20 research outputs found

    Readout technologies for directional WIMP Dark Matter detection

    Get PDF
    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies

    Readout technologies for directional WIMP Dark Matter detection

    Get PDF
    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies

    Readout technologies for directional WIMP Dark Matter detection

    Get PDF
    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies

    Readout technologies for directional WIMP Dark Matter detection

    Get PDF
    The measurement of the direction of WIMP-induced nuclear recoils is a compelling but technologically challenging strategy to provide an unambiguous signature of the detection of Galactic dark matter. Most directional detectors aim to reconstruct the dark-matter-induced nuclear recoil tracks, either in gas or solid targets. The main challenge with directional detection is the need for high spatial resolution over large volumes, which puts strong requirements on the readout technologies. In this paper we review the various detector readout technologies used by directional detectors. In particular, we summarize the challenges, advantages and drawbacks of each approach, and discuss future prospects for these technologies

    Custom VLSI circuits for high energy physics

    Full text link

    Proceedings of the 3rd World Summit on Exploring the Dark Side of the Universe (EDSU2020): March 9–13, 2020, Guadeloupe Islands

    Get PDF
    The 3rd World Summit on Exploring the Dark Side of the Universe (EDSU2020) (https://indico.cern.ch/event/801461/overview) took place from March 9 to 13 in the Guadeloupe Islands, a picturesque French archipelago in the Caribbean. This was the 3rd meeting in this series of workshops, with previous editions held in the Galapagos Islands and Guadeloupe. The workshop was attended by 89 participants from 27 countries, including a large number of students. During the entire workshop, more than 60 talks were presented and many discussion sessions were held.These Proceedings contain research presented at the 3rd World Summit on Exploring the Dark Side of the Universe (EDSU2020), one of the major venues of interaction between cosmologists and particle physicists. Topics include Cosmological Microwave Background, Large Scale Structure, Inflation and Early Universe, Particle Astrophysics, Dark Matter and Dark Energy, and Particle Physics

    Detector Improvements and Optimization to Advance Gravitational-wave Astronomy

    Get PDF
    The thesis covers a range of topics relevant to the current and future gravitational-wave facilities. After the last science observing run, O3, that ended in March 2020, the aLIGO and VIRGO gravitational-wave detectors are undergoing upgrades to improve their sensitivity. My thesis focuses on the work done at the LIGO Hanford Observatory to facilitate these upgrade activities. I worked to develop two novel technologies with applications to gravitational-wave detectors. First, I developed a high-bandwidth, low-noise, flexure-based piezo-deformable mirror for active mode-matching. Mode-matching losses limit improvements from squeezing as they distort the ground state of the squeezed beam. For broadband sensitivity improvements from frequency-dependent squeezing, it is critical to ensure low mode-mismatch losses. These piezo-deformable mirrors are being installed at the aLIGO facilities. Second, I worked to develop and test a high-resolution wavefront sensor that employs a time-of-flight sensor. By achieving phase-locking between the demodulation signal for the time-of-flight sensor and the incident modulated laser beam, this camera is capable of sensing higher-order mode distortions of the incident beam. Cosmic Explorer is a proposed next-generation gravitational-wave observatory in the United States that is planned to be operational by the mid-2030s. Cosmic Explorer along with Einstein Telescope will form a network of next-generation gravitational-wave detectors. I propose the science-goal-focused tunable design of the Cosmic Explorer detectors that allow for the possibility to tune with sensitivity at low, mid, and high frequencies. These tuning options give Cosmic Explorer the flexibility to target a diverse set of science goals with the same detector infrastructure. The technological challenges to achieving these tunable configurations are presented. I find that a 40 km Cosmic Explorer detector outperforms a 20 km in all key science goals other than access to post-merger physics. This suggests that Cosmic Explorer should include at least one 40 km facility. I also explore the detection prospects of core-collapse supernovae with the third-generation facilities -- Cosmic Explorer and Einstein Telescope. I find that the weak gravitational-wave signature from core-collapse supernovae limits the likely sources within our galaxy. This corresponds to a low event rate of two per century

    Relativistically intense laser-microplasma interactions

    Get PDF

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Advances in Solid State Circuit Technologies

    Get PDF
    This book brings together contributions from experts in the fields to describe the current status of important topics in solid-state circuit technologies. It consists of 20 chapters which are grouped under the following categories: general information, circuits and devices, materials, and characterization techniques. These chapters have been written by renowned experts in the respective fields making this book valuable to the integrated circuits and materials science communities. It is intended for a diverse readership including electrical engineers and material scientists in the industry and academic institutions. Readers will be able to familiarize themselves with the latest technologies in the various fields
    corecore