4 research outputs found

    A discrete approach to monogenic analysis through Radon transform

    No full text
    8 pagesInternational audienceMonogenic analysis is gaining interest in the image processing community as a true signal processing tool for 2D signals. Unfortunately, it is only defined in the continuous case. We address this issue by proposing an innovative scheme that uses a discrete Radon transform based on discrete geometry. Radon domain signal processing and monogenic analysis is studied and performance is shown to be equivalent to the usual FFT-based algorithms. The advantage is that extensions to filterbanks and to higher dimensions are facilitated, thanks to the perfect invertibility and computational simplicity of the used Radon algorithm

    A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

    Full text link
    The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed in the past decade, share an hybrid heritage highlighting the multiscale and oriented nature of edges and patterns in images. This paper presents a panorama of the aforementioned literature on decompositions in multiscale, multi-orientation bases or dictionaries. They typically exhibit redundancy to improve sparsity in the transformed domain and sometimes its invariance with respect to simple geometric deformations (translation, rotation). Oriented multiscale dictionaries extend traditional wavelet processing and may offer rotation invariance. Highly redundant dictionaries require specific algorithms to simplify the search for an efficient (sparse) representation. We also discuss the extension of multiscale geometric decompositions to non-Euclidean domains such as the sphere or arbitrary meshed surfaces. The etymology of panorama suggests an overview, based on a choice of partially overlapping "pictures". We hope that this paper will contribute to the appreciation and apprehension of a stream of current research directions in image understanding.Comment: 65 pages, 33 figures, 303 reference

    Development of Some Novel Spatial-Domain and Transform-Domain Digital Image Filters

    Get PDF
    Some spatial-domain and transform-domain digital image filtering algorithms have been developed in this thesis to suppress additive white Gaussian noise (AWGN). In many occasions, noise in digital images is found to be additive in nature with uniform power in the whole bandwidth and with Gaussian probability distribution. Such a noise is referred to as Additive White Gaussian Noise (AWGN). It is difficult to suppress AWGN since it corrupts almost all pixels in an image. The arithmetic mean filter, commonly known as Mean filter, can be employed to suppress AWGN but it introduces a blurring effect. Image denoising is usually required to be performed before display or further processing like segmentation, feature extraction, object recognition, texture analysis, etc. The purpose of denoising is to suppress the noise quite efficiently while retaining the edges and other detailed features as much as possible
    corecore