2,338 research outputs found

    Sticky stuff : redefining bedform prediction in modern and ancient environments

    Get PDF
    This work was funded by the UK Natural Environment Research Council (NERC) under the COHBED project (NE/1027223/1). Paterson was funded by the Marine Alliance for Science and Technology for Scotland (MASTS).The dimensions and dynamics of subaqueous bedforms are well known for cohesionless sediments. However, the effect of physical cohesion imparted by cohesive clay within mixed sand-mud substrates has not been examined, despite its recognized influence on sediment stability. Here we present a series of controlled laboratory experiments to establish the influence of substrate clay content on subaqueous bedform dynamics within mixtures of sand and clay exposed to unidirectional flow. The results show that bedform dimensions and steepness decrease linearly with clay content, and comparison with existing predictors of bedform dimensions, established within cohesionless sediments, reveals significant over-prediction of bedform size for all but the lowermost clay contents examined. The profound effect substrate clay content has on bedform dimensions has a number of important implications for interpretation in a range of modern and ancient environments, including reduced roughness and bedform heights in estuarine systems and the often cited lack of large dune cross-sets in turbidites. The results therefore offer a step change in our understanding of bedform formation and dynamics in these, and many other, sedimentary environments.Publisher PDFPeer reviewe

    Sedimentological signatures of lacustrine tsunamis

    Get PDF
    Lake tsunamis are a natural hazard with high magnitudes and low recurrence rates. Because of their infrequent occurrence in space and time, little is known about the associated hazard and the risk to the vulnerable coastal areas that are often heavily populated. However, historical reports and recent scientific achievements show that certain Swiss lakes may have been repeatedly affected by tsunamis during the last 15’000 years. This makes Switzerland an ideal case-study area to conduct fundamental research in the field of tsunamis and to gain new knowledge applicable to other lacustrine areas, as well as to the marine environment. Lacustrine tsunamis can be generated by subaqueous and subaerial mass movements, volcanic eruptions, fault displacements within large lakes, and air-pressure disturbances. Mass movements, triggered by strong earthquakes, are considered one of the main causes. However, spontaneous delta collapses and subaerial impact, often related to artificial rock-mining activities, also have induced tsunami events on Swiss lake basins. The geological record of mass-movement deposits in the seismically imaged stratigraphy of deep lake basins provides evidence for the occurrence of prehistoric lake tsunamis. However, because the dimensions (e.g., spatial distribution, volume, etc.) and dynamics (e.g., single-stage or multi-stage failures, initial acceleration, velocity, cohesion etc.) of mass movements strongly influence tsunami generation, which is difficult to estimate, conclusive evidence for prehistoric lake tsunamis is lacking. Therefore, the geological record in the on- and offshore coastal environment may provide further evidence on past lacustrine tsunami events. These sedimentological signatures are examined in this thesis. Recent marine (2018 Sulawesi earthquake and tsunami, Indonesia) and lacustrine (2007 landslide-generated tsunami in Chehalis Lake, Canada) tsunami events indicate that large amounts of sediment are mobilized during tsunami inundation and transported both landward and seaward with backwash currents. To date, a wide variety of sedimentological bed forms and characteristic depositional signatures have been described from various coastal environments. Nevertheless, hardly any tsunami deposits have been described from the on- and near-offshore of lakes, and none were investigated in and around Swiss lakes until today. Yet, historical tsunami hazard descriptions from Swiss lakes provide documentation of inundation distances and run-up, and in specific cases, a limited description of the associated deposits left behind. These descriptions were used to characterize and locate tsunami deposits from lacustrine environments that were compared with descriptions of their marine counterparts. In summary, a combination of geological field- and laboratory analysis, numerical tsunami propagation simulation, and historical documents is used to identify and characterize lacustrine tsunami deposits in several Swiss lakes. At field sites where positive evidence for tsunami deposits was observed, sedimentological characteristics are used to finally validate the robustness of numerical tsunami propagation simulations applied to mass movements observed from bathymetric and seismic reflection data in the lake. Based on numerical tsunami simulation and a suite of sediment cores from the coastal on- and offshore environment of Lake Sils, we were able to reconstruct a prehistoric delta collapse-generated tsunami. An offshore tsunami deposit of the historic 1601 Lake Lucerne event was observed from sediment core transect in a coastal depression in the Lucerne Bay. Another sediment core recovered from the coastal offshore environment contains sedimentary signatures that are likely associated with bottom currents from prehistoric tsunami events at ~2200 and ~5400 Before Present at Lake Lucerne. The observed sedimentological signatures of lake tsunamis were investigated using multi-proxy analysis including whole-core scans (density, magnetic susceptibility, and CT), as well as micro-CT scanning of sediment U-channels, radiocarbon dating, elemental analysis, and grain-size analysis. The identified sedimentological signatures consist of sharp lower and upper sedimentary contacts, successions of single and multiple normal graded sand, massive sand beds, and a characteristic fine-grained top. Based on radiocarbon dating, these signatures can be associated with large mass-movement deposits observed in sediment cores and seismic-reflection data of the deep lake basin

    Lake sedimentological and ecological response to hyperthermals : Boltysh impact crater, Ukraine

    Get PDF
    Acknowledgements Initial drilling of the Boltysh meteorite crater was funded by Natural Environment Research Council (NERC) grant NE/D005043/1. The authors are extremely grateful to the valuable scientific contributions of S. Kelley and I. Gilmour. The constructive and critical reviews by M. Schuster and an anonymous reviewer greatly helped to improve this manuscript.Peer reviewedPostprin

    Some current sedimentological controversies in the Polish Carpathian flysch

    Get PDF

    Facies architecture of Miocene subaqueous clinothems of the New Jersey passive margin: Results from IODP-ICDP Expedition 313

    Get PDF
    Understanding the history, causes, and impact of sea-level changes is a challenge for our societies that face accelerated global sea-level rise. In this context, improvement of our knowledge of sea-level changes and shoreline migration at geological time scales is critical. The preserved, laterally correlative sedimentary record of continental erosion on passive margins has been used to reconstruct past sea level. However, the detailed nature of a basic clinothem progradational pattern observed on many of these margins is still poorly known. This paper describes the sedimentary facies and interprets the depositional environments and the architecture of the clinothems of the New Jersey shelf (offshore northeastern USA) to depict the origin and controls of the distribution of the sediment on the margin. We analyze 612 cores totaling 1311 m in length collected at three sites 60 km offshore Atlantic City, New Jersey, during International Ocean Discovery Program–International Continental Scientific Drilling Program (IODP-ICDP) Expedition 313. The three sites sampled the lower to middle Miocene passive margin sediments of the New Jersey shelf clinothems. We also collected wireline logs at the three sites and tied the sedimentary architecture to the geometry observed on seismic profiles. The observed sediment distribution in the clinoform complex differs from that of current models based on seismic data, which predict a progressive increase in mud and decrease in sand contents in a seaward direction. In contrast, we observe that the clinoforms are largely composed of muds, with sands and coarser material concentrated at the rollover, the bottomset, and the toe of the slope. The shelf clinothem topsets are storm-influenced mud whereas the foreset slope is composed of a mud wedge largely dominated by density current deposits (e.g., low-density turbidites and debrites). The architecture of the clinothem complex includes a composite stack of ~30-m-thick clinothem units each made up of four systems tracts (Transgressive, Highstand, Forced-Regres­sive, and Lowstand Systems Tract) building individual transgressive-regres­sive sequences. The presence of mud-rich facies deposited during highstands on the topset of the clinoform, 40–60 km offshore from the sand-prone shoreface deposit (observed in the New Jersey onshore delta plain), and the lack of subaerial erosion (and continental depositional environments) point to a depositional model involving a subaerial delta (onshore) feeding a distant subaqueous delta. During forced regressions, shelf-edge deltas periodically overstep the stacks of flood-influenced, offshore-marine mud wedges of the New Jersey subaqueous delta, bringing sand to the rollover and building up the large-scale shelf-prism clinothems. The clinothem complex develops on a gently dipping platform with a ramp-like morphology (apparent dip of 0.75°–0.5°) below mean storm wave base, in 30–50 m of water depth, 40–60 km seaward of the coastal area. Its shape depends on the balance between accom­mo­da­tion and sedimentation rates. Subaqueous deltas show higher accumulation rates than their subaerial counterparts and prograde three times further and faster than their contemporaneous shoreline. The increase in the intensity of waves (height and recurrence intervals) favors the separation between subaqueous and subaerial deltas, and as a consequence, the formation of a flat topset geometry, a decrease in flood events and fluvial discharge, an overall progressive decrease in sediment grain size (from sequence m5.45, ca. 17.8–17.7 Ma, onwards), as well as an increase in sedimentation rates on the foresets of the clinoforms. All of these are recognized as preliminary signals that might characterize the entry into the Neogene icehouse world

    Sedimentological signatures of lacustrine tsunamis

    Get PDF
    Lake tsunamis are a natural hazard with high magnitudes and low recurrence rates. Because of their infrequent occurrence in space and time, little is known about the associated hazard and the risk to the vulnerable coastal areas that are often heavily populated. However, historical reports and recent scientific achievements show that certain Swiss lakes may have been repeatedly affected by tsunamis during the last 15’000 years. This makes Switzerland an ideal case-study area to conduct fundamental research in the field of tsunamis and to gain new knowledge applicable to other lacustrine areas, as well as to the marine environment. Lacustrine tsunamis can be generated by subaqueous and subaerial mass movements, volcanic eruptions, fault displacements within large lakes, and air-pressure disturbances. Mass movements, triggered by strong earthquakes, are considered one of the main causes. However, spontaneous delta collapses and subaerial impact, often related to artificial rock-mining activities, also have induced tsunami events on Swiss lake basins. The geological record of mass-movement deposits in the seismically imaged stratigraphy of deep lake basins provides evidence for the occurrence of prehistoric lake tsunamis. However, because the dimensions (e.g., spatial distribution, volume, etc.) and dynamics (e.g., single-stage or multi-stage failures, initial acceleration, velocity, cohesion etc.) of mass movements strongly influence tsunami generation, which is difficult to estimate, conclusive evidence for prehistoric lake tsunamis is lacking. Therefore, the geological record in the on- and offshore coastal environment may provide further evidence on past lacustrine tsunami events. These sedimentological signatures are examined in this thesis. Recent marine (2018 Sulawesi earthquake and tsunami, Indonesia) and lacustrine (2007 landslide-generated tsunami in Chehalis Lake, Canada) tsunami events indicate that large amounts of sediment are mobilized during tsunami inundation and transported both landward and seaward with backwash currents. To date, a wide variety of sedimentological bed forms and characteristic depositional signatures have been described from various coastal environments. Nevertheless, hardly any tsunami deposits have been described from the on- and near-offshore of lakes, and none were investigated in and around Swiss lakes until today. Yet, historical tsunami hazard descriptions from Swiss lakes provide documentation of inundation distances and run-up, and in specific cases, a limited description of the associated deposits left behind. These descriptions were used to characterize and locate tsunami deposits from lacustrine environments that were compared with descriptions of their marine counterparts. In summary, a combination of geological field- and laboratory analysis, numerical tsunami propagation simulation, and historical documents is used to identify and characterize lacustrine tsunami deposits in several Swiss lakes. At field sites where positive evidence for tsunami deposits was observed, sedimentological characteristics are used to finally validate the robustness of numerical tsunami propagation simulations applied to mass movements observed from bathymetric and seismic reflection data in the lake. Based on numerical tsunami simulation and a suite of sediment cores from the coastal on- and offshore environment of Lake Sils, we were able to reconstruct a prehistoric delta collapse-generated tsunami. An offshore tsunami deposit of the historic 1601 Lake Lucerne event was observed from sediment core transect in a coastal depression in the Lucerne Bay. Another sediment core recovered from the coastal offshore environment contains sedimentary signatures that are likely associated with bottom currents from prehistoric tsunami events at ~2200 and ~5400 Before Present at Lake Lucerne. The observed sedimentological signatures of lake tsunamis were investigated using multi-proxy analysis including whole-core scans (density, magnetic susceptibility, and CT), as well as micro-CT scanning of sediment U-channels, radiocarbon dating, elemental analysis, and grain-size analysis. The identified sedimentological signatures consist of sharp lower and upper sedimentary contacts, successions of single and multiple normal graded sand, massive sand beds, and a characteristic fine-grained top. Based on radiocarbon dating, these signatures can be associated with large mass-movement deposits observed in sediment cores and seismic-reflection data of the deep lake basin
    • 

    corecore