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Abstract 

 

Importance of Mixed Energy in the Pliocene development Orinoco Delta 

Lobes, and the Impact of Large Volumes of Amazon Fluid Mud 

 

Yang Peng, PhD 

The University of Texas at Austin, 2018 

 

Supervisor: Ronald J. Steel 

 

This research focuses on how river-, wave- and tidal current energy is interpreted 

to have mixed and been preserved in well-exposed Pliocene strata of both wave-

dominated and tide-dominated Orinoco delta lobes. A new method of process facies 

analysis has been adopted, allowing a more quantitative interpretation. In addition, the 

very large volumes of Amazon-derived mud that impact the front of the Orinoco Delta 

today are followed back through the Pliocene Orinoco record, and documented here for 

the first time. The detection of mixed energies and the additional impact of large mud 

volumes on the delta front are important because most previous studies on ancient 

systems have commonly attempted to focus on the dominant process and tended to 

overlook the complexity of process mixing. The research was carried out in the Pliocene 

Orinoco Delta on Trinidad using four datasets: an outcrop dataset of 1190 m of measured 

sections from the topset segments of shelf margin clinoforms of the Moruga Formation; a 

260 m outcrop segment from the outer shelf to upper slope environments of the Moruga 

Formation; a 125 m thick outcrop segment from a tide-dominated delta lobe of the 
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Manzanilla Formation; and three selected outcrop examples (15-80 m thick) from the 

Morne L’Enfer, Manazanilla and Mayaro formations.  

The results demonstrate how fluvial and wave signals have mixed as the shelf 

margin clinoform developed in a strong storm wave-dominated setting. The data suggest 

that the fluvial signals (including parts of distributary channel-fills and delta fronts) were 

preserved because of unusually high subsidence rates (averaging >1 km/My on the 

topsets) and rapid sediment burial probably with a sheltered coastal morphology on this 

early Atlantic shelf margin, preventing some of the fluvial deposits from being 

completely reworked by storm waves. Some of the tide-dominated segments of the 

Pliocene Orinoco Delta are shown to have had a compound deltaic clinoform that reveals 

detailed interaction of river, wave, and tide processes with the impinging fluid mud. This 

part of the research suggests that the abundant fluid mud caused wave damping and the 

preferred preservation of river and tidal signals on the subaqueous delta platform due to 

the reduced wave action. The Amazon-derived mud tended to accumulate on the 

subaqueous platform in tide-dominated delta lobes, whereas it was more likely to be 

eroded and re-deposited into a deeper setting on storm wave-dominated delta lobes.  
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Chapter 1: Introduction 

 

PROBLEM AND SIGNIFICANCE 

Most modern shoreline systems are under the mixed influence of river, wave and 

tidal processes, and they exhibit dynamically spatial and temporal changes in process 

regime and morphology (Bhattacharya and Giosan, 2003; Yang et al., 2005; Dalrymple 

and Choi, 2007; Hampson et al., 2008; Ainsworth et al., 2011; Olariu, 2014), although 

previous depositional models attempted to focus on the dominant processes using the 

ternary delta classification (Coleman and Wright, 1975; Galloway, 1975; Boyd et al., 

1992). The mixed-process systems result from a variable combination of river, wave and 

tidal processes which can change through time on different scales, and this will cause 

complex variation in facies distributions. Examples of such mixed-energy systems have 

been increasingly documented (Gani and Bhattacharya, 2007; Vakarelov et al., 2012; 

Ainsworth et al., 2016; Rossi and Steel, 2016; Wei et al., 2016), but the complexity of 

this mixing is still understudied. 

The Pliocene Orinoco delta lobes provide an excellent opportunity to apply the 

mixed-energy approach in that two separate but broadly coeval reaches (Moruga and 

Manzanilla formations) of the Pliocene Orinoco, as the modern Orinoco Delta, show both 

wave-dominated and tide-dominated delta lobes, thus allowing us to examine how river-, 

wave- and tidal current energy mixed in cases. In addition, the Moruga Formation, the 

main focus of this study, not only has a shallow-marine stratigraphic record, but also 

shows the coeval deep-water slope of the continental margin in the early-mid Pliocene 

parts of the system. This continuous sedimentary record provides insight into the facies 
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and stratigraphic architecture of the Orinoco shelf-margin growth, given that the 

extraordinary subsidence rates (2km/My for Pliocene-Pleistocene) would have preserved 

a more continuous and reliable record than most other margins.  

Another research theme taken up herein is that the modern Orinoco Delta receives 

very large amounts of mud (approximately at least half of the sediment deposited along 

the Orinoco Delta) from the Amazon River via the northwest-directed Guyana littoral 

current. However, the influence of these huge volumes of Amazon fluid mud (some 108 

tons/year of Amazon mud is transported to the Modern Orinoco coast) on the paleo-

Orinoco Delta succession is completely unknown. The well-exposed outcrops of the 

paleo-Orinoco Delta from the late Miocene to Pliocene allow this mud to be examined in 

delta lobes dominated by different processes (waves, tides, and river currents).  

OBJECTIVES 

The objectives of the research in this dissertation are: 

1. To investigate how the preserved, fluvial and wave signals were mixed in 

the wave-dominated, Pliocene Orinoco delta lobes by documenting the 

main facies and stratigraphic architecture during the development of the 

Moruga Formation within a setting of rapid, long-term syn-depositional 

subsidence. 

2. To examine the growth of an unstable shelf margin that exhibits a 

transition from a storm wave-dominated delta front on the outermost shelf 

to gullied upper slope during the early-mid Pliocene development of the 

Moruga Formation. 
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3. To document the mixing of river-, wave-, and tidal processes in the tide-

dominated delta lobes of the Manzanilla Formation using a new 

quantitative methodology for highlighting process mixing. In addition, we 

evaluate how the voluminous mud, coming partly from the impinging 

Guyana littoral current, impacted wave, tide, and river processes during 

construction of the muddy delta lobes.  

4. To characterize the Amazon fluid mud layers and document how this mud 

tended to have a differing impact on tide- and wave-dominated settings. A 

hypothesis that the Guyana mud current is likely to have been effective 

mainly during rising and highstand of sea level and less so during falling 

stage and lowstand of sea level is also introduced.  

 

OVERVIEW OF CHAPTERS 

Chapter 2: Early-mid Pliocene shelf-margin growth (Moruga Fm.) on southeastern 
Trinidad: rapid subsidence and preservation of fluvial signals in an otherwise wave-
reworked delta front succession 

Chapter 2 presents the main facies and stratigraphic architecture of the Moruga 

Formation (southeastern Trinidad) which initially exhibits, a highly progradational low-

angle rising shelf-edge trajectory, but subsequently changed to a moderate aggradational 

growth. The high progradation rate during the early development of the Moruga wedge 

was caused by the extremely high sediment supply outpacing the relatively sea-level rise. 

During the late-stage development of the Moruga Formation, the shelf margin probably 

subsided more rapidly and shows a greatly increased storage of sediment on the shelf. 

The studied outcrops exhibit thick, coarsening-upward successions that are mainly storm 
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wave-dominated delta fronts. An unusual aspect of this succession is the preservation of 

segments of subaqueous channels and mixed-energy delta fronts, despite the very high 

degree of storm-wave reworking in the succession. It is suggested that coastal 

morphology, lack of strong storms, very high rates of subsidence and burial may have 

protected some the original fluvial signals from being entirely reworked.  

 

Chapter 3: Transition from storm wave-dominated outer shelf to gullied upper 
slope: The mid-Pliocene Orinoco shelf margin, South Trinidad 

Chapter 3 is a manuscript already published in Sedimentology (Peng et al., 2017).  

This paper focuses on a 260 m thick succession (St. Hilaire Silstone and Trinity Hill 

Sandstone, Morgua Formation) which demonstrates a continuous transition from gullied 

uppermost slope (with sediment gravity flow and mass-transport deposits) upward to 

storm wave-dominated delta front on the outermost shelf. This study demonstrates that 

storm wave-dominated shelf margins do allow sediment bypass down into deepwater 

areas, even though other literature studies have suggested that exactly this type of margin 

often tends to be highly inefficient at bypassing sand to deepwater areas. 

 

Chapter 4: Mixed-energy process interactions read from a compound-clinoform 
delta (paleo-Orinoco Delta, Trinidad): preservation of river and tide signals by 
mud-induced wave damping 

Chapter 4 presents a tide-dominated segment from the Pliocene Orinoco Delta 

(Manzanilla Formation, coeval to Moruga Formation) that preserved a compound deltaic 

clinoform. The clinoform reveals details of the interaction of river, wave, and tide 
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processes with fluid mud at a scale of tens of meters to centimeters in the deposits. This 

chapter has been published in Journal of Sedimentary Research (Peng et al., 2018). This 

research is one of few studies that demonstrates process mixing in an ancient delta 

example with a compound clinoform. The mixing of interacting river, wave, and tide 

processes in this succession is documented using a new quantitative methodology for 

highlighting process mixing.  

 

Chapter 5: Amazon fluid mud impact on tide- and wave-dominated Pliocene lobes 
of the Orinoco Delta 

Chapter 5, submitted for publication to Marine Geology, characterizes Amazon-

derived fluid-mud layers in the deltaic succession and shows how littoral fluid mud banks 

tended to accumulate on the subaqueous platform of strongly tide-influenced delta lobes, 

whereas on wave-dominated lobes the mud was commonly eroded and reworked farther 

out into deeper settings.  
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Chapter 2: Early-mid Pliocene shelf-margin growth (Moruga Fm.) on 
southeastern Trinidad: rapid subsidence and preservation of fluvial 

signals in an otherwise wave-reworked delta front succession 

ABSTRACT 

The early-mid Pliocene Orinoco Delta succession demonstrates the facies and 

stratigraphic architecture of a shelf margin developed in a setting of rapid, long-term syn-

depositional subsidence (averaging about 1 km/My; Wood, 2000; Chen et al., 2018). The 

studied Moruga clastic wedge of the Orinoco Margin consists of a series of shelf to 

deepwater clinoforms with six identified facies associations namely channelized 

sandstones, river and mixed-process delta front, wave-dominated delta front, shoreface, 

prodelta-offshore transition-shelf, and upper-slope channels and mass-transport deposits. 

The succession is very sandy and generally consists of coarsening- and thickening-

upward units of delta front with HCS/SCS sandstones and wave-ripple lamination 

indicating dominant storm wave regime particularly when the delta lobes were sited on 

the outer shelf. Several distributary channels are unusually well preserved and 

characterized by cross-bedded to parallel-laminated sandstones with mud clast lags in 

their lower parts and overlain by HCS/SCS sandstones in their upper parts. River-

dominated and mixed-process delta front deposits occur in places within stacked, 

coarsening-upward trends. The river-dominated delta front is characterized by parallel-

laminated to current ripple-laminated intervals, and normally graded thin beds changing 

upward to parallel lamination and low-angle cross bedding. The mixed-process delta 

front also exhibits wave and bidirectional current ripples as well as discrete intervals of 

HCS/SCS. The preservation of the channel-base and mouth-bar deposits in the otherwise 

storm wave-dominated setting suggest a sheltered coastal morphology, low-frequency of 
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large storms during that time, together with unusually rapid subsidence and burial that 

may have prevented the fluvial signals from being completely reworked by the storm 

waves in places.   

INTRODUCTION 

Shelf-margin clinoforms are large-scale (hundreds of meters) accretionary units 

that build out from continental and shallow-marine areas to deepwater areas of the 

continental margin. The shallow and deep sediment facies are separated by the shelf-

slope break or shelf edge. The clinoform topsets are built by repeated, regressive and 

transgressive transits of deltas and other shoreline systems (Steel et al., 2008). As the 

sediment delivery systems repeatedly reach the pre-existing shelf edge, the shelf margin 

accretes basinwards. Shelf-margin growth is controlled mainly by sediment flux from the 

continent and sometimes indirectly by sediment drift along depositional strike, rate of 

relative sea-level change, and basinal dispersal processes (Carvajal et al., 2009; Dixon et 

al., 2012b; Gong et al., 2016).  

Among prograding shelf margins that grow for longer time intervals (millions to 

10s of millions of years), three main types of shelf-margin architecture can be recognized 

based on their relative progradation and aggradation tendencies (Fig. 2.1). Any margin 

can also change or gradually evolve from one of these types to another, as seen on the 

long term development of the currently studied Orinoco shelf margin (Fig. 2.2). Type I 

clinoform margins have a highly aggradational to slightly progradational architecture 

with an overall steeply rising shelf-edge trajectory, on the time scale stated above (Fig. 

2.1A). Type II margins show highly progradational with only moderate aggradational 

stacking patterns and a flat to very, low-angle rising shelf-edge trajectory (Fig. 2.1B). 



 
 

8 

Type III margins are extremely progradational and can have an erosional toplap 

relationship (incisional channels or valleys) between the topset and underlying deepwater 

slope component of the clinoforms. They can also be unusually aggradational on basin 

floor (bottomset) component of the clinoforms, and their shelf edges can exhibit a flat to 

slightly falling trajectory (Fig. 2.1C). 

The Lower Pliocene, Orinoco shelf margin during development of the studied 

Moruga Formation, is an example of a Type II shelf margin, that initially exhibits a fairly, 

low-angle rising shelf-edge trajectory with a relatively high progradation rate (TP20-

TP32; from Lower Forest Clay flooding surface up to top Gros Morne Sand in Figure 

2.2). However, its then takes on an overall moderate aggradational component of growth 

(TP32-TP38; Top Gros Morne Sand to Top Casa Cruz Sand, Fig. 2.2). Such long-term 

changes of growth pattern on the accreting Orinoco Late Miocene to Pleistocene shelf 

margin (Fig. 2.2A) were mainly due to the imbalance between an extremely high 

sediment supply from the Orinoco River and high rates of subsidence on the margin 

itself. This resulted in up to 12000 m of Late Miocene through Pleistocene sediment 

deposited in the Columbus Basin (Wood, 2000), and a significant eastward migration of 

the paleoshelf-edge from onshore mid-southern Venezuela to its present location 150 km 

off the modern Orinoco (progradation rate of 16-38 km/My) (Di Croce et al., 1999; 

Sydow et al., 2003; Carvajal et al., 2009), despite very high subsidence rates (up to 1000 

m/My; Wood, 2000) on this margin.   

The objectives here are 1) to document the main facies and stratigraphic 

architecture of the early phase of this rapid to moderately prograding portion of the 

Orinoco margin during the development of the Moruga Formation, and 2) to examine 
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how the preserved depositional facies reflect a setting of rapid, long-term syn-

depositional subsidence. 

 

 

Figure 2.1: Three types of progradational shelf margin with their associated shelf-edge 
trajectory trends. 
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Figure 2.2: (A) and (B) Interpreted seismic data across the entire Orinoco shelf-margin 
prism indicates progradation and aggradation of shelf deltas into the 
offshore Columbus Basin (modified from Sydow et al., 2003; Dixon, 2005; 
Chen et al., 2018). The studied Moruga Wedge (TP20-TP38 Fig. 2.2B), 
bounded by Upper Forest Clay Flooding and Lower Forest Clay Flooding 
(not shown) surfaces, particularly the lower part displays rapid shelf-edge 
migration as indicated by the very low-angle, rising shelf-edge trajectory. 
(C) Approximate shelf-edge migration maximum of the paleo-Orinoco shelf 
margin during the Pliocene Moruga interval (colored lines). Note location of 
the seismic line in Fig. 2.2A and B, and the relatively long migration 
distance of the Moruga shelf edge. 
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GEOLOGICAL SETTING 

The Late Miocene-Pliocene Orinoco shelf margin was built by rapid, mainly 

subsidence-generated aggradation (> 9 km in 4-5 My; Wood, 2000; Chen et al 2018) and 

significant basinward-stepping (>100 km in the same time interval; Dixon et al., 2005), 

achieved through repeated, cross-shelf transits of the Orinoco River and its large delta 

system. Outcrops on southern Trinidad as well as well log and seismic data (Fig. 2.2A 

and B) onshore and offshore in the Columbus Basin indicate that the 4-5 My stratigraphic 

interval is organized into four large-scale clastic wedges (three of which are shown in the 

seismic line of Fig. 2.2A and B) (Steel et al., 2007; Chen et al., 2018). The term ‘clastic 

wedge’, involving multiple formations, is used to denote that thick sand-prone intervals 

have a strongly progradational or basinward-stepping character but that they gradually 

split up and thin basinward into a mud-prone succession. The four main wedges are 

separated from each other by thick marine mudstones, representing periods of extensive 

(>100 km) landward flooding: (1) the Cruse wedge (late Miocene-earliest Pliocene) was 

the first influx of prograding Orinoco delta lobes to the southwest Trinidad area. It also 

reflects the initial Atlantic deepwater-margin outbuilding, and eventually displays a large 

collapsed (latest Miocene/earliest Pliocene) shelf edge at its eastern progradational 

termination on southern Trinidad outcrops (Chen et al., 2016). It also displays an early-

stage, deepwater Atlantic slope succession with channel-levee systems (Vincent, 2012; 

Chen et al., 2016); (2) the Forest/Moruga/Mayaro clastic wedge (early-mid Pliocene and 

focus of this study), overlying the regionally developed marine mudstones of the Lower 

Forest Clay, is characterized by river- and tide-influenced deltaic deposits in its landward 

reaches, with the basinward equivalent wave-river dominated Moruga Formation and 

wave-dominated Mayaro delta lobes (Bowman, 2003; Peng et al., 2017). The Mayaro 
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Formation, excluded from the present study, contain a series of storm-wave dominated 

delta lobes within shelf-edge growth fault compartments (Figs 2.2 and 2.3) that reached 

basinward as far as the east coast of Trinidad (Sydow et al., 2003; Dixon, 2005; Dasgupta 

and Buatois, 2012; Bowman and Johnson, 2014), (3) the Lower Morne L’Enfer clastic 

wedge (Fig. 2.2A and B) (mid-late Pliocene), overlies the regionally developed 

mudstones of the Upper Forest Clay, and is characterized by river- and tide-dominated 

deltas and estuaries (Vincent, 2003; Osman, 2007; Chen et al., 2014), and (4) the Upper 

Morne L’Enfer/Palmiste wedge (Fig. 2.2A and B) (latest Pliocene-early Pleistocene) 

overlies the Lot 7 Silt and its regionally equivalent marine mudstones, and is 

characterized by river- and tide-dominated deltas and delta plain deposits (Fig. 2.2) (Chen 

et al., 2014). 

The Moruga Formation 

The studied Moruga Formation (Fig. 2.3A) lies in the middle to eastern reaches of 

the second major clastic wedge. In the study area, from the town of Moruga to the east 

coast of Trinidad, the outcropping Moruga Formation is subdivided into three subwedges 

(Fig. 2.3B): (1) the Gros Morne Siltstone and Gros Morne Sandstone members, (2) the St. 

Hilaire Siltstone and Trinity Hill Sandstone members, and (3) the Las Tablas Siltstone 

and Casa Cruz Sandstone members. The present study documents the upper two 

subwedges, a 1190 m thick succession that was built by multiple episodes of deltaic 

growth across the shelf with one deepwater, upper-slope segment in the St. Hilaire 

Siltstone Member. The lowest sub-wedge is only partly exposed and poorly accessible. 
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Figure 2.3: (A) Mapped distribution of the Moruga Formation on southeastern Trinidad 
(after Kugler, 1959) and locations of study areas with measured thickness. 
(B) The Pliocene Moruga Wedge stratigraphy illustrating three major deltaic 
growth stages (i.e., Gros Morne Sand, Trinity Hill Sand, and Casa Cruz 
Sand) separated by three muddy members, and the locations of measured 
sections on the shelf margin. 
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METHODOLOGY 

Well-exposed outcrops within the Moruga Formation at Guayaguayare Bay, 

Moruga Bay, and Radix Point on south-eastern Trinidad (Fig. 2.3A) occur as documented 

in the Geological Map of Trinidad and Tobago (Kugler, 1959). These Moruga Formation  

strata were systematically measured and analyzed through a 1190 m composite 

stratigraphic section and with the use of photomosaics. The outcrop cliffs at 

Guayaguayare and Moruga Bays are oriented subparallel to the regional depositional dip. 

Some 140 m of the St. Hilaire Siltstone Member and 290 m of the Trinity Hill Sandstone 

Member (Fig. 2.3B) were measured at Guayaguayare Bay. At Radix Point, a total 

thickness of 500 m was measured, including the Trinity Hill Sandstone (40 m), the Las 

Tablas Siltstone (410m), and the Casa Cruz Sandstone (50 m) members (Fig. 2.3B). The 

upper Casa Cruz Sandstone Member crops out at Moruga Bay and is 260 m thick (Fig. 

2.3B). Because of the progressive basinward (eastward) stepping of successive Gros 

Morne, Trinity Hills and Casa Cruz sandstone subwedges (Fig. 2.3B), and the variable 

W-E position of the measured sections (Fig. 2.3A), it is likely that the Guayaguayare and 

Radix Point measurement locations were outermost shelf sites, whereas the Moruga site 

lay farther westward. This determination was also partly guided by previous recognition 

of Mayaro representing a near shelf-edge location for time equivalent strata (Fig. 2.3B) 

(Bowman and Johnson, 2014). Although there may be minor gaps in the erected 

stratigraphic composite succession (Fig. 2.4), we have reasonable confidence in the 

resultant composite section because at each location the six component members of the 

Moruga Formation can be recognized. 
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Figure 2.4: Composite sedimentary log reconstructed (facies associations and process 
histogram only for the shallow-water succession) for the 1190 m thick 
succession of the four studied members (top) of the Moruga Formation. 
Locations of the three stratigraphic intervals used to build the composite 
section are shown in Fig. 2.3B. 
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Facies variability was described at high resolution by recording bed thickness, 

grain size, sedimentary structures, organic matter/plant fragments, and trace fossils with 

Bioturbation Index (BI) (Taylor and Goldring, 1993). A sedimentary process histogram 

was generated using the field methodology of Rossi et al. (2017) whereby each measured 

bed or bedset was assigned three percentages, reflecting probability that it was influenced 

by waves, tides, or river currents, respectively. 

FACIES ASSOCIATIONS AND DEPOSITIONAL ENVIRONMENTS 

The studied Moruga clastic wedge (consisting of a series of shelf to deepwater 

clinoforms) (Fig. 2.3B) comprises six major facies associations, including five shallow-

water ones (FA1-FA5) and one deep-water, uppermost-slope association (FA6) (Fig. 2.4). 

The facies of the outermost, growth-fault compartment of the Moruga wedge are 

described by Bowman and Johnson (2014), and not included here. 

Facies Association 1: Channelized Sandstones 

Facies Association 1 (FA1) consists of erosively based, channelized sandstones 

with a variety of infill types (Figs 2.5 and 2.6) that are characterized by fining-upward or 

blocky packages with mud rip-up clasts at their base. No bioturbation is observed. Some 

of these channels (Type A) commonly cap and truncate coarsening-upward successions 

that comprise heterolithic beds with wave ripples grading upwards to amalgamated 

swaley/hummocky (SCS/HCS) cross-stratified sandstones (FA3) (Fig. 2.5). The thickness 

of such channel fills is commonly 1 to 5 m when they occur on an outer shelf location 

(i.e., Trinity Hill Sand Member at Guayaguayare Bay) and 5 to 19 m when developed 

landwards on the mid shelf (i.e., Casa Cruz Sand Member at Moruga Bay). For the outer-

shelf examples, the channel-fill deposits tend to be sandier than those on the mid shelf, 
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and are composed of low-angle cross-bedded to parallel-laminated sandstones (very fine 

to fine-grained) at the base with abundant mud clasts changing upward to heterolithic 

deposits including some HCS/SCS sandstones. In places, soft-sediment-deformed strata 

(Fig. 2.5C) occur below the channel-fill deposits. The mid-shelf channel-fill deposits 

consist of trough to low-angle cross bedded and parallel-laminated sandstones grading 

upwards to heterolithic beds with abundant organic matter. A second type of channel 

(Type B), generally 3 to 6 m thick on the outer shelf and 13 to 15 m thick on the mid 

shelf, is generally muddier than those described above and when occurring on the outer 

shelf also contains bidirectional cross beds, bidirectional current ripples, unidirectional 

cross beds, and some beds of HCS/SCS (Fig. 2.6). The mid-shelf examples of this type of 

channel fill comprise cross-bedded to parallel-laminated sandstones and heterolithic beds 

with flaser to wavy bedding and fluid-mud layers (Fig. 2.6C).   

The sandier FA1 channels are interpreted as distributary channels (Zhang et al., 

2017a) that supplied sediment to a storm wave-dominated delta front, because of the 

presence of abundant wave ripples and some hummocky cross strata, as well as their 

truncation down into upward-coarsening heterolithic delta-front units below. River and 

wave processes interacted as the driving delta distributary channels built out towards the 

pre-existing outer shelf area to encounter ever stronger open-ocean waves on this Atlantic 

margin (Porębski and Steel, 2006; Yoshida et al., 2007). The very sandy character and the 

presence of cross-bedded to parallel-laminated sandstones overlain by the HCS/SCS 

sandstones in these channels suggests that wave processes winnowed finer sediment and 

particularly reworked the upper part of the channel infill. The decreased depth/thickness 

of distributary channels from the mid shelf to the outer shelf suggest that channels 

became shallower basinwards (see also Olariu and Bhattacharya, 2006). The relatively 
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small channels (1-2 m thick) likely represent bifurcating terminal distributary channels 

(Olariu and Bhattacharya, 2006; Olariu et al., 2010; Li et al., 2018). By contrast, the 

muddier channel fills suggest an increased tidal signal (see also Zhang et al., 2016, for 

similar examples) and a mixed-influence of river-, wave- and tidal currents illustrated by 

intercalated beds of low-angle cross bedding to parallel lamination, HCS/SCS, 

bidirectional cross bedding, orderly unidirectional cross bedding, and bidirectional 

current ripples. The preservation of some channel bases in the succession may suggest a 

rapid subsidence and burial, probably within a coastal morphology protected from storm 

waves.   
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Figure 2.5: Channel-fill facies association (FA1) (Type A). (A) 6-m thick sharp-based, 
parallel-laminated sandstones with several internal scours. (B) Erosion-
based, parallel-laminated sandstone unit with abundant mud clasts in its 
lower interval cutting down into the HCS/SCS sandstones of FA3. (C) 0.5 m 
thick deformed beds (up to 0.5 m) at the base of a large channel fill. (D) 
Parallel-laminated sandstones of channel fill; dark color due to organic 
matter. 
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Figure 2.6: Channel-fill facies association (FA1) (Type B). (A) An erosional-based 
channel filled with bidirectional cross-bedded and parallel-laminated 
sandstones, as well as a unit of HCS/SCS sandstones. The upper part of the 
channel fill consists of coarsening-upward mixed-influenced thin-bedded 
strata with bidirectional current ripples and wave ripples. (B) Bidirectional 
cross-bedded sandstones at the base of channel fill. (C) Unidirectional cross-
bedded sandstones and overlying interbedded sandstones and fluid-mud 
layers (wavy bedding) with mud clasts. 

Facies Association 2: River-Dominated and Mixed-Process Delta Front 

Facies Association 2 (FA2) comprises river-dominated delta front (FA2-1) (Fig. 

2.7) and mixed-process delta front (FA2-2) (Fig. 2.8) that are characterized by stacked, 

sandier-upward and coarsening-upward successions (3-17m thick). Both FA2-1 and FA2-
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2 show thin, interbedded very fine-grained sandstones and siltstones/mudstones in their 

lower part changing upwards to thick and amalgamated sandstone beds. Soft-sediment-

deformed beds occur in places (Figs 2.7B and 2.8B). No bioturbation is observed. 

However, FA2-1 and FA2-2 display some difference in both lower and upper parts. The 

sandstone beds in the lower part of FA2-1 commonly have parallel- to current-rippled 

lamination (Fig. 2.7C) and include thin, normally graded beds (Fig. 2.7D) with abundant 

plant debris/organic matter. The sandstones in the upper part are parallel-laminated and 

low-angle cross bedded with relatively thick structureless sandstones (Fig. 2.7). In 

contrast, the thin sandstone layers in the lower parts of the FA2-2 show bidirectional 

current ripple-laminated (Fig. 2.8D) and wave ripple-laminated sandstones. The upper 

portion of FA2-2 exhibits HCS/SCS sandstone beds sharply overlying parallel-laminated 

sandstones (Fig. 2.8A and C).   
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Figure 2.7: River-dominated delta front facies association (FA2-1). (A) Several stacked, 
coarsening-upward successions consisting of heterolithic beds grading 
upwards to parallel-laminated sandstones. (B) A coarsening-upward interval 
with soft-sediment-deformed bed on bottom. Note that the centimeters thick 
structureless sandstone beds (possible hyperpycnal flow beds) marked by 
white arrows. (C) Thin sandstone beds characterized by very low-angle 
cross-stratification or parallel lamination to unidirectional current ripples. 
(D) Normally graded sandstone beds rich in organic matter (possible 
hyperpycnites from river flooding) and unidirectional current ripples. 

The coarsening- and thickening-upward successions are interpreted as distal, 

river-dominated delta front (FA2-1) (Olariu and Bhattacharya, 2006; Ahmed et al., 2014) 

and mix-process delta front (FA2-2) deposits (Ainsworth et al., 2016) because of their 

vertical bed arrangement and because they are sometimes truncated by distributary 
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channels. The soft-sediment-deformed beds are slumped deposits caused by rapid 

sediment loading and oversteepening on delta front (see also Steel et al., 2008). The 

abundant organic matter and plant debris together with lack of ichnofauna are consistent 

with the interpretation of a delta front that was directly fed by distributary channels. The 

parallel- to current-rippled sandstone intervals (Fig. 2.7C) and normally graded sandstone 

beds (Fig. 2.7D) in the lower FA2-1 are interpreted as river-fed turbidites that were 

deposited on the distal delta front (Ahmed et al., 2014). The thin sandstone beds with 

bidirectional current ripples and wave ripples in the lower portions of FA2-2 indicate 

reworking of some deposits in the distal delta front by tidal currents and storm waves. 

The upper and thicker sandstone intervals with HCS/SCS sandstone beds in FA2-2 

suggest that the upper/proximal part of the distal delta front were reworked by storm 

waves intermittently. The preservation of the river-fed turbidite beds in distal delta front 

is probably due to rapid accumulation and to a sheltered coastal morphology that 

dampened the storm waves or lack of large storm waves during that time. Alternatively, 

storm waves tended to rework the upper and proximal delta front during lobe 

abandonment as fluvial discharge decreased or during subsequent transgression as water 

depth increased.   
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Figure 2.8: Mixed-process delta front facies association (FA2-2). (A) A coarsening-and 
thickening-upward succession in the delta front showing lateral wedging to 
the right with the unreworked lower part and wave-reworked upper part. (B) 
Several stacked, upward-thickening, mixed-process delta-front deposits. (C) 
A coarsening-upward succession with HCS/SCS sandstones in its upper 
part, indicating wave reworking. (D) Parallel-laminated sandstone bed 
overlain by bidirectional current-rippled sandstones. 
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Facies Association 3: Wave-dominated Delta Front 

Facies Association 3 (FA3) is characterized by the stacking of multiple 

coarsening- and thickening–upward successions (5-30 m thick) (Fig. 2.9A) that are 

marine bioturbated and generally thicker than the delta front of FA2. The successions are 

entirely dominated by alternating thin beds of HCS sandstones (0.1-0.5 m thick) and 

muddy intervals (0.1-0.7 m thick) grading upwards to thick, amalgamated SCS 

sandstones (Fig. 2.9B and C). In places, fining-upward units (0.2-0.3 m thick) occur with 

sharp-based SCS sandstones changing upwards to wave-rippled sandstones, interbedded 

mudstones and wave-rippled sandstones capped by mudstones (Fig. 2.9D). Overall, 

bioturbation is rare (BI = 0 to 1) with the occurrence of Ophiomorpha (O), Skolithos (Sk), 

Phycosiphon (Ph), and Planolites (P).  

FA3 is interpreted as wave-dominated delta-front deposits derived from a 

complete reworking of river mouth bars and delta front. The HCS and SCS were formed 

by oscillatory storm waves (Southard et al., 1990; Dumas et al., 2005) between storm 

wave base and fair-weather wave base with HCS occurring stratigraphically below SCS 

in the upward-coarsening shallow-marine succession (Leckie and Walker, 1982; Dumas 

and Arnott, 2006). The mudstone intervals with wave-rippled sandstones represent 

deposits developed under fair-weather or waning storm wave condition (Dumas and 

Arnott, 2006; Bowman and Johnson, 2014). The fining-upward facies succession of 

sharp-based SCS, wave ripples, mudstones with wave-ripples lenses, and ultimately to 

mudstones records an idealized storm bed developed during rising and waning stages of a 

storm event (Cheel, 1991; Peng et al., 2017). The low diversity and low abundance of 

trace fossils suggest ichnologically stressed environments influenced by nearby river 

mouths (MacEachern et al., 2005; Gani et al., 2007). 
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Figure 2.9: Wave-dominated delta-front facies association (FA3). (A) Repeated 
upward-coarsening and upward-thickening successions. (B) Stacked units of 
thick, amalgamated swaley cross-stratified sandstones (2-3 m) separated by 
thin muddy beds in the proximal wave-dominated delta front. (C) 
Amalgamated SCS sandstones illustrating scours surfaces (white arrows) 
and the internal undulating cross laminations. (D) Two fining-upward 
successions demonstrate erosional based SCS sandstones changing upwards 
to wave rippled sandstone capped by muddy intervals with some wave 
ripple lenses. 
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Facies Association 4: Shoreface 

Facies Association 4 (FA4), similar to FA3, comprises coarsening-upward 

successions of thin sandstone beds interbedded with muddy intervals changing upwards 

into amalgamated SCS/ HCS to low-angle cross-bedded sandstones, but it is more sand-

rich and intensely bioturbated (Fig. 2.10). The thin beds (up to 0.5 m thick) of sandstones 

are lower very fine-grained with non-amalgamated HCS sandstones and wave ripples in 

lower succession (Fig. 2.10D). In the upper succession, amalgamated HCS/SCS 

sandstones are up to 10 meters thick. The heterolithic intervals in the lower part and the 

entire upper part of FA4 exhibit high-diversity and high-abundance trace-fossil suite (BI 

= 3-6) including Ophiomorpha (O), Thalassinoides (Th), Skolithos (Sk), Teichichnus 

(Te), Planolites (P), Chondrites (Ch), Phycosiphon (Ph), Fugichnia (Fu), Rosselia (Ro), 

Macaronichnus (Ma), and Diplocraterion (D) (Fig. 2.10).   

 FA4 is interpreted as shoreface deposits (Hampson and Howell, 2005; Hampson 

et al., 2011). The interbedded mudstone/siltstone and HCS to wave-rippled sandstones in 

the lower succession represent distal shoreface, and the amalgamated SCS/HCS 

sandstones in the upper succession represent the proximal shoreface. The 

mudstones/siltstones were formed under fair-weather wave conditions and wave-rippled 

sandstones were deposited during waning storm waves. The lower amount of mud 

together with the intense bioturbation suggest FA 5 is non-deltaic shoreface that was less 

influenced by fresh-water river currents. 
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Figure 2.10: Shoreface facies association (FA4). (A-C) Well-developed trace fossils of 
Ophiomorpha (O) (pelleted walls), Thalassinoides (Th) (smooth-walled), 
Teichichnus (Te), and Planolites (P) in the thick, amalgamated SCS/HCS 
sandstones of proximal shoreface. (D) Distal shoreface showing thin beds of 
wave-rippled sandstones and the heterolithic intervals with bioturbation of 
Fugichnia (Fu), Rosselia (Ro), and Macaronichnus (Ma). 
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Facies Association 5: Prodelta, Offshore Transition, and Shelf 

Facies Association 5 (FA5) comprises the muddy associations. FA5-1 is 

characterized by laminated mudstone/siltstone beds with thin, lower very fine-grained 

sandstones with wave ripples. Muddy, normally graded beds occur in places and are 

characterized by rippled sandstones grading upwards to siltstones (up to 5 cm thick) (Fig. 

2.11A and B). Rare to no bioturbation is observed. FA5-2 comprises siltstones/mudstones 

with very thin HCS and wave-rippled sandstone beds (few centimeters). FA5-3 contains 

structureless to faintly laminated siltstones/mudstones with lenticular sandstones (Fig. 

2.12 C and D). The siltstones/mudstones in both FA5-2 and FA5-3 are moderately to 

intensely bioturbated (BI=3-5) (Fig. 2.12). 

 

 

Figure 2.11: Prodelta facies association (FA5-1).  (A) Thin, normally graded beds 
showing lower very fine-grained sandstones gradually or sharply overlain by 
siltstones. Note that they are associated with wave ripples. (B)  Close-up 
view of the muddy, normally graded beds with sharp wave-scoured bases 
and rare bioturbation of Phycosiphon (Ph). 
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Figure 2.12: Offshore transition (FA5-2) and offshore shelf (FA5-3) facies association. 
(A) Thoroughly bioturbated (BI=5-6) siltstones/mudstones showing 
Zoophycos (Z), Planolites (P) and the overlying SCS to wave ripples.  (B) 
The interbedded siltstones and wave-rippled sandstones were highly 
bioturbated with Teichichnus (Te), Planolites (P), and Diplocraterion (D.) 
(C) and (D) Structureless to faintly laminated siltstones/mudstones showing 
Phycosiphon (Ph), Zoophycos (Z), Planolites (P). 

The muddy facies association is interpreted as prodelta (FA5-1), offshore 

transition (FA5-2), and shelf (FA5-3) (see also Hampson et al., 2011) deposits, 

respectively. The dominant finer-grained character of the sediment suggests a low-energy 
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setting. The thin sandstone beds with HCS or wave ripples in FA5-1 and FA5-2 indicate 

that the sea bottom was occasionally affected by storm waves above/near storm wave 

base. The interbedded siltstones/mudstones were deposited under fairweather condition. 

The muddy, normally graded beds are interpreted to represent products of wave-enhanced 

sediment-gravity flows (Macquaker et al., 2010; Plint, 2014) because they are commonly 

associated with wave ripples. The predominant siltstones/mudstones of FA5-3 represent 

deposition below the mean storm wave base. Rare bioturbation in the prodelta deposits 

suggest a stress condition due to close proximity of river sediment source, while the 

moderate to intense bioturbation in siltstones/mudstones in offshore transition to offshore 

shelf suggest a lack of river influence (MacEachern et al., 2005). 

Facies Association 6: Upper-slope Channels and Mass-transport Deposits 

Facies Association 6 (FA6) is characterized by a mudstone-dominated succession 

with various types of sediment gravity flow deposits, including rotated blocks of 

SCS/HCS sandstones (up to 10 m diameter), chaotic and poorly sorted blocks (up to 1 m 

diameter) and clasts (centimeters diameter) (Fig. 2.13A and D), convoluted heterolithic 

deposits (decimeter up to 1 m thick) (Fig. 2.13B), displaced and rotated blocks (5 to 10 m 

thick) (Fig. 2.13C), thick to thin normally graded sandstones (decimeter up to 2 m thick) 

(Fig. 2.13A and E). The displaced and disoriented/rotated blocks of heterolithic deposits 

have highly irregular bases, and are overlain by mudstones/siltstones, normally graded 

sandstones, and poorly sorted clasts with alternated convoluted beds (Fig. 2.13C). The 

disoriented heterolithic blocks show their internal strata dipping more steeply than the 

overlying and underlying strata towards the west (i.e., paleo-landward direction). No 
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bioturbation is observed except for Ophiomorpha in the displaced SCS/HCS sandstone. 

This association is described in detail in Chapter 3 in this dissertation. 

FA6 is interpreted as deepwater channels (or gullies) and mass-transported 

deposits on the outermost shelf to upper slope (Peng et al., 2017). The disoriented 

SCS/HCS sandstone blocks represent mass-transport deposits that had collapsed from the 

storm wave-dominated delta front (FA 3) on the outer shelf to shelf edge. The displaced 

and rotated blocks of steeply dipping, heterolithic strata are interpreted to represent 

blocks that collapsed and slid out from the shelf edge or upper slope, and back-tilted 

towards the shelf (Peng et al., 2017). The beds of poorly sorted blocks and clasts are 

debrites formed by cohesive debris flows (Talling et al., 2012b), also likely derived from 

collapsed deposits at the shelf edge. The normally graded sandstones are deposits of 

turbidity currents. The highly irregular basal surfaces of the channels are more likely 

slump scars that attracted subsequently infilling of sediment gravity flows (i.e., debrites, 

turbidites, soft-sediment deformed deposits) (Peng et al., 2017). 
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Figure 2.13: Upper-slope channel and mass-transport facies association (FA6). (A) Thick 
turbidites overlying the mass-transport deposits. (B) 1 m thick convoluted 
heterolithic bed. (C) Two muddy channel infills with the upper one 
containing a disoriented and rotated block at the base. (D) Debris-flow 
deposits comprising poorly sorted siltstone clasts in the sandy matrix. (E) 
Turbidites illustrating a normally graded bed with structureless to parallel 
lamination grading upwards to ripple lamination. 
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FACIES ARCHITECTURE AND PROCESS REGIME CHANGES 

The studied succession displays three depositional successions (i.e., Gros Morne, 

St. Hilarie-Trinity Hill and Las Tablas-Casa Cruz subwedges) that are up to 250-300 m 

thick on the mid-shelf reaches near Moruga, and up to 500-600 m thick on the outer shelf 

reaches at Guayaguayare and Radix Point (Figs 2.2B and 2.14). The three sequences are 

bounded by flooding surfaces below the Gros Morne Siltstone, St. Hilaire Siltstone and 

Las Tablas Siltstone and are contained by major transgressive intervals, namely the 

Lower and Upper Forest Clay units (Fig. 2.14).  

The regressive cycles commonly show a coarsening- and thickening-upward 

succession of delta front/shoreface with the delta front commonly truncated by channels 

(Figs 2.4 and 2.14). Most of the delta front is storm wave-dominated and is composed of 

sandstones with HCS/SCS and wave ripples on the outer shelf (Fig. 2.14). However, 

some river-fed turbidites in the river-dominated and mixed-process delta front were 

preserved on the mid-outer shelf (Fig. 2.14). The channels are generally very sandy with 

the preserved channel bases (cross-bedded to parallel-laminated sandstones with mud 

clasts lag) but show a wave-reworked upper channel infill (HCS/SCS sandstones) with 

mud winnowed away during the reworking processes. The transgressive cycles show 

fining-upward succession of mixed-process channels with increased tidal signals (fluid 

mud, bidirectional current ripples, mud drapes) and thick capping marine mudstones 

(Figs 2.4 and 2.14).  
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Figure 2.14: Stratigraphic framework based on measured sections and well logs. See text for details. 
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From the process histogram (Fig. 2.4), the regressive packages are dominated by 

increasing wave processes upwards with some minor river influence (Pw= 45%-55%; Pf= 

25%-40%) in the lower parts (e.g., 180-260 m in Fig. 2.4), and then abruptly changed to 

fluvial dominance with some tidal influence (Pf= 48-50%; Pw= 23-25%) (e.g., 260-300 

m in Fig. 2.4). During the transgressive packages, tidal processes clearly increased (Pt= 

27-32%; Pw= 20-45%). 

COMMENTS ON THE OVERALL LOW-ANGLE TRAJECTORY OF THE STRONGLY 
PROGRADATIONAL, EARLY MORUGA SHORELINE 

The Pliocene Moruga clastic wedge, consisting of several shelf-margin clinoform 

sets (TP20-TP38), shows a relatively rapid migration of the shelf edge and slope 

basinwards during the overall margin growth from the seismic data (Fig. 2.2) (Dixon, 

2005; Chen et al., 2018). The aggradational component of growth indicates a rising of 

relative sea level caused partly by high subsidence rate of the shelf margin (Sydow et al., 

2003). This extraordinary subsidence rate is likely to have made it difficult to preserve 

evidence of eustatic sea-level fall even during the Pliocene icehouse period when eustatic 

sea level repeatedly fell by 60-80 m during intervals up to 100 ky (Sømme et al., 2009). 

The highly subsiding margin would have caused an overall rise of sea level. However, the 

low-angle trajectory of the progradational, Moruga shelf edge (Fig. 2.2) suggests that the 

very high sediment supply of the Orinoco counteracted and generally exceeded the 

relative sea-level rise, so that the deltas were capable of stepping forward and prograding 

to the shelf edge (Fig. 2.14) to accrete the shelf margin (Sydow et al., 2003; Zhang et al., 

2017b). The very sand-rich character, especially of the Gros Morne and the Trinity Hill 

Sandstones, suggest high sediment supply and strong wave reworking. The unusual 

preservation of the lower parts of many ‘outer-shelf’ channels, despite generally strong 
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wave reworking, as well as stacked river-dominated or mixed-process delta front deposits 

in the Trinity Hill Sandstone testify to a high subsidence and sediment burial rate, and a 

protective coastal morphology, in order to get this degree of preservation of the fluvial 

supply signals despite the aggressive destruction of the delta front by the Early Atlantic, 

open coast storm waves. The more aggradational growth of the shelf margin and the 

higher-angle of the rising shelf-edge trajectory during the late development of the 

Moruga Formation strongly indicates that more sediments were stored on the shelf to 

form aggradational topsets.  

CONCLUSIONS 

The Early-mid Pliocene Orinoco shelf margin (Moruga Formation, Trinidad) 

exhibits a fairly, flat to low-angle rising shelf-edge trajectory with a relatively high 

progradation rate, but subsequently changes to moderate aggradational growth. The high 

progradation rate during the early development of the Moruga wedge was caused by 

extremely high sediment supply outpacing the relatively sea-level rise. During the late-

stage development of the Moruga Formation, the shelf margin probably subsided more 

dramatically and shows an aggradational growth with increased storage of sediment on 

the shelf.  

The studied outcrops of the Moruga Formation, particularly the accessible upper 

St. Hilaire-Trinity Hill and Las Tablas-Casa Cruz subwedges, provide insights to the 

facies and stratigraphic architecture of this rapid to moderately prograding portion of the 

Orinoco margin. As the highly supplied St. Hilaire-Trinity Hills deltas reached the shelf 

margin, the open-marine storm wave reworked but allowed and maintained strongly 

progradational sediment accumulation at the shelf edge, leading to periodic instability 
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shelf margin. The storm wave-dominated shelf-edge deltas collapsed at times, and 

formed a series of small upper-slope channels that attracted subsequent infilling by 

sediment gravity flows. During the later phase of aggradational growth of the shelf 

margin (i.e., Upper Trinity Hill, Las Tablas, and Casa Cruz members), thick coarsening-

upward successions of storm wave-dominated delta fronts/shorefaces/mouth bars and 

overlying fluvial and mixed-influenced channels developed at the outer shelf. The 

presence of unreworked river- or mixed-process delta fronts and some preserved lower 

parts of channel fills suggest rapid burial with the help of a sheltered coastal morphology 

despite strong wave reworking on the open Atlantic coast. 
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Chapter 3: Transition from storm wave-dominated outer shelf to gullied 
upper slope: The mid-Pliocene Orinoco shelf margin, South Trinidad1 

ABSTRACT  

Shelf-edge deltas are a key depositional environment for accreting sediment onto 

shelf-margin clinoforms. The Moruga Formation, part of the paleo-Orinoco shelf-margin 

sedimentary prism of south-east Trinidad, provides new insight into the incremental 

growth of a Pliocene, storm wave-dominated shelf margin. Relatively little is known 

about the mechanisms of sand bypass from the shelf-break area of margins, and in 

particular from storm-wave dominated margins which are generally characterized by 

drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire 

Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a 

continuous transition from gullied (with turbidites) uppermost slope upward to storm 

wave-dominated delta front on the outermost shelf. The basal upper-slope deposits are 

dominantly mass-transport deposited blocks, as well as associated turbidites and debrites 

with common soft-sediment-deformed strata. The overlying uppermost slope succession 

exhibits a spectacular set of gullies, which are separated by abundant slump-scar 

unconformities (tops of rotational slides), then filled with debris-flow conglomerates and 

sandy turbidite beds with interbedded mudstones. The top of the study succession, on the 

outer-shelf area, contains repeated upward-coarsening, sandstone-rich parasequences (2 

to 15 m thick) with abundant hummocky and swaley cross-stratification, clear evidence 

of storm-swell and storm-wave dominated conditions. The observations suggest 

                                                
1 This chapter has been published as: Peng, Y., Steel, R.J., and Olariu, C., 2017, Transition from storm 
wave‐dominated outer shelf to gullied upper slope: The mid‐Pliocene Orinoco shelf margin, South 
Trinidad: Sedimentology, v. 64, p. 1511-1539. I was the primary author who conducted the research and 
drafted this paper with co-authors’ help. 
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reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave-

dominated, shelf-edge delta front became unstable and collapsed down the slope; (ii) the 

excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by 

repeated infilling by debris flows and turbidites and then new gullying and further 

infilling; and (iii) renewed storm wave-dominated delta-front prograded out across the 

healed outer shelf, re-establishing the newly stabilized shelf margin. The Moruga 

Formation study, along with only a few others in the literature, confirms the sediment 

bypass ability of storm-wave dominated reaches of shelf edges, despite river-dominated 

deltas being, by far, the most efficient shelf-edge regime for sediment bypass at the shelf 

break. 

 INTRODUCTION 

Shelf-margin delta growth is the primary way by which shelf margins prograde 

and sedimentary basins receive deep water sediments (Morton and Suter, 1996; Porębski 

and Steel, 2003). This is supported by the front reaches of large modern river deltas 

protruding the shelf edge for tens of kilometers (Olariu and Steel, 2009). The dominant 

process regime and therefore delta type at the shelf edge (i.e. river-dominated, wave-

dominated or tide-dominated delta) is critical for shelf-margin growth. River-dominated 

shelf-edge deltas, with high sediment supply, have been shown to provide the most 

favorable scenario to drive the progradation of shorelines across the shelf to the shelf 

edge and beyond (Dixon et al., 2012b), where they may deliver significant volumes of 

sediment to the deep-water slope and basin floor. Such deep-water sediment delivery 

typically requires transit of the shelf deltas right to the shelf break either by strong river 

discharge (Carvajal and Steel, 2006), by sea-level fall and incision at the shelf edge 
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(Mellere et al., 2003), or by intersection with pre-existing slope conduits, such as slope 

channels or canyons incised into the shelf (Dasgupta and Buatois, 2015). This incision 

also sometimes results in partial collapse of the shelf margin (Steel et al., 2000; Petter 

and Steel, 2006; Covault and Graham, 2010; Fongngern et al., 2015). However, wave-

dominated shelf-edge deltas (Deibert et al., 2003; Carvajal and Steel, 2009) or river-

dominated shelf-edge deltas that have only modest supply or lack significant incision at 

the shelf edge (Plink-Björklund and Steel, 2008; Dixon et al., 2012b) may also contribute 

to construction of the shelf margin by draping sand-sheet aprons, or delta mouth bars 

onto the upper slope, although these do not often partition large sediment volumes to the 

basin floor (Plink-Björklund and Steel, 2008). 

During the construction of shelf margins, sediment instability, slumping, and 

mass-transport events commonly occur, and they also play an important role in the shelf-

margin growth and sediment transport to deep water (Moscardelli et al., 2006; Chen et 

al., 2016). Slides and slumps on the outermost shelf can remobilize sediment that was 

temporarily stored on the outer shelf and then redistribute it in the form of debris flows or 

by further transformation to turbidity currents with fragmentation during downslope 

transport (Mulder and Cochonat, 1996; Mulder and Alexander, 2001). Subsequent 

sedimentation in the collapse scars would infill or heal the slope depressions to allow 

renewed progradation. Such processes were documented previously in the river-

dominated shelf-edge systems of eastern Spitzbergen (Nemec et al., 1988; Steel et al., 

2000) and Tanqua Karoo Basin (Dixon et al., 2013; Laugier and Plink‐Björklund, 2016). 

However, shelf-margin growth in front of wave-dominated shelf-edge segments is still 

little documented. Oblique wave action at the shelf edge most commonly drives sand 

along and parallel to the shoreline until captured by a canyon head, rather than allowing 
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immediate downdip delivery (Boyd et al., 2008; Carvajal and Steel, 2009), although there 

are also several reported cases of direct delivery (Jones et al., 2013; Gong et al., 2016). 

The well-exposed outcrops of the Moruga Formation on Trinidad, a segment of 

the paleo-Orinoco Delta, exhibit a transition from gullied upper slope upward to storm 

wave-dominated delta front on the outermost shelf, and provides a unique opportunity to 

document the architecture of incremental growth on a well-exposed storm wave-

dominated shelf edge that had become unstable. This study also provides insight into the 

sediment by-pass ability of a storm wave-dominated shelf edge and the initiation and 

infilling processes of slope gullies. 

GEOLOGICAL SETTING 

The study area is located on south-eastern Trinidad, at the junction of the east–

west oriented East Venezuela–Columbus Foreland Basin constructed mainly by the late 

Miocene to present Orinoco River and its delta, and the north–south oriented Atlantic 

passive margin (Fig. 3.1A) (Mann et al., 2006; Escalona and Mann, 2011). As the 

Caribbean plate advanced to the east and south-east, the paleo-Orinoco River 

progressively shifted course eastward and infilled the East Venezuela Basin, onshore 

Southern Trinidad and offshore Columbus Basin (Fig. 3.1A) (Díaz de Gamero, 1996). 

The extremely high sediment supply from the Orinoco River (approximately 12,000 m of 

sediment were deposited in the Columbus Basin during the Pliocene and Pleistocene) 

(Wood, 2000) exceeded the shelf accommodation (Sydow et al., 2003), causing west to 

east migration of the paleoshelf-edge (progradation rate of 16 to 38 km/My) (Di Croce et 

al., 1999; Wood, 2000; Sydow et al., 2003; Carvajal et al., 2009) from onshore Eastern 

Venezuela to its present location 150 km off the modern Orinoco Delta, since the late 
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Miocene (Di Croce et al., 1999; Wood, 2000). Because of intense north–south 

compression as the Caribbean and South American plates met one another, Trinidad was 

deformed and uplifted through latest Pliocene and Pleistocene times (Kugler, 1959), 

providing an east–west depositional dip transect along the southern Trinidad coast 

through the entire shelf-margin sedimentary prism. 

The migration of the Miocene–Pleistocene Orinoco River and Delta system from 

west to east has provided abundant sand reservoirs of both shallow-water and deep-water 

types along the axis of the East Venezuela Basin, and on the Trinidad paleo-Orinoco 

shelf and shelf-margin (Steel et al., 2007). Interpreted seismic and well log data of the 

offshore Columbus Basin show rapid progradation and aggradation of the shelf margin, 

including both shelf-edge deltas and associated deepwater slopes (Fig. 3.1B and C) 

(Sydow et al., 2003; Dixon, 2005). Outcrops along the south coast of Trinidad exhibit at 

least four major clastic wedges, or deltaic to deepwater growth stages (Steel et al., 2007) 

(Fig. 3.1D): (i) the late Miocene to early Pliocene Cruse Formation progradational 

episode (Kugler, 1959) was characterized by deep-water muddy slope deposits, turbidite-

filled slope channels and overlying early Pliocene shelf-edge deltas, reached east as far as 

south central Trinidad, and is capped by the Lower Forest Clay transgressive flooding 

zone (Winter, 2006; Chen et al., 2016); (ii) the mid-Pliocene clastic wedge includes the 

Forest Formation of south-west Trinidad characterized by mixed river-influenced and 

tide-influenced delta lobes, and the basinward equivalent Moruga and Mayaro 

formations, a series of storm-wave dominated delta lobes that prograded as far as the east 

coast of Trinidad (Sydow et al., 2003; Dixon, 2005; Bowman and Johnson, 2014), and 

were capped by the Upper Forest Clay flooding zone; (iii) the mid-late Pliocene Lower 

Morne L'Enfer clastic wedge is characterized by river-dominated and tide-dominated 
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delta lobes and estuaries across southern Trinidad (Osman, 2007; Chen et al., 2014). 

After reaching offshore east Trinidad this wedge was capped by the well-documented Lot 

7 Siltstone flooding zone; and (iv) the latest Pliocene Upper Morne L'Enfer/Palmiste 

Formation was characterized by tide-dominated deltas and a covering of coaly delta-plain 

deposits across all of southern Trinidad (Vincent, 2003; Chen et al., 2014). 

The Moruga Formation, the second major clastic wedge that built across Trinidad, 

comprises three upward coarsening successions of storm wave-dominated delta front to 

shoreface deposits along the south coast of present-day Trinidad, as well as coeval 

deepwater slope deposits in the Columbus Channel and a laterally equivalent growth-

fault compartment of wave-dominated deltas (Mayaro Formation) (Dixon, 2005; 

Dasgupta and Buatois, 2012; Bowman and Johnson, 2014) in the Columbus Basin areas 

cropping out along the south-eastern coast of Trinidad (Fig. 3.1D and E) (Leonard, 1983; 

Ali, 1995; Steel et al., 2007). The present study interval is 260 m thick, upward-

coarsening topset segment of a single shelf-margin clinothem within the Moruga 

Formation growth stage. The upward-coarsening trend of the topset represents 

progradation of the Trinity Hills Sandstone Member out over the muddy St. Hilaire 

Siltstone Member reflecting the eastward and south-eastward progradation of the 

outermost paleo-Orinoco shelf across the muddy shelf edge to uppermost slope rollover. 

The study focuses on outcrops of gullies that occur on the outermost shelf and shelf-slope 

rollover, immediately seaward of the storm wave-dominated Trinity Hills Sandstone 

shelf-edge delta system. 
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Figure 3.1: (A) Simplified Map illustrating that Trinidad is located in the foreland basin 
between the Caribbean plate and South American plate. The Paleo-Orinoco 
River delivered sediment and filled Eastern Venezuela Basin, onshore 
southern Trinidad, and offshore Columbus Basin. Previous changing courses 
of the paleo-Orinoco River from Paleocene to recent are illustrated by 
successive black dashed lines (numbered by 1 to 3) to the solid line from the 
west to the east (modified from Escalona and Mann, 2011). (B) Interpreted 
seismic data across the entire Orinoco shelf-margin prism exhibit 
progradation and aggradation of shelf deltas into the offshore Columbus 
Basin (from Dixon, 2005). Note that all deltaic units (TP95 down to TP30, 
in offshore stratigraphic terminology of Sydow et al., 2003) become shelf-
edge deltas and rollover into deepwater slope deposits at the shelf break. 
The studied Moruga delta can also be seen to occupy a shelf edge position 
and occurs just below stratigraphic level TP35. (C) Composite well log in 
the offshore Columbus Basin [location in (B)] (Sydow et al., 2003) shows 
some 16 coarsening-upward units (each ca 200 m thick) indicating repeated 
stacking of regressive-transgressive Orinoco-Delta units, each becoming 
shelf-edge deltas on approach to the shelf-slope break. (D) Late Miocene–
Pliocene shelf and shelf margin stratigraphy in the onshore Southern Basin 
of Trinidad in transition to offshore, illustrating four major deltaic growth 
stages separated by mud-prone flooding surfaces (modified from Steel et al., 
2007). This same succession is much more growth faulted and thickened in 
the offshore Columbus Basin (Sydow et al., 2003) (E) Distribution of the 
Pliocene Moruga Formation and location of study area (after Kugler, 1959). 
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METHODOLOGY AND TERMINOLOGY 

Well-exposed and continuous outcrops along a 2 km depositional-dip transect 

west of Guayaguayare Bay on south-eastern Trinidad were analyzed through the 

measurement of a 260 m thick stratigraphic section and with the use of photomosaics 

(Figs 3.2 and 3.3). Facies variability was described at a 0.1 m to 1.0 m resolution by 

recording bed thickness, grain size, sedimentary structures and trace fossils with 

Bioturbation Index (BI) (Taylor and Goldring, 1993). Paleocurrents were measured 

primarily from ripple lamination. The gullied upper-slope deposits that are the 

stratigraphic link between thickly developed, shelf-edge, wave-dominated delta deposits 

and muddy upper-slope, sediment gravity flow deposits were documented.  

The term ‘slope gully’ is used here to refer to relatively small (up to a few tens of 

meters deep and tens to hundreds of meters wide), dip-oriented channel-like features, 

which are common on the upper portion of continental slopes (Twichell and Roberts, 

1982; Chiocci, 1994; Pratson et al., 1994; Field et al., 1999; Lonergan et al., 2013). By 

comparison, slope channels are larger negative relief features (tens to a few hundreds of 

meters deep, 100 m to few tens of kilometers wide, and 10 to 3000 km in length) that are 

short-term or long-term conduits for sediment to be transported down the deepwater slope 

(Mutti, 1977; Stow and Mayall, 2000). Submarine canyons are very large V-shaped 

erosional conduits with vertical relief up to 1 km, widths ranging from several to more 

than 50 km, and lengths ranging from tens to several hundreds of kilometers (Galloway, 

1998). 
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Figure 3.2: (A) Outcrop sketch of ca 260 m thick Moruga Formation succession displaying a transition from upper-slope 
deposits, through gullied upper-slope deposits to storm wave-dominated, upward-coarsening deposits of the outer 
shelf. For the location of the section see Figure 3.1. (B) and (C) Photomosaic and interpretation of gullied upper-
slope succession (ca 80 m thick) illustrating the occurrence of landward-tilted, slide and deformed blocks with 
their internal strata dipping more steeply than underlying and overlying strata. 
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Figure 3.3: Sedimentary log of the 260 m thick succession of St. Hilaire Siltstone and 
Trinity Hill Sandstone Members (left), and the 80 m thick, collapsed and 
gullied section (right) west of Guayaguayare Bay. The red dash lines 
indicate the irregular erosion surfaces separating gully infills and rotated 
slide blocks. 
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SEDIMENTOLOGY AND FACIES 

The studied succession within the Moruga Formation shows two main 

depositional environments from bottom to top: (i) upper slope to gullied upper slope, with 

various types of sediment gravity-flow deposits; and (ii) storm wave-dominated, sand-

rich outer-shelf-deposits (Figs 3.2 and 3.3). Nine facies are distinguished within these 

depositional environments and summarized in Table 3.1. 

Upper-slope to gullied uppermost-slope environment 

The upper slope to gullied uppermost slope environment (i.e. 0 to 140 m in Fig. 

3.3) exhibits six facies dominated by sediment gravity flow deposits. The gullies are 

bounded by frequent highly irregular erosion surfaces that have a relief of up to 10 m and 

occur within the interval 60 to 140 m in the studied succession (Figs 3.2 and 3.3). In 

places, disoriented blocks (facies F4) lie on the gully bases with their internal strata 

dipping more steeply than both the underlying and overlying strata. 

Facies 1 (F1): Deformed and disoriented blocks of swaley cross-stratified and 
hummocky cross-stratified sandstones 

Facies F1 occurs in the basal 20 m of the succession and contains large 

disoriented blocks (over 10 m diameter) of upper very fine-grained sandstones with 

undeformed amalgamated swaley cross-stratification and hummocky cross-stratification 

(SCS and HCS) (Fig. 3.4). The disorientation of the blocks is shown by their internal 

lamination being more steeply dipping (Fig. 3.4B and C) than the overlying strata. The 

individual swaley cross-stratified and hummocky cross-stratified bedforms in the 

sandstone blocks show a wavelength of 1 to 2 m and height of 10 to 20 cm. Abundant 

mudstone rip-up clasts are present on top of the irregular basal scour surfaces of 
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individual beds and laminasets (Fig. 3.4D and E). Slightly deformed heterolithic beds 

occur between the sandstone blocks (Fig. 3.4B). Bioturbation is sparse (BI = 0 to 1), and 

Ophiomorpha is observed in the sandstone blocks. 

The disoriented blocks of swaley cross-stratified and hummocky cross-stratified 

sandstones are interpreted as mass transport deposits which had collapsed from the storm 

wave-dominated delta front on the outer shelf or shelf edge area onto the slope. The small 

swaley and hummocky bedforms suggest that storm events were frequent and the 

unidirectional component of the storm-wave currents was weak prior to collapse (Dumas 

et al., 2005). The irregular basal scour surfaces with mudstone clasts strongly suggest 

erosion by storm waves. The deformed heterolithic beds between sandstone blocks 

probably represent shear zones developed during the slumping process (Martinsen and 

Bakken, 1990). The described hummocky structures in the collapsed blocks could also  

conceivably, before collapse, have been supercritical flow deposits (Mulder et al., 2009; 

Lang and Winsemann, 2013; Cartigny et al., 2014). However, the rare occurrence of 

Ophiomorpha in the blocks indicates a stressed condition caused by high freshwater 

discharge and turbulence, high sedimentation rates, or large oceanic waves or swells in 

the shelf margin (Hampson and Howell, 2005; Dasgupta et al., 2016). 
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Table 3.1: Summary of the facies in the storm-wave dominated outer-shelf delta front to upper slope environment of the 
mid-Pliocene Orinoco delta. 

environment Facies Grain-size & Bedding Sedimentary structures Depositional 
 
Interpretation 

 
1   Deformed and disoriented 

blocks of swaley & hummocky 
cross-stratified sandstones 

 
2   Chaotic deformed deposits 

(Type A) 
 
 

Chaotic deformed deposits 
(Type B) 

 
 

3   Convoluted heterolithic 
deposits 

Large blocks of upper-very-fine- 
grained sandstones (2 to >10 m 
diameter) 
 
Blocks of upper-very-fine-grained 
sandstones and heterolithic 
strata (0.1-1.5 m diameter); 
0.2-2.0 m thick 

Sandstone and siltstone clasts 
(1-20 cm long); 0.5-2.0 m thick 
 
 
Lower-very-fine-grained 
sandstones and siltstones; 
0.2-1.0 m thick 

Steeply-dipping strata in blocks; 
amalgamated swaley cross- 
stratification 
 
Chaotic clast-supported; 
subangular to subrounded 
clasts, muddy matrix 
 
Ungraded, poorly sorted 
siltstone and sandstone clasts, 
sandstone matrix 
 
Convoluted bedding/lamination 
with mudstone intruding upwards 

Upper slope 
 
 
 
Upper slope 
 
 
 
Gullied upper 
slope 
 
 
Upper slope 

Collapsed from storm wave- 
dominated delta front near the shelf 
edge 

 
High-strength cohesive debris flows; 
Slump deposits of delta front and 
prodelta deposits on the outer shelf / 
shelf edge 

Low to moderate-strength cohesive 
debris flows; collapsed from prodelta and 
delta front 
 
Downslope movement of 
unconsolidated sediment 

 
4   Displaced and rotated 

blocks 

 
5   Normally graded 

sandstones 

 
Blocks of heterolithic 
beds (5-10 m thick) 

 
Lower-very-fine-grained 
sandstones; 0.4-2.2 m 
thick 

 
Steeply-dipping strata; angular 
unconformities 

 
Normally-graded, sharp-based; 
structureless to parallel laminated; 
mud rip-up clasts on bottom 

 
Gullied upper 
slope 

 
Upper slope; 
gullied upper 
slope 

 
Back-tilted, rotational slides situated 
on bottom of slope gullies 

 
High-density turbidity currents 

 
6   Thin-bedded parallel- 

& ripple-laminated 
sandstones 

 
7   Amalgamated swaley 

cross-stratified (SCS) 
sandstones 

 
8   Hummocky cross- 

stratified (HCS) 
sandstones 

9   Siltstones and mudstones 

Lower-very-fine-grained 
sandstones; 2-6 cm thick 
 
 
Lower- to upper-very-fine- 
grained sandstones; up to 
3 m thick 
 
Lower-very-fine-grained 
sandstones; up to 0.5 m 
thick 

Siltstones and mudstones; 
0.5-9.0 m thick 

Parallel- and ripple-laminated 
sandstones; climbing ripples 
in places 
 
Flat-based, amalgamated; 
wave ripples on top in places; 
rare Ophiomorpha 
 

Flat-based; wave ripples; rare 
bioturbation 

 
Massive/graded and laminated; 
occasionally bioturbated 
(Chondrites, Planolites) 

Upper slope 
 
 
 
Outer-shelf delta 
front 
 

 
Outer-shelf delta 
front 

 
Upper slope; gullied 
upper slope; outer- 
shelf delta front 

Low-density turbidity currents 
 
 
 
Storm-wave-reworked deposits 
 

 
 
Storm-wave-reworked deposits 
 
 
Storm-wave-enhanced muddy 
sediment gravity flows; suspension 
of finer-grained sediment under 
low energy 
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Figure 3.4: Characteristic features of Facies F1. (A) Large disoriented blocks of swaley 
cross-stratified and hummocky cross-stratified sandstones. Note that the 
overlying strata is not shown here. (B) The slightly deformed interbedded 
sandstone and mudstone beds between the two undeformed sandstone 
blocks. (C) The sub-vertical orientation of sandstone blocks. (D) and (E) 
Detail of swaley cross-stratified and hummocky cross-stratified sandstones 
with mudstone clasts overlying the scour surfaces. 
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Facies 2 (F2): Chaotic deformed deposits 

Facies F2 is characterized by beds (0.5 to 2.0 m thick) with chaotic, poorly sorted 

sandstone and siltstone clasts (1.0 cm to 1.5 m diameter) supported by a sandy or muddy 

matrix (Fig. 3.5). Scoured and highly irregular basal surfaces are commonly observed. 

Two types of deposit are identified in the succession: (i) Type A beds with large and 

poorly sorted blocks (0.1 to 1.5 m diameter) within a mudstone matrix and preferentially 

occurring in the lower 20 to 30 m of the succession (Fig. 3.5A, B, and C); and (ii) Type B 

beds with smaller and better sorted clasts (1 to 20 cm diameter) in a very-fine-grained 

sandstone matrix occurring only in the middle of the succession (i.e. 60 to 140 m in Fig. 

3.3) (Fig. 3.5D and E). The blocks of Type A beds comprise mudstones, interbedded 

sandstones and siltstones, and swaley cross-stratified sandstones with rare Ophiomorpha 

and Thalassinoides (Fig. 3.5A, B, and C). Type B beds are stratified intraformational 

conglomerates and contain smaller and well-rounded very fine-grained sandstone clasts 

(ca 20%) and larger sub-rounded siltstone clasts (ca 80%) in a structureless and muddy 

sandstone matrix (Fig. 3.5D and E). The muddy sandstone matrix is grey-colored and 

characterized by poorly sorted sands with abundant millimeter-scale mudstone clasts, and 

contains vertical pipes that are perpendicular to the original bedding in places (Fig. 3.5D 

and E). No bioturbation (BI = 0) is observed in the deposits. 
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Figure 3.5: Chaotic deformed deposits (F2). (A) Irregularly based, large-scale 
chaotically deformed bed of F2 underlain and overlain by a thick sandstone 
bed (F5). (B) Sandstone and heterolithic blocks supported by muddy matrix 
with smaller dispersed mudstone clasts. (C) Possible swaley cross-stratified 
sandstone block with Ophiomorpha (O) and Thalassinoides (Th). (D) and 
(E) Stratified conglomerates of mudstone and sandstone clasts dispersing in 
structureless sandstone matrix in which pipes are well developed. 
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Because of their poor sorting and the matrix-rich character of beds, Type A and B 

beds are interpreted as debrites formed by en masse deposition from cohesive debris 

flows so as that the clasts do not segregate by differential settling (Talling et al., 2012a). 

Type A deposits occurring in the lower part of the succession are interpreted as high-

strength cohesive debris-flow deposits which commonly occur on slope settings 

(Tripsanas et al., 2008; Piper and Normark, 2009; Talling et al., 2012b). Some authors 

(Dzulynski, 1963; Strachan, 2008; Oliveira et al., 2009) have also defined such beds as 

incoherent slumps because the indurated broken beds with original bedding were mixed 

with and incorporated mud from mass transport on the slope. The chaotic blocks of 

sandstone and heterolithic strata within the Type A debrites are attributed to slumped, 

down-slope movement of broken blocks, probably derived from the topographically 

higher shelf-edge area. The sandstone blocks with swaley cross-stratification and rare 

bioturbation probably originated from wave-influenced delta-front deposits on the outer 

shelf or shelf edge, whereas the heterolithic blocks were derived from the prodelta area. 

Cohesive debris flows of the Type A debrites tend not to mix efficiently with surrounding 

seawater. Type B deposits occur preferentially in the gullied upper-slope part of the 

succession and likely result from low to moderate-strength cohesive debris flows (Talling 

et al., 2012b). The muddy sandstones in the upper part of Type B beds suggests that there 

was some mixing with the ambient medium along the uppermost surface of beds to 

produce more dilute sediment suspensions of turbidity currents, in contrast with high-

strength debris flows (Mulder and Alexander, 2001). The pipes in the Type B sandstones 

are water-escape structures created by over-pressured pore water flowing upward after 

deposition of the debris flows (Marr et al., 2001). The sub-angular siltstone clasts of the 

Type B debrites indicate transportation over short distance from the prodelta deposits or 

from locally collapsed gully margins. In contrast, the well-rounded and well-sorted 
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sandstone clasts within the Type B debrites may suggest transportation over longer 

distances from collapsed, delta front deposits. The clast-rich character of the low to 

moderate-strength cohesive debris-flow deposits suggests that they may have transported 

sediment over longer distances down the slope (Nelson et al., 1992; Schwab et al., 1996; 

Talling et al., 2010; Talling et al., 2012a). The highly irregular basal surface of facies F2 

(Fig. 3.5A) is likely to represent antecedent topography rather than erosion caused by the 

debris flows, because hydroplaning in such subaqueous debris flows may lubricate the 

base of the flow, contributing to flow mobility downslope on the sea floor (Mohrig et al., 

1998). However, the local erosion surfaces between the conglomerate beds were probably 

created by debris flows. 

Facies 3 (F3): Convoluted heterolithic deposits 

Facies F3 is characterized by deformed and convoluted heterolithic beds at a 

variety of scales (0.2 to 1.0 m thick) and is commonly underlain and overlain by 

undeformed beds (Fig. 3.6). Deformed beds of facies F3 are the most common in the 

lower parts of the succession and show a decrease in scale and degree of distortion 

upwards through the succession. The deposits are commonly loaded into underlying 

mudstones, and they demonstrate a pattern of broad synclines and sharp anticlines with 

random to roughly parallel fold axes verging towards the north-east (Fig. 3.6). 

Bioturbation is absent (BI = 0) in F3.  

Facies F3 is the product of downslope movement that commonly occurs in 

unconsolidated sediment as a result of gravitational forces (Owen et al., 2011). The 

upward decrease in scale and degree of distortion indicate decreasing gradients from the 

upper slope towards the outer shelf. The downslope movement took place shortly after 

sediment deposition on unconsolidated cohesive muds, where differential density at the 
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interface of dense sediment deposited over less dense water-filled mud (Owen, 2003). 

The convoluted deposits are coherent as the original bedding is only partially disrupted, 

and are dominated by vertical displacements resulting from the gravitational force 

associated with reverse density systems and possible horizontal shear stress as they 

accumulated rapidly on the slope (Mills, 1983; Oliveira et al., 2011). The consistent 

inclination of fold axes that exhibit a non-random alignment provides evidence for slump 

movement down a north-eastward-dipping slope. The lack of bioturbation supports the 

stressed condition of the upper slope environment. 

 

 

Figure 3.6: Varieties of convolute-laminated layers interbedded with undisturbed beds 
of lower very fine sandstone and siltstone. (A) 1 m thick convoluted bed 
bounded by undeformed heterolithic beds. (B) and (C) Detail of convolute 
bedding in figure (A). (D) One small-scale (10 cm thick) contorted 
heterolithic bed loaded into underlying mudstone. 
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Facies 4 (F4): Displaced and rotated blocks 

Facies F4 is characterized by very large (5 to 10 m thick), disoriented blocks of 

heterolithic beds consistently lying with their internal strata dipping more steeply than 

both the underlying and overlying strata (Fig. 3.7). It is noticeable that the rotated strata 

commonly dip towards the west (i.e. paleo-landward, such that the blocks have rotated 

back into the slope), and the underlying strata display contorted beds in places (Fig. 3.7). 

The top and basal surfaces of the blocks are highly irregular and dip towards the north-

east. The lower very fine-grained sandstone beds in the rotated block are internally 

deformed and loaded into the underlying mudstones (Fig. 3.7A). Scour surfaces (up to 1 

m deep) occur in the blocks in places and are filled by interbedded sandstones and 

mudstones. Bioturbation is absent (BI = 0). 

The disoriented blocks of heterolithic strata are interpreted to represent landward 

back-tilted blocks that slid out from slump scars and came to rest at the terminus of the 

slide track. The slide track then attracted sediment gravity flows, and became infilled as a 

gully. The highly irregular basal surface of each interpreted gully suggests that it 

developed as a slump scar rather than from sediment-gravity flow erosion (Mohrig et al., 

1998). The north-easterly dip of the scour surfaces suggests that they were aligned down 

the slope, although two-dimensional and three-dimensional geometry of the surfaces is 

not demonstrated in the exposure. The steeply-dipping strata in the blocks below the 

gully bases are back-tilted toward the shelf because of listric rotation during their 

collapse down the slope, and the less steeply-dipping underlying and overlying strata 

represent the gully infills. The interbedded sandstones and mudstones with internal 

deformation, the lack of bioturbation, together with the landward backtilting strata in the 

blocks suggest that these blocks were probably derived from the shelf edge and upper 

slope where the slope was unstable (Deibert et al., 2003; Carvajal and Steel, 2009; Dixon 
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et al., 2012a). The scour surfaces in the blocks were probably formed by small-scale 

collapse due to sediment instability. 

 

 

Figure 3.7: (A) Disoriented, steeply-dipping block underlain by the high irregular base 
of Gully 3 with the unconformably overlying gully-infill strata. The 
sandstone beds are internally deformed and loaded into the underlying 
mudstones in places. (B) The muddy and steeply-dipping block underlain by 
the slightly contorted strata of Gully 5 and overlain by the less steeply-
dipping, infilled strata of Gully 6. White solid lines indicate gully 
boundaries, white dashed lines indicate contacts between rotated blocks and 
overlying gully infills, and red arrowed lines represent bedding planes with 
different dip directions. 
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Facies 5 (F5): Normally graded sandstones 

Facies F5 (total thickness ca 30 m) is dominated by normally graded lower very 

fine-grained sandstone beds (0.4 to 2.2 m thick) that are structureless to parallel-

laminated and ripple-laminated. Packages of F5 commonly alternate with slumped 

deposits (Fig. 3.8). The sandstone beds are sharp-based and erosional into the underlying 

muddy deposits (Fig. 3.8A and B). Mudstone rip-up clasts (millimetre to centimetre long) 

are distributed along discrete horizons in structureless sandstones rather than being 

chaotically dispersed (Fig. 3.8B). Thick sandstone beds (1.0 to 2.2 m thick) commonly 

occur in the lower part of the measured section (0 to 30 m in Fig. 3.3), and they are 

structureless and progressively grade upwards into parallel lamination which becomes 

convolute (Fig. 3.8B and C). In places, the sandstones exhibit a basal coarsening-up unit 

(i.e. parallel-laminated sandstones grade upward to structureless sandstones) overlain by 

a fining-up unit (i.e. structureless sandstones grade upward to parallel-laminated 

sandstones) (Fig. 3.8C). The relatively thin graded sandstone beds (0.4 to 1.0 m thick) 

(Fig. 3.8D to F) are well-developed in the middle measured section (50 to 100 m in Fig. 

3.3). No bioturbation (BI = 0) is observed in these deposits. 

The normally graded sandstones of F5 are interpreted as deposits of turbidity 

currents (i.e. turbidites). The beds include TA and TB-2 divisions of deposit-based 

classification of turbidites (Bouma et al., 1962; Talling et al., 2012b) and were deposited 

incrementally by high-density turbidity currents (Middleton and Hampton, 1973; Lowe, 

1982; Kneller and Branney, 1995; Talling et al., 2012b). The erosional surfaces and 

mudstone rip-up clasts on the bottom of the sandstone beds indicate erosion and sediment 

bypass by strong turbidity currents with high velocity. The lowermost structureless 

sandstone (TA) was probably deposited by a high-density turbidity current where 

sediment settled rapidly as sediment concentration increased and hindered settling 
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became dominant (Kneller, 1995; Kneller and Branney, 1995). The parallel laminated 

sandstones (TB-2) above the structureless interval (TA) represent the waning flow of high-

density turbidity currents where turbulence in the high-concentration near-bed layers (i.e. 

traction carpet) was strongly dampened (Kuenen, 1966; Leclair and Arnott, 2005; 

Sumner et al., 2008). Thus, sediments were abruptly deposited and subsequent lateral 

shearing over a short distance produced parallel-lamination (Sumner et al., 2008). The 

occasional convolute laminations in parallel laminated sandstones (Fig. 3.8C) are 

attributed to dewatering caused by rapid deposition (Bouma et al., 1962; Talling et al., 

2012b). The coarsening-upward and fining-upward sandstone beds suggest hyperpycnal 

flows in which the flows were sustained over long time intervals by increasing/waxing 

and decreasing/waning discharge (Mulder et al., 2003). The thicker turbidite sandstones 

which are structureless or contain parallel-lamination (1.0 to 2.2 m thick) are interpreted 

as deposits near the gully axis, and the thinner turbidite sandstones (0.4 to 1.0 m thick) 

with parallel-lamination interpreted to be more common near transitional areas towards 

the gully margins (Hirayama and Nakajima, 1977; Kneller and Branney, 1995). 
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Figure 3.8: Characteristics of thick sandstone facies (F5) on the uppermost slope. (A) 
Thick sandstone beds are sharp-based and erosional into the underlying 
deposits, and they are commonly associated with facies F2 and F6. (B) 
Normally graded structureless sandstone bed with sharp-based erosional 
surface and floating mud clasts. (C) Sandstone bed exhibits coarsening-up 
(TB-2 to TA) and fining-up (TA to TB-2) units. (D) and (E) Normal graded 
sandstone beds within upper slope gullies. (F) Stacked sandstone beds with 
flame structures and sandstone clasts. 

 

 



 63 

Facies 6 (F6): Thin-bedded parallel-laminated and ripple-laminated sandstones 

Facies F6 beds (total thickness ca 25 m) are characterized by thin-bedded lower 

very fine-grained sandstones (up to 20 cm thick) with parallel-laminations and ripple-

laminations, commonly interbedded with siltstones and mudstones (Fig. 3.9). The 

sandstones are sharp-based and flat-based and display normal grading with parallel-

lamination progressively changing upward into ripple lamination (Fig. 3.9C and D). 

Climbing-ripple cross-lamination is developed in places, displaying low climb angles 

(<15°) with partial erosion of ripple stoss sides (Fig. 3.9E to H). Paleocurrent direction 

estimated from rippled-laminated sandstones (NNE to ESE) are typically sub-parallel to 

the regional down-slope directions (east to north-east). No bioturbation (BI = 0) is 

observed.  

The parallel-laminated and ripple-laminated sandstones are interpreted as deposits 

from low-density turbidity currents (Middleton and Hampton, 1973; Lowe, 1982; Kneller 

and Branney, 1995; Talling et al., 2012b), and they represent TB-1 and TC intervals, 

respectively (Bouma et al., 1962; Talling et al., 2012b). The parallel-laminated sandstone 

beds are interpreted as TB-1 because: (i) they are finer-grained than those in facies F5; (ii) 

they occur commonly below the ripple-laminated sandstones (TC); and (iii) their 

thickness is less than 40 cm, as noted for low-density turbidites in the literature (Sadler, 

1982; Talling, 2001; Sylvester, 2007; Talling et al., 2007). The ripple-laminated 

sandstones (TC) record deposition from low sediment fallout rates from suspension by 

dilute and fully turbulent flows (Baas, 1999). The presence of climbing ripples indicates 

that the rates of suspended-load fallout were relatively high, and that the bedload 

transport rates were relatively low (Allen, 1970). The low climb angles of the ripples and 

partial stoss side erosion suggest that they are subcritical climbing ripples that were 

caused by lower suspended-load fallout rates and higher bedload transport rates than 
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those of supercritical climbing ripples (Allen, 1973; Jobe et al., 2012). The thin low-

density turbidites (up to 20 cm thick) with flat bases were probably deposited by waning 

turbidity currents on the upper slope areas. 

 

 

Figure 3.9: Characteristics of thin-bedded parallel- and ripple-laminated sandstones 
(F6). (A) and (B) Parallel-laminated sandstones interbedded with siltstones. 
(C) and (D) A normal graded bed with parallel-lamination grading into 
ripple-lamination. (E), (F), (G) and (H) Low-angle climbing ripples. 
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Upper Slope Facies Summary 

The upper slope to gullied uppermost slope environment preserved a variety of 

sediment gravity flow deposits. The upper slope environment was dominated by muddy 

and sandy turbidites, debrites and blocks collapsed from the outer shelf (Figs 3.2 and 

3.3). The overlying, gullied uppermost slope succession is mudstone-dominated and 

displays six sediment-gravity-flow-filled gullies, three of which rest on rotated slide 

blocks with a capping of debris-flow conglomerates and turbidite beds (Figs 3.2B-C and 

3.3). The highly irregular erosion surfaces are interpreted as slump scars (i.e. the 

excavated track of the slides) which attracted subsequent infilling by sediment gravity 

flows. The abundance of turbidites, debrites, slumped blocks and other soft-sediment 

deformed units (Facies F1 to F6) all suggest that the lower part of the study succession, 

was situated in the upper-slope environment. In particular, the very large collapse blocks 

of consolidated hummocky and swaley cross-stratified sandstones (Facies F1) strongly 

support that the setting was below the shelf edge and not landward of the shelf edge. The 

lack of bioturbation in these facies, except for the collapsed blocks from the outer shelf, 

further supports the interpretation of upper slope environment. 

Outer shelf environment 

The upper part of the study succession (140 to 260 m in Fig. 3.3), interpreted as 

outer shelf environment, is characterized by muddy deposits grading upward into 

repeated upward-coarsening and upward-thickening packages of sandstones (Fig. 3.10A). 
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Figure 3.10: (A) The delta-front environment is characterized by repeated upward-
coarsening and upward-thickening motifs (1 to 3 m thick). (B) and (C) 
Photograph and sketch of amalgamated swaley cross-stratified sandstone 
sets (F7) illustrating scour surfaces mantled with mudstone clasts and 
overlying undulating lamination gradually changing to upward-flattening 
lamination. (D) The underlying muddy prodelta deposits, transitional 
between the overlying delta front and underlying gullied upper slope, 
contain sets of isolated to amalgamated, sand-filled gutter casts. (E) and (F) 
Single hummocky cross-stratified sandstone bed (F8) displaying parallel 
lamination and slightly upward-arching lamination.   
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Facies 7 (F7): Amalgamated swaley cross-stratified (SCS) sandstones 

Facies F7 comprises thick units of lower to upper very fine-grained sandstones 

(containing cosets of cross-strata up to 3 m thick), characterized by amalgamated sets of 

low-angle cross-strata (Fig. 3.10A to C) with sharp tops and bases bounded by 

mudstones. The thickness of the swaley cross-stratified sandstone units increases upward 

in the succession, and mudstone bed thickness decreases correspondingly. Individual 

sandstone laminasets are bounded by low-angle (up to 30° dip) erosional surfaces with 

internal laminae approximately parallel to the lower bounding surfaces and gradually 

passing upward into flat laminae (Fig. 3.10B and C). The scours are 1 to 10 m wide and 

10 to 40 cm deep, and are commonly mantled with well-rounded mudstone clasts. Sets 

commonly show long wavelength (up to 10 m long) concave laminations that overlie a 

flat to undulose basal scour surface with an upper symmetrical-ripple laminated zone (5 

to 20 cm thick). Plant fragments occur in places, and bioturbation is scarce (BI = 0 to 1) 

with occurrence of Ophiomorpha.  

The swaley cross-stratified (SCS) sandstones represent high energy storm-wave 

reworking of sand deposits between storm-wave base and fair-weather-wave base. The 

deposits were generated by combined flows that most probably had a strong oscillatory 

component (during the storms) with a weak unidirectional component (Southard et al., 

1990; Dumas et al., 2005; Dumas and Arnott, 2006). The preferential preservation of 

erosional swales over constructional hummocks is because of deposition in relatively 

shallow water where the scouring is frequent and the aggradation rate is low (Dumas and 

Arnott, 2006). The symmetrical ripples are wave ripples either formed by wave 

reworking during the waning stage of a storm or later fair-weather conditions (Bowman 

and Johnson, 2014). The sequence of sharp-based SCS with mudstone clasts to wave-

rippled beds on top records rising and waning stages of a storm event as follows: (i) 
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during the rising phase of the storm, sediment is suspended and the muddy sea floor is 

eroded to form the erosional surface; (ii) as the storm starts to wane, initial parallel-

laminated sand is deposited under powerful combined flow conditions; (iii) as the storm 

continues to wane, sediment settling forms SCS, eventually mantled by small wave 

ripples (Cheel, 1991; Cheel and Leckie, 1993; Plint, 2010). The rare bioturbation and 

occasional plant fragments suggest a stressed condition due to close proximity to a river 

as the sediment source (MacEachern et al., 2005; Buatois et al., 2012) with additional 

factors such as oceanic swells (Dasgupta et al., 2016), and therefore the facies is 

interpreted as storm-wave reworked proximal delta front. 

Facies 8 (F8): Hummocky cross-stratified (HCS) sandstones 

Facies F8 consists of lower very fine-grained sandstones (10 to 50 cm thick) 

commonly overlying mudstones (10 to 70 cm thick), and they typically occur in the 

muddy succession (i.e. 140 to 180 m in Fig. 3.3). The bases of sandstone beds are 

irregular and sharp as isolated gutter casts (10 to 80 cm deep and 3 to 15 m wide) that 

become amalgamated in places (Fig. 3.10D), and they grade upward into flat and sharp 

bases (Fig. 3.10E and F). The sandstones are characterized by a thin unit of parallel 

lamination progressively grading upward to concave-upward laminations (Fig. 3.10E and 

F). The internal stratification within the sandstone beds is very low angle (less than 15°) 

and defines concave-convex geometries with wavelengths of 3 to 5 m. Overall the 

bioturbation in the HCS sandstone beds is rare (BI = 0 to 2) with the occurrence of 

Ophiomorpha, Skolithos, Zoophycos, Phycosiphon and Planolites in places.   

The convex-upward lamination style in this facies is characteristic of hummocky 

cross-stratification (HCS) displaying geometric similarity to swaley cross-stratification 

(SCS) but generally occurring below SCS in an upward coarsening shallow-marine 
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succession (Leckie and Walker, 1982; Duke, 1985). The gutter casts represent erosion of 

the substrate caused by storm waves. The HCS is generated by storm-wave currents 

under combined flows with a strong oscillatory component and a weak unidirectional 

component between storm-wave base and fair-weather-wave base (Dumas et al., 2005; 

Dumas and Arnott, 2006; Plint, 2010). The preferential preservation of hummocks rather 

than swales indicates that the sediment aggradation rates were sufficiently high to accrete 

sediment vertically (Dumas and Arnott, 2006). The scarcity of trace fossils and 

significant thickness of associated mudstones (10 to 70 cm thick) suggest that they were 

storm-wave reworked distal delta front deposits. 

Facies 9 (F9): Siltstones and mudstones 

Facies F9 consists of dark grey, structureless/graded to laminated siltstone and 

mudstone beds (forming units 0.5 cm to 9.0 m thick) and occurs throughout the study 

succession (Fig. 3.11). In the upper third of the measured section (Fig. 3.3), inversely to 

normally graded beds of siltstones and mudstones are observed in places, and they 

commonly overlie rippled sandstones with sharp erosional bases (Fig. 3.11B). The cross 

laminae of the ripples are tangential towards the lower set boundary and dip at variable 

angles in opposite directions (Fig. 3.11B). The bioturbation is rare with an assemblage of 

Chondrites and Planolites (BI = 0 to 1) in the siltstones and mudstones (Fig. 3.11C). 

Siltstone and mudstone beds in other parts of the section described here are faintly 

laminated to structureless and lack bioturbation (BI = 0). 
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Figure 3.11: Characteristics of siltstones and mudstones (F9). (A) Thick dark-grey 
laminated mudstones. (B) Inversely to normally graded beds of siltstones 
and mudstones overlying the lenticular and wave-rippled sandstones with 
sharp wave-scoured bases. (C) Bioturbated mudstone beds showing 
Chondrites (Ch) and Planolites (P) trace fossils. 

The siltstone and mudstone beds in the upper third of the measured section (Fig. 

3.3) were deposited in a delta front and prodelta setting. The oppositely dipping ripple 

laminae with variable dip angles are interpreted as wave ripples (de Raaf et al., 1977). 

The sharp erosional bases to the rippled sets represent storm-wave-generated scoured 

surfaces on which the wave ripples were subsequently deposited. The overlying inversely 

to normally graded siltstones and mudstones are interpreted as the products of storm-

wave-enhanced muddy sediment gravity flows given the fact that the muddy beds are 
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commonly associated with wave ripples (Bhattacharya and MacEachern, 2009; 

Macquaker et al., 2010; Plint, 2014). Alternatively, the inversely to normally graded 

siltstones and mudstones can also be turbidites (mud density flows) (McCave and Jones, 

1988; Talling et al., 2012b) or hyperpycnal flow deposits (Mulder et al., 2003). The low-

diversity and low abundance trace fossil assemblage in the laminated siltstone and 

mudstone beds suggests a rapidly deposited muddy deposit (Bhattacharya and 

MacEachern, 2009) and/or a stressed-shelf environment indicating the proximity to delta 

distributary mouths (MacEachern et al., 2005; MacEachern and Bann, 2008). The 

structureless and unburrowed mudstones in the lower section (i.e. 0 to 140 m in Fig. 3.3) 

suggest rapid deposition of cohesive muddy debris flow (Mulder and Alexander, 2001). 

The parallel-laminated mudstones in the upper slope environment indicate deposition 

under low-energy conditions. 

Outer Shelf Facies Summary 

The outer shelf environment exhibits muddy prodelta deposits grading upward 

into sandy delta-front deposits dominated by hummocky cross-stratified and swaley 

cross-stratified sandstones. The coarsening-upward succession, coupled with rare 

bioturbation represents the progradation of storm wave-dominated delta front on 

individual deltaic lobes. The isolated hummocky cross-stratified sandstone beds gradually 

changing upward to amalgamated swaley cross-stratified sandstone beds indicate 

increased storm-wave influence upward in the delta front. Despite the common absence 

of distributary channels cutting down into delta front strata, the interpretation of storm 

wave-dominated shelf-edge delta rather than a simple, non-deltaic outer shelf is also 

supported by the sand-prone character of the succession and the clear upward-coarsening 
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character of the 200 m thick units, implying marked progradation of the shelf edge (Fig. 

3.1B and C) (Sydow et al., 2003; Dixon, 2005). 

DEPOSITIONAL ENVIRONMENT AND PALEOGEOGRAPHY 

The deposits of the mid-Pliocene Moruga Formation as described above exhibit a 

range of depositional systems from sand-rich, outer-shelf and shelf-edge wave-dominated 

delta lobes of the Trinity Hills Sandstone (Facies F7 to F9) transitioning downward to the 

St. Hilaire Siltstone that is dominated by very large slide blocks and intervening irregular 

gullies filled with mudstone and sandstone sediment-gravity flow deposits. At the base of 

the study succession there is a large, chaotically infilled area with mass transport 

deposits, all within an upper slope setting (Facies F1 to F6) (Fig. 3.12). A great thickness 

of muddy St. Hilaire Siltstone (>200 m thick), which represents deepwater slope deposits, 

occurs below the study area but is only rarely exposed. 

Although the wave-dominated deltas on the outer shelf are likely to have had a 

lower number of coeval distributary channels than those in river-dominated deltas 

(Bhattacharya and Giosan, 2003), the high sediment supply of the paleo-Orinoco River 

would have enabled the delivery of large volumes of sand to the delta front. The open 

Atlantic storm waves and swells subsequently reworked sands into laterally extensive 

delta lobes and strandplains close to the shelf edge (Fig. 3.12). Evidence from nearby 

well data (Sydow et al., 2003) suggests that the outer shelf sandstone belts commonly 

accumulated thicknesses up to 200 m on the outermost and deepest parts of the shelf. The 

location of the study site was probably adjacent to one of the delta distributary mouths 

because marine bioturbation is not well-developed (Facies F7, F8 and F9). 
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Figure 3.12: (A) Schematic three-dimensional block diagram of the interpreted paleo-
geomorphology and depositional environments in the mid-Pliocene Orinoco 
Delta (Moruga Formation). Slope gullies extended back onto storm wave-
dominated delta front on the outer shelf, captured longshore-drifted sands, 
and transported sands to the deep water. Turbidites in the amalgamated 
gullies are shown by a range of orange color to illustrate that they are 
derived from different episodes of gully infilling processes. (B) Cross-
section view along the depositional strike illustrating stacked gullies filled 
with a variety of mass-transport and sediment gravity flow deposits. The 
dashed line indicates a possible master collapsed surface which constrains 
the development of amalgamated gullies. (C) Cross-section view along the 
depositional dip illustrating the collapsed scar of shelf margin with the 
overlying sets of slope gullies and renewed delta front deposits. Note that 
the rotational slides in the gullies are preserved near the base of each slump 
scar. 
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As the basinward-dipping gradient of the shelf-margin clinoform increased, 

slumping and mass wasting processes became dominant, leading to the generation of 

turbidity currents and debris flows on the slope (Mayall et al., 1992; Porębski and Steel, 

2003). High sediment supply, together with storms and river floods, caused sets of gullies 

to be initiated on the upper slope by slope failure processes and eventually to be filled 

with debris-flow and sandy turbidite deposits (Fig. 3.12). Sandy sediment may also have 

been captured from the shelf-edge sandbelts through sets of gullies and delivered directly 

to the deepwater settings (Puig et al., 2003; Marchès et al., 2007). The stacked character 

of the gullies and common paleocurrent direction (north-east) measured from gully infill 

deposits indicate the gullies were probably constrained by an underlying larger conduit 

such as a master erosion/collapsed surface, fault, or canyon (Coleman et al., 1983; 

Surlyk, 1987; Sylvester et al., 2012). However, it is not possible to draw further 

conclusions about any such larger conduit due to limited data (see also Dasgupta and 

Buatois, 2015). 

MODEL FOR STRATIGRAPHIC EVOLUTION OF AN UNSTABLE, WAVE-DOMINATED 
SHELF-MARGIN 

Stage I: Storm wave-dominated shelf-edge delta aggradation and collapse 

Marked aggradation of Orinoco delta lobes at the shelf edge (Wood, 2000; Chen 

et al., 2016), is likely to have produced a potentially unstable shelf margin (Fig. 3.13A 

and B). The deformed blocks of swaley cross-stratified and hummocky cross-stratified 

sandstones in the basal studied succession (Figs 3.2 and 3.3) confirm that they were 

deposited and had become consolidated before the collapse event due to the delta 

aggradation. Several mechanisms can cause the instability of the shelf margin, such as 

overloading due to either high sedimentation rates (Laugier and Plink‐Björklund, 2016), 



 75 

over-steepening in the distal parts of shelf-edge deltas, strong storms, or earthquakes 

(Moscardelli and Wood, 2008; Romero-Otero et al., 2010). The overloading of the shelf 

edge in this study is favored for the following reasons: (i) large volumes of sediment 

were supplied by the delta distributaries to the delta front, and they became subsequently 

reworked by storm waves and trapped at the shelf edge leading to overloading; and (ii) 

the repeated collapse and infill episodes of gullies as well as continued progradation (also 

see stage II) indicates that sediment supply was extremely high. The local collapse of the 

shelf edge and uppermost slope at this time resulted in a very rugose upper-slope 

morphology, also because smaller slope collapses were initiated elsewhere on the slope 

(Figs 3.12 and 3.13). 

Stage II: Intermittent healing of a deforming shelf edge and slope: local slope 
collapse caused repeated and widespread back-tilted, rotation of strata and 
subsequent formation of slide-scar gullies; gullies become infilled 

The continued progradation of the delta began to heal the collapsed and excavated 

shelf margin by delivering sediment from the outer shelf to the upper slope (Fig. 3.14C to 

E). The turbidites and slump units in the lower part of the succession (i.e. level 20 to 60 

m in Figs 3.2 and 3.3) contributed to the early infill of the initial collapses on the 

uppermost slope (Fig. 3.3). The continued and repeated collapse of the shelf edge to 

upper-slope region (i.e. the level at 60 to 140 m in Figs 3.2 and 3.3) suggests that the 

shelf margin was still unstable (Moscardelli and Wood, 2008; Romero-Otero et al., 

2010), and that mass wasting was frequent leaving slump scars and downslope removal 

of strata (Callot et al., 2009; Ito, 2013). The outcrop evidence of this is the development 

of at least six phases of collapse and accompanying landward rotation and backtilting of 

strata (Figs 3.2 and 3.3), seen by an angular unconformity between many of the rotated 

blocks and the flat-lying overlying infill strata (Figs 3.2 and 3.3). The disruption of the 
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slope by each of these events probably created low-lying topographic conduits or gullies, 

into which new sediment as turbidites and debris flows was eventually channelled. The 

resedimentation and sediment draping into each slump scar, was generated from either 

turbidites captured from the shelf-edge delta lobes by frequent storm or flooding events 

or turbidites and debrites derived from the slope failure processes themselves. Deposition 

in the gullies eventually terminated in slope lobes. The healing process of the shelf 

margin was eventually completed after multiple phases of collapse, gully generation and 

infill (Fig. 3.13E). 

Stage III: Continued shelf-edge progradation across the stable rebuilt shelf margin 

The repetitive processes of gully formation and infilling ultimately healed the 

unstable and excavated slope, allowing the stable shelf margin to grow further forward 

(Fig. 3.13F). Packages of hummocky and amalgamated swaley cross-stratified sandstone 

beds (F7 and F8) in the upper part of the succession (i.e. 140 to 260 m in Fig. 3.3; Trinity 

Hill Sandstone Member) display an overall coarsening-upward and thickening-upward 

trend indicative of a progradation of the storm wave-reworked delta front in the outer 

shelf environment. 
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Figure 3.13: Two-dimensional schematic cross-sections demonstrating stratigraphic 
evolution stages of the shelf-margin growth (Stages I, II and III) associated 
with the deltaic shelf-edge system. (A) and (B) Stage I: storm wave-
dominated delta front aggraded to produce an unstable shelf margin that 
subsequently collapsed down the slope. (C) to (E) Stage II: intermittent 
healing of the deforming shelf margin by local collapse, rotational blocks, 
and gully formation and infilling. (F) Stage III: renewed, storm-wave 
dominated delta front prograded out across the re-established, stabilized 
shelf margin. Note that the legend is the same as in Figure 3.12. 
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DISCUSSION 

Comparison with other shelf margins 

The unusual aspect of the Moruga Formation compared with other shelf margins 

is the occurrence of multiple stacked or amalgamated gullies at the shelf edge and 

uppermost slope within the study area. The amalgamated gullies that incised the outer 

shelf were able to capture and funnel the sediment from the shelf basinward to the deep-

water setting. A series of previously documented shelf margins, including Clinoform 17 

of the Eocene margin of western Spitsbergen (Uroza and Steel, 2008), the Oligocene Frio 

Formation in the Gulf of Mexico (Olariu et al., 2013), the Pliocene–Pleistocene Mayaro 

Formation of the Orinoco Delta (Bowman and Johnson, 2014; Dasgupta and Buatois, 

2015), the Pleistocene Fuji-Einstein system in the northeastern Gulf of Mexico (Sylvester 

et al., 2012), the Kookfontein Formation in the Tanqua Karoo Basin (Dixon et al., 2013; 

Laugier and Plink‐Björklund, 2016), the Cretaceous deltas of eastern Spitsbergen (Nemec 

et al., 1988) and the Miocene Cruse Formation of the Orinoco Delta (Chen et al., 2016), 

exhibit a variety of sediment instability features in front of wave- or river-dominated 

shelf-edge deltas and are summarized in Figure 3.14 in terms of their degree of shelf-

margin instability and gully/channel formation and evolution.  
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Figure 3.14: Schematic comparison of six types of shelf margins with a variety of sediment instability features from outcrop 
and subsurface studies. Details are discussed in the text. 
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The Clinoform 17 of western Spitsbergen (Uroza and Steel, 2008) shows little 

sediment instability with a storm wave-dominated delta front at the shelf edge and thin 

sets of tempestites (storm beds) without gullies or channels formed on the upper slope. 

The lack of deformation has been attributed to the relatively low sediment supply of the 

Spitsbergen delta system as well as wave-dominated process regime during a rising 

relative sea level (Porębski and Steel, 2006; Carvajal et al., 2009). In examples of the 

Frio Formation of the Gulf of Mexico (Olariu et al., 2013; Olariu and Olariu, 2015) and 

Mayaro Formation of the Orinoco Delta (Bowman and Johnson, 2014), relatively small-

scale instability occurs in the form of local growth faults within the wave-dominated 

shelf-edge deltas as a result of high flux of sediment supply. The stacked gullies of the 

Moruga clinothem show that slope gullies/channels can develop in front of wave-

dominated shelf-edge delta when the sediment supply is sufficiently high to cause 

collapses. Such amalgamated gullies may possibly evolve to a larger conduit, which is 

exhibited by the Fuji-Einstein system in the northern Gulf of Mexico (Sylvester et al., 

2012). In the Fuji-Einstein system, the channels began to amalgamate to form a larger 

conduit that links shallow-water, wave-dominated shelf-edge delta and deep-water 

channel and canyon systems, which enabled the delivery of sediment to the deeper-water 

settings. In contrast to the Fuji-Einstein channel-levée system, the Moruga gullies 

described herein are characterized by more erosional rather than aggradational 

architecture (Clark and Pickering, 1996) and they represent embryonic stage of channel 

development before evolving to a sinuous graded slope channel.  

The Kookfontein clinothems of the Tanqua Karoo Basin (Dixon et al., 2013; 

Laugier and Plink‐Björklund, 2016) show sediment failures of mouth-bar deposits from 

terminal distributary channels and re-establishment of shelf-edge deltas. The relatively 

high sediment supply by distributary channels together with low gradient (0.5° to 0.75°) 
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led to sediment overloading at the shelf edge and subsequent collapse to the upper slope 

(Oliveira et al., 2011; Laugier and Plink‐Björklund, 2016). The Kookfontein example 

represents initial stage of slope channel formation in front of river-dominated deltas 

caused by collapse rather than hyperpycal flows such as in the Spitsbergen clinothems 

described by Plink-Bjorklund et al. (2001). The exposures of the Cretaceous Spitsbergen 

(Nemec et al., 1988) and Miocene Cruse Formation of the Orinoco delta (Chen et al., 

2016) demonstrate large-scale slope failure events followed by renewed, progradation of 

river-dominated shelf-edge deltas and subsequent channels on the shelf edge or upper 

slope. These clinothems probably represent larger and more established conduit systems 

on the slope.   

Facies of slope gullies compared with slope channels and reservoir implications 

Facies in slope gullies are poorly known although previous workers have used 

high-quality seismic data and seabed-imaging techniques to study the morphology of 

deep-water gullies (Surlyk, 1987; Chiocci and Normark, 1992; Field et al., 1999; Spinelli 

and Field, 2001; Surpless et al., 2009; Chiocci and Casalbore, 2011; Sylvester et al., 

2012; Lonergan et al., 2013; Prélat et al., 2015). Compared to the well-documented 

sinuous, aggradational slope channels which contain a variety of architectural elements 

(i.e. lateral accretion packages, nested mounds, outer-bank bars and levées) (Clark and 

Pickering, 1996; Abreu et al., 2003; Hubbard et al., 2009; Nakajima et al., 2009), the 

slope gullies are more likely to be straight and show more erosional features (for 

example, scours and slump scars) with fewer architectural elements, but they are filled in 

with a similar spectrum of sediment gravity flow deposits including slides, slumps, 

debris-flow deposits, and high-density and low-density turbidites. The Moruga gullies are 

identified by local angular unconformities between the background slope deposits and 
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gully-infill deposits. In places, back-tilted (landward) rotational blocks occur above local 

gully bases, and they are derived from shelf-edge and upper-slope collapse and 

subsequently lie in the distal reaches of slump scars. Slope gullies (i.e. chutes of up to 3 

m thick and 50 to 100 m wide) were also documented in the Eocene clinothems of the 

Central Basin (Spitsbergen), and they were filled with fine or medium-grained turbidites 

that are linked to hyperpycnal flows from distal distributary channel and mouth bar 

systems (Plink-Björklund et al., 2001) rather than collapses described herein.  

Upper slope gullies in front of wave-dominated shorelines are common in deltas 

that reach the shelf edge under a strong wave regime, such as along the Gulf of Mexico 

(Beaubouef and Friedmann, 2000; Sylvester et al., 2012), Rhone (Maillet et al., 2006) 

and Orinoco shelf edges (Dasgupta and Buatois, 2015). Wave-dominated delta and 

strandplain systems form high-quality reservoirs of laterally continuous belts of 

sandstones aligned sub-parallel to the paleoshorelines (Galloway and Hobday, 1983). As 

the wave-dominated deltas prograde to the shelf edge, the associated increase of 

accommodation would produce thick and strike-elongate sandbodies which are high-

quality reservoirs (Porębski and Steel, 2003; Sydow et al., 2003; Steel et al., 2007). 

However, the occurrence of slope gullies extending back onto the outer shelf may disrupt 

the continuity of such reservoirs. Slope gullies filled with heterolithic facies (Figs 3.2 and 

3.7) would constitute poor reservoirs and may form barriers to fluid flow. However, thick 

intervals of high-density turbidites in slope gullies (Fig. 3.8) could be good reservoir 

facies that form flow paths to locations beyond the shelf edge; they would have to be 

sealed by slope mudstones on their tops and margins in order to form stratigraphic traps. 
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CONCLUSIONS 

The mid-Pliocene Orinoco shelf margin (Moruga Formation near Guayaguayare 

Bay) demonstrates a range of depositional systems from a muddy, sediment-gravity flow-

dominated, upper slope to gullied uppermost slope succession (St. Hilaire Siltstone) 

rapidly transitioning upward to sand-rich, outer-shelf and shelf-edge wave-dominated 

delta lobes (Trinity Hills Sandstone).The 140 m thick sediment gravity flow and soft-

sediment deformation facies at the base of the documented succession are interpreted as 

deposits on the uppermost slope rather than those caused by shelf delta-front instability, 

because the very large collapse blocks of consolidated hummocky and swaley cross-

stratified sandstones strongly support that the setting was below the shelf edge rather than 

landward of the shelf edge. Local episodes of slope collapse are recognized in outcrop by 

angular unconformities separating landward-tilted strata evacuated from slope slump 

scars, from overlying flat or gently tilted gully-infill strata. The slope gullies created on 

top of the slump scars were filled with debrites and turbidites captured from the outer 

shelf.The study interval of the Moruga Formation provides insight to the growth 

mechanism of an unstable shelf margin in front of a storm wave-dominated delta system 

(paleo-Orinoco), as outlined by three sequential stages in shelf margin development: (i) 

the highly aggradational storm wave-dominated, shelf-edge delta front became unstable 

and collapsed near the shelf edge; (ii) the collapsed and excavated scars of the shelf 

margin gradually healed by subsequent repetitive aggradational episodes of gully 

formation and infilling; and (iii) the storm wave-dominated delta system prograded out 

across the healed and re-established shelf edge and slope, allowing renewed forward 

growth of the newly stabilized shelf margin. Storm wave-dominated shelf edges are often 

characterized by limited sand delivery immediately across the adjacent slope break, 

because of dominance of longshore, strike-feeding of sediment. However, amalgamated 
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gullies can form conduits that extend back onto the shelf edge to capture longshore 

drifting sand, thus providing the potential to deliver large volumes of sand across the 

upper slope to deep-water settings. 
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Chapter 4: Mixed-energy process interactions read from a compound-
clinoform delta (paleo-Orinoco Delta, Trinidad): preservation of river 

and tide signals by mud-induced wave damping2 

ABSTRACT 

A segment of the Pliocene Orinoco Delta on Trinidad preserved a progradational 

compound clinoform that reveals detailed interaction of river, wave, and tide processes 

with fluid mud at a scale of tens of meters to centimeters in the deposits. Based on 

sedimentary structures, grain size, bioturbation, and organic-matter content, each 

measured bed or bed set was assigned a probability percentage of having been dominated 

by a particular process and process probabilistic histograms were generated. 

Characteristic river signals in these deposits are rare, and are represented by outsized 

grain sizes, normally to inversely graded beds, and abundant organic matter, though 

organic matter can also be derived from vegetated supratidal areas without fluvial 

influence. Wave and storm-wave signals are recorded by symmetrical ripples, 

hummocky-swaley cross stratification, and a diverse ichnofauna. Tidal signals are 

represented by stacked, orderly cross-bedded sandstones with mud drapes, abundant 

mudstone layers, bidirectional ripple laminae, spring-neap tidal bundles, and a restricted 

ichnofauna. The study gave the following results: (i) at the scale of regressive 

parasequences (30-50 m), the intensity of preserved wave signals increased from the 

prodelta towards the outer delta-front platform and decreased to the inner delta-front 

platform, whereas there was a reciprocal trend in the intensity of tidal signals; the fluvial 

signals are generally not strong, but sometimes they become irregularly stronger towards 

                                                
2 This chapter has been published as: Peng, Y., Steel, R.J., Rossi, V.M., Olariu, C., 2018. Mixed-energy 
Process Interactions Read from a Compound-clinoform Delta (paleo–orinoco Delta, Trinidad): Preservation 
of River and Tide Signals By Mud-induced Wave Damping. Journal of Sedimentary Research 88, 75-90. I 
was the primary author who conducted the research and drafted this paper with co-authors’ help. 
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the upper levels of a parasequence, (ii) at the scale of individual spring-neap tidal bundles 

(centimeter to decimeter), thick tidal rippled sandstones with thin to partially eroded 

fluid-mud layers were deposited during spring tides, and thin tidal rippled sandstones or 

silt laminae with thick fluid-mud layers were deposited during neap tides on the middle-

inner delta-front platform; storm waves reworked the deposits mainly on the outer delta-

front platform. The observations suggest that the abundant fluid mud (transported by the 

wave-driven littoral Guyana Current from the Amazon river mouth) on the delta-front 

platform caused wave damping and the preferred preservation of river and tidal signals 

on the middle-inner delta-front platform and distal subaerial delta. 

INTRODUCTION 

Modern delta systems commonly exhibit compound clinoforms that consist of a 

subaerial clinoform and subaqueous clinoform with topset-foreset-bottomset morphology 

(tens of meters in relief) (Fig. 4.1A) (e.g., Pirmez et al., 1998; Driscoll and Karner, 1999; 

Kuehl et al., 2005; Swenson et al., 2005). The subaerial and subaqueous delta clinoforms 

are genetically and morphologically linked, and they are separated by a broad subaqueous 

platform as their bottomset and topset, respectively (e.g., Cattaneo et al., 2003; Swenson 

et al., 2005; Helland‐Hansen and Hampson, 2009; Walsh and Nittrouer, 2009; Patruno et 

al., 2015a). The subaerial delta clinoforms comprise delta plain, delta-front slope, and 

delta-front platform (or subaqueous clinoform), and the subaqueous delta clinoforms 

consist of delta-front platform, prodelta slope, and prodelta bottomset contiguous with the 

shelf (Fig. 4.1A). The topset-foreset rollover of the subaerial clinoforms is in proximity to 

the shoreline (e.g., Ta et al., 2002; Correggiari et al., 2005) occurring at water depths of 

less than 5 m, whereas the subaqueous clinoform rollover lies at a variable distance 
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(kilometers to tens of kilometers) offshore from the shoreline (Pirmez et al., 1998; 

Swenson et al., 2005) at water depths of up to 60 m (Patruno et al., 2015a).  

 

 

Figure 4.1: (A) Schematic cross section of a deltaic compound clinoform comprising 
subaerial and subaqueous clinoforms (modified after Helland‐Hansen and 
Hampson, 2009; Patruno et al., 2015a) associated with deltaic 
subenvironments. (B) Map view of the modern Orinoco delta and shelf with 
bathymetry and sediment distribution (modified after Warne et al., 2002). 
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The interplay of fluvial input with shallow marine hydrodynamics (i.e., tides, 

waves, and currents) controls the sediment dispersal and spatial separation of the 

subaerial and subaqueous clinoforms (Swenson et al., 2005; Walsh and Nittrouer, 2009). 

Subaerial clinoforms are mainly affected by fluvial discharge, whereas subaqueous 

clinoforms are formed by combined basinal processes (tides, waves, and currents) 

(Pirmez et al., 1998; Driscoll and Karner, 1999; Swenson et al., 2005; Rossi et al., 2016). 

Some deltas exhibit only a single clinoform when they discharge in low-energy marine 

(e.g., the Mississippi River delta) or lake settings. The compound clinoforms are well 

developed in modern muddy deltas situated in energetic marine environments, such as the 

Amazon (Kuehl et al., 1986; Nittrouer et al., 1986), the Ganges-Brahmaputra (Kuehl et 

al., 1997; Michels et al., 1998; Kuehl et al., 2005), the Yangtze (Hori et al., 2001; Liu et 

al., 2006), and the Fly River Delta (Walsh et al., 2004).  

The modern Orinoco delta, as one of these examples, also displays compound 

clinoform geometry with the subaqueous clinoform rollover at water depths of 10 m and 

10-50 km seaward from the coast (Fig. 4.1B) (Warne et al., 2002), and it is principally 

affected by waves, tides, and the northwest-directed Guyana Littoral Current. The 

Guyana Current transports suspended sediments derived from the Amazon River by 

fluid-mud banks migrating in the littoral zone (5 m to 20 m water depth or less) along the 

northeast coast of South America (Allison et al., 2000). The mud banks migrate 

alongshore by constant reworking of their trailing edges and transport of mud towards 

their leading edges by waves, during which process large volumes of fluid mud are held 

in suspension (Allison and Lee, 2004; Anthony et al., 2014). The Orinoco delta receives 

at least as much muddy sediments from the Amazon as comes from the Orinoco River 

itself (Eisma et al., 1978; Meade, 1994), and this additional mud promotes shoreline 

progradation during the Holocene rising to highstand of sea level (Aslan et al., 2003). 
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Although examples of modern subaqueous delta clinoforms or compound 

clinoforms have been increasingly documented, ancient examples have been documented 

only rarely (e.g., Hampson, 2010; Vakarelov et al., 2012; Patruno et al., 2015b; Rossi and 

Steel, 2016; Hampson and Premwichein, 2017), as the complexity of this process mixing 

is still understudied. In this study, a muddy compound clinoform of a tide-dominated, 

wave-influenced delta is described in outcrops where there occurs the distal part of a 

subaerial delta and the proximal to distal subaqueous delta in a clean, well-exposed, 

continuous stratigraphic segment of the Pliocene Orinoco Delta within the lower 

Telemaque Sandstone Member of the Manzanilla Formation on Trinidad. In addition, the 

outcrop demonstrates high-resolution and high-frequency variations of tide-, wave-, and 

river-generated facies at both large (i.e., tens of meters), medium (meter) and small 

(decimeter to centimeter) scales. The mixing of interacting river, wave, and tide 

processes in this succession is documented using a new quantitative methodology for 

highlighting process mixing to better understand how the processes interacted on a 

compound clinoform of the Orinoco Delta. Additionally, the role of the abundant fluid-

mud deposits in the study succession is evaluated in terms of how the mud, coming partly 

from the impinging Guyana Littoral Current system, impacted wave, tide, and river 

processes during construction of the muddy Manzanilla compound clinoform. 

GEOLOGICAL SETTING 

Trinidad lies in a plate-boundary zone of significant Neogene structural 

deformation caused by the Caribbean plate moving eastward and colliding with the South 

American plate. Intermittent tectonic activity across Trinidad, while the late Miocene-

Pliocene sedimentary succession was accumulating, caused southward thrusting and 

uplift of the Northern Range and probably of the Central Range (Tyson et al., 1991; Babb 
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and Mann, 1999), producing an incomplete separation of the Northern and Southern sub-

basins across which the northeastward- to eastward-directed Orinoco delta system moved 

(Fig. 4.2) (Tyson et al., 1991; Díaz de Gamero, 1996; Escalona and Mann, 2011).  

The Southern Basin (south of the Central Range) was filled by four large-scale 

clastic wedges as the late Miocene-Pliocene Orinoco Delta system migrated from west to 

east across Trinidad (Fig. 4.2) (Steel et al., 2007; Chen et al., 2018). These four phases of 

the late Miocene-Pliocene growth of the Orinoco shelf margin are: (1) the late Miocene to 

early Pliocene “Cruse” wedge, characterized in outcrop by partially collapsed shelf-edge 

deltas and deep-water slope and channel-levee systems (Vincent, 2012; Chen et al., 2016) 

reached as far as southwest Trinidad; (2) the early- to mid-Pliocene 

“Forest/Moruga/Mayaro” wedge, characterized by mixed-energy river- and tide-

influenced deposits in its landward reaches (Forest Formation), and the basinward-

equivalent wave-dominated Moruga (Bowman, 2003; Peng et al., 2017) and Mayaro 

formations, a series of storm-wave-dominated delta lobes that prograded as far as the east 

coast of Trinidad (Sydow et al., 2003; Dixon, 2005; Dasgupta and Buatois, 2012; 

Bowman and Johnson, 2014); (3) the mid-late Pliocene “Lower Morne L’Enfer” wedge, 

characterized by river- and tide-dominated deltas and estuaries in the landward reaches 

(Lower Morne L’Enfer Formation) (Vincent, 2003; Osman, 2007; Chen et al., 2014), and 

(4) the latest Pliocene to early Pleistocene “Upper Morne L’Enfer/Palmiste” wedge, 

characterized by extensive channelized and coal-bearing delta-plain deposits (Chen et al., 

2014). The Northern Basin, during the late Miocene-Pliocene, was filled by deepwater 

turbidites and muddy slope deposits (San Jose Siltstone; Fig. 4.2) as well as younger 

river- and tide-dominated delta deposits of the Manzanilla and Springvale formations 

(Huggins, 2007) derived from a northern branch of the paleo-Orinoco River, with some 
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contributions of coarse-grained sediments from the uplifted Northern Range source 

(Woodside, 1981).  

 

 

Figure 4.2: (A) Geologic map showing how the late Miocene-Pliocene Orinoco deltaic 
deposits are currently distributed in the Northern and Southern Basins of 
Trinidad. Particularly the Northern Range and to a lesser extent the Central 
Range had some syndepositional relief, whereas the Southern Range is 
mainly latest Pliocene and younger. (B) The studied succession of the 
Manzanilla Formation (lower part of Telemaque Sandstone Member) is 
located on the east coast of Trinidad. (C) Stratigraphic column for the 
Manzanilla Formation and tentative correlation to the formations of the 
Southern Basin, from the late Miocene to Pliocene. 
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The Manzanilla Formation crops out well on the eastern coast of Trinidad, and 

can be subdivided into the San Jose Siltstone Member, the Montserrat Sandstone 

Member, and the Telemaque Sandstone Member (Fig. 4.2) (Kugler, 1959). Because this 

segment of the paleo-Orinoco delta prograded between the Northern Range and 

embryonic Central Range, the Manzanilla Formation was probably somewhat protected 

from strong waves of the Atlantic Ocean and thus was dominated by river and tidal 

processes. The studied interval is a 125-m-thick succession from the mid-Pliocene 

Telemaque Sandstone Member, and represents a part of the paleo-Orinoco Delta that 

showed eastward progradation as a deltaic compound clinoform which exhibited an 

unusually well-preserved mix of tide, wave, and river signals. Although it is obvious that 

most of Trinidad since the late Miocene was constructed from the paleo-Orinoco system, 

the various scales of upward coarsening and thickening seen in the study succession 

strongly suggest the type of progradation that would be expected from forward and lateral 

movement of delta lobes. Previous large-scale study of the Manzanilla Formation (e.g., 

Huggins, 2007) also suggested a tide-influenced delta front and distributary channels in 

the context of the paleo-Orinoco delta. 

METHODOLOGY 

We follow the new field methodology of Rossi et al. (2017) whereby each 

measured bed or set was assigned three percentages, reflecting the probability that it was 

influenced by waves, tides, or river currents respectively, as judged against an extensive 

literature review of previous work including ancient and modern deposits, and 

experimental studies. The evaluation was done in this way because some sedimentary 

structures are reported as capable of being generated by more than one process. Process 

probabilistic histograms were generated by connecting percentage values of beds from 
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bottom to top in the study succession. The minor limitation of this method is a reliance on 

the original literature studies, which can occasionally be subjective and biased (Rossi et 

al., 2017). However, the methodology does provide a more accurate way to document 

temporal and spatial changes in process variability. In this study, the higher probability of 

a specific process (river currents, waves, or tides) is reflected by the following 

characteristics: (i) river signals in beds are illustrated by outsize grain sizes, structureless 

or normally graded beds, abundant organic-matter content, and rare or no ichnofauna, (ii) 

wave and storm-wave signals include symmetrical ripples (de Raaf et al., 1977) and 

hummocky-swaley cross stratification commonly associated with diverse ichnofauna, (iii) 

tidal signals are stacked, orderly cross-bedded sandstone sets with mud drapes, abundant 

mud layers, bidirectional ripple laminae, and spring-neap tidal bundles with restricted 

ichnofauna species.  

The studied section contains a significant amount of mudstones. Fluid-mud and 

hemipelagic-mud deposits were distinguished and marked in the measured sedimentary 

log to reveal the interacting relationship between fluid mud and other depositional 

processes. Fluid mud refers to a mobile subaqueous suspension of muddy sediments (i.e., 

clay- and silt-size particles), and is formed rapidly by flocculation, commonly in 

estuarine circulation trapping high suspended-sediment concentration (more than 10 gL-1) 

in the mixing zone of fresh and salt water (Kirby and Parker, 1983; Uncles et al., 2006; 

Ichaso and Dalrymple, 2009). Characteristics of fluid-mud deposits are thick layered 

(commonly more than 0.5 cm thick after compaction) (Dalrymple et al., 2003), 

homogeneous and structureless, unbioturbated, regular or irregular and squishy in shape 

(Fig. 4.3A-C). Some fluid-mud deposits can be thinner (a few millimeters) if they are 

deposited from the distal part of the fluid-mud zone or resuspended by waves and 

deposited later by tides during slack-water periods. In contrast, hemipelagic-mud deposits 
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are formed by accumulation by slow, particle-by-particle settling from suspension 

(sediment concentration less than 0.1 gL-1), and are characterized by relatively thin 

mudstone layers (1-2 mm thick) (McCave, 1971), with internal lamination, and 

bioturbation (Fig. 4.3D-F). The hemipelagic-mud deposits in this study are generally 

darker colored than the fluid-mud deposits, probably because they contain more organic 

matter (Fig. 4.3). 

 

 

 

 

 



 95 

 

Figure 4.3: Characteristics of the fluid-mud (FM) and hemipelagic-mud (HM) deposits. 
(A) Squishy, chunky and light-colored fluid-mud layers forming a network 
around sandstone lenses. The fluid-mud deposits are structureless. (B) 
Light-colored fluid-mud layers lacking bioturbation. Note that the 
sandstones are covered with modern sands. (C) Thick, fluid-mud deposits 
interbedded with thin rippled sandstones showing no bioturbation. (D) Thin, 
dark-colored hemipelagic-mud layers with internal lamination interbedded 
with thin sandstone beds. (E) Parallel-laminated hemipelagic-mud deposits 
with occurrence of Chondrites (Ch). (F) Interbedded hemipelagic-mud 
deposits and rippled sandstones with abundant Teichichnus (Te). 
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OVERALL DEPOSITIONAL ENVIRONMENT 

The studied outcrop (125 m thick) comprises three generally coarsening-to-fining-

upward (CUFU) units (30 to 50 m thick) with the uppermost unit abruptly overlain by 

cross-stratified sandstones (3 to 5 m thick) (Fig. 4.4). The lower two CUFU units are 

relatively muddy, whereas the upper CUFU is sandier, showing a slight increase in 

sand/mud ratio (Fig. 4.4). The uppermost cross-stratified sandstone units (Figs. 4.4 and 

4.5A) are sharp based, and consist mainly of fine-grained sandstones with bidirectional 

cross-laminated sets dipping in basinward (80°) and landward (260°) directions. 

Deformed beds of sandstones occur in places, and mud clasts are distributed along some 

of the foresets and on irregular basal surfaces. The succession below the cross-stratified 

sandstones is characterized by interbedded thick mudstones and thin beds of upper-very-

fine-grained sandstones with lenticular, wavy, and flaser lamination. The sandstones 

display bidirectional asymmetrical ripples, rhythmic alternations between mudstones and 

parallel- to rippled-sandstones (Fig. 4.5), hummocky-swaley cross stratification, 

symmetrical ripples (Fig. 4.6), plane-parallel lamination, inverse and normal grading, and 

unidirectional asymmetrical ripples (Fig. 4.7). Organic matter is observed either as coaly 

siltstone or disseminated fragments in sandstone and mudstone beds. The whole 

succession shows a general low-diversity and moderately abundant trace-fossil suite with 

an occasional interval of high-diversity and/or high-abundance suite including Planolites 

(Pl), Chondrites (Ch), Teichichnus (Te), Phycosiphon (Ph), Thalassinoides (Th), 

Skolithos (Sk), and Ophiomorpha (Oph).    
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Figure 4.4: The 125-m-thick, studied stratigraphic succession of Telemaque Sandstone, 
Manzanilla Formation, and the interpreted depositional environments and 
processes. The positions of fluid-mud (FM) and hemipelagic-mud (HM) 
deposits are marked along the succession. Note that dashed boxes of A to D 
indicate stratigraphic positions of studied small-scale, measured sections in 
Figure 4.9. 
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Figure 4.5: Tidal sedimentary structures in the study succession. (A) Sets of cross-
bedded sandstones (dunes) with erosional, channelized bases. (B) Tidal 
bidirectional asymmetrical-ripple laminae associated with relatively thick 
and continuous fluid-mud layers. White arrows indicate ripple migration 
directions. (C) Alternations of thick-bedded and thin-bedded sand packages 
with abundant organic-matter drapes forming spring and neap tidal bundles. 

 

 

Figure 4.6: Wave (storm waves or waning storm waves) sedimentary structures in the 
study succession. (A) Hummocky-swaley cross stratification with wave-
scoured bases. (B) Wave-ripple cross-lamination (WR) showing occasional 
chevron-type and offshooting and draping structures, as also described by de 
Raaf et al. (1977). (C) Wave ripples with mud flasers. 



 99 

 

Figure 4.7: Fluvial sedimentary structures in the study succession. (A) Inversely graded 
sandstone beds with capping asymmetrical ripples and some fluid-mud 
deposits that are scoured in places. White arrow indicates ripple migration 
direction. Note that the vertical lines are modern fractures. (B) Inversely and 
inversely-to-normally graded sandstone beds with dark organic matter. 

Each CUFU interval passes from interbedded mudstones and siltstones 

(millimeters to centimeters thick) upwards to interbedded mudstones and upper-very-

fine-grained sandstones (millimeters to centimeters thick). The symmetrical ripples or 

hummocky-swaley cross stratification show an irregular increase upwards in the 

coarsening-upward parts of the units towards the coarsest sandstone interval and then a 

decrease upwards through the fining-upward parts if present (Fig. 4.4). Bidirectional 

asymmetrical ripples and abundant mud layers have a converse relationship; their 

abundance decreases upwards to the coarsest sandstone intervals and then increases 

upwards, respectively. In places, inverse and normal grading and unidirectional 

asymmetrical ripples occur in sandstone beds (Fig. 4.7). Fluid-mud layers tend to occur 

mainly in the middle to upper parts of units, notably near the transition between the 

coarsening-upward and fining-upward parts of units (Fig. 4.4). The fluid-mud deposits 

are associated with both symmetrical and bidirectional asymmetrical ripples, but they 

tend to be relatively thick and continuous in between sandy layers with bidirectional 
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asymmetrical ripples (Fig. 4.5B) and commonly thin and broken as mud flasers in 

between symmetrical ripples (Fig. 4.6B and C). 

The described 125-m-thick succession is interpreted to represent the distal parts of 

a prograding delta with compound clinoforms. The deltaic stratigraphy comprises two 

stacked subaqueous clinoforms (i.e., 0-85 m in Fig. 4.4) and an upper, third subaqueous 

clinoform overridden by the distal part of a subaerial clinoform (i.e., 85-125 m in Fig. 

4.4); see also the depositional reconstruction diagram in Figure 4.8. Each subaqueous 

clinoform (CUFU) shows a coarsening-upward succession from the muddy prodelta to 

the sandier prodelta slope and outer delta-front platform, and a fining-upward succession 

from the outer to inner delta-front platform (Goodbred and Saito, 2012) (Fig. 4.4). The 

lower two muddy CUFU units represent the distal clinoforms of subaqueous deltas. It is 

suggested that as the subaqueous delta prograded, storm waves became dominant and 

therefore reworked the distal river-mouth bars or tidal bars and transported sediments to 

the outer delta-front platform and prodelta slope (Fig. 4.8A). The upper part of the 

succession (85-125 m) represents the most landward subaqueous clinoform overlain by 

the distal part of subaerial clinoform (lower delta plain) with tidal channels filled with 

bidirectional cross-bedded sandstones (Fig. 4.8C). The progradation of the deltaic 

succession was driven by relative sea-level fall or increased sediment supply during 

relative sea-level rise. In support of the latter, a relative sea-level rise or increased 

subsidence may have been necessary to preserve the subaqueous delta from being 

intensely incised and reworked by the tidal distributary channels (Goodbred et al., 2003; 

Storms et al., 2005). Alternatively, the subaerial to subtidal channels overlying the 

subaqueous delta could also have been caused simply by the lateral migration of 

distributary channels (Dalrymple et al., 2003). 
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Figure 4.8: (A) Storm waves reworked distal parts of river mouth bars or tidal bars on 
the inner delta-front platform and transported sediments basinwards onto the 
outer delta platform to the delta-front slope. (B) Fluid mud was transported 
and dispersed onto the Orinoco delta-front platform by the Guyana Littoral 
Current, and this mud damped the subsequent storm waves. (C) Final-stage 
depositional environments illustrating the prograding subaerial and 
subaqueous delta clinoform with storm-wave-reworked deposits on the outer 
delta-front platform and delta-front slope and tide- and river-generated 
deposits on the middle-inner delta-front platform. The black dashed line 
indicates the possible location of the described succession. 
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The mixture of tide-, wave-, or storm-wave-generated sedimentary structures with 

occasional river-generated deposits indicates an interaction of tide, wave, and river 

processes influencing the compound delta system at tens-of-meters scales. Bidirectional 

ripples, abundant mud layers, spring-neap tidal bundles, and stacked, orderly cross-

bedded sandstones with mud drapes together with restricted ichnofauna species (Fig. 4.5) 

result from tidal-process domination (Nio and Yang, 1991; Willis, 2005; Gani et al., 

2007; Steel et al., 2012). Symmetrical wave ripples and hummocky-swaley cross 

stratification (Fig. 4.6), commonly with diverse ichnofauna, suggest wave-dominated 

processes (de Raaf et al., 1977; MacEachern et al., 2005; Dumas and Arnott, 2006; Gani 

et al., 2007). Inversely and normally graded beds together with abundant organic-matter 

content (Fig. 4.7) are associated with river process and may have originated during 

flooding from nearby distributary channels (Mulder et al., 2003; Olariu and Bhattacharya, 

2006; Olariu et al., 2010; Ahmed et al., 2014). Alternatively, the organic matter can have 

been produced by erosion of fringing supratidal salt marsh as a result of channel 

switching (Dalrymple et al., 1991).  

The frequency of preserved wave signals increased from the prodelta through the 

prodelta slope towards the outer delta-front platform deposits and then decreased to the 

inner delta-front platform deposits, whereas the frequency of tide signals had a broadly 

reciprocal relationship to the wave signals (Fig. 4.4). The fluvial signals were not strong 

(rare normally to inversely graded beds and unidirectional asymmetrical ripples), but 

sometimes became stronger (more frequent) towards the upper levels of the succession. 

The coarsest sandstone interval in each subaqueous delta is interpreted to correspond with 

stronger wave energy on the uppermost part of the prodelta slope towards the rollover 

point (Hori et al., 2001; Ta et al., 2005), where wave energy decreased both seaward and 

landward because of increased water depth and frictional dissipation of shoaling waves, 
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respectively. The fluid mud was transported and distributed mainly on the delta-front 

platform as wave energy waned, with a minor proportion on the prodelta slope dispersed 

by the offshore-directed storm waves (Figs. 4 and 4.8). The presence of significant 

volumes of fluid mud is another factor that would have caused attenuation of the 

subsequent storm waves on the outer delta-front platform to inner delta-front platform 

(Figs. 4.4 and 4.8) (Wells and Coleman, 1981), thereby allowing river- and tide-

generated structures to be better preserved on the delta-front platform (Figs. 4.4 and 4.8). 

A main result from this Pliocene Orinoco delta study is that fluvial and tidal signals were 

enhanced on the delta-front platform due to the wave damping by the influx of littoral 

fluid mud from the Amazon Delta transported by the Guyana Current. 

DEPOSITIONAL-PROCESS INTERACTION DURING NEAP-SPRING TIDAL CYCLES 

At the small scale (decimeter to centimeter), four segments (2 to 5 m thick) were 

chosen for detailed description from the distal to the proximal setting on the subaqueous 

delta clinoform, and they not only demonstrate high-frequency interaction of waves, 

tides, and river currents but also reveal how these processes interacted with fluid mud. 
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Figure 4.9: caption below. 
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Figure 4.9: (A-D) Details of small-scale, measured stratigraphic sections, interpreted environments, and process changes. 
Detailed descriptions and interpretations are in the text. The legend is the same as in Figure 4.4. Note that the 
scale for each segment is different.



 106 

Segment A (2.7 m thick, Fig. 4.9A) is characterized by muddy intervals (2-40 cm 

thick) alternating with stacked sets of fine-grained sandstones (2-30 cm thick) that show 

hummocky-swaley cross stratification, parallel lamination, symmetrical ripples, and 

organic-matter-rich normally graded beds. The mudstone beds are parallel-laminated with 

occasional lenticular sandstones and sparse low-diversity trace fossils including 

Planolites (Pl) and Teichichnus (Te). No fluid-mud deposit is observed in segment A. 

Overall the bioturbation in the hummocky and swaley cross-stratified sandstone beds is 

rare, with some occurrence of Skolithos (Sk), Phycosiphon (Ph), Ophiomorpha (Oph), 

and Thalassinoides (Th) in places.  

Segment B (4.9 m thick, Fig. 4.9B) is composed of interbedded mudstones 

(mainly fluid-mud deposits) and fine-grained sandstones with flaser, wavy, and lenticular 

bedding, and it demonstrates a coarsening-upward trend by increasing 

sandstone/mudstone ratio and sandstone thickness. Alternation of muddy and sandy 

intervals is observed at decimeter scale (Fig. 4.9B). Muddy intervals (13-70 cm thick) 

consist mainly of organic-rich heterolithics (Fig. 4.10A) and fluid-mud-dominated 

intervals (centimeter-scale sets) (Fig. 4.10B). The organic-rich heterolithics are 

characterized by alternating thick (1.5-2.5 cm thick) beds of parallel-laminated to 

occasionally current-rippled sandstones and thin (0.5-1.5 cm thick) beds of parallel-

laminated siltstones with organic-matter drapes and a few fluid-mud deposits (Fig. 

4.10A). In the fluid-mud-dominated intervals, the mudstone-dominated heterolithics 

comprise thick fluid-mud layers (up to 1 cm thick) and silty laminae or small 

bidirectional asymmetric ripples (0.2 cm thick), and the sandstone-dominated 

heterolithics consist of well-developed, bidirectional, asymmetrical sandy ripples (up to 

0.6 cm thick) with sharp bases and relatively thin fluid-mud layers (0.1 to 0.3 cm) with 

erosional tops (Fig. 4.10B). Sandy intervals (6-15 cm thick) are symmetrical-rippled 
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sandstones (1-2 cm thick) with mud clasts and flasers (Fig. 4.10C). Erosionally overlying 

and underlying the sandy intervals are heterolithics comprising parallel-laminated 

sandstone beds and fluid-mud deposits with organic-matter drapes (Fig. 4.10C). The 

fluid-mud layers show soft-sediment deformation at the top, and they contain 

carbonaceous detritus locally. Bioturbation is rare, with occurrence of Planolites (Pl) and 

Chondrites (Ch) in the mudstone beds. 

Segment C is 2.2 m thick (Fig. 4.9C) and consists of thin mudstones (0.5 to 1 cm 

thick) interbedded with fine-grained sandstones (1-7 cm thick). The sandstone beds or 

bed sets tend to “bundle” thick and thin (Figs. 4.9C and 4.11). In the lower part of 

segment C, the thicker intervals (3-4.5 cm thick) show sets of unidirectional to 

bidirectional asymmetrical ripples, whereas the thinner intervals (1.5-3 cm thick) are 

characterized by parallel laminations with organic-matter double mud drapes (Figs. 4.9C 

and 4.11A). In the upper part of segment C, thicker sandstone intervals (7-8 cm thick) are 

erosionally based, showing bundled sets of micro-swaley to parallel-laminated sandstones 

with mud flasers and interbedded with thinner, parallel-laminated sandstones (3-4 cm 

thick) with organic-matter drapes (Figs. 4.9C and 4.11B). Fluid-mud deposits occur as 

thin layers with deformed or erosional tops when associated with bidirectional 

asymmetrical ripples (Fig. 4.11A). By contrast, the fluid-mud deposits are preserved as 

mud flasers and clasts in the micro-swaley sandstones (Fig. 4.11B). The parallel-

laminated sandstones with organic-matter drapes generally lack fluid-mud deposits in 

segment C (Fig. 4.11). In places, inverse or inverse-normal grading and unidirectional 

asymmetrical ripples are observed, and bioturbation is absent in segment C (Fig. 4.9C). 
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Figure 4.10: (A) Alternating thicker-bedded and thinner-bedded intervals forming spring 
and neap tidal bundles with abundant organic-matter drapes (OM; indicated 
by black bold lines) and a few fluid-mud (FM) deposits in the muddy 
intervals. (B) Alternation of asymmetrical bidirectional current-rippled 
(BCR) sandstone sets with thick and continuous fluid-mud layers. (C) 
Intercalated wave-rippled sandstone (WR) beds with erosional bases and 
fluid-mud clasts and tide-generated heterolithic beds (interbedded 
sandstones and fluid-mud layers with organic-matter drapes). 

Segment D (2.3 m thick, Fig. 4.9D) also displays a similar coarsening-upward 

trend of facies but is sandier and coarser grained than segment B. This segment consists 

of interbedded mudstones (mostly fluid-mud deposits) and fine-grained sandstones with 
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lenticular and wavy bedding in the lower part, and it gradually changes upwards into 

wavy and flaser bedding (Fig. 4.9D). In places, centimeter-scale cyclic variations in layer 

thickness are observed. Bidirectional asymmetrical ripples are recognized throughout the 

segment, and organic matter is richly present in places (Fig. 4.9D). Bioturbation is 

commonly of low diversity and low abundance, and ichnofauna species are restricted to 

Planolites (Pl), Teichichnus (Te), and Thalassinoides (Th). 

 

 

Figure 4.11: (A) Alternating thicker-bedded and thinner-bedded sandy packages forming 
spring and neap tidal bundles. The thicker intervals contain unidirectional to 
bidirectional asymmetrical ripples and continuous top-eroded fluid-mud 
layers with some organic-matter drapes. The thinner intervals are parallel-
laminated with double mud drapes that are rich in organic matter. White 
arrows indicate ripple migration directions. (B) Micro-swaley storm-wave 
strata intercalated with tidal deposits of parallel-laminated sandstones with 
organic-matter drapes. The micro-swaley-stratified sandstones are sharp 
based with fluid-mud clasts and flasers. 
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Segment A is interpreted to represent deposition during an alternation of storm 

and inter-storm conditions on the prodelta slope (Figs. 4.1, 4.8, and 4.12), and it displays 

decimeter-scale storm-wave influence alternating with slight tidal and fluvial influence 

(Fig. 4.9A). During storm conditions, waves penetrated and reworked deposits into 

hummocky and swaley cross-stratified sandstones, whereas tidal and fluvial influence 

was well preserved during inter-storm periods (Vakarelov et al., 2012; Wei et al., 2016). 

The lack of fluid-mud deposits suggests that the hummocky and swaley cross-stratified 

sandstones were deposited seaward of the fluid-mud zones (i.e., delta-front platform and 

proximal prodelta slope) on the prodelta slope (Figs. 4.1, 4.8, and 4.12). Alternatively, 

segment A could also have been sited basinward of a mud-deficient area, as in this setting 

there are spatial and temporal variation in suspended muddy sediment concentration 

nearshore (Anthony and Dolique, 2004). The low-diversity trace fossils in the muddy 

intervals suggest a stressed environment influenced by tides and river currents 

(MacEachern et al., 2005; Gani et al., 2007).  

Segment B is interpreted as deposits in the transition zone from the prodelta slope 

to the outer delta-front platform (Figs. 4.1, 4.8, and 4.12), and it exhibits centimeters to 

decimeters scale alternations of tidal influence with occasional wave and minor fluvial 

influence (Fig. 4.9B). In the muddy intervals, both the organic-rich heterolithics (Fig. 

4.10A) and fluid-mud-dominated heterolithics with bidirectional current ripples represent 

spring-neap tidal bundles (Nio and Yang, 1991). The thick beds (with occasional current 

ripples) of organic-rich heterolithics were produced by currents with stronger shear stress 

during spring tides, and the thin, parallel-laminated beds with abundant organic-matter 

drapes were deposited by weaker currents during neap tides (Fig. 4.10A) (Dalrymple et 

al., 1991; Williams, 1991). The lesser amount of fluid-mud deposits in the organic-rich 

heterolithics probably indicates that fluvial influence was significant and the water 
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column contained abundant river-derived organic matter, and/or that most of fluid mud 

was farther landwards on the delta-front platform. The mudstone-dominated heterolithics 

with thicker fluid-mud layers and smaller bidirectional current ripples are interpreted as 

deposited during neap tides when the current velocity and corresponding shear stress 

decreased and the near-bottom suspended-sediment concentration increased; the 

sandstone-dominated heterolithics exhibiting thinner fluid-mud layers and larger 

bidirectional current ripples with sharp contacts were produced by spring tides as the 

velocity and shear stress increased and caused erosion of the previously deposited mud 

beds and deposition of thicker sand beds (Fig. 4.10B) (Jaeger and Nittrouer, 1995). The 

sandy intervals characterized by symmetrical-rippled lamination resulted from periods of 

wave dominance (de Raaf et al., 1977). The scoured surfaces underlying the wave-rippled 

sandstone beds and the mud clasts and flasers suggest that storm waves eroded the muddy 

beds and reworked the sandy beds (Fig. 4.10C). The wave ripples are interpreted as 

produced by waning storm waves, since most fair-weather waves would be damped by 

the fluid mud and only relatively strong storm waves could have reworked the sediments. 

The adjacent parallel-laminated sandstones and fluid-mud layers with organic-matter 

drapes are interpreted as tidal deposits, as the storm waves waned and tides became 

dominant. The deformed fluid-mud layers with locally concentrated carbonaceous 

detritus further support deposition by tides during the slack-water periods.  
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Figure 4.12: Schematic diagram showing how fluid mud likely impacted the wave, tide, 
and river processes and the resultant deposits during spring-neap tides and 
storm-interstorm periods. Note that purple lines indicate fluid-mud layers 
and mud flasers, and the lengths of the blue arrows are scaled to the tidal-
current speeds. (A) Spring (ST) and neap (NT) tidal processes and deposits 
during interstorm or fair-weather condition. (B-C) Storm waves (W) and 
deposits during spring and neap tides, respectively. Storm waves were 
damped by the fluid mud on the delta-front platform, so that river and tide 
deposits were preferentially preserved on the middle-inner delta-front 
platform. Note that SET and SFT indicate spring ebb-tide deposit and spring 
flood-tide deposit, and NET and NFT indicate neap ebb-tide deposit and 
neap flood-tide deposit. The inferred locations for segments A-D are marked 
on the delta clinoform. See detailed descriptions and interpretations in text. 
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Segment C is interpreted to represent deposits on the outer delta-front platform 

(Figs. 4.1, 4.8, and 4.12), and it illustrates interacting tidal and fluvial dominance in the 

lower part, gradually changing upwards into stronger wave and fluvial dominance with 

minor tidal influence (Fig. 4.9C). The decimeter- to centimeter-scale cyclic alternation of 

groups of thicker and thinner sandstone sets is interpreted as spring-neap tidal cycles 

which show wave influence progressively dominating towards the outer delta-front 

platform (upper part of segment C). In the lower part of segment C, thicker intervals of 

unidirectional to bidirectional asymmetrical ripples were deposited during spring tides 

because of stronger tidal currents, and thinner intervals of parallel laminations with 

organic-matter-rich double mud drapes were deposited by weaker tidal currents during 

neap tides (Fig. 4.11A) (Nio and Yang, 1991). In the upper part of segment C, the 

erosional-based, micro-swaley to parallel-laminated sandstones with mud flasers are 

interpreted as storm-wave deposits (Dashtgard et al., 2012), and the parallel-laminated 

sandstones with organic-matter drapes are tidal deposits (Fig. 4.11B). The tidal deposits 

tend to be scoured by subsequent storm waves causing less preservation potential, 

although some parts were not completely eroded in this interval. River influence is 

relatively consistent through segment C and is mainly shown by abundant organic matter. 

The lack of bioturbation is consistent with continuous fluvial influence in segment C. The 

thin fluid-mud layers with deformed and erosional tops in the spring-tide deposits record 

rapid deposition of sands over unconsolidated fluid-mud beds and erosion of the 

consolidated fluid-mud layers by relatively strong spring tidal currents, respectively. The 

fluid-mud clasts and flasers in the micro-swaley strata reflect erosion of storm waves. 

The lack of fluid-mud deposits in the parallel-laminated sandstones with organic-matter 

drapes indicates that the depositional location is more seaward of the fluid-mud zone, 
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particularly during the neap tides, when fluid mud is distributed more locally because of 

small tidal range (Fig. 4.12).  

Segment D is interpreted to represent deposits on the middle-inner delta-front 

platform (Figs. 4.1, 4.8, and 4.12), and it illustrates dominant tidal influence and minor 

fluvial influence with suppressed wave influence (Fig. 4.9D). The prevalent interbedded 

fluid-mud deposits and bidirectional asymmetrical-rippled sandstones indicate that tidal 

processes were dominant throughout segment D and wave influence was insignificant. 

The organic matter in some sandstone and mudstone beds suggests minor fluvial 

influence. Compared with segment B, segment D is located landwards of the outer delta-

front platform, where wave energy has been dissipated because of the energy-attenuating 

fluid mud and shoaling effect. When wave energy was damped, in turn, the tidal and river 

signals were enhanced.  

This Manzanilla zone of the paleo-Orinoco Delta thus demonstrate interaction of 

tides, waves, and minor river currents with added impact of fluid mud during spring-neap 

tidal cycles and storm-interstorm cycles (evidenced by segments A-D) at decimeter and 

centimeter scale (Fig. 4.12). During fair-weather or interstorm conditions, the subaqueous 

delta was dominated mainly by tidal processes with some river influence (Fig. 4.12A). 

Fluid mud on the delta-front platform tended to be localized during neap tides and spread 

more extensively during spring tides (Fig. 4.12A). Correspondingly, neap tidal deposits 

show thin bidirectional current-rippled sandstones or silt laminae with thicker fluid-mud 

deposits, and spring tidal deposits display thick bidirectional current-rippled sandstones 

with thinner and partially eroded fluid-mud layers on the delta-front platform (Fig. 4.12) 

(Jaeger and Nittrouer, 1995). At locations seaward of the fluid-mud zone, very thin to no 

fluid mud occurs and only organic-matter drapes were deposited during slack-water 

periods (Fig. 4.12A). When storm waves occurred, the waves most likely eroded and 
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reworked the outer delta-front platform, particularly during low tides because of 

relatively low water depth (Fig. 4.12B and C). The middle to inner delta-front platform 

was mainly tide-dominated due to the fluid mud that damped the wave energy and the 

shoaling effect of waves (Fig. 4.12B and C). As storm waves waned, tidal structures 

became well preserved and tide-generated deposits draped the storm-wave-generated 

deposits (Fig. 4.12B and C). 

DISCUSSION 

Cohesive fluid mud facilitating deltaic compound clinoforms 

The described stratal succession represents the progradation and stacking of 

deltaic compound clinoforms that trapped large volumes of littoral fluid mud, in fact a 

total of 40 m of fluid-mud deposits, half of the muddy succession (Figs. 4.4 and 4.8). We 

suggest that the fluid mud was likely derived from the Amazon River and brought by the 

northwest-directed Guyana Current to the Pliocene Orinoco littoral zone in huge 

quantities. The Amazonian fluid-mud deposits in this study are generally light colored 

compared to the hemipelagic-mud deposits, which contain more organic matter. Amazon 

organic matter is likely to have been winnowed out during the lengthy journey of the 

Guyana Current from the Amazon area. The Amazon River is known to have been 

established between the middle to the late Miocene (Figueiredo et al., 2009). In addition, 

the studied succession with delta-scale subaqueous clinoforms was probably deposited 

during rising to highstand of sea level so that the subaqueous delta was preserved from 

being intensely incised and reworked by distributary channels. Such sea-level rise to 

highstand condition in the Pliocene, similar to the late Holocene sea-level highstand, 

created a broad shelf and accommodation promoting the coastal migration of muddy 
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sediments, given that the Amazon River likely bypassed most of its sediment load across 

the shelf and out into deepwater during low sea level.  

The fluid mud, located mainly on the subaqueous platform, appears to have had a 

cohesive role in stabilizing the shoreline and prograding both the subaerial and 

subaqueous deltaic segments. In mud-dominated coasts, fine-grained sediments are 

maintained in suspension as they are transported shoreward by strong tide or wave action 

(Gratiot et al., 2007; Winterwerp et al., 2007). In turn, wave energy is attenuated and 

suspended sediments are deposited rapidly due to reduced shear stress (Wells and 

Roberts, 1980). As fluid mud on the delta-front platform moves to the intertidal zone, it 

can become shore-attached and cause subaerial delta accretion and progradation (Figs. 

4.8 and 4.12), similar to the processes documented along the French Guiana coast 

(Allison and Lee, 2004; Gratiot et al., 2007). The modern western coast of Louisiana 

(Wells and Roberts, 1980; Roberts et al., 1989; Allison et al., 2005; Draut et al., 2005) 

and the southwestern coast of India (Mallik et al., 1988; Mathew and Baba, 1995) exhibit 

similarities to both the modern Amazon-Orinoco coast and the Manzanilla Formation of 

the paleo-Orinoco Delta in that both of them receive large quantities of fine-grained 

sediments (i.e., mainly silts and clays) from adjacent, upstream, large river deltas that 

trigger shoreline progradation. Meanwhile, the offshore-directed fluid mud carried by 

storm waves can feed the subaqueous delta, leading to aggradation and progradation of 

the subaqueous clinoform (Figs. 4.8 and 4.12) (Cacchione et al., 1995; Kineke et al., 

1996; Michels et al., 1998). For sand-dominated shorelines, waves typically erode, 

resuspend, and redeposit sands, leading to dynamically changing shorelines (Komar, 

1998).  

The wave-borne fluid mud of the Guyana Current impinged the Pliocene Orinoco 

littoral zone, and had a major impact on delta-front sedimentation by protecting the 
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shoreline from more wave reworking. The wave-energy damping resulted in preservation 

of more river- and tide-associated deposits. Additionally, the extra-large supply of mud 

delivered from the Amazon caused the studied succession to be much more mud rich than 

it otherwise would be, and it led to rapid subaerial and subaqueous delta accretion and 

progradation probably during intervals of rising and highstand of sea level. 

Comparison with other sedimentary basins 

The deltaic compound clinoforms in the Manzanilla Formation are similar to 

modern tide-dominated delta systems, such as the Ganges-Brahmaputra (Kuehl et al., 

2005), the Mekong (Ta et al., 2002), the Yangtze (Hori et al., 2002), and the Gulf of 

Papua (Harris et al., 1993; Dalrymple et al., 2003; Walsh et al., 2004), in that they 

demonstrate a coarsening-upward subaqueous clinothem overlain by a fining-upward 

subaerial clinothem. The coarsening-upward subaqueous succession extends from the 

prodelta through prodelta slope to the outer delta-front platform, and they are more 

influenced by fair-weather waves, storm waves and other ocean currents. The 

sedimentary facies in the succession are alternating mud and sand deposits with wave 

ripples, hummocky-swaley cross stratification (this study), normally graded sandy and 

silty beds (tempestites by storms) (e.g., the Ganges-Brahmaputra), and frequent sharp-

based scour surfaces (e.g., the Yangtze) (Hori et al., 2002). The subaqueous delta 

deposits are often bioturbated, such as the Gulf of Papua (Walsh et al., 2004) and this 

study. The fining-upward succession is from the outer delta-front platform through mid-

inner delta-front platform to the subaerial delta plain. The sedimentary facies on the 

delta-front platform are interbedded sand and mud deposits that are formed under the 

strong influence of tides, such as the Amazon (Jaeger and Nittrouer, 1995) and the 

Manzanilla Formation of the Pliocene Orinoco Delta. The subaqueous platform of the 
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Manzanilla Formation shows bidirectional current-rippled sandstones interbedded with 

abundant fluid-mud deposits particularly on the middle-inner part, and interbedded thin 

fluid-mud layers and erosionally based sandstones with wave ripples and small swales on 

the outer part. The subaerial delta plain (containing distributary channels) includes the 

lower delta plain, influenced by tides and other marine processes and upper delta plain, 

dominated by fluvial processes. The studied section of the Manzanilla Formation shows 

only the lower delta plain with tidal channels filled with tidal bars (Figs. 4.4 and 4.8).   

The muddy compound clinoforms are commonly formed in high-energy marine 

settings, particularly in tide-dominated and modestly wave-influenced settings with 

relatively high sediment supply (more than 108 metric tons yr-1) (Walsh and Nittrouer, 

2009). The large tidal range and the resultant strong tidal currents enabled the separation 

between the subaerial delta clinoform and subaqueous delta clinoform (Walsh and 

Nittrouer, 2009). The soft gel-like fluid mud in the muddy environments plays a very 

important role in effectively attenuating the incoming waves and causing the delta to 

preserve more tidal signatures. As waves become significantly strong, the muddy 

sediments temporarily stored on the subaqueous clinoform can become wave-reworked. 

In the Gulf of Papua subaqeous clinoform, interbedded sands and muds or thick 

homogeneous muds (more than 10 cm) are preserved on the inner subaqueous platform 

during the weak NW monsoon, and they are remobilized to the outer subaqueous 

platform and the prodelta slope during the strong SE tradewind season (Walsh et al., 

2004). It is possible that the muddy sediments damp the incoming waves of the NW 

monsoon, leading to seasonal mud storage on the inner subaqueous platform. Systems 

with small sediment supply discharged into energetic oceanographic environments (i.e., 

large waves or currents) (e.g., the Eel and Columbia) or with relatively large sediment 

supply into low-energy oceanographic environments (i.e., small waves, tides, or currents) 
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(e.g., the Po and the Mississippi) will not build a subaqueous clinoform, because they 

either efficiently disperse the fine-grained sediments into the ocean or rapidly deposit 

near the river mouth. 

CONCLUSIONS 

The studied interval of the Manzanilla Formation (lower Telemaque Sandstone) 

on Trinidad represents progradation of a deltaic compound-clinoform system that exhibits 

two subaqueous clinoforms and an upper subaqueous clinoform to distal subaerial 

clinoform with tide-influenced channels. The delta was strongly influenced by an energy 

mix of waves, tides, and river currents with the added impact of fluid mud at variable 

scales. At large-clinoform scale (meters to tens of meters scale), storm waves became 

dominant and reworked the distal river mouth bars and tidal bars, and transported 

sediments to the outer delta-front platform and prodelta slope as the subaqueous delta 

prograded. The fluid mud was distributed mainly on the delta-front platform with a minor 

proportion on the prodelta slope. At the scale of a spring-neap tidal bundle (decimeter 

scale), thick bidirectional current-rippled sandstones with thin and partially eroded fluid-

mud layers tended to be deposited during spring tides and thin bidirectional current-

rippled sandstones or silt laminae with thick fluid-mud deposits deposited during neap 

tides on the middle-inner delta-front platform. Storm waves occurred in both spring tides 

and neap tides. Despite the presence of the fluid mud, strong storm waves eroded the 

fluid-mud deposits and reworked the sand deposits on the outer delta-front platform, and 

therefore storm-wave ripples are preserved and intercalated with tidal deposits. Fluid 

mud, probably brought in huge quantities to the paleo-Orinoco littoral zone by the 

Guyana Current from the mouth of the Amazon delta, impacted mainly the delta-front 

platform and damped the storm wave energy. This led to preferred preservation of river 
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and tide signals on the delta-front platform of the subaqueous delta and the distal 

subaerial delta. The large added volumes of fluid mud stabilized the shoreline from wave 

reworking and rapidly prograded the compound clinoform of the delta. 
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Chapter 5: Amazon fluid mud impact on tide- and wave-dominated 
Pliocene lobes of the Orinoco Delta3 

ABSTRACT 

The modern Orinoco Delta is a major sink for the world’s largest alongshore 

(littoral) mud dispersal system; it receives some 108 tons/yr from the Amazon river delta. 

The influence of these huge volumes of Amazon mud on the paleo-Orinoco Delta 

succession is now investigated for the first time. Abundant fluid-mud deposits are 

preserved in outcrops from the Pliocene Orinoco Delta deposits (Lower Morne L’Enfer, 

Manzanilla and Mayaro formations on Trinidad) with different styles in tide-dominated, 

in tide-dominated and wave-influenced, and in storm wave-dominated delta lobes. Fluid-

mud deposits in sandy parasequences (10-20 m thick) of the Lower Morne L’Enfer 

Formation change from thin layers amalgamating to form mud bedsets (up to 4cm) or 

draping across ripple laminae in the lower part, to thick layers (up to 10 cm) occasionally 

with deformed and load structures at their top, in the upper part. The Manzanilla 

Formation parasequences (30-40 m thick) exhibit coarsening-to-fining-upward (CUFU) 

facies successions with fluid-mud deposits located mainly in the middle to upper parts of 

the parasequences, near the transition between the CU and FU parts of the units. Most of 

the fluid-mud layers are interbedded with bi-directional, current rippled-sandstones, 

whereas minor mud layers are associated with erosion-based sandstones with small-scale 

swaley strata and bi-directional symmetrical ripples. The Mayaro Formation 

parasequences (5-15 m thick) are characterized by alternating fluid-mud intervals and 

sets of hummocky cross-stratified sandstones (HCS) passing upward into amalgamated 

                                                
3 This chapter has been submitted as: Peng, Y., Steel, R.J., and Olariu, C., Amazon fluid mud impact on 
tide- and wave-dominated Pliocene lobes of the Orinoco Delta. I was the primary author who conducted the 
research and drafted this manuscript with co-authors’ help. 
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swaley cross-stratified (SCS) sandstones. The fluid-mud intervals have flat or irregular 

tops occasionally overlain by amalgamated SCS sandstones with fluid-mud clasts. 

Very thick (1-1.5 m) fluid-mud intervals occur in places in both tide- and wave-

dominated strata and these are probably large muddy bedforms similar to mud banks that 

migrate currently along the modern Amazon-Orinoco coast. The outcrop analysis 

strongly suggests that the fluid-mud banks, as they approached the Orinoco delta-front 

area, were handled differently depending on whether the delta-front lobes were wave- or 

tide-dominated. Tide-dominated delta lobes tended to trap the muds near the shoreline 

and on the subaqueous delta-front platform in water depth less than 10 m with only minor 

volumes escaping offshore. In contrast, storm wave-dominated delta lobes had a more 

dynamic impact on the approaching mudbanks. Mud accumulated in the shallow water 

tend to be eroded and re-deposited into deeper water near the storm wave base (15-50 m 

water depth).  

The volumes of Pliocene Amazon mud transported along the innermost shelf and 

arriving on the Orinoco Delta were likely influenced by high-amplitude, Pliocene glacio-

eustatic sea level fluctuations. During sea-level fall and lowstand periods, increased 

volumes of Amazon mud would have bypassed to the deep water and thus decreased mud 

volumes drifted and became incorporated in the Orinoco delta front. In contrast, sea-level 

rise and highstand periods would have promoted increased volumes of Amazon mud both 

on the shelf and onto the Orinoco, similar to the Holocene and modern muddy system. 

INTRODUCTION 

The modern Orinoco Delta is one of the major sinks for Amazon-derived mud 

(Fig. 5.1A) (Eisma et al., 1978; Eisma et al., 1991; Warne et al., 2002; Aslan et al., 2003). 

Research suggests that 36-68% (4.3-8.3 ×108 tons) of the yearly Amazon mud supply 
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(Kuehl et al., 1986) are deposited on the Amazon shelf off the river mouth, 20% are 

being transported along the coast either in suspension (1.5×108 tons) or in the form of 

migrating mud banks (1×108 tons), and 20% are deposited in the Orinoco Delta and Gulf 

of Paria (2.5×108 tons), with the remainder small amount deposited on the Guianas coast 

(French Guiana, Suriname, and Guyana) or transported off the shelf (Eisma et al., 1978; 

Wells and Coleman, 1978; Eisma et al., 1991) This huge supply of Amazon mud is a 

significant additional sediment source to the Orinoco Delta; it accounts for at least half of 

the muddy sediment deposited on the Orinoco Delta (Eisma and Van der Marel, 1971; 

Eisma et al., 1978). Although there have been several studies on the Guianas coast, little 

has been done on the Orinoco delta front except for Aslan et al. (2003) who documented 

mudcapes derived from the Amazon system accumulated along the western Orinoco 

Delta in the late Holocene. There has been no previous work on ancient Amazon mud 

within the Orinoco Delta stratigraphy. 

    Mud dispersal is mainly controlled by interplay of muddy sediment supply and 

basinal processes (tides, waves, and currents) (Walsh and Nittrouer, 2009) that result in 

mud distribution to variable locations on shelves as muddy coasts, nearshore/inner-shelf 

mud belts, mid- and outer-shelf mud belts (McCave, 1972; Hanebuth et al., 2015). 

Eustatic sea-level falls and rises can drive regressive and transgressive transits of 

shorelines, between the innermost and the outermost reaches of the pre-existing shelf, and 

therefore decrease and increase shelf width and accommodation for muddy sediment on 

the shelf. In the meantime, coastal and shallow marine processes may correspondingly 

shift as sea level changes. The marine processes and eustatic sea-level changes play 

important roles on the muddy systems and remain understudied.   

    The objectives of this work are (1) to provide well exposed outcrop examples 

of how Amazon-derived fluid-mud layers are recognized and characterized in both tide- 
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and wave-dominated settings, (2) to show how littoral fluid mud tended to accumulate on 

the subaqueous platform of strongly tide-influenced delta lobes, whereas on wave-

dominated lobes the mud was commonly eroded and reworked farther out into deeper 

settings, and (3) to suggest that the glacial-interglacial, Pliocene sea-level changes (10s of 

Ky duration) are likely to have affected the overall increased or decreased volumes of 

mud incorporated into the Orinoco during falling-stage, lowstand, transgressive, and 

highstand sea-level intervals.   

 

 

Figure 5.1: (A) Sketch map of the 1600-km muddy Amazon-Orinoco coast in South 
America.The blue bold line indicates the zone of mud banks and the blue 
arrows indicate fluid mud transport direction. (B) Geologic map of Trinidad 
showing the late Miocene-Pliocene Orinoco deltaic to deep-water deposits 
in the Northern and Southern Basins of Trinidad. The island of Trinidad was 
plotted with the DEM elevation to emphasize the main mountain ranges 
using the NASA’s Shuttle Radar Topography Mission (SRTM) Version 3.0 
data. Red dots indicate the locations of all studied outcrops which includes 
locations of the three selected successions in Figure 5.2A-C. 
(C)Stratigraphic column for the four clastic wedges and tentative correlation 
between the formations of the Northern and Southern Basins. 
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BACKGROUND 

Fluid mud formation  

The Amazon-Orinoco coastline in south America is the world’s largest (1600 km) 

migrating muddy systems (Fig. 5.1A), and it shows a morphodynamic interaction with 

the shoreline along which it drifts. Tremendous volumes of fluid mud (10-400 g/l) 

(Allison et al., 1995b) that consist of mostly silt and clay are formed as the Amazon fresh 

water and saline Atlantic Ocean water meet (estuarine circulation) in a turbidity-

maximum area due to mud coagulation and flocculation (Gibbs and Konwar, 1986) in an 

area 100-200 km seaward of the Amazon River mouth (Nittrouer and DeMaster, 1986; 

Trowbridge and Kineke, 1994; Kineke et al., 1996). The nearbed suspended fluid mud 

(up to 7 m thick) covers an area about 5700 km2 during falling and low river discharge 

and about 10,000 km2 during rising and high discharge on the inner and middle shelf 

northwest of the Amazon river mouth (Kineke and Sternberg, 1995). The cross-shelf 

extent of fluid mud is greater during rising and high discharge, and reaches the outer 

topset and upper foreset of the subaqueous clinoform at a water depth of more than 35 m 

compared to the period of falling and low discharge (i.e., 15 m water depth on the mid-

outer topset) (Kineke and Sternberg, 1995). Thick mud layers (up to 1.5 m; containing 

about 1.5 × 108 tons sediment) were deposited rapidly from the fluid-mud suspension 

before remobilization to the northwest (Allison et al., 1995b). 

Fluid mud transport and deposition  

The transport and deposition of the Amazon mud are mainly attributed to the 

trade-wind-generated waves (Wells and Coleman, 1978; Eisma et al., 1991; Allison et al., 

1995b; Allison et al., 2000; Gratiot et al., 2007). The fluid mud is transported from the 

Amazon River northwestward until shoreface-attached mud banks progressively form 
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near Capo Cassipore (350 km northwest of the Amazon River) (Fig. 5.1A) (Allison et al., 

2000). The mud banks (up to 5 m thick, 10-60 km long, 10-20 km wide) subsequently 

migrate alongshore to the northwest in the littoral zone (5 m to 20 m water depth) by 

constant wave reworking of their trailing edges and transport of mud towards their 

leading edges, causing large volumes of fluid mud to be held in suspension (Eisma et al., 

1991; Allison and Lee, 2004; Augustinus, 2004; Gardel and Gratiot, 2005; Gratiot et al., 

2007; Anthony et al., 2010). The muddy shoreface progradation and erosion along the 

coast are associated with the migration of mud banks and interbanks caused by long-term 

(10s to 100s yrs) variations of the trade winds (i.e., shifts in wind direction and changes 

in mean wind velocity) (Eisma et al., 1991; Allison et al., 1995a). The development of 

coastal-plain accretion and cheniers in between represent episodes (103 yr scale) of 

mudcape and shoreface progradation, and shoreface retreat by intense erosion (Brinkman 

and Pons, 1968; Augustinus et al., 1989). 

The paleo-Orinoco sink: regional setting 

It is believed that the Orinoco Delta is likely to have been receiving Amazon mud 

since the late Miocene, as the Amazon River is known to have been established as a large 

river with its main Andean sediment input from middle to late Miocene (Figueiredo et al., 

2009). During the late Miocene-Pleistocene, glacial-interglacial eustatic sea-level 

fluctuations were able to drive both Amazon and Orinoco deltaic sediment-supply 

systems back and forth across the shelf at short time scales (10s to 100 ky) (Porębski and 

Steel, 2006). Four main clastic wedges were formed by the repetitive transits of the 

paleo-Orinoco Delta system in the Southern and Northern Basins of Trinidad (Fig. 5.1B 

and C) (Steel et al., 2007):  (i) the late Miocene to early Pliocene Cruse Formation (shelf-

edge deltas and slope-channel systems) reached its shelf edge in southeast Trinidad 
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(Winter, 2006; Vincent, 2012; Chen et al., 2016), (ii) the early-mid Pliocene Forest-

Moruga-Mayaro formations (landward to basinward equivalents; river- to wave-

dominated shelf to shelf-edge deltas) prograded to the corresponding shelf edge in 

southeast Trinidad (Bowman, 2003; Bowman and Johnson, 2014; Peng et al., 2017), (iii) 

the mid-late Pliocene Lower Morne L’Enfer Formation (river- and tide-dominated deltas 

and estuaries) (Vincent, 2003; Osman, 2007; Chen et al., 2014) and (iv) the latest 

Pliocene to early Pleistocene Upper Morne L’Enfer-Palmiste Formation (delta-plain 

deposits and tide-dominated deltas) representing the landward reaches on the inner shelf 

(Vincent, 2003; Chen et al., 2014). The coeval deposits in the Northern Basin of Trinidad 

are deep-water turbidites and muddy slope deposits (San Jose Siltstone) and younger 

river- and tide-dominated, wave-influenced delta deposits (Manzanilla and Springvale 

formations) (Huggins, 2007; Peng et al., 2018) with some contribution of coarse-grain 

sediments from the uplifted Northern Range source (Fig. 5.1). The second and third of 

these Orinoco clastic wedges have been examined for delta lobe-fluid mud interactions in 

the present work. 

DATA AND METHODOLOGY 

The studied outcrops are from the Lower Morne L’Enfer Formation at Erin Bay 

and Cedros Bay, Manzanilla Formation at Matura Bay, and Mayaro Formation at Mayaro 

Bay on the coast of Trinidad (Fig. 5.1). Three deltaic successions were selected and 

described in detail (Fig. 5.2) as they represent tide-dominated delta lobes (20 m thick) on 

an inner shelf setting (Chen et al., 2014), tide-dominated and wave-influenced delta lobes 

(80 m thick) on a mid-outer shelf setting (Peng et al., 2018), and storm wave-dominated 

lobes (15 m thick) on a shelf edge setting (Bowman and Johnson, 2014), respectively 

(Fig. 5.2). Other outcrops with additional characteristics that indicate supplementary 
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depositional processes were photographed and included in this study. All the three deltaic 

successions contain abundant mudstone beds or layers that are thick (up to more than 0.5 

cm thick), homogeneous and structureless, and unbioturbated (Fig. 5.3). Some the 

mudstone layers are dark colored and contain organic matter (Fig. 5.3). The mudstones 

are interpreted as fluid-mud deposits (Ichaso and Dalrymple, 2009; Peng et al., 2018), 

which are the focus of this study. Interaction between the invasive fluid mud and the 

associated host facies was described at a cm to dm scale by recording bed thickness, grain 

size, sedimentary structures, and trace fossils. Fluid-mud layers that display a range of 

sedimentation and preservation styles (Table 5.1) are further grouped in tide- and wave-

dominated settings based on their associations with sedimentary structures in sandstones. 

Other mudstones are relatively thin (a few millimeters thick) layers with internal 

lamination and bioturbation and are interpreted as hemipelagic-mud deposits (here in the 

Orinoco outcrops referred to as terrestrial-derived mud that settled from suspension under 

a relatively low sediment concentration). 
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Figure 5.2: The three stratigraphic successions with fluid-mud (FM) and hemipelagic-
mud (HM) deposits marked along the successions. Note that the vertical 
scale is different for each section. (A) A tide-dominated delta front (from the 
Lower Morne L’Enfer Fm.) consisting of several slightly inclined tidal bars 
with a coarsening-upward trend. (B) A tide-dominated and wave-influenced 
delta (from the Manzanilla Fm.) shows two coarsening-to-fining-upward 
units/parasequences. (C) A storm wave-dominated delta front (from the 
Mayaro Fm.) with hummocky and swaley cross-stratified sandstones in the 
upper part and fluid-mud intervals interbedded with lenticular wave ripples 
in the lower part. 
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Figure 5.3: (A-B) Thick, light-colored fluid-mud layers (red arrows) interbedded with 
current-rippled sandstones (from Lower Morne L’Enfer Fm. and Manzanilla 
Fm., respectively). (C) Dark-colored fluid-mud layers with organic matter 
and light-colored fluid-mud layers (from Lower Morne L’Enfer Fm.). (D) 
Organic matter-enriched fluid-mud layers form networks between rippled 
sandstones (from Lower Morne L’Enfer Fm.). The alternating thicker and 
thinner heterolithic beds form spring and neap tidal bundles. 
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Table 5.1: Summary of the mudstone facies with variable sedimentation and 
preservation styles in the Pliocene Orinoco Delta. 

 

FLUID MUD INTERACTION WITH A TIDE-DOMINATED DELTA FRONT 

The Lower Morne L’Enfer Formation contains some tide-dominated delta lobes 

that were somewhat protected from open ocean waves in the Gulf of Paria area of SW 

Trinidad (Chen et al., 2014). The studied delta lobes comprise repeated cycles of mainly 

rippled-laminated and cross-bedded, coarsening-upward delta-front deposits overlain by 

distributary channels (Fig. 5.4A-C) with minor, capping estuary deposits (Fig. 5.4D) 

(Chen et al., 2014). The delta lobes also contain significant volumes of mud deposits 

(≥20% of the delta front). Evidence for tide influence on the delta front includes stacked, 

orderly cross-bedded sandstones with mud drapes, pervasive heterolithic beds showing 

occasional spring-neap bundles, and restricted ichnofauna (Fig. 5.4); in the muddier 

prodelta strata there are unusually well preserved tidal rhythmites. The mudstone layers 

occur associated with delta-front sandstones and have a wide range of layer 

characteristics (Figs. 5.2A and 5.5). Mudstones in the upper part of coarsening-upward 



 132 

successions are very thick (1-10 cm) but vary laterally and show soft deformation due to 

loading from overlying sand beds (Fig. 5.5A and B). Most of the mudstone layers (0.5-

1.5 cm thick) are undeformed, and they are interbedded and form networks with 

structureless to ripple-laminated sandstone beds (Fig. 5.3C and D). In the lower parts of 

the delta-front successions, the mudstones become very thin (1-5 mm thick), and they 

either amalgamate to form thicker mud bedsets (up to 4 cm) (Fig. 5.5C and D) or drape 

along ripple laminae (Fig. 5.5C). In places, the mudstones are dark-colored and rich in 

organic matter (Fig. 5.3D).  

The Morne L’Enfer example is interpreted as a tide-dominated sandy delta front 

that received abundant sediment from active distributary channels (Chen et al., 2014) and 

also moderate amounts of mud from the Amazon-derived mudbelts coming into the Gulf 

of Paria. The heterolithic strata on the delta front were deposited from river and tidal 

currents with the mud deposited during tidal slack-water periods. The mudstones with 

variable characteristics (Fig. 5.5) are interpreted as fluid-mud deposits. The upward 

change from thin to very thick and deformed fluid-mud deposits reflects an upward 

increase in suspended-sediment concentration (SSC) from the lower delta front to the 

upper delta front. The very thick and deformed fluid-mud layers (Fig. 5.5A and B) are 

interpreted as deposited under conditions of very high SSC values (10 g L-1 - 500 of g L-

1) (Mackay and Dalrymple, 2011) in the upper delta front (Fig. 5.6). The deformation or 

load structures at the top of the fluid-mud deposits correspond to rapid deposition of 

sands onto the fluid-mud layers with high water content and high pore pressure (Sills and 

Elder, 1986; Mackay and Dalrymple, 2011). The relatively thick fluid-mud layers are 

interpreted to have formed under flows of intermediate SSC (>10 g L-1). The very thin 

fluid-mud layers (Fig. 5.5C and D) are interpreted as flows with a relatively low SSC (1 g 

L-1 - 10s of g L-1) (Baas et al., 2009; Mackay and Dalrymple, 2011) on the lower delta 
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front. The light-colored, fluid-mud deposits are likely Amazon derived. Wave-generated 

longshore currents during long-distance travel would have tended to suspend and winnow 

away the finer-grained sediment and the organic matter. The dark-colored, organic 

matter-enriched fluid-mud layers probably indicate a nearby river derivation (i.e., the 

paleo-Orinoco River), although they can also have come from erosion of the trailing-edge 

mangrove fringe on the updrift mud banks (Allison and Lee, 2004). 
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Figure 5.4: Tide-dominated sedimentary structures in the Lower Morne L’Enfer Fm. 
(A) A coarsening-upward tide-dominated delta front consisting of several 
low-angle inclined beds interpreted as tidal bars. (B) A tidal channel 
containing tidal bars characterized by sets of cross-bedded sandstones with 
mud clasts and fluid-mud layers. (C) An erosional channel base truncating 
the heterolithic delta front with a very thick (1 m) fluid-mud interval. (D) 
Tide-dominated estuarine channels containing several cross-bedded tidal 
bars with mud drapes. Note that white dashed lines indicate boundaries of 
tidal bars, and yellow dashed lines indicate dip direction of the accretion 
surfaces. 
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Figure 5.5: (A) Very thick (1-10 cm) fluid-mud layers showing lateral inconsistent 
thickness and uncontinuity. (B) Thick (1-3 cm), deformed fluid-mud layers 
interbedded with structureless sandstones. (C) Thin (1-5 mm) fluid-mud 
layers amalgamate to thick beds and drape along ripple laminae. (D) Fluid-
mud intervals composed of very thin (1-5 mm) fluid-mud layers. 

FLUID MUD INTERACTION WITH A TIDE-DOMINATED, WAVE-INFLUENCED DELTA FRONT 

The study segment (80 m thick) of the Manzanilla Formation is a tide-dominated, 

wave-influenced deltaic system that was open to ocean waves but partially protected by 

the modest relief of an Atlantic headland of the Central Trinidad Range (Peng et al., 

2018). Two coarsening-to-fining-upward (CUFU) units containing abundant mud 

deposits (30-40% of delta front) (Fig. 5.2B) are documented here. Most of the succession 
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in the Manzanilla Formation consists of sandy distributary channel and tide-dominated 

delta front systems (Fig. 5.6A and B) (Huggins, 2007) characterized by extensive bi-

directional asymmetrical ripples, tidal rhythmites, and spring-neap tidal bundles with 

restricted ichnofauna. The wave influence in the study succession, recorded by 

hummocky and swaley cross-stratification, small-scale swales, or bi-directional 

symmetrical ripples (Fig. 5.6C and D), occurs primarily in the lower to the middle parts 

and occasionally in the upper parts of the CUFU units (Fig. 5.2B). The majority of mud 

deposits are thick (1-1.5 cm) and structureless occurring near the transition of the 

coarsening to fining of the CUFU units (Fig. 5.2B). Other mudstones are thin (1-2 mm 

thick) and laminated with intense bioturbation (Figs. 5.2B and 5.7A). The thick mud 

layers are commonly continuous and predominantly interbedded with bi-directional 

current ripples (Fig. 5.7A-C). In places, the mud deposits are associated with small-scale 

swales and bi-directional symmetrical ripples as broken mud layers/flasers (Fig. 5.7D). 

The Manzanilla example with CUFU units is interpreted to represent a prograding 

muddy delta system with compound clinoforms (i.e., shoreline and subaqueous 

clinoforms) that received large amounts of Amazon fluid mud (Peng et al., 2018). The 

lower CUFU unit represents a distal subaqueous clinoform showing a coarsening-upward 

succession from the muddy prodelta bottomset to the sandier prodelta slope and outer 

delta-front platform, and a fining-upward succession from the outer to inner delta-front 

platform. The upper CUFU unit demonstrates the most landward part of the subaqueous 

clinoform overlain by the distal part the subaerial clinoform (lower delta plain) with tidal 

channels. The wave-generated structures in the lower unit indicate that storm waves are 

dominant on the prodelta slope to the outer delta-front platform (Peng et al., 2018). The 

majority of thick mud deposits near the transition between the CU and FU units are 

interpreted as fluid mud that were distributed mainly on the delta-front platform, whereas 
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the thin mud layers in the rest of the succession represent hemipelagic mud deposits. The 

continuous fluid-mud layers associated with bi-directional current ripples in the middle to 

upper part of the units were deposited during slack-water periods of tidal cycles on the 

delta-front platform (Fig. 5.7A-C). In contrast, the broken fluid-mud layers/flasers 

associated with small-scale swales and symmetrical ripples represent the mud layers 

eroded by storm wave process (Fig. 5.7D). Waves transported Amazon-derived fine-

grained sediment northwestward along the shoreline and maintained them in suspension, 

whereas the tidal process during slack-water periods allowed settling of the suspended 

sediment as fluid-mud layers. This explains why most of the fluid-mud deposits in this 

case are associated with sedimentary structures generated by tides. 
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Figure 5.6: Tide-dominated and wave-influenced sedimentary structures in the 
Manzanilla Formation. (A) One example of a tidal distributary channel 
containing compound dunes that overlie the studied succession. (B) Bi-
directional cross-bedded sandstones with mud clasts. (C) Hummocky and 
swaley cross-bedded sandstones. (D) Wave rippled-sandstones. 
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Figure 5.7: (A) Thick, unbioturbated fluid-mud layers interbedded with bi-directional 
current ripples in the upper part, and thin hemipelagic-mud layers with 
bioturbation in the lower part. (B) and (C) Thick fluid-mud layers 
interbedded with bi-directional current ripples. (D) Micro-swaley cross-
stratified sandstones with fluid mud flasers. Note that white arrows indicate 
ripple migration directions. 

FLUID MUD INTERACTION WITH STORM WAVE-DOMINATED DELTA FRONT 

The study interval of the Mayaro Formation delta lobes, eastern Trinidad, was one 

of an open ocean, wave-dominated coast (Bowman and Johnson, 2014). It is 

characterized by multiple stacked 5 to 15 m thick parasequences of storm-wave 

dominated delta-front deposits (Bowman, 2003; Dixon, 2005; Bowman and Johnson, 
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2014) with mud deposits (up to 10% of the delta front) (Fig. 5.2C). The parasequences 

commonly demonstrate a gradual coarsening-upward trend with alternating mud intervals 

(5cm to 1.5m thick) and hummocky cross-stratified (HCS) sandstone cosets passing 

upwards to amalgamated swaley cross-stratified (SCS) sandstones (Figs. 5.2C and 5.8A). 

The mud intervals consist of dominant thick (0.2 to 1 cm) and structureless mud layer and 

lenticular sandstones (Fig. 5.8B-F). The tops of the mud intervals are relatively flat (Fig. 

5.8A-C) or very irregular (Fig. 5.8D and E), and they are overlain by HCS/SCS 

sandstones occasionally with some mud clasts along the laminae (Fig. 5.8B and D). An 

idealized fining-upward succession (10-20 cm thick) in which the thick mud deposits 

occur, shows the following features from bottom to top: (i) sharp-based HCS/SCS 

sandstones with/without mud clasts, (ii) small-scale swaley-stratified sandstones, (iii) 

sandy wave ripples (1-2 cm amplitude) interbedded with thin mud layers (< 0.5 cm) (i.e., 

wavy bedding), and (iv) thick (0.5 to 1 cm) mud layers with small wave ripples (up to 0.5 

cm amplitude) (Fig. 5.8D and F). Occasionally there is a coarsening-upward trend 

exhibited by interbedded mud layers and rippled sandstones, passing upward to HCS/SCS 

sandstones (Fig. 5.8C). In places, very thick mud intervals (1 to 1.5 m thick) containing 

small hummocks (dm-scale wavelength) are directly overlain by amalgamated SCS 

sandstones (Fig. 5.8B). Bioturbation is overall scarce (BI = 0-1) with rare occurrence of 

Ophiomorpha, Skolithos and Thalassinoides. 

The Mayaro Formation is interpreted to represent a storm wave-dominated delta 

front (Bowman and Johnson, 2014) that reveal the interaction of mud layers and storm 

wave-generated deposits and some of the dynamics of mud-bank transport. The mud 

intervals with thick and structureless mud layers described above are interpreted as fluid-

mud intervals. The flat to irregular tops of fluid-mud intervals and the overlying 

HCS/SCS sandstones with mud clasts suggest that storm waves eroded the upper delta 



 141 

front, then transported and deposited sediment offshore near storm wave base (Dumas 

and Arnott, 2006). The fining-upward facies succession from storm-generated sandstones 

to fluid-mud capping is interpreted as deposition under waning/decelerating conditions of 

storm-wave events (Fig. 5.8). Storm waves eroded the underlying fluid-mud intervals and 

suspended this sediment during the rising phase of storms. As storm waves waned, 

sediment settled under oscillatory flow conditions to produce HCS/SCS sandstones, 

small-scale swaley-stratified sandstones, wave-rippled sandstones interbedded with fluid-

mud layers, eventually mantled by thicker fluid-mud layers. The very thick (up to 1.5 m) 

mud intervals (Fig. 5.8B) probably represent relict mud banks that migrated along the 

Amazon-Orinoco muddy coast. The preservation of such mud banks in the Pliocene 

stratigraphy of the Orinoco Delta may be partially due to the unusually high subsidence 

rates on the Orinoco shelf margin (Wood, 2000). This is consistent with studies of 

modern mud dynamics where mud banks are well documented to have migrated for great 

distances on the inner shelf at depths of 0-20 m along the Amazon-Orinoco coast by 

Guyana Littoral Currents (Allison and Lee, 2004; Anthony et al., 2010). The Mayaro 

example above possibly represents the dynamic erosion of mud banks near the shelf edge, 

where the open-marine storm waves are very strong. 
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Figure 5.8: Storm wave-dominated sedimentary structures associated fluid-mud 
deposits in the Mayaro Fm. (A) A coarsening-upward succession showing 
alternating thin beds of hummocky cross-stratified (HCS) sandstones and 
fluid-mud-dominated intervals gradually changing upwards to a thick, 
amalgamated swaley cross-stratified (SCS) sandstone bed. (B) 1 m thick 
fluid-mud-dominated interval with micro-HCS sandstones and overlying 
amalgamated SCS sandstones. (C) Several fining-upward intervals and an 
overlying coarsening-upward interval. (D) Erosional based SCS sandstones 
changing upwards through micro-swaley cross-stratified sandstones, to 
interbedded wave-rippled sandstones and fluid-mud layers. (E) HCS 
sandstones are sharp-based and erosional into the underlying fluid-mud 
deposits. (F) HCS/SCS sandstones changing upwards through the 
interbedded wave-rippled sandstones and thin layers of fluid mud, to thicker 
fluid-mud layers with very small wave ripples. 
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FLUID MUD CHARACTERISTICS IN TIDE AND WAVE-DOMINATED SETTINGS 

Fluid-mud deposits show variable but distinctive characteristics in tide- vs. wave-

dominated delta fronts, grouped in 6 types of deposits (A to F; Fig. 5.9). In the tide-

dominated delta fronts, three types of fluid-mud deposits (A, B and C) are identified 

based on thickness, presence/absence of deformation, association with variable sandstone 

sedimentary structures, and they are described in the order of deposition under decreasing 

SSC. Type A fluid-mud deposits are very thick (1-10 cm) and show laterally varying 

thickness in places (Fig. 5.9A). The fluid mud-layers are commonly deformed (squishy 

geometry) and interbedded with structureless sandstones (Fig. 5.9A). Type B fluid-mud 

deposits are relatively thick (0.5-1.5 cm) and undeformed, and they form networks 

around unidirectional or bidirectional current-rippled sandstones (Fig. 5.9B). In places 

the fluid-mud layers are erosionally overlain by current-rippled sandstones as fluid-mud 

flasers (Fig. 5.9B). Type C fluid-mud deposits are very thin (0.1-0.5 cm thick) and 

undeformed, and they either amalgamate to form thicker beds or drape along ripple 

laminae (Fig. 5.9C). In contrast, the fluid-mud deposits in the wave-dominated delta 

fronts (D, E and F) exhibit evidence of erosion, reworking and re-deposition into slightly 

deeper water settings suggested by association with wave ripples and HCS/SCS 

sandstones. Type D fluid-mud deposits occur as fluid-mud clasts dispersed in the small 

swaley-stratified sandstones and represent the shallowest location that was reworked by 

small or damped storm waves (Peng et al., 2018) (Fig. 5.9D). Type E fluid-mud deposits 

are fluid-mud intervals with lenticular sandstones that show very irregular erosional 

surfaces overlain by HCS/SCS sandstones (Fig. 5.9E), and they were located deeper than 

type D fluid-mud deposits. Type F fluid-mud deposits occur in the upper part of fining-

upward successions that from bottom to top show (i) sharp-based HCS/SCS sandstones 

with mud clasts, (ii) small-scale SCS sandstones, (iii) sandy wave ripples with thin layers 
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(< 0.5 cm) of fluid mud, and (iv) thick (0.5 to 1 cm) fluid-mud layers with small wave 

ripples (Fig. 5.9F). This type of fluid-mud succession represents deposits of waning 

storm waves, and they probably occurred at the deepest location (near storm wave base) 

among all the deposits described in this study. 

 

 

Figure 5.9: Schematic illustrations showing six types of fluid-mud deposits associated 
with sandstones in tide-dominated delta fronts (A-C) and wave-dominated 
delta fronts (D-F). (A) Centimeters thick fluid-mud layers with thin 
discontinuous sandstone beds (from Fig. 5.2A). (B) Wavy bedding with 
bidirectional current ripples (from Fig. 5.7B). (C) Millimeters thick 
laminated fluid-mud deposits and lenticular sandstones (from Fig. 5.5C and 
D). (D) Fluid-mud flasers/clasts associated with wave ripples and small 
swales (from Fig. 5.7D). (E) Irregular-based HCS sandstones truncating 
fluid-mud intervals (from Fig. 5.8E). (F) A fining-up succession changes 
from sharp-based HCS/SCS sandstones with fluid-mud clasts, through 
small-scale SCS and wave ripples interbedded with thin fluid-mud layers, to 
thick fluid-mud intervals (from Fig. 5.8D). The legend is the same as in 
Figure 5.2. 
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DISCUSSION 

Contrasts between storm-wave and tidal current handling of fluid mud 

The Pliocene Orinoco Delta is likely to have had both tide- and wave-dominated 

delta lobes, as in the modern Orinoco Delta (Fig. 5.10). The Pliocene stratigraphy herein 

shows how tidal and wave processes in these delta fronts handled fluid mud differently. 

The tide-dominated delta front examples from the Morne L’Enfer and Manzanilla 

formations demonstrate that the Amazon fluid mud was mainly trapped and deposited 

within the delta front (Fig. 5.10A). The Amazon fluid mud was likely mixed with the 

Orinoco mud, particularly on the delta front (Figs. 5.2 and 5.10A). The fluid mud that 

accumulated on the delta front dampened storm waves, and only strong storm waves were 

able to propagate far landward (Peng et al., 2018). Occasionally, offshore-directed wave 

currents transported fluid mud farther offshore onto the prodelta area. In contrast, fluid-

mud deposits were rarely preserved and observed in most storm wave-dominated delta 

fronts in the Moruga Formation (Peng et al., 2017) and Mayaro Formation. The described 

segment of the Mayaro Formation is one of the few successions that preserved fluid-mud 

deposits and represents erosion and re-deposition of muddy sediment offshore by storm 

waves (Fig. 5.10B). Both the tide- and wave-dominated delta fronts exhibit fluid-mud 

intervals over 1 m thick, probably reflecting muddy bedforms similar to the mud banks 

currently migrating along the modern Amazon-Orinoco coast (Allison et al., 2000; 

Allison and Lee, 2004; Anthony et al., 2010). The tide- and wave-dominated deltaic 

shorelines described here could have coexisted during any state of eustatic sea level, and 

similar processes to those described above would have occurred, irrespective of changes 

in the overall mud volumes available, between sea-level highstand and lowstand. 
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Figure 5.10: Schematic diagrams showing the possible distribution of the fluid-mud 
deposits in the tide-dominated (A) and wave-dominated (B) delta fronts 
developed based on outcrop stratigraphic measured sections (see Fig. 5.2) 
and associated sedimentary structures in the individual tide- and wave-
dominated settings (see Fig. 5.9). (C) Map view of the modern Orinoco delta 
with tide- and wave-dominated deltaic shorelines and possible 
corresponding locations for each delta profile 10A and 10B (modified from 
Warne et al., 2002).  See text for the details. 

Influence of Pliocene glacial-interglacial, sea level changes on fluid mud volumes 
incorporated into the paleo-Orinoco Delta 

The NW transport of the Amazon fine-grained sediment during the Pliocene is 

likely to have been influenced by high-amplitude, icehouse glacial-interglacial sea-level 

fluctuations (10s to 100 ky). Falling and lowstand of sea level would have driven deltas 
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from the innermost shelf to the shelf edge, whereas rise and highstand of sea level would 

have shifted deltas landward (Fig. 5.11). The repeated deltaic transits back and forth 

across the Orinoco shelf that built each clastic wedge of the paleo-Orinoco stratigraphy 

would have received varying Amazon mud volumes with varied volumes as sea level 

changed (Fig. 5.12). The paleo-Orinoco delta lobes that contain variable proportions of 

fluid mud at different cross-shelf locations would therefore allow an estimate of the 

relative abundance of fluid mud delivered to the Orinoco at variable sea level stands.  

During falling and lowstand of sea level during glacial periods, the northwestward 

drift of mud would have gradually decreased (a bigger percentage of the mud budget 

going over the Amazon shelf edge). This would have made progressively less mud 

available to the Orinoco system, assuming the Orinoco and Amazon delta systems were 

broadly in-sync during ca. 30-40 Ky of falling eustatic sea level, and would have caused 

the Orinoco Delta to receive minimum Amazon mud while it was situated at the shelf 

edge (Fig. 5.11A-C and 5.12C). The rarely observed fluid-mud deposits in the shelf-edge 

Moruga and Mayaro delta lobes suggests that less mud reached the Orinoco system or 

was preserved during the Pliocene sea-level lowstand. Moreover, a prolonged period at 

the shelf edge, perhaps more than half of the 100 Ky cycle (Burgess and Hovius, 1998; 

Muto and Steel, 2002; Steel et al., 2008), implies much reduced volumes of Amazon mud 

during the major part of the sea-level cycle. The likely reason for this is that (1) much of 

the discharging Amazon sediment during falling and lowstand of sea level would have 

been captured by the shelf-incised canyon and delivered to the deep water (see Lopez, 

2001; 10-70ky, 120-180 ky, 250-300 ky B.P. glacial periods) (Fig. 5.12B) as the Amazon 

river and delta gradually migrated towards the shelf edge; (2) gradually decreased 

accommodation on the shelf during sea-level fall would more likely have caused mud 

transport to the slope; and (3) even the Amazon fluid mud that managed to reach north as 
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far as the Orinoco delta during sea-level lowstand would have been confronted by the 

open-marine, high-energy storm waves at the shelf edge and therefore reworked into 

deeper settings (Peng et al., 2017) (see also 5.1). 

In contrast, during rising eustatic sea level and coastal transgression, the 

maximum volume of mud is likely to have been received on the Orinoco system while it 

was sited on the inner Orinoco shelf (Fig. 5.11D and 5.12C), since delta lobes and 

estuaries would have moved landwards causing a widening of the shelf, similar to the 

modern setting. The Manzanilla and Morne L’Enfer formations at their studied locations 

represent deltas situated on the inner- to mid-shelf during sea-level highstand in the 

Pliocene. The fact that greater abundance of fluid-mud deposits is now observed in the 

Manzanilla and Morne L’Enfer delta lobes tends to confirm that highstand of sea level 

promoted the largest volumes of fluid mud transported and accumulated on the paleo-

Orinoco Delta. This scenario is also supported by the occurrence of only hemipelagic 

sediment deposited (i.e., 0-10 ky, 70-120 ky, 180-250 ky B.P.) in the Amazon deep-water 

fan (Fig. 5.12B) during the interglacial periods (Lopez, 2001) as sea-level rise and 

highstand greatly reduced supply of sediment to the deep water (Piper and Normark, 

2001). 
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Figure 5.11: Two-dimensional schematic cross-sections of the paleo-Orinoco Delta 
demonstrating the influence of glacial-interglacial sea-level changes to the 
incorporated fluid-mud volumes. Note that the gradual decrease in the 
Amazon fluid-mud volumes (illustrated by thinning of brown-colored zone) 
as the Orinoco Delta move basinwards during sea-level falling and 
lowstand. 
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Figure 5.12: (A) Geologic time scale of the late Miocene to the present and eustatic sea-
level variability from Miller et al. (2005) with marked paleo-Orinoco clastic 
wedges separated by major flooding surfaces (modified after Chen et al., 
2018). (B) The last 800 kyr sea-level curve indirectly suggests the roughly 
~50-70 ky interglacial-glacial periodicity of predominant longshore 
transport of the Amazon sediment during high sea levels and primarily deep-
water delivery of the Amazon sediment during low sea levels (modified 
from Lopez, 2001). (C) Proposed model of gradually increase or decrease of 
volumes of the Amazon mud transport and incorporation in the Orinoco 
delta corresponding with eustatic sea-level rising to highstand and falling to 
lowstand, respectively. 
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Comparison with other mud dispersal systems on shelves 

Three distinctive and representative mud dispersal systems (i.e., the Amazon-

Orinoco coast, the Po-Adriatic shelf, and the Eel River shelf) can be compared in terms 

of their sediment supply, transport and deposition mechanisms, and depositional locations 

on the shelf as sea level changed. Mud in these systems is accumulated in the energetic 

environments by high wave and current activity (Rine and Ginsburg, 1985; Macquaker 

and Bohacs, 2007; Schieber et al., 2007). Both modern muddy systems and their ancient 

records are used to evaluate the influence of the sea-level changes on the mud dispersal 

systems through geologic time.  

The modern Amazon-Orinoco muddy system provides examples of muddy coasts 

and nearshore to inner-shelf mud belts on the wide shelf during rising and highstand of 

sea level (Fig. 5.13A). In addition, the studied Manzanilla and Morne L’Enfer formations 

with abundant Amazon-derived fluid mud in the paleo-Orinoco Delta support an 

enhanced mud delivery condition during sea-level rise to highstand in the Pliocene. 

During falling and lowstand of sea level, with the Amazon-Orinoco shoreline 

progressively approaching the shelf edge, much of the Amazon mud sediment would 

have been directly captured by the shelf-incised canyon head (Lopez, 2001) with a 

gradually reduced amount of muddy sediment advected on the narrow shelf towards the 

Orinoco. The rarely observed fluid-mud deposits in the Moruga and Mayaro formations 

(see also Bowman and Johnson, 2014; Peng et al., 2017) also suggest that less mud 

reached or was preserved the paleo-Orinoco system during sea-level lowstand. 

The late-Holocene mud clinoform (up to 35 m thick) on the western side of the 

Po-Adriatic shelf represents a highstand mud wedge that extends from the Po Delta (30 m 

water depth) in the north to several hundreds of kilometers down-flow to offshore 

Gargano area (100 m water depth) to the south (Fig. 5.13B) (Cattaneo et al., 2003; 
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Cattaneo et al., 2007; Pellegrini et al., 2015). The Po-Adriatic shelf, in comparison with 

the Amazon-Orinoco coast and the Eel shelf that face the open oceans, is located in an 

epicontinental sea that typically experiences less energetic oceanographic storm-wave 

conditions. About half of the Po River flood sediment is deposited in the Po delta 

(Palinkas and Nittrouer, 2007), and the remaining sediment from the Po prodelta is 

reworked and transported downdrift by storm waves or bottom currents (Cattaneo et al., 

2007; Palinkas and Nittrouer, 2007). The development of the late-Holocene mud 

clinoform indicates that the drowning and widening Adriatic shelf enhanced shore-

parallel mud advection during rising to highstand of sea level (Cattaneo et al., 2003; 

Cattaneo et al., 2007; Amorosi et al., 2016). However, during sea-level fall and lowstand 

phases in the late Pleistocene, the Po River prograded and intercepted most of the 

Apennine rivers to become a mega-river flowing into the central and south Adriatic as the 

shelf was progressively exposed (Fig. 5.13B) (Amorosi et al., 2016; Pellegrini et al., 

2017). Therefore, most of the western shelf became gradually starved because most 

sediment was delivered to the deep water (Amorosi et al., 2016) and reduced shelf width 

hampered longshore dispersal (Fig. 5.13B).  
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Figure 5.13: Schematic three-dimensional block diagrams illustrating the Amazon-
Orinoco muddy coast (A1-3) (modified from Lopez, 2001; Warne et al., 
2002), the Po-Adriatic mud clinoform (B1-3) (modified from Amorosi et al., 
2016), and the Eel River shelf mud belt offshore California (C1-3) 
(modified from Sommerfield and Nittrouer, 1999; Burger et al., 2001; 
Burger et al., 2002; Puig et al., 2003) during eustatic sea-level fluctuations. 
The shore-parallel transport of mud in the three systems are likely 
influenced by eustatic sea level by gradually increasing or decreasing mud 
volumes on the shelf and to the sink, despite the mud transport mechanisms 
being different. 

Mud sedimentation patterns on the Eel shelf shift dramatically in response to sea-

level fluctuations. The modern mud accumulation on the Eel shelf represents mud 

dispersal during sea-level highstand (Fig. 5.13C). In contrast with the open-marine 
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Amazon-Orinoco shelf (80-300 km in width), the Eel shelf is relatively narrow (15-20 km 

in width) but relatively energetic with periodically significant storms which influence 

fluvial sediment supply and mud accumulation on the shelf (Sommerfield and Nittrouer, 

1999; Traykovski et al., 2000). The storm waves transport or disperse river sediment 

predominantly northwards (sometime southwards) and seawards as fluid mud (Fig. 13C) 

(Sommerfield and Nittrouer, 1999), and distribute this mud on the mid- to outer-shelf 

(50-150 m water depth) (Sommerfield and Nittrouer, 1999; Wheatcroft and Borgeld, 

2000). Similar to the Amazon-Orinoco and Po-Adriatic systems, the alongshelf mud 

dispersal is also likely to occur during transgressive and highstand phases with enough 

accommodation for shallow marine mud dispersal processes. The late-Pleistocene Eel 

shelf would have represented a lowstand phase, in which southwest-oriented fluvial 

channels incised the subaerially exposed shelf (130 m below present sea level) and 

discharged most sediment towards the Eel Canyon (Fig. 5.13C) (Burger et al., 2001; 

Burger et al., 2002) with less sediment available on the shelf.   

CONCLUSIONS 

Outcrop examples from the Morne L’Enfer, Manzanilla, and Mayaro delta lobes 

of the Orinoco paleo-delta system show distinctive fluid-mud characteristics in their tide- 

and wave-dominated delta fronts. In the tide-dominated delta fronts, fluid-mud deposits 

range from very thick and deformed layers to very thin layers that amalgamated to thicker 

beds or drape along ripple laminae. The sedimentary structures in sandstones associated 

with the fluid-mud deposits are structureless to bidirectional current ripples that were 

generated by tidal processes. The fluid-mud deposits in the wave-dominated delta fronts 

are preserved as broken fluid-mud flasers/clasts, intervals erosionally overlain by 
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HCS/SCS sandstones, or layers interbedded with wave ripples in the upper part of the 

waning storm-wave deposits.   

The variable characteristics in the fluid-mud deposits and associated sandstones 

illustrate how tide- vs. wave-dominated delta fronts handled the impact of Amazon fluid 

mud that arrived by Guyana current littoral drift. The tide-dominated delta lobes were 

more likely to trap muddy sediment near the shoreline and on the subaqueous delta 

platform in paleo-water depth less than 10 to 20 m. In contrast, the storm wave-

dominated delta lobes handled the fluid mud dynamically; the open marine storm waves 

tended to erode and re-suspend the fluid mud in shallow water, and re-deposit it into 

deeper water near storm wave base (15-50 m water depth).  

Amazon mud transport and thus the impinging of the Amazon mud into the front 

of the paleo-Orinoco Delta were also influenced by high-amplitude, glacio-eustatic sea-

level changes as supported by the Pliocene Orinoco outcrops. Amazon deltaic 

regressions, during glacial fall and lowstands of sea level, would have caused a 

systematic reduction of shelf width and most of the Amazon sediment budget bypassed 

the shelf edge into the deep-water basin. Therefore, greatly reduced volumes of Amazon 

fluid mud would have been available to drift northwards along the Guianas coastline for 

incorporation into the Orinoco delta front. In contrast, during sea-level rise and highstand 

of interglacial periods, much of the muddy sediment budget from the Amazon river 

would have been directed northwestwards along the shelf, and thus the Amazon mud 

dispersal system was active all the way to the Orinoco at this time. 
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