3. Based on the wrapped stack of interferograms and the extended model described in Reference [8],

the following three parameters were estimated for each PS candidate: The linear deformation
velocity (VELO), the residual topographic error (RTE), and the thermal expansion parameter
(THER). The estimation was firstly performed on arcs and then the arc values were integrated
over the set of PSs. The final selection of the PSs was based on the so-called temporal coherence
(or ensemble phase coherence [4]), γ:

γ(PS) =

∣∣∣∣∣ 1
M

M

∑
k=1

exp(j(Δϕk
Obs(PS)− Δϕk

Mod(PS))

∣∣∣∣∣, (2)

which describes the goodness-of-fit of the three-parameter model, Δϕk
Mod(PS), see the full formula

in Reference [8], and the wrapped interferometric phase, Δϕk
Obs(PS).

4. On the wrapped phases of the selected PSs, the above estimated RTE phase component was
removed. This was followed by the phase unwrapping of the resulting phases. The phases were
then temporally ordered using the interferogram to phase transformation [9].

5. The phase to displacement transformation was then applied, which was followed by geocoding.

The final product was given by the geocoded deformation time series, from which the deformation
velocity was estimated. It is worth noting that the atmospheric phase removal is not considered in this
work because the extension of the study area is limited, i.e., the atmospheric phase contribution can be
assumed to be constant on the whole image and is simply compensated by phase calibration.

3. A SAR Tomography Technique

TomoSAR can be seen as a Fourier reconstruction starting from measurements that are not
uniformly spaced and providing a fully 3D reconstruction of the scene reflectivity profile. For a review
of the different focusing methods, refer to Reference [16].

In TomoSAR techniques, the presence of a scatterer at a given range, azimuth, and elevation
position is revealed by a not negligible value of the corresponding 3D reflectivity intensity,
reconstructed using tomographic coherent processing. This value is high if the signal backscattered by
the target is not negligible and is coherent enough over the multiple acquisitions. Then, the intensity of
the 3D focused reflectivity takes into account both the scatterer strength and its coherence. The accuracy
of the elevation estimation is related to the achievable imaging resolution in the elevation direction,
which is given by the Rayleigh resolution [16], and can be expressed as λR0

2ST
, where λ is the operating

wavelength, R0 the distance between the illuminated scene and the reference antenna position, and ST
is the overall perpendicular baselines extension. Resolution can be improved using super-resolution
imaging techniques [17–19] that allow to find scatterers at a distance closer than Rayleigh resolution,
adopting nonlinear processing.

TomoSAR techniques have also been extended to differential tomography, which integrates
the TomoSAR concept with the differential interferometry concept [19]. Differential tomography
allows to estimate, in addition to the elevation, the thermal dilation of the scatterers, producing a 4D
reconstruction, or even the average deformation velocity, producing a 5D reconstruction [15,19–21].

TomoSAR techniques have to face the problem of irregular and sparse sampling of the aperture
synthetized in the elevation direction, as it is generally sampled less densely than required by
Fourier approaches. Then, ambiguities and masking problems due to anomalous side-lobes in the
reconstructed reflectivity profile may arise [17]. This problem, together with the presence of clutter
and noise, produces outliers in the tomographic reconstruction that can be erroneously confused
with the presence of scatterers, giving rise to false alarms. To reduce the number of false alarms,
a generalized likelihood ratio test (GLRT), improving the capability of discriminating real scatterers
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and outliers, has been introduced. On the base of a statistical model, it allows to determine the
presence of scatterers fixing a probability of false alarm (PFA). In References [22–25], different GLRTs,
allowing to discriminate between single and double scatterers in the 3D, 4D, and 5D cases are presented.
In Reference [22], a sequential GLRT is proposed, but it does not exhibit good performance when
trying to super resolve close scatterers. In Reference [23], an alternative implementation of a similar
GLRT approach is analyzed that exhibits super resolution capabilities but at the expense of a high
computational cost. In Reference [24], an approximated version of the GLRT presented in Reference [23]
is proposed that, with a slightly loss in detection performance, achieves super resolution capabilities
with a low computational cost. In Reference [25], it is extended to 5D reconstruction. In Reference [26],
a detection strategy for single and double coherent scatterers, based on a statistical model considering
multiplicative noise, is presented. This model takes into account the statistical distribution of the
scatterers signal phase variations, while additive noise (clutter) is not considered. It has been shown
that the detection performance outperforms a PS approach, but the method has not been compared
with other GLRT approaches using the additive noise model. We adopt the additive noise model,
as done in most tomographic approaches, which allows to consider both Gaussian clutter and thermal
noise, while not including the statistical distribution of additive phase noise on the scatterer response,
which is, incidentally, very difficult to model.

In this paper, the method proposed in Reference [24], denoted as Fast-Sup-GLRT, was used.
The detection test can be derived starting from the discrete TomoSAR model for a fixed range and

azimuth position:
u = Φγ+ w, (3)

where u is an M × 1 (complex valued) observation column vector, γ is the N × 1 (complex valued)
column vector whose elements are the samples of the reflectivity at different elevations, Φ is an M
× N measurement matrix related to the acquisition geometry, and w is an M × 1 column vector
representing noise and clutter. Each m-th row ϕm of matrix Φ is given by vec(Φm3), where vec is
the operator transforming a three-dimensional matrix of size Ns × Nv × Nk in a row vector of size
N = NsNvNk, by loading in the vector all the elements of the matrix scanned in a preassigned order,
and Φm3 is the three-dimensional matrix of size Ns × Nv × Nk, whose element of entries (i,l,n) with
i = 1, . . . , Ns, l = 1, . . . , Nv, n = 1, . . . , Nk, is given by:

{Φm3}i l n =
1√
N

ej( 4π
λR0

sis′m+ 4π
λ vl tm+ 4π

λ knTm), (4)

where we have assumed that the SAR interferometric images of the same scene have been acquired
at different times tm and with different perpendicular baselines s′m and temperatures Tm, and the
triplet (si, vl , kn) represents the discretized values of elevation (RTE), deformation velocity (VELO),
and thermal dilation coefficient (THER), respectively, in each range azimuth pixel (see for details
Reference [25]). We note that with respect to Equation (1), the following expressions hold:

φRTE =
4π

λR0
sis′m; φDispl =

4π

λ
vltm; φTher

4π

λ
knTm. (5)

The detection performed applying a GLRT [27] allows to discriminate between three statistical
hypotheses if we restrict our assumption to the presence of single (H1) and double scatterers (H2) in the
same range–azimuth resolution cell, or the absence of scatterers (only noise, H0). The Fast-Sup-GLRT
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detector can be cast as a binary hierarchical test [24], implemented by sequentially applying the two
statistical tests:

Λ1(u) =
[uHu][

uH

(
I−ΦΩ̂2

(
ΦH

Ω̂2
ΦΩ̂2

)−1
ΦH

Ω̂2

)
u

]
H0

<

>
H1

T1

Λ2(u) =

[
uH

(
I−ΦΩ̂1

(
ΦH

Ω̂1
ΦΩ̂1

)−1
ΦH

Ω̂1

)
u

]
[

uH

(
I−ΦΩ̂2

(
ΦH

Ω̂2
ΦΩ̂2

)−1
ΦH

Ω̂2

)
u

]
H1

<

>
H2

T2

, (6)

where I is the M × M identity matrix, H denotes the Hermitian, ΦΩ̂1
is a column vector of size M × 1

obtained by extracting from Φ the column that minimizes the numerator of Λ2(u), and ΦΩ̂2
is a two

column matrix of size M × 2 obtained adding to the column ΦΩ̂1
a second column, extracted from Φ

in such a way to minimize the denominator of Λ1(u) (and of Λ2(u)). The two thresholds T1, T2 can be
derived using a Monte Carlo simulation and following a constant false alarm rate (CFAR) approach,
consisting of setting the thresholds in such a way to obtain an assigned probabilities of false alarm and
false detection, respectively, PFA = P(H1|H0 ) and PFD = P(H2|H1 ).

In the following, the step-by-step TomoSAR procedure used in this work is reported.

1. The stack of M SAR interferometric images of the same scene were properly registered, with
a sub-pixel accuracy, and preprocessed to remove the interferometric phase corresponding to an
external DEM. Atmospheric phase removal is not considered in this work because the extension
of the study area is limited and its effect is simply compensated by phase calibrating the stack
of images.

2. The two probabilities of false alarm and false detection were assigned, and the thresholds were
derived via Monte Carlo simulations.

3. For each range azimuth cell, ΦΩ̂1
and ΦΩ̂2

were estimated minimizing the terms,[
uH
(

I − ΦΩ̂i

(
ΦH

Ω̂i
ΦΩ̂i

)−1
ΦH

Ω̂i

)
u

]
, i = 1, 2, through i iterative minimizations.

4. For each range–azimuth cell, the two-step GLRT (6) was applied and it was determined which of
the three hypotheses was verified. The estimation of the triplets (si, vl , kn) was derived from the
positions of each detected scatterer. Then, one triplet in case of H1 and two triplets in case of H2

were determined, on the basis of the selected columns of matrix Φ.

4. Results and Discussion

In this Section, the applicability of TomoSAR to Sentinel-1 data is firstly addressed. TomoSAR
techniques for urban applications have already been tested on TerraSAR-X and COSMO-SkyMed
data [16,21,25,28], achieving good results. Sentinel-1 data exhibit quite different features with respect
to TerraSAR-X and COSMO-SkyMed, in terms of spatial resolutions, coverage and phase stability.
Moreover, the Sentinel-1 configuration has small baselines, so that the Rayleigh elevation resolution is
small (about 40 m). Then, a detailed analysis of TomoSAR results on Sentinel-1 data, together with
a comparison with PSI techniques, which have already been tested successfully on Sentinel-1 data,
is required. We limit our analysis to the detection of single and double scatterers, as it is usually
done in urban applications. The occurrence of more than two scatterers can increase when range and
azimuth resolutions decrease, as with Sentinel-1 data, but it also depends on the geometry of the
ground scene and on the elevation resolution, which is small in this case. Another consideration to be
made regards the effect of the reduced range and azimuth resolutions with respect to the TerraSAR-X
and COSMO-SkyMed systems, which produces a decrease of the signal to clutter noise ratio, thus
lowering the expected spatial density of the detected scatterers with respect to the one achieved by the
high-resolution systems.
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As far as the number of single scatterers detected using TomoSAR and PSI is concerned, we expect
to obtain more scatterers in the TomoSAR case, due to the gain of the coherent processing in the
elevation direction, which increases the signal to clutter ratio in the focused 3D domain. In TomoSAR
techniques, in fact, the estimation of the scatterers’ amplitude, height, and deformation velocity was
performed by simultaneously exploiting all the acquisitions, thus allowing an optimal smoothing of
the phase noise and of the additive clutter effect, with a subsequent increase of the estimation accuracy.
A drawback of TomoSAR techniques with respect to PSI techniques is that they suffer the problem of
outliers that can be reduced using statistical techniques based on proper statistical models, which are
not always adherent to real conditions of complex scenarios. Moreover, in TomoSAR techniques, it is
more difficult to introduce contextual spatial information among adjacent range–azimuth pixels.

As far as double scatterer detection is concerned, only TomoSAR techniques allow their
localization in the 3D space and their deformation parameters estimations, provided that their
intensities estimated by fully 3D coherent processing are sufficiently high with respect to the
clutter noise.

Their detection can be compromised not only by the low resolutions in range and azimuth, but
also by the low resolution in elevation, which is limited by the low overall baseline span.

Two test areas were considered, both located in the metropolitan area of Barcelona. In the first
one, the intercomparison of the PSI and TomoSAR results is discussed, while in the second one, the
single and double scatterers from TomoSAR are compared with the PSs from PSI. The test areas were
covered by 61 interferometric wide swath Sentinel-1 images, over the period that goes from 6 March
2015 to 30 May 2017. The perpendicular baseline range is approximately 300 m, while in the observed
period, the range of the average air temperature of the scene is 26 ◦C. In the PSI and TomoSAR
processings, the differential interferograms were derived using a 90-m shuttle radar topography
mission (SRTM) DEM. Over the study areas, this DEM basically describes the ground topography.
By choosing a reference point located on the ground, most of the processed pixels showed RTE values
close to zero, while the pixels corresponding to structures and buildings had high RTE values.

Considering the system parameters, the achieved Rayleigh resolutions were: 41 m for RTE,
1 mm/year for VELO, and 1 mm/◦C for THER. For the PSI processing, the following search steps
were used: 1 m for RTE, 0.5 mm/year for VELO, and 0.0625 mm/◦C for THER. For the Fast-Sup-GLRT
TomoSAR processing, the following search steps were used: 3 m for RTE, 1 mm/year for VELO, and
0.2 mm/◦C for THER.

The first test area covers a part of the Port of Barcelona, see the amplitude image in Figure 1.
The extension of the area is approximately 1.6 by 4.9 km. The spatial density of the scatterers detected
by PSI and the Fast-Sup-GLRT is shown in Figure 2. The number of detected scatterers by the PSI
approach is 8700, while over the same area, the number of scatterers detected by TomoSAR is 33,350.
One may notice a remarkable difference in the measurements’ density: There is a factor 4 between
the two solutions. Similar results are discussed in Reference [29]. This is a direct consequence of
the strategies used in the two data analyses. The PSI results were generated using an amplitude
dispersion threshold of 0.2, followed by a threshold on the temporal coherence of the arcs of 0.7.
For Fast-Sup-GLRT, the thresholds in Equation (6) were computed by Monte Carlo simulation for the
considered system parameters and acquisition configuration and fixing PFD = PFA = 10−5. For instance,
for evaluating T1, the Monte Carlo approach consists of simulating a large number of realizations of
clutter plus noise signals, i.e., the data under hypothesis H0. Then, for a given PFA, the threshold is
evaluated such that Λ1(u) ≥ T1 with a probability equal to the fixed PFA. Choosing PFA = 10−5 implies
that we expect, on the first test area, a maximum number of false alarms equal to 2. A rough criterion
for checking the adequacy of the chosen thresholds is the absence of detected scatterers on the sea area
and the correct height positioning of the detected scatterers. Of course, when the thresholds decrease,
the number of detected scatterers increases, with a possible precision degradation.
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Figure 1. Mean SAR amplitude of the first test area: 401 (range) by 351 (azimuth) pixels, which cover
an extension of approximately 1.6 (range) by 4.9 (azimuth) km.

 

Figure 2. Deformation velocity obtained by PSI (Left) and by TomoSAR (Right).

It is worth mentioning the different computational burden of the two techniques. Considering
the main processing step, i.e., the estimation of the three model parameters for each selected scatterer,
to process the same dataset using equivalent computational resources and the current implementation
of the two techniques, TomoSAR takes approximately 60 times the time required by PSI. For this test
site, the three-parameter PSI estimation takes approximately 40 min.

The intercomparison of the results of the two techniques was computed over the set of scatterers
that is common to both techniques, which includes 8684 points. The statistics of the deformation
velocity intercomparison, i.e., the statistics of the differences of the deformation velocity values, are
shown in Table 1, while the histogram of the velocity differences is shown in Figure 3.

Table 1. Statistics of the results of intercomparison over the first test area.

Parameter Min. Max. Mean St. Dev.

VELO [mm/year] −4.24 5.54 0.01 1.36
RTE [m] −18.06 32.80 0.09 3.25

THER [mm/◦C] −0.310 0.260 −0.005 0.078
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Figure 3. Histogram of the persistent scatterer interferometry (PSI) and TomoSAR velocity differences.

PSI and TomoSAR used the same reference point: The mean of the velocity differences indicates
that there is basically no bias between the two experimental results. The most interesting parameter
is given by the standard deviation of the velocity differences (1.36 mm/year): This indicates the
dispersion of the population of the velocity differences. From this parameter, we can get valuable
information on the standard deviation of the deformation velocity of each technique. For instance,
by assuming the same precision for the two compared techniques and uncorrelated errors between
the same techniques, it is possible to estimate the standard deviation of the deformation velocity of
each technique as 1.36/

√
2 = 0.96 mm/year. The value 1 mm/year is often mentioned in the literature

as the precision of the PSI deformation velocity, e.g., see Reference [30]: In this case study, this value
is confirmed.

The same analysis was carried out for the RTE. Figure 4 shows the RTE maps coming from PSI and
TomoSAR. The main statistics of the differences are summarized in Table 1, while the histogram of the
differences is shown in Figure 5. The mean difference is close to zero: There is a negligible bias between
the two datasets. An interesting experimental parameter is given by the standard deviation of the RTE
differences (3.25 m). Like in the case of the velocity, we can derive from this parameter the standard
deviation of the RTE of each technique (PSI and TomoSAR): 2.3 m. This represents an interesting
experimental result. In similar intercomparison exercises run using European Remote Sensing (ERS)
and Envisat data, the same parameter was estimated to range between 0.9 and 2 m [30]. From this case
study, we can conclude that there is a relatively small impact of the reduced orbital tube of Sentinel-1
with respect to ERS and Envisat.

Finally, the analysis was focused on the THER parameter. Figure 6 shows the THER maps coming
from PSI and TomoSAR; the statistics of the intercomparison are shown in Table 1, while the histogram
of the THER differences is shown in Figure 7. In this case, the mean difference is −0.005 mm/◦C: This
is a negligible bias, thanks to the fact that the datasets use the same reference point. The standard
deviation of the THER difference (0.078 mm/◦C) can be used to estimate the standard deviation of
the THER estimated by each technique, obtaining the value of 0.055 mm/◦C. This is an interesting
experimental result, which is quite close to the value (0.04 mm/◦C) derived using X-band data, which
is described in Reference [8].

In this first case study, very few double scatterers were found using the TomoSAR processing. This
is due to the relatively low height of the buildings and structures of this area: There are very limited
layover areas, where the double scatterers are usually found. For this reason, we decided to include
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a second study area, which includes high-rise buildings. In this study area, we used the same SAR
dataset of the first case study. The experiment focused on a small area (see Figure 8), where TomoSAR
found 427 single scatterers (red) and 178 double scatterers (blue), while PSI detected 172 single PSs.
The common single scatterers are 166, while 6 of the 178 double scatterers coincide with single PSs.
In Figure 8, the location of doubles is explained by the presence of layover due to the Agbar tower
(142 m) and to the neighboring building. Many points are on the ground and on the façade of Agbar
tower and of the neighboring building. The majority of the 178 double scatterers (172) correspond
to pixels that were discarded during the PSI pixel selection. Regarding the 6 PSs that are detected as
double scatterers by TomoSAR, most probably, one of the two scatterers dominates with respect to the
other one. For this reason, such scatterers are correctly selected by PSI, but their parameter estimates
are slightly different from the ones provided by TomoSAR. Figure 9 shows the range and azimuth
direction and the layover area. As an example, Figure 10 shows the localization of one of the six PS
detected as a double scatterer by TomoSAR: PSI identifies only one scatterer with a height of 61 m,
while TomoSAR identifies two scatterers with heights of 53 m and 38 m, respectively.

 

Figure 4. Residual topographic error (RTE) maps by PSI (Left) and by TomoSAR (Right).

 

Figure 5. Histogram of the PSI and TomoSAR RTE differences.
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Figure 6. Thermal expansion parameter (THER) maps by PSI (Left) and by TomoSAR (Right).

 

Figure 7. Histogram of the PSI and TomoSAR THER differences.

  

Figure 8. 3D view of the second test area with superimposed the TomoSAR height map on the (left)
image; single (red) and double (blue) scatterers on the (right) image.
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Figure 9. 3D view of the second test area with the SAR image superimposed.

 

Figure 10. Difference in height estimate between TomoSAR and PSI in a common point.
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Summarizing, TomoSAR provides a larger set of single scatterers, which essentially includes all
the scatterers detected by PSI, and additionally detects a significant number of double scatterers, which
are mostly discarded by PSI. Then, TomoSAR allows the increase of the deformation measurement
density, complementing PSI results and providing an added value.

5. Conclusions

In this paper, the TomoSAR applicability to Sentinel-1 data has been shown. An intercomparison
of PSI and TomoSAR applied to Sentinel-1 data in order to monitor an urban area was carried out.
The two techniques allow to estimate the following parameters over single and multiple scatterers:
Height (RTE),linear deformation velocity (VELO), and the thermal expansion parameter (THER).
Even if Sentinel-1 data have not been explicitly designed for tomography, in the two analyzed areas,
the TomoSAR analysis has yielded good results, especially in terms of the high density of measurement
points: The point density of TomoSAR is four times the density of the PSI results. The difference in the
number of detected scatterers is mainly due to the coherent processing in the elevation direction of
TomoSAR. By contrast, PSI processing is much less time consuming: For the same test area and similar
computational resources, TomoSAR took approximately 60 times the time required by PSI.

The key experimental part of this work was devoted to the intercomparison of the PSI and
TomoSAR results over two test areas. The most interesting results concern the standard deviations
of the differences of the three main parameters (VELO, RTE, and THER), from which the standard
deviation of each technique can be estimated. In terms of VELO, this corresponds to 0.96 mm/year
for both PSI and TomoSAR. This is a value very close to 1 mm/year, which is often mentioned in the
literature as the PSI precision of the deformation velocity. In terms of RTE, the standard deviation
of the RTE of each technique (PSI and TomoSAR) is 2.3 m. This is an interesting experimental result,
which is not so far from the values obtained in previous studies for ERS and Envisat (ranging between
0.9 and 2 m) [30]. This result indicates that there is a relatively small impact of the reduced orbital tube
of Sentinel-1 with respect to ERS and Envisat. Finally, in terms of THER, the standard deviation of
each technique is 0.055 mm/◦C: This result is quite close to the value (0.04 mm/◦C) derived using
X-band data in a previous study [8].

If we consider the processing time, the PSI remains the reference technique, while TomoSAR can
be used to complement the measurements done by PSI. This has been evidenced in the second case
study of this work, considering the TomoSAR results in a layover area. Most of the detected double
scatterers correspond to pixels that were discarded during the PSI pixel selection, which are useful to
further increase the PSI deformation measurement density, providing an added value. However, if the
processing time is not a major concern, TomoSAR can directly replace PSI.
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Abstract: In this paper, we investigate the potential of polarimetric Synthetic Aperture Radar
(SAR) tomography (Pol-TomoSAR) in urban applications. TomoSAR exploits the amplitude and
phase of the received data and offers the possibility to resolve multiple scatters lying in the same
range–azimuth resolution cell. In urban environments, this issue is very important since layover
causes multiple coherent scatterers to be mapped in the same range–azimuth image pixel. To achieve
reliable and accurate results, TomoSAR requires a large number of multi-baseline acquisitions which,
for satellite-borne SAR systems, are collected with long time intervals. Then, accurate tomographic
reconstructions would require multiple scatterers to remain stable between all the acquisitions. In this
paper, an extension of a generalized likelihood ratio test (GLRT)-based tomographic approach,
denoted as Fast-Sup-GLRT, to the polarimetric data case is introduced, with the purpose of
investigating if, in urban applications, the use of polarimetric channels allows for reduction of
the number of baselines required to achieve a given scatterer’s detection performance. The results
presented show that the use of dual polarization data allows the proposed detector to work in an
equivalent or better way than use of a double number of independent single polarization channels.

Keywords: synthetic aperture radar; tomography; polarimetry; radar detection; generalized
likelihood ratio test; sparse signals

1. Introduction

Over the past few years, Synthetic Aperture Radar (SAR) sensors have rapidly advanced,
offering multi-channel operation (polarimetry, multifrequency), improved range and azimuth
resolution, and frequent revisiting of the same area (time series). A new class of SAR satellites,
such as TerraSAR-X and TanDEM-X (X-band), COSMO-SkyMed (X-band), as well as Radarsat-2
(C-band), are providing images with resolution in the meter regime, and dual or full polarimetric
SAR acquisition modes. In particular, the future second generation of COSMO-SkyMed will have full
polarimetric SAR acquisition modes [1,2].

In polarimetric SAR (PolSAR) systems, the antennas for transmitting and receiving
electromagnetic waves are configured in different polarization states. Thus, the scattering properties
of the observed targets can be revealed in the alternative polarimetric combinations, providing more
information compared to single polarization systems [3]. Of course, the price to pay for having
enhanced polarization characteristics is a more complex sensor design and the demand for more image
storage space.

PolSAR has many applications in many fields, including agricultural areas classification,
oceanography (surface currents and wind field retrieval), forest monitoring and classification,
disaster monitoring, and target recognition/classification [3]. PolSAR decomposition methods
exploiting fully polarimetric data have been successfully applied to map vegetated areas by separating

Remote Sens. 2019, 11, 132; doi:10.3390/rs11020132 www.mdpi.com/journal/remotesensing285



Remote Sens. 2019, 11, 132

single bounce, double bounce, and volume scattering mechanisms [3]. For urban areas, the polarimetric
scattering mechanisms are more complicated with respect to natural areas, due to the high variability of
materials, and forms and sizes of the objects laying in the observed ground scene. Different approaches
using fully polarimetric SAR data have been recently proposed [4]. In [4] the double bounce scattering
form, the dihedral structure formed by the wall and the ground of a building, or the single bounce
scattering from the roof or the wall, is considered, for a deterministic extraction of urban areas.
However, the rotated dihedral scattering of a building, with a large orientation angle with respect to
the radar look direction, results in a strong cross polarization component that can be misdetected as
vegetation volume scattering [5].

An alternative approach for urban area monitoring is SAR tomography (TomoSAR). TomoSAR [6]
extends the conventional two-dimensional SAR imaging principle to three dimensions by forming
an additional synthetic aperture in elevation, using a stack of multi-baseline interferometric images.
A fully 3-D scene reflectivity profile along azimuth, range, and elevation is provided. The use of
TomoSAR techniques allows the identification of multiple scatterers in the same range–azimuth
resolution cell [7]. Tomographic processing can be performed by Fourier-based techniques,
beamforming, or spectral methods, such as Capon, MUSIC [8], and the more recent CS (compressive
sensing) [9–11]. In CS-based approaches, TomoSAR is performed as the recovering of a sparse signal
by a convex l1 norm minimization [12] while, in [9,10], the CS approach can improve resolution in
elevation and, in [11], the proposed method achieves super-resolution reconstruction, both for range
and elevation.

Regardless of whichever imaging technique is adopted for the elevation reflectivity profile
focusing, the discrimination between reliable scatterers and false alarms is not an easy task.
Since tomographic synthetic aperture in the elevation direction is sampled sparsely, and not regularly
and densely, as requested by a Fourier approach, ambiguities and masking problems from anomalous
sidelobes may arise. This event, in addition to the presence of noise, produces false alarms. In [13–17],
this problem has been addressed on the basis of a generalized likelihood ratio test (GLRT), that allows
evaluation of the detection performance in terms of probability of detection achievable with a fixed
probability of false alarm. The authors proposed a GLRT detector [14–16] that searches for the signal
support (i.e., the positions of the significant samples in the unknown vector) that best matches the data.
This statistical test is based on a non-linear maximization for detecting single and double scatterers
with an assigned probability of false alarm. The elevation of the detected scatterers is then estimated
on the basis of their position in the unknown vector.

A problem to be considered is that the performance of the GLRT detector becomes poor when
the number of acquisitions or the scatterer coherence decrease [15]. A possible way for increasing the
number of acquisition, while keeping the scatterer coherence high, is to exploit polarimetric systems.

Many applications of polarimetric TomoSAR (Pol-TomoSAR) are related to forest vertical
structure recovering [18–21]. The vertical position of the scatterers in a forest, as well as a physical
interpretation of the profile, has been shown to be more feasible by coupling polarimetric and
multi-baseline information.

Recently, in polarimetric SAR tomography over urban areas [22], different spectral estimation
techniques have been extended to the case of multi-pass SAR data acquired with different polarization
channels, and a building layover has been studied to compare single and full polarization beamforming,
Capon, and MUSIC. There are two drawbacks of these techniques: one is the use of a boxcar filter for
the covariance matrix estimation, that reduces resolution in range and azimuth; the second is related to
the absence of an approach for identifying multiple scatterers, which are recovered by visual inspection
of the reconstructed 3-D reflectivity profile. In [23], a CS approach for polarimetric SAR tomography is
proposed. In particular, it exploits the inter-signal structural correlations between neighboring pixels,
as well as between polarimetric channels, applying distributed compressed sensing (DCS) theory.
In this approach, the elimination of the artifacts and CS algorithm instability can be an issue.
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The aim of this paper is to exploit the information given by a polarimetric SAR system, in order to
detect reliable single and double scatterers in urban areas by using a reduced number of baselines with
respect to the single polarization case. In particular, we will extend the signal model defined in [15],
in order to take into account the different polarization channels. Following the approach presented
in [22,23], we can suppose that all unknown reflectivity signals throughout polarimetric channels share,
approximately, the same sparse support in the space domain, but have different nonzero coefficients.
The proposed approach will be validated on dual polarimetric SAR real data.

This paper is organized as follows. Section 2 presents the signal model. In Section 3,
the Pol-TomoSAR approach is presented. The results obtained on real data are discussed in Section 4.
Conclusions follow in Section 5.

2. Signal Model

In Figure 1, the multi-pass SAR geometry in the range–elevation plane in a typical urban
environment is shown. The three highlighted contributions of the backscattered signal are at the
same distance from the platform, and will interfere in the same range–azimuth cell (azimuth axis is
orthogonal to the plane). The three contributions come from the ground, the façade, and the roof of the
building. In this particular case, the backscattered reflectivity elevation profile, γ, will exhibit only
three samples different from zero. Moreover, γ can be assumed to be sparse with, at most, Kmax samples
different from zero, typically with Kmax = 2. In order to estimate the reflectivity function γ, a stack of M
range–azimuth-focused images is collected. The single channel k-th image, acquired along the orbit
with the orthogonal baseline S′

k (see Figure 1), in a fixed pixel, is given by the integral superposition
of the contributions of all the scatterers lying in the corresponding range–azimuth resolution cell,
and located at different elevation coordinates s. A discrete estimate of γ can be found by ideally
discretizing the integral operator.

Figure 1. Multi-pass SAR geometry in the range–elevation plane (case M = 5).

We can denote, with γ, the N × 1 column vector whose elements are the samples of the reflectivity
at a fixed range and azimuth position, so the sampled received signal is related to γ by

u = Φγ+ w, (1)

where u is an M × 1 observations column vector, w is an M × 1 column vector representing noise and
clutter, and Φ is an M × N measurement matrix related to the acquisition geometry, whose generic
element with index kl is given by

{Φ}kl = ej 4π
λR0

S′ksl
, (2)
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with λ the operating wavelength, and R0 the distance between the center of the scene and a reference
antenna position.

We note that in the signal model (1), we have assumed the absence of any phase miscalibration,
the compensation of atmospheric delay, and the absence of temporal and thermal deformations.

When considering the fully polarimetric case, the received signal can be modeled as 3M × 1

observations column vector u
′
=
[

uHH uHV uVV

]T
, and one M × 1 vector for each polarimetric

channel (HH, HV, VV). We can also assume that γ′ is a 3N × 1 reflectivity column vector

γ
′
=
[
γHH γHV γVV

]T
and that, throughout, the three polarimetric channels share the same

sparse support, as we are expecting backscatter from the same structure within a range–azimuth
cell [22,23]. Under the above assumptions, we can extend model (1) to a fully polarimetric case:

u
′
= Φ

′
γ

′
+ w

′
, (3)

where w’ is an 3M × 1 column vector representing noise and clutter, and Φ′ is a 3M × 3N block
diagonal measurement matrix related to the acquisition geometry, and given by

Φ
′
=

⎡⎢⎣ Φ 0 0
0 Φ 0
0 0 Φ

⎤⎥⎦, (4)

where 0 is an all-zero M × N matrix.
Note that model (3) can be easily particularized to the dual polarization case by considering only

the two available channels in the definition of the vectors u′ and γ′, and only two of the three blocks
Φ on the diagonal of Φ′, defined by (4).

3. Pol-TomoSAR Technique

TomoSAR techniques aims at the estimation of γ
′

by inverting the model (3). The inversion of
(3) is ill-posed, since the M acquisitions are not uniformly spaced and usually M < qN, with q being
the number of polarization channels. Then, false alarms can appear in the reconstructed profiles,
heavily affecting the accuracy of the results. The selection of the most reliable scatterers in each
range–azimuth cell can be set as a statistical detection problem assuming, as a selection criterion,
the probability of false alarm (PFA) is achievable using a proper statistical test.

In this paper, the polarimetric reflectivity profile γ
′

is estimated using a GLRT method [24],
denoted as Fast-Sup-GLRT [15], which is an approximated and faster version of the GLRT proposed
in [14]. Assuming that the maximum number of scatterers in each resolution cell is Kmax, the vector γ

′

can be assumed to be sparse with, at most, qKmax significant samples, and the detection problem can
be formulated as in [14,15], in the terms of the following Kmax + 1 statistical hypothesis:

Hi: presence of i scatterers in each channel, with i = 0, . . . , Kmax,

assuming that urban environment Kmax is typically set as equal to two.
The noise vector w can be assumed as a circularly symmetric complex Gaussian vector.

Consequently, assuming deterministic scatterers, u is a circularly symmetric Gaussian random vector.
Exploiting these statistical assumptions, the Fast-Sup-GLRT detector [15] can be extended to the
polarimetric model (3). Then, at each step i, the following binary test is applied:

Λi
′
(

u
′)

=

[
u

′ H
Π⊥̂

Ωi−1
u

′][
u

′ H
Π⊥̂

ΩKmax
u

′
]

Hi−1

<

>
HK≥i

T′
i, (5)
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where Ω̂i−1 = {l1, . . . li−1} is the estimated support of cardinality i − 1 of each of
the polarimetric vectors γab, with ab ∈ {HH, HV, VV}, supposed to be (i − 1)-sparse,

Π⊥̂
Ωi−1

= I − Φ′
Ω̂i−1

(
Φ′H

Ω̂i−1
Φ′

Ω̂i−1

)−1
Φ′H

Ω̂i−1
, with Φ′

Ω̂i−1
the matrix obtained by substituting in the

definition (4) the matrix ΦΩ̂i−1
in the place of Φ, where ΦΩ̂i−1

is obtained from Φ by extracting

the i – 1 columns of index Ω̂i−1. Moreover, Ω̂Kmax is the estimated support of cardinality Kmax of

γ′
ab. Each support is estimated by sequentially minimizing the term

[
u

′ H
Π⊥

Ωk
u

′]
over k supports of

cardinality one [15]. All thresholds can be numerically evaluated by means of Monte Carlo simulations.
Assuming Kmax = 2, the two thresholds will be evaluated in such a way to obtain the assigned
probabilities of false alarm and false detection, respectively, PFA = P(H1|H0 ) and PFD = P(H2|H1 ).

4. Results and Discussion

In this section, results of the Fast-Sup-GLRT detector (5), that takes into account polarization
channels on real data, are presented and compared with the case of only one channel. In processing
real data, we limit the search to two targets (Kmax = 2) per resolution cell.

We consider a total of 39 Spotlight TerraSAR-X (TSX) HH/VV images (system parameters in
Table 1) and we will conduct the experiments using, in one case, all the available images in one channel
(HH), and, in the other case, only a subset of twenty images in both channels (HH, VV). The resolution
is in the range of about 1 m, in azimuth, 2.6 m. Considering that the overall perpendicular baseline
Bp is about 800 m, the Rayleigh resolution in elevation is 14 m. The overall temporal baseline (Bt)
span is about 2.3 years. The experiment consists of detecting single and double scatterers using the
two datasets. The comparison between the two cases is fair, since it is done with an equal number
of images.

Table 1. TSX system parameters.

System Parameters

Wavelength 0.031 m
View angle 28◦

Range distance 579 Km
Chirp bandwidth 120 MHz

Relative orbit 48
Orbit direction descending
Look direction right

Polarization HH, VV
Perpendicular baselines extent 800 m

Rayleigh resolution in elevation 14 m

We aim to show that the dual polarization case can outperform the single polarization case
that can count on a double number of perpendicular baselines. The diversity in polarization can
compensate the loss in baseline diversity. We will compare, also, the results with the polarimetric
beamforming and Capon approaches, as presented in [22], showing that, in order to detect multiple
scatterers, a criterion for discriminating reliable scatterers from spurious sidelobes is needed.

The distribution of the 39 perpendicular baselines, considered in the single polarization case
vs. the temporal baselines, is reported in Figure 2a, while the distribution of the 20 perpendicular
baselines, considered in the dual polarization case vs. the temporal baselines, is reported in Figure 2b.
The twenty baselines have been selected in such a way to refer to comparable baseline configurations.
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(a) 

(b) 

Figure 2. Distribution of the perpendicular baselines vs. the temporal baselines, in (a) the 39 baselines
of the single polarization case, in (b) the 20 baselines of the dual polarization case.

A first constraint is the maintenance of the overall perpendicular baseline span, since its value
determines the achievable height resolution. This constraint is easily satisfied by selecting the two
acquisitions with the minimum (negative) baseline and the maximum (positive) baseline. For the
selection of other baselines, in the absence of other a priori information, we selected a subset in such
a way as to have a distribution of spatial and temporal baselines similar to that considered in the
39-baseline single channel case. In Figure 3, we report the normalized histogram for the spatial (a)
and temporal (b) baseline distribution (in red, the 20-baseline case and, in green, the 39-baseline case).
This selection criterion should guarantee having approximately the same average spatial and temporal
decorrelation in the 20- and 39-baseline datasets.

In Figure 4, the intensity HH SAR image of the test area is shown. It is a small area near Toulouse,
France. Two buildings are present, and both are commercial malls, with the same height of about
10–13 m. GLRT [15] has been applied to the channel HH, considering M = 39 baselines. The thresholds
have been evaluated, setting PFA = PFD = 10−4. The Rayleigh resolution in elevation is 14 m and
the considered discretization step is 2 m. Since the buildings in the SAR image are not tall, we do
not expect many double scatterers. There are 1328 detected single scatterers and only 2 double
scatterers. The detected single and double scatterers are reported in red and blue, respectively, on the
optical 3-D Google Earth image of the test area, in Figure 5a. The blue points are four, since for each
double, the corresponding couple of points is reported at the estimated height in the 3-D Google
Earth image. We compare these results with the case of using only 20 images but both channels HH
and VV, and assuming again PFA = 10−4. In Figure 5b, the GLRT (5) has been applied considering
M = 20 baselines, and the detected single scatterers are reported in red while the double scatterers are
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in blue, on the optical 3-D Google Earth image. There are 1733 singles, while the number of double
scatterers is 13.

 
(a) 

 
(b) 

Figure 3. Normalized histogram of the perpendicular baseline distribution (a) and of the temporal
baseline distribution (b); in green, the single polarization case and, in red, the dual polarization case.

Figure 4. Intensity HH image of the test area near Toulouse, France (copyright DLR 2013–2015).
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(a) (b) 

Figure 5. Targets detected by Fast-Sup-GLRT and reported on the optical image (single scatterers in
red, double scatterers in blue), (a) single polarization, (b) dual polarization.

We observe a sensible increment of the total number of detected scatterers, which means that the
diversity in polarization compensated for the diversity in baselines. In both cases, single and dual
polarization, the GRLT approach is able to correctly locate the scatterers, which are mostly on the roof
of the buildings; the double scatterers, where present, are coming from the interfering backscattering
mechanism of ground and roof or façade and roof. In the single polarization case, very few double
scatterers have been detected while, in the dual polarization case, we were able to identify, better,
the double backscattering mechanism, even if we used fewer orthogonal baselines.

In order to find a justification as to why the single polarization approach detected less single and
double scatterers, we computed the absolute values of the interferometric coherence and averaged it
over all the baselines and over all the polarimetric channels. The images of these average coherence
values are shown in Figure 6. We observe that, as expected, the average coherence assumes, in most
of the pixels, higher values when using polarimetric data, so that a better detection performance can
be achieved.

  
(a) (b) 

Figure 6. Average coherence (a) single polarization, (b) dual polarization.

We focus now on the discussion of the results obtained in the dual polarization case. We consider
three range lines corresponding to three fixed azimuth coordinates (A, B, and C, in red in Figure 7a),
crossing the left side building and localized in an area where several double scatterers (in blue)
were detected.

In Figure 7b,c, the scene is reported on the optical image and described by a schematic geometrical
diagram, respectively. The double scatterers are reported with the corresponding heights and for the
three lines, respectively A (a), B (b), C (c), in Figure 8. In the diagram in Figure 7c, we reported the
double scatterers identified in the range line C with the same color used in Figure 8c. The green markers
indicate the roofs of the petrol pump (estimated height ẑ is 4.25 m) and of the building (ẑ = 12.13 m),
while the ground has not been detected. The red markers indicate the ground (ẑ = −0.99 m) and the
roof of the building (ẑ = 13.88), while the façade of the building has not been detected. Finally, the blue
markers indicate the facade of the building (ẑ = 6 m) and the roof (ẑ = 13 m), while the ground has not
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been detected. We note that due to the presence of the petrol pump and the building layover effect,
the true scatterers could be three in the three considered cells but, having fixed Kmax = 2, we found the
two dominant scatterers.

 
(a) 

 
(b) 

(c) 

Figure 7. (a) Intensity HH image of the test area near Toulouse, with three range lines highlighted
in red (A, B, C), (b) range line C reported on the optical image, (c) schematic geometrical diagram of
the scene.

   
(a) (b) (c) 

Figure 8. The double scatterers detected by Fast-Sup-GLRT in the dual polarization case, and their
estimated heights, along the three range lines A (a), B (b), C (c).

We compare now the polarimetric Fast-Sup-GLRT with the polarimetric beamforming and Capon
approaches, proposed in [22]. Firstly, we consider the reflectivity profiles obtained in the three pixels
of range line C where double scatterers have been detected. In Figure 9, the beamforming and Capon
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reconstructed spectra are reported, respectively, in blue and red. For the Fast-Sup-GLRT, we report,
in green, the two estimated samples of the reflectivity profiles assumed to be 2-sparse. We note that
the positions of the scatterers identified by the Fast-Sup-GLRT (in green) are very close to the first two
peaks of Capon reconstruction in all three cases. In general, the beamforming lobes are broader than
the Capon lobes, as expected, and the accuracy in the localization of the scatterers is worse [22].

 
(a) 

 
(b) 

 
(c) 

Figure 9. Reflectivity profile obtained with beamforming (blue), Capon (red), Fast-Sup-GLRT (green),
in correspondence of the three double scatterers in line C, respectively in (a–c).

We compare also the tomographic slices obtained using polarimetric Fast-Sup-GLRT with the
ones obtained applying the polarimetric beamforming and Capon approaches proposed in [22].
For the polarimetric beamforming and Capon approaches, in absence of a quality criterion, we report,
in Figure 10, the values of the first two peaks (blue and red points) of the corresponding spectrum in
all the points, without applying any threshold. For Fast-Sup-GLRT, we report the reflectivity values
evaluated for the single and double scatterers when they have been detected. Double scatterers are
shown with a blue circle. For each line, it is possible to see that, for Fast-Sup-GLRT (Figure 10c,f,i),
the reconstruction is clear, since it is easy to identify the geometric profile of the building and the
scattering contributions from ground and roof, and from façade and roof.
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(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 10. Tomographic slices obtained with polarimetric beamforming (a,d,g), Capon (b,e,h) and
Fast-Sup-GLRT (c,f,i) respectively, from top to down, for line A, B, and C. Blue circles indicate the
double scatterers for the Fast-Sup-GLRT, and red and blue points respectively indicate the first and
second peaks of the beamforming and Capon spectra.
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(g) 

(h) 

(i) 

Figure 10. Cont.

On the contrary, the tomographic reconstructions obtained with the polarimetric beamforming
(Figure 10a,d,g) and with the Capon approach (Figure 10b,e,h) are difficult to interpret and appear
very noisy. Around 60 m in range, the imaging of the roof of the building is quite visible in all the
reconstructions. The problem is that too many peaks are visible, and the corresponding heights cannot
be associated with any structure. The presence of these peaks can be explained by the use of the boxcar
filter for the covariance matrix estimation, and by the sidelobe effects, due to not uniformly spaced
acquisitions. In particular, double backscattering cannot be compressed in one single range pixel,
but stretches over several samples, due to spatial averaging, as also reported in [22].

5. Conclusions

In this paper, we have extended Fast-Sup-GLRT tomographic processing to the polarimetric case,
and validated it on spotlight TSX real data on urban areas. In particular, we have shown that the
dual polarization (HH + VV) case can outperform the single polarization case (HH), keeping the
number of images constant and considering, in the polarimetric case, a lower number of baselines.
The dual polarization approach gains with respect to the single polarization one, since the effect
of reduced baseline diversity can be compensated by polarization diversity. For each baseline,
we can count on two images acquired with two different polarizations at the same time, and then,
in absence of temporal changes on the ground. The proposed approach has been compared with
the polarimetric beamforming and Capon approaches, showing that, without exploiting a proper
selection criterion of the spectra peaks, the tomographic slices are not clearly interpretable. Focusing on
a single pixel where two dominant scatterers are identified by Fast-Sup-GLRT, we have found quite
good correspondence between the localizations of the two scatterers by Fast-Sup-GLRT and Capon
approaches. The polarimetric beamforming method is less accurate because the spectrum exhibits
broader lobes.
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