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PREFACE 
 

 

Digital Image Processing, developed during last three decades, has become a 

very important subject in electronics and computer engineering. Image restoration is 

one of the many areas it encompasses. Image deblurring and image denoising are the 

two sub-areas of image restoration. 

   

When an image gets corrupted with noise during the processes of acquisition, 

transmission, storage and retrieval, it becomes necessary to suppress the noise quite 

effectively without distorting the edges and the fine details in the image so that the 

filtered image becomes more useful for display and/or further processing. 

 

Two spatial-domain and three transform-domain digital image filters are 

proposed in this doctoral thesis for efficient suppression of additive white Gaussian 

noise (AWGN). The filters are tested on low, moderate and high noise conditions and 

they are compared with existing filters in terms of objective and subjective evaluation. 

Under low noise conditions, though many filters are very good in terms of objective 

evaluations, the resulting output images of almost all filters give nearly equal visual 

quality. Hence efforts are made here to develop efficient filters for suppression of 

AWGN under moderate and high noise conditions. The execution time is taken into 

account while developing filters for online and real-time applications such as 

television, photo-phone, etc.  

Therefore, the present research work may be treated as  

(i) developmental work; and 

(ii) applied research work. 

 

I would be happy to see other researchers using the results reported in the thesis 

for developing better image filters. Moreover, I will be contended to find these filters 

implemented for practical applications in near future. 

Nilamani Bhoi 
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Abstract 

Some spatial-domain and transform-domain digital image filtering algorithms 

have been developed in this thesis to suppress additive white Gaussian noise 

(AWGN). 

In many occasions, noise in digital images is found to be additive in nature 

with uniform power in the whole bandwidth and with Gaussian probability 

distribution. Such a noise is referred to as Additive White Gaussian Noise (AWGN). 

It is difficult to suppress AWGN since it corrupts almost all pixels in an image. The 

arithmetic mean filter, commonly known as Mean filter, can be employed to suppress 

AWGN but it introduces a blurring effect.  Image denoising is usually required to be 

performed before display or further processing like segmentation, feature extraction, 

object recognition, texture analysis, etc. The purpose of denoising is to suppress the 

noise quite efficiently while retaining the edges and other detailed features as much as 

possible.  

 

In literature, many efficient digital image filters are found that perform well 

under low noise conditions. But their performance is not so good under moderate and 

high noise conditions. Thus, it is felt that there is sufficient scope to investigate and 

develop quite efficient but simple algorithms to suppress moderate and high power 

noise in an image. 

The filter-performances are usually compared in terms of peak-signal-to-noise 

ratio (PSNR), mean squared error (MSE) and mean absolute error (MAE). These are 

simply mathematically defined image metrics that take care of noise power level in 

the whole image. Large values of PSNR and small values of MSE indicate less noise 

power in an image irrespective of the degradations undergone. So, the quality of an 

image obtained from a filter can not be judged properly with these objective 

evaluation image metrics (PSNR, MSE, MAE). Recently, an image metric known as 

universal quality index (UQI) is proposed in the literature that takes care of human 

visual system (HVS). A higher value of UQI usually guarantees better subjective 

evaluation automatically even if it is an objective evaluation measure. So, the filter 

performance should be compared in terms of UQI values as well. Further, the image 
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denoising filters also degrade an original (noise-free) image. This degradation is 

termed as method noise. In many applications, the images are corrupted with very low 

power AWGN. Under such circumstances, the method noise should also be evaluated 

and considered while developing good filters. The method noise is described as an 

error voltage level, in terms of its mean absolute value, when the input to the filter is 

noise-free. In addition, the execution time taken by a filter should be low for online 

and real-time image processing applications. 

The present doctoral research work is focused on developing quite efficient 

image denoising filters in spatial-domain and transform-domain to suppress AWGN 

quite effectively without yielding much distortion and blurring. The performances of 

the developed filters are compared with the existing filters in terms of peak-signal-to-

noise ratio, root-mean-squared error, universal quality index, method noise and 

execution time.   

The approaches adopted and the novel filters designed are summarized here. 

(A) Spatial-Domain Filters: Two novel spatial-domain image denoising filters:                 

(i) Adaptive Window Wiener Filter (AWWF) and (ii) Circular Spatial Filter (CSF) are 

developed.  

(i) Adaptive Window Wiener Filter (AWWF): The adaptive window Wiener filter 

(AWWF) suppresses Gaussian noise under low and moderate noise conditions very 

efficiently. The work begins by using a mean filter on a noisy image to get the blurred 

version of the image. Using an edge detection algorithm, the edges of the resulted 

blurred image are found out. Many edge detection algorithms are available in the 

literature. The Wiener filter of variable size is applied throughout the noisy image to 

suppress the noise.  The window size is made bigger in homogenous and smooth 

regions and is made smaller in edge and complex regions. 

(ii) Circular Spatial Filter (CSF): A novel circular spatial filter (CSF) is proposed 

for suppressing additive white Gaussian noise (AWGN). In this method, a circular 

spatial-domain window, whose weights are derived from two independent functions: 

(i) spatial distance and (ii) gray level distance is employed for filtering. The proposed 

filter is different from Bilateral filter and performs well under moderate and high 
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noise conditions. The filter is also capable of retaining the edges and intricate details 

of the image. 

(B) Transform-Domain Filters: Three novel transform-domain filters: (i) 

Gaussian Shrinkage based DCT-domain Filter (GS-DCT)  (ii) Total Variation based 

DWT-domain Filter (TV-DWT) (iii) Region Merging based DWT-domain filter(RM-

DWT) are developed to suppress the Gaussian noise effectively. 

 

(i) Gaussian Shrinkage based DCT-domain Filter (GS-DWT): The proposed filter 

presents a simple image denoising scheme by using an adaptive Gaussian smoothing 

based thresholding in the discrete cosine transform (DCT) domain. The edge pixel 

density on the current sliding window decides the threshold level in the DCT domain 

for removing the high frequency components, e.g. noise. Since, the hard threshold 

approach is discontinuous in nature and it tends to yield artifacts (like Gibbs 

phenomenon) in the recovered image, a method of associating Gaussian weights to 

DCT coefficients is proposed. This reduces artifacts and yields better PSNR values. 

 

 (ii) Total Variation based DWT-domain Filter (TV-DWT): In the proposed filter, 

the total variation (TV) algorithm is applied on a noisy image decomposed in wavelet 

domain for suppression of Gaussian noise. After the decomposition process, four 

different energy bands: low-low (LL), low-high (LH), high-low (HL), and high-high 

(HH) are found. The LL subband of a single decomposed noisy image is used to find 

the horizontal, vertical and diagonal edges. Using the pixel position of horizontal 

edges, the corresponding wavelet coefficients in HL subband is retained thresholding 

others to zero. Adopting the same procedure the vertical and diagonal details of LH 

and HH subbands are retained. The method TV is applied to LL subband for one 

iteration only. Applying inverse wavelet transform on modified wavelet coefficients 

we get back the image with little noise. This small amount of noise can further be 

suppressed using the TV algorithm for one iteration once again in the spatial-domain. 

 

(iii) Region Merging based DWT-domain Filter (RM-DWT): The proposed region 

merging based DWT-domain (RM-DWT) filter introduces an image denoising 

scheme with region merging approach in wavelet-domain. In the proposed method, 
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the wavelet transform is applied on the noisy image to yield the wavelet coefficients 

in different subbands. A region including the denoising point in the particular subband 

is partitioned in order to get distinct sub-regions. The signal-variance in a sub-region 

is estimated by using maximum likelihood (ML) estimation. It distinguishes a sub-

region with some non-zero ac signal power from a sub-region containing no ac signal 

power. The sub-regions containing some appreciable ac signal power are merged 

together to get a large homogenous region. However, if the sub-region including 

denoising point has no ac signal power, this sub-region can be merged with other 

likelihood sub-regions with zero ac signal power to get a homogenous region. Now, in 

a large homogenous region, in wavelet domain, the signal variance is estimated with 

better accuracy. Using the estimated signal variance, the wavelet coefficients of 

original (noise-free) decomposed image in wavelet domain are estimated using the 

minimum mean squared error (MMSE) estimator.   

  

Since the Circular Spatial Filter and Region Merging based DWT-Domain 

Filter give very good performance in denoising gray-scale images, two multi-channel 

filters: Multi-channel Circular Spatial Filter (MCSF) and Multi-channel Region 

Merging based DWT-Domain Filter (MRM-DWT) are developed for suppression of 

AWGN from color images. The developed filters: MCSF and MRM-DWT are based 

on three-channel-processing (RGB- processing) and hence are necessarily 3-Channel 

CSF and 3-Channel RM-DWT, respectively. 

 

The AWWF perform well under moderate noise conditions. The developed 

circular spatial filter (CSF) suppresses AWGN efficiently under moderate and high 

noise conditions.  The GS-DCT filter suppresses additive noise in DCT-domain and 

works well when the noise power is moderate. The developed filter TV-DWT takes 

less execution time as compared to other filters. When the noise power is low the 

proposed wavelet-domain filter RM-DWT suppress additive noise effectively.  

 

Among all developed filters and existing filters, CSF is found to be best for 

suppressing AWGN. 
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Preview 

 
Image processing has got wide varieties of applications in computer vision, 

multimedia communication, television broadcasting, etc. that demand very good 

quality of images. The quality of an image degrades due to introduction of additive 

white Gaussian noise (AWGN) during acquisition, transmission/ reception and 

storage/ retrieval processes. It is very much essential to suppress the noise in an image 

and to preserve the edges and fine details as far as possible. In the present research 

work, efforts are made to develop efficient spatial-domain and transform-domain 

image filters that suppress noise quite effectively. 

 

The following topics are covered in this chapter. 

� Fundamentals of Digital Image Processing 

� Noise in Digital Images 

� Literature Review 

� Problem Statement 

� Image Metrics 

� Chapter-wise Organization of the Thesis 

� Conclusion 

1
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1.1 Fundamentals of Digital Image Processing 

 

Digital Image Processing usually refers to the processing of a 2-dimensional 

(2-D) picture signal by a digital hardware. The 2-D image signal might be a 

photographic image, text image, graphic image (including synthetic image), 

biomedical image (X-ray, ultrasound, etc.), satellite image, etc. In a broader context, it 

implies processing of any 2-D signal using a dedicated hardware, e.g. an application 

specific integrated circuit (ASIC) or using a general-purpose computer implementing 

some algorithms developed for the purpose.  

 

An image is a 2-D function (signal), ( ),f x y , where x and y are the spatial 

(plane) coordinates. The magnitude of f  at any pair of coordinates (x,y) is the 

intensity or gray level of the image at that point. In a digital image, x,y, and the 

magnitude of f  are all finite and discrete quantities. Each element of this matrix (2-D 

array) is called a picture element or pixel. Image processing refers to some algorithms 

for processing a 2-D image signal, i.e. to operate on the pixels directly (spatial-

domain processing) or indirectly (transform-domain processing). Such a processing 

may yield another image or some attributes of the input image at the output.  

 

It is a hard task to distinguish between the domains of image processing and 

any other related areas such as computer vision. Though, essentially not correct, 

image processing may be defined as a process where both input and output are 

images. At the high level of processing and after some preliminary processing, it is 

very common to perform some analysis, judgment or decision making or perform 

some mechanical operation (robot motion). These areas are the domains of artificial 

intelligence (AI), computer vision, robotics, etc.  

 

Digital image processing has a broad spectrum of applications, such as digital 

television, photo-phone, remote sensing, image transmission, and storage for business 

applications, medical processing, radar, sonar, and acoustic image processing, 
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robotics, and computer aided manufacturing (CAM) and automated quality control in 

industries. Fig. 1.1 depicts a typical image processing system [1,2].   

 

Most of the image-processing functions are implemented in software. A 

significant amount of basic image processing software is obtained commercially. 

Major areas of image processing are [1,2,6]: 

(i) Image Representation  

(ii) Image Transformation 

(iii) Image Enhancement 

(iv) Image  Restoration 

(v) Color Image Processing 

(vi) Transform-domain Processing 

(vii) Image  Compression 

(viii) Morphological Image Processing 

(ix) Image Representation and Description 

(x) Object Recognition 

Image processing begins with an image acquisition process. Fig. 1.2 illustrates 

such a process. When illumination energy is incident upon an object, it reflects some 

part of it depending on its surface-reflectance. Thus, the image created, f(x,y), is a 2-D 

planar projection of a 3-D object, in general, and os directly proportional to the 

illumination energy, i(x,y), incident on the object and the reflectance, r(x,y), of the 

object. Mathematically, it may be expressed as: 

( , ) . ( , ) . ( , )f x y K i x y r x y=                 (1.1) 

where,   0 ( , )i x y< < ∞                 (1.2) 

   0 ( , ) 1r x y< <                 (1.3) 

and,   K is a constant for the physical acquisition process. 

 

Under perfect ideal conditions, the process-constant, K, is space-invariant and the 

whole process of image acquisition is noise-free. In fact, both the assumptions are 

invalid in any practical acquisition system. Therefore, a practical image contains some 

distortion and noise and hence needs to undergo a process of restoration [2]. 
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Fig. 1.2 An example of image acquisition process 

  (a) illumination energy  source  
  (b) an object  

  (c) imaging system 
  (d)  2-D planar image  
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Fig.1.1 A typical digital image processing system 
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Image processing may be performed in the spatial-domain or in a transform- 

domain. To perform a meaningful and useful task, a suitable transform, e.g. discrete 

Fourier transform (DFT) [1], discrete cosine transform (DCT) [15,17], discrete 

Hartley transform (DHT) [143-145], discrete wavelet transform (DWT) [10-14,18-

21], etc., may be employed. Depending on the application, a suitable transform is 

used. 

Image enhancement techniques are used to highlight certain features of 

interest in an image. Two important examples of image enhancement are: (i) 

increasing the contrast, and (ii) changing the brightness level of an image so that the 

image looks better. It is a subjective area of image processing. On the other hand, 

image restoration is very much objective. The restoration techniques are based on 

mathematical and statistical models of image degradation. Denoising (filtering) [4-5] 

and deblurring [146-147] tasks come under this category. 

Image processing is characterized by specific solutions; hence a technique that 

works well in one area may totally be inadequate in another. The actual solution to a 

specific problem still requires a significant research and development. 

Image restoration [1,2,6,148-149] is one of the prime areas of image 

processing and its objective is to recover the images from degraded observations. The 

techniques involved in image restoration are oriented towards modeling the 

degradations and then applying an inverse procedure to obtain an approximation of 

the original image. Hence, it may be treated as a deconvolution operation. 

Depending on applications, there are various types of imaging systems. X-ray, 

Gamma ray, ultraviolet, and ultrasonic imaging systems are used in biomedical 

instrumentation. In astronomy, the ultraviolet, infrared and radio imaging systems are 

used. Sonic imaging is performed for geological exploration. Microwave imaging is 

employed for radar applications. But, the most commonly known imaging systems are 

visible light imaging. Such systems are employed for applications like remote 

sensing, microscopy, measurements, consumer electronics, entertainment electronics, 

etc. 

The images acquired by optical, electro-optical or electronic means are likely 

to be degraded by the sensing environment. The degradation may be in the form of 

sensor noise, blur due to camera misfocus, relative object camera motion, random 
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atmospheric turbulence, and so on [1-2]. The noise in an image may be due to a noisy 

channel if the image is transmitted through a medium. It may also be due to electronic 

noise associated with a storage-retrieval system. 

 

Noise in an image is a very common problem. An image gets corrupted with 

different types of noise during the processes of acquisition, transmission/ reception, 

and storage/ retrieval. Noise may be classified as substitutive noise (impulsive noise: 

e.g., salt & pepper noise, random-valued impulse noise, etc.) and additive noise (e.g., 

additive white Gaussian noise). The impulse noise of low and moderate noise 

densities can be removed easily by simple denoising schemes available in the 

literature. The simple median filter [1,3,60-61] works very nicely for suppressing 

impulse noise of low density. However, now-a-days, many denoising schemes [28-40] 

are proposed which are efficient in suppressing impulse noise of moderate and high 

noise densities. In many occasions, noise in digital images is found to be additive in 

nature with uniform power in the whole bandwidth and with Gaussian probability 

distribution. Such a noise is referred to as Additive White Gaussian Noise (AWGN). 

It is difficult to suppress AWGN since it corrupts almost all pixels in an image. The 

arithmetic mean filter, commonly known as Mean filter [1-6], can be employed to 

suppress AWGN but it introduces a blurring effect.   

 

Efficient suppression of noise in an image is a very important issue. Denoising 

finds extensive applications in many fields of image processing. Image denoising is 

usually required to be performed before display or further processing like texture 

analysis [45-51], object recognition [52-55], image segmentation [56-58], etc. 

Conventional techniques of image denoising using linear and nonlinear techniques 

have already been reported and sufficient literature is available in this area [1-6].   

Recently, various nonlinear and adaptive filters have been suggested for the 

purpose. The objectives of these schemes are to reduce noise as well as to retain the 

edges and fine details of the original image in the restored image as much as possible. 

However, both the objectives conflict each other and the reported schemes are not 

able to perform satisfactorily in both aspects. Hence, still various research workers are 

actively engaged in developing better filtering schemes using latest signal processing 
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techniques.  In this doctoral research work, efforts have been made in developing 

some novel filters to suppress AWGN quite efficiently. 

 

1.2   Noise in Digital Images 

In this section, various types of noise corrupting an image signal are studied; 

the sources of noise are discussed, and mathematical models for the different types of 

noise are presented.  

 

1.2.1   Sources of Noise  

During acquisition, transmission, storage and retrieval processes an image 

signal gets contaminated with noise. Acquisition noise is usually additive white 

Gaussian noise (AWGN) with very low variance. In many engineering applications, 

the acquisition noise is quite negligible. It is mainly due to very high quality sensors. 

In some applications like remote sensing, biomedical instrumentation, etc., the 

acquisition noise may be high enough. But in such a system, it is basically due to the 

fact that the image acquisition system itself comprises of a transmission channel. So if 

such noise problems are considered as transmission noise, then it may be concluded 

that acquisition noise is negligible. The acquisition noise is considered negligible due 

to another fact that the human visual system (HVS) can’t recognize a large dynamic 

range of image. That is why, an image is usually quantized at 256 levels. Thus, each 

pixel is represented by 8 bits (1 byte). The present-day technology offers very high 

quality sensors that don’t have noise level greater than half of the resolution of the 

analog-to-digital converter (ADC), i.e., noise magnitude in time domain, ( )
8

22

1 V
tn ⋅< , 

where n(t) is the noise amplitude at any arbitrary instant of time t, and V is the 

maximum output of the sensor and is also equal to the maximum allowed input 

voltage level for the ADC. That is, for V = 3.3 volts, the noise amplitude should be 

less than ~ 6.5 mV. In many practical applications, the acquisition noise level is much 

below this margin. Thus, the acquisition noise need not be considered. 

 

Hence, the researchers are mostly concerned with the noise in a transmission 

system. Usually, the transmission channel is linear, but dispersive due to a limited 
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bandwidth. The image signal may be transmitted either in analog form or in digital 

form.  

 

When an analog image signal is transmitted through a linear dispersive 

channel, the image edges (step-like or pulse like signal) get blurred and the image 

signal gets contaminated with AWGN since no practical channel is noise free. If the 

channel is so poor that the noise variance is high enough to make the signal excurse to 

very high positive or high negative value, then the thresholding operation done at the 

front end of the receiver will contribute to saturated max and min values. Such noisy 

pixels will be seen as white and black spots. Therefore, this type of noise is known as 

salt and pepper noise (SPN). In essence, if analog image signal is transmitted, then the 

signal gets corrupted with AWGN and SPN as well. Thus, there is an effect of mixed 

noise. 

 

If the image signal is transmitted in digital form through a linear dispersive 

channel, then inter-symbol interference (ISI) takes place. In addition, the presence of 

AWGN in a practical channel can not be ignored. This makes the situation worse. Due 

to ISI and AWGN, it may so happen that a ‘1’ may be recognized as ‘0’ and vice-

versa. Under such circumstances, the image pixel values have changed to some 

random values at random positions in the image frame. Such type of noise is known 

as random-valued impulse noise (RVIN). 

 

1.2.2   Mathematical  Representation of Noise  

 

The AWGN, SPN, and RVIN are mathematically represented below. The 

Gaussian noise is given by, 

( )ttn GAWGN η=)(                  (1.4) 

( , ) ( , )
AWGN G

f f x y x yη⇒ = +                                                                              (1.5) 

where,  ( )tGη  is a random variable that has a Gaussian probability distribution. It is an 

additive noise that is characterized by its variance, 2σ , where, σ  represents its 

standard deviation. In (1.5), the noisy image is represented as a sum of the original 
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uncorrupted image and the Gaussian distributed random noise Gη . When the variance 

of the random noise Gη  is very low, ( , )
G

x yη  is zero or very close to zero at many 

pixel locations. Under such circumstances, the noisy image 
AWGN

f  is same or very 

close to the original image ( , )f x y  at many pixel locations ( , )x y . 

 

 Let a digital image ( , )f x y , after being corrupted with SPN of density d, be 

represented by 
SPN

f (x,y). Then, the noisy image 
SPN

f (x,y) is mathematically 

represented as: 

 

SPN

with probability, 1

( , ) 0 / 2                

1 / 2

f(x,y) p d

f x y p d

p d

= −


= =
 =

  

     (1.6) 

 

The impulse noise occurs at random locations ( , )x y  with a probability of d. 

The SPN and RVIN are substitutive in nature.  A digital image corrupted with RVIN 

of density d, 
RVIN

f (x,y), is mathematically represented as: 

 

RVIN

with probability, 1
( , )

( , ) with probability,

f(x,y) p d
f x y

x y p dη

= −
= 

=
  

  (1.7) 

 

Here, ( , )x yη  represents a uniformly distributed random variable, ranging 

from 0 to 1, that replaces the original pixel value ( , )f x y . The noise magnitude at any 

noisy pixel location (x,y) is  independent of the original  pixel magnitude. Therefore, 

the RVIN is truly substitutive.  

 

Another type of noise that may corrupt an image signal is the speckle noise 

(SN). In some biomedical applications like ultrasonic imaging and a few engineering 

applications like synthesis aperture radar (SAR) imaging, such a noise is encountered. 
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The SN is a signal dependent noise, i.e., if the image pixel magnitude is high, then the 

noise is also high. Therefore, it is also known as multiplicative noise and is given by  

 

 ( ) ( )tSttn
SN

.)( η=  (1.8) 

      ( ) ( ) ( ) ( ), , , . ,
SN

f x y f x y x y f x yη⇒ = +        (1.9) 

where, ( )tη  is a random variable and ( )tS  is the magnitude of the signal. The noisy 

digital image, 
SN

f (x,y), is represented mathematically in (1.9). The noise is 

multiplicative since the imaging system transmits a signal to the object and the 

reflected signal is recorded. In the forward transmission path, the signal gets 

contaminated with additive noise in the channel. Due to varying reflectance of the 

surface of the object, the reflected signal magnitude varies. So also the noise varies 

since the noise is also reflected by the surface of the object. Noise magnitude is, 

therefore, higher when the signal magnitude is higher. Thus, the speckle noise is 

multiplicative in nature. 

 

The speckle noise is encountered only in a few applications like ultrasonic 

imaging and SAR, whereas all other types of noise i.e., AWGN, SPN, and RVIN 

occur in almost all the applications. The AWGN is the most common among all. 

Under very low noise variance it may look like RVIN. In general, some combinations 

of AWGN, SPN, and RVIN may represent a practical noise. Such type of noise is 

known as mixed noise. Some effective schemes are available in the literature [41-44] 

for filtration of mixed noise. 

 

 

The proposed filters developed in subsequent chapters are meant for 

suppression of AWGN.  To avoid ambiguity, the noisy image is taken as g(x,y) in the 

subsequent chapters. Thus, the noisy image is expressed as: 

( , ) ( , ) ( , )g x y f x y x yη= +               (1.10) 

where, g(x,y) is  the same as fAWGN expressed in (1.5). 
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1.3   Literature Review 

Noise introduced in an image is usually classified as substitutive (impulsive 

noise: e.g., salt & pepper noise, random-valued impulse noise, etc.) and additive 

(e.g., additive white Gaussian noise) noise.  

The impulsive noise of low and moderate noise densities can be removed 

easily by simple denoising schemes available in the literature. The simple median 

filter [3] works very nicely for suppressing impulsive noise of low density. However, 

many efficient filters have been developed for removal of impulsive noise of 

moderate and high noise densities. Chen et al. [28] have developed a nonlinear filter, 

called tri-state median filter, for preserving image details while effectively 

suppressing impulsive noise. The standard median filter and the center weighted 

median (CWM) filter are incorporated into noise detection framework to determine 

whether a pixel is corrupted before applying the filtering operation. A nonlinear non-

iterative multidimensional filter, the peak-and-valley filter [29], is developed for 

impulsive noise reduction. The filter consists of a couple of conditional rules that 

identify the noisy pixels and replace their gray level values in a single step. F. Russo 

has developed an evolutionary neural fuzzy system for noise cancellation in image 

data [30]. The proposed approach combines the advantages of the fuzzy and neural 

paradigms. The network structure is designed to exploit the effectiveness of fuzzy 

reasoning in removing noise without destroying the useful information in input data. 

Farbiz et al. have proposed a fuzzy logic filter for image enhancement [31]. It is able 

to remove impulsive noise and smooth Gaussian noise. Also, it preserves edges and 

image details. H-L Eng and K-K Ma have proposed a noise adaptive soft-switching 

(NASM) filter [32]. A soft-switching noise-detection scheme is developed to classify 

each pixel to be uncorrupted pixel, isolated impulsive noise, non-isolated impulsive 

noise or image object’s edge pixel. ‘No filtering’, a standard median filter or the 

proposed fuzzy weighted median filter is then employed according to respective 

characteristic type identified. T. Chen and H.R. Wu have developed a scheme for 

adaptive impulse detection using CWM filters [33]. In addition to the removal of 

noise from gray images, some color image denoising filters [34-40] are also 

developed for efficient removal of impulsive noise from color images. 
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In many occasions, noise in digital images is found to additive white Gaussian 

noise (AWGN) with uniform power in the whole bandwidth and with Gaussian 

probability distribution. Traditionally, AWGN is suppressed using linear spatial 

domain filters such as Mean filter [1-6], Wiener filter [1,2,9,62-64], etc. Linear 

techniques possess mathematical simplicity but have the disadvantage of yielding 

blurring effect. They also do not perform well in the presence of signal dependant 

noise. Nonlinear filters [4] are then developed to avoid the aforementioned 

disadvantages. The well known nonlinear mean filters such as harmonic mean, 

geometric mean, Lp mean, contra-harmonic mean proposed by Pitas et al. [5] are 

found to be good in preserving edges. Another good edge preserving filter is Lee filter 

[79] proposed by J.S. Lee. In the flat parts of the signal, the output of the Lee filter is 

almost equal to the local signal mean. But in the rapidly varying parts of signal, the 

output of the Lee filtering is almost equal to the observed signal value. Thus, the Lee 

filtering can smooth noise and preserve edges efficiently. Anisotropic diffusion [67-

68] is also a powerful filter where local image variation is measured at every point, 

and pixel values are averaged from neighborhoods whose size and shape depend on 

local variation. Diffusion methods average over extended regions by solving partial 

differential equations, and are therefore inherently iterative. More iteration may lead 

to instability where, in addition to edges, noise becomes prominent. Rudin et al. 

proposed total variation (TV) filter which is also iterative in nature. Later a simple 

and noniterative scheme for edge preserving smoothing is proposed that is known as 

Bilateral filter [70]. Bilateral filter combines gray levels or colors based on both their 

geometric closeness and their photometric similarity, and prefers near values to 

distant values in both domain and range. A filter named non local means (NL-Means) 

[88] is proposed which averages similar image pixels defined according to their local 

intensity similarity. 

T. Rabie [110] proposed a simple blind denoising filter based on the theory of 

robust statistics. Robust statistics addresses the problem of estimation when the 

idealized assumptions about a system are occasionally violated. The contaminating 

noise in an image is considered as a violation of the assumption of spatial coherence 

of the image intensities and is referred as an outlier system. A denoised image is 

estimated by fitting a spatially coherent stationary image model to the available noisy 
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data using a robust estimator-based regression method within an optimal size adaptive 

window. Another robust image denoising method based on the bi-weight mid-

regression is proposed by Hou et al. [116] is found to be effective in suppressing 

AWGN. Kernel regression is a nonparametric class of regression method used for 

image denoising [119]. 

F Russo [111] proposed a new method for automatic enhancement of noisy 

images. The most relevant feature of the proposed approach is a novel procedure for 

automatic tuning that takes into account the histograms of the edge gradients.  

Fuzzy techniques can be applied to develop filters for suppression of additive 

noise. Ville et al. [113] proposed a fuzzy filter for suppression of AWGN. The filter 

consists of two stages. The first stage computes a fuzzy derivative for eight different 

directions. The second stage uses these fuzzy derivatives to perform fuzzy smoothing 

by weighting the contributions of neighboring pixel values. The filter can be applied 

iteratively to effectively reduce high noise. 

Kervrann et al. [114] developed a novel adaptive and patch-based approach 

for image denoising and representation. The method is based on a pointwise selection 

of small image patches of fixed size in the variable neighborhood of each pixel. This 

method is general and can be applied under the assumption that there exist repetitive 

patterns in a local neighborhood of a point. 

A novel method using adaptive principal components is proposed by Mureson 

and Parks [115] for suppression of AWGN. The method uses principal components on 

a local image patches to derive a 2-D, locally adaptive basis set. The local principal 

components provide the best local basis set and the largest eigenvector is in the 

direction of the local image edge. 

Dabov et al. [121] proposed a novel image denoising strategy based on an 

enhancement sparse representation in transform-domain. The enhancement of sparsity 

is achieved by grouping similar 2-D image fragments (e.g., blocks) into 3-D data 

arrays which is called as “groups”. Collaborative filtering is a special procedure 

developed to deal with these 3-D groups. The filter is realized with three successive 

steps: 3-D transformation of a group, shrinkage of the transform spectrum, and 

inverse 3-D transformation. 
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A spatial adaptive denoising method is developed by M. Mignotte [122] which 

is based on an averaging process performed on a set of Markov Chain Monte-Carlo 

simulations of region partition maps constrained to be spatially piecewise uniform 

(i.e., constant in the grey level value sense) for each estimated constant-value regions. 

For the estimation of these region partition maps, the unsupervised Markovian 

framework is adopted in which parameters are automatically estimated in least square 

sense.  

Hirakawa et al. [123] proposed an image denoising scheme using total least 

squares (TLS) where an ideal image patch is modeled as a linear combination of 

vectors cropped from the noisy image. The model is fitted to the real image data by 

allowing a small perturbation in the TLS sense. 

Shen et al. [125] designed nonseparable Parseval frames from separable 

(tensor) products of a piecewise linear spline tight frame. These nonseparable 

framelets are capable of detecting first and second order singularities in directions that 

are integral multiples of 45
0
. Using these framelets, two image denoising algorithms 

are proposed for suppression of AWGN. 

A new class of fractional-order anisotropic diffusion equations for image 

denoising is proposed in [128] for noise removal. These equations are Euler-Lagrange 

equations of a cost functional which is an increasing function of the absolute value of 

the fractional derivative of the image intensity function, so the proposed equations can 

be seen as generalization of second-order and fourth-order anisotropic diffusion 

equations.   

Now-a-days, wavelet transform is employed as a powerful tool for image 

denoising [98-106, 129-136]. Image denoising using wavelet techniques is effective 

because of its ability to capture most of the energy of a signal in a few significant 

transform coefficients, when natural image is corrupted with Gaussian noise. Another 

reason of using wavelet transform is due to development of efficient algorithms for 

signal decomposition and reconstruction [59] for image processing applications such 

as denoising and compression. Many wavelet-domain techniques are already available 

in the literature. Out of various techniques soft-thresholding proposed by Donoho and 

Johnstone [98] is most popular. The use of universal threshold to denoise images in 

wavelet domain is known as VisuShrink [99]. In addition, subband adaptive systems 
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having superior performance, such as SureShrink [100,101], BayesShrink [102],   

NeighShrink [103], SmoothShrink [104] are available in the literature.       Bala et al. 

[129] proposed a multivariate thresholding technique for image denoising using 

multiwavelets. The proposed technique is based on the idea of restoring the spatial 

dependence of the pixels of the noisy image that has undergone a multiwavelet 

decomposition. Coefficients with high correlation are regarded as elements of a vector 

and are subject to a common thresholding operation. In [130], translation-invariant 

contourlet transform is used for image denoising.  

A number of recent approaches for denosing have taken advantage of joint 

statistical relationships by adaptively estimating the variance of a coefficient from a 

local neighborhood consisting of coefficients within a sub-band. One such method 

where statistical relationship of coefficients in a neighborhood is considered is locally 

adaptive window maximum likelihood (LAWML) estimation [105]. It is important to 

construct a statistical model in order to accurately estimate the signal. In [106] a 

Hidden Markov Model is used in wavelet domain for denoising where the existence 

of significant spatial dependencies in the transform coefficients are recognized and 

these dependencies are described using data structures.  P. Shui and Y. Zhao [117] 

proposed an image denoising algorithm using doubly local Wiener filtering with 

block-adaptive windows in wavelet domain. In [120], M. Kazubek demonstrated that 

denoising performance of the Wiener filtering can be increased by preprocessing 

images with a thresholding operation in wavelet-domain.  

Tan et al. [112] proposed a wavelet domain denoising algorithm by combining 

the expectation maximization scheme and the properties of the Gaussian scale mixture 

models. The algorithm is iterative in nature and the number of iterations depends on 

the noise variance. For high variance Gaussian noise, the method undergoes many 

iterations and therefore the method is computational-intensive. 

J. Ma and G. Plonka [118] proposed diffusion-based curvelet shrinkage is 

proposed for discontinuity-preserving denoising using a combination of a new tight 

frame of curvelets with a nonlinear diffusion scheme. In order to suppress the pseudo-

Gibbs and curvelet-like artifacts, the conventional shrinkage results are further 

processed by a projected total variation diffusion where only the insignificant curvelet 
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coefficients or high-frequency part of signal are changed by use of a constrained 

projection.  

Portilla et al. [124] developed a method for removing noise from digital 

images based on a statistical model of the coefficients of an over-complete multiscale 

oriented basis. Neighborhoods of coefficients at adjacent positions and scales are 

modeled as a product of two independent random variables: a Gaussian vector and a 

hidden positive scalar mulitiplier. The latter modulates the local variance of the 

coefficients in the neighborhood, and is thus able to account for the empirically 

observed correlation between the coefficients’ amplitudes. Under this model, the 

Baysian least squares estimate of each coefficient reduces to a weighted average of 

the local linear estimates over all possible values of the hidden multiplier variable. 

Some fractal-wavelet image denoising schemes are explained in [126]. Zhong 

and Ning [127] proposed a very efficient algorithm for image denoising based on 

wavelets and multifractals for singularity detection. By modeling the intensity surface 

of a noisy image as statistically self-similar multifractal process and taking advantage 

of the multiresolution analysis with wavelet transform to exploit the local statistical 

self-similarity at different scales, the point-wise singularity strength value 

characterizing the local singularity at each scale was calculated. By thresholding the 

singularity strength, wavelet coefficients at each scale were classified into two 

categories: the edge-related and regular wavelet coefficients and the irregular wavelet 

coefficients. The irregular wavelet coefficients were denoised using an approximate 

minimum mean-squared error (MMSE) estimation method, while the edge-related and 

regular wavelet coefficients were smoothed using the fuzzy weighted mean (FWM) 

filter preserving the edges and details when reducing noise.  

 Many color image denoising techniques [137-142] are available in the 

literature for suppression of AWGN. Lian et al. [139] proposed an edge preserving 

image denoising via optimal color space projection method. SURE-LET multichannel 

image denoising is proposed by F. Luiser and T. Blu [141] where the denoising 

algorithm is parameterized as a linear expansion of thresholds (LET) and optimized 

using Stein’s unbiased risk estimate (SURE). A non-redundant, orthonormal wavelet 

transform is first applied to the noisy data, followed by the (subband-dependent) 

vector-valued thresholding of individual multi-channel wavelet coefficients which are 
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finally brought back to the image domain by inverse wavelet transform. Lian et al. 

[142] proposed a color image denoising technique in wavelet domain for suppression 

of AWGN. The proposed method is based on minimum cut algorithm where the inter-

scale and intra-scale correlations of wavelet coefficients are exploited to suppress the 

additive noise. Some blind techniques using independent component analysis (ICA) 

[151,152] for image denoising are available in the literature. But, none of the filters 

available in literature is able to achieve perfect restoration. Further, there is a need to 

reduce computational complexity of a filtering algorithm for its use in real-time 

applications. 

Hence, it may be concluded that there is enough scope to develop better 

filtering schemes with very low computational complexity that may yield high noise 

reduction as well as preservation of edges and fine details in an image.  

 

1.4   The Problem Statement 

 

In the present research work, efforts are made to develop many efficient 

filtering schemes to suppress AWGN. For real-time applications like television, 

photo-phone, etc. it is essential to reduce the noise power as much as possible and to 

retain the fine details and the edges in the image as well. Moreover, it is very 

important to have very low computational complexity so that the filtering operation is 

performed in a short time for online and real-time applications.  

Thus, the problem taken for this research work is “Development of Efficient 

Image Filters to suppress AWGN for Online and Real-Time Applications”. Since 

linear filters don’t perform well, nonlinear filtering schemes are adopted for achieving 

better performance. The processing may be done in spatial-domain or in transform-

domain.  

Therefore, the objective of this doctoral research work is to develop some 

novel spatial-domain and transform-domain digital image filters for efficient 

suppression of additive white Gaussian noise. 
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1.5 Image Metrics 

The quality of an image is examined by objective evaluation as well as 

subjective evaluation. For subjective evaluation, the image has to be observed by a 

human expert. The human visual system (HVS) [109] is so complicated that it is not 

yet modeled properly. Therefore, in addition to objective evaluation, the image must 

be observed by a human expert to judge its quality. 

There are various metrics used for objective evaluation of an image. Some of 

them are mean squared error (MSE), root mean squared error (RMSE), mean absolute 

error (MAE) and peak signal to noise ratio (PSNR) [7,107]. 

Let the original noise-free image, noisy image, and the filtered image be 

represented by ( , ),f x y ( , ),g x y  and ˆ ( , ),f x y  respectively.  Here, x and y represent 

the discrete spatial coordinates of the digital images. Let the images be of size M×N 

pixels, i.e. x=1,2,3,…,M, and y=1,2,3,…,N. Then, MSE and RMSE are defined as: 

 

( )
1 1

2
ˆ ( , ) ( , )

M N

x y

f x y f x y

M N
MSE = =

−

×

∑∑
=     (1.11) 

 

MSERMSE =    (1.12) 

 

The MAE is defined as: 

 

( )
1 1

ˆ ( , ) ( , )

M N

x y

f x y f x y

M N
MAE = =

−

×

∑∑
=    (1.13) 

 

The PSNR is defined in logarithmic scale, in dB. It is a ratio of peak signal 

power to noise power. Since the MSE represents the noise power and the peak signal 

power is unity in case of normalized image signal, the image metric PSNR is defined 

as: 

)1(log.10 10 MSE
PSNR = dB   (1.14) 
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For the color image processing, the color peak signal to noise ratio (CPSNR) 

[142] in decibel is used as performance measure. The CPSNR is defined as: 

{ }

1

10

, ,

1
10 log

3
c

c R G B

CPSNR MSE

−

∈

 
= ⋅  

  
∑ dB           (1.15) 

where, MSEc is the mean squared error in a particular channel of the color space. 

Though these image metrics are extensively used for evaluating the quality of 

a restored (filtered) image and thereby the capability and efficiency of a filtering 

process, none of them gives a true indication of noise in an image. It is very important 

to note that RMSE, MAE and PSNR are all related to MSE.  In addition to these 

parameters, a new metric: universal quality index (UQI) [108] is extensively used in 

literature to evaluate the quality of an image now-a-days. Further, some parameters, 

e.g. method noise [88] and execution time [150] are also used in literature to evaluate 

the filtering performance of a filter. These parameters are discussed below. 

 

Universal Quality Index: 

The universal quality index (UQI) is modeled by considering three different 

factors: (i) loss of correlation, (ii) luminance distortion and (iii) contrast distortion. It 

is defined by: 
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The UQI defined in (1.16) consists of three components. The first component 

is the correlation coefficient between the original noise-free image, f and the restored 

image, f̂  that measures the degree of linear correlation between them, and its 

dynamic range is [-1,1]. The second component, with a range of [0, 1], measures the 

closeness between the average luminance of f and f̂ . It reaches the maximum value 

of 1 if and only if f  equals f̂ . The standard deviations of these two images, 
fσ and 

f̂
σ are also regarded as estimates of their contrast-levels. So, the third component in 

(1.16) is necessarily a measure of the similarity between the contrast-levels of the 

images. It ranges between 0 and 1 and the optimum value of 1 is achieved only when 

fσ =
f̂

σ . 

Hence, combining the three parameters: (i) correlation, (ii) average luminance 

similarity and (iii) contrast-level similarity, the new image metric: universal quality 

index (UQI) becomes a very good performance measure.    

 

Method Noise: 

 
Since linear filters do not perform well, nonlinear filters are predominantly 

used for suppressing AWGN from an image. But, an image denoising filter degrades 

even an original noise-free input image due to its inherent nonlinear characteristics. In 

many occasions, it unnecessarily yields some noise at the output. This is quite 

undesirable. 

The method noise [88,89], 
M
N  of a filter is defined as noise in the output 

image when the input is noise-free.  It is described as an error voltage level in terms of 

its mean absolute value. The method noise is defined as: 

 

1 =1

M

( )
x y

x, y
==

×

∑∑
M N

M N

N

N                (1.22) 

 

where,  M
ˆ( , ) ( , ) ( , )x y f x y f x y= −N               (1.23) 
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              ( )ˆ ( , ) ( , )f x y T f x y=                (1.24) 

 

              T(.) is the method (filtering operation). 

 

Execution Time: 
 

Execution Time (TE) of a filter is defined as the time taken by a digital 

computing platform to execute the filtering algorithm when no other software, except 

the operating system (OS), runs on it. 

Though TE depends essentially on the computing system’s clock time-period, 

yet it is not necessarily dependant on the clock time alone. Rather, in addition to the 

clock-period, it depends on the memory-size, the input data size, and the memory-

access time, etc.  

The execution time taken by a filter should be low for online and real-time 

image processing applications. Hence, a filter with lower TE is better than a filter 

having higher TE value when all other performance-measures are identical. 

Since the execution time is platform dependant, some standard hardware 

computing platforms: SYSTEM-1, SYSTEM-2 and SYSTEM-3 presented in     

Table-1.1 are taken for the simulation work. Thus, the TE parameter values for the 

various existing and proposed filters are evaluated by running these filtering 

algorithms on these platforms.  

 

 

 

Table-1.1: Details of hardware platforms (along with their operating system) used for simulating 

the filters 

Hardware platforms Processor Clock (GHz) RAM (GB) Operating System (OS) 

SYSTEM-1 Pentium IV  Core 2 Duo 

Processor 

2.4 2 Windows Vista 64 bit OS 

SYSTEM-2 Pentium IV  Duo Processor 2.8 1 Windows XP 32 bit OS 

SYSTEM-3 Pentium IV Processor 1.7 1 Windows XP 32 bit OS 
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1.6 Chapter-wise Organization of the Thesis 

The chapter-wise organization of the thesis is outlined. 

Chapter-1: Introduction 

� Preview 

� Fundamentals of Digital Image Processing 

� Noise in Digital Images 

� Literature Review 

� Problem Statement 

� Image Metrics 

� Chapter-wise Organization of Thesis 

� Conclusion 

 

Chapter-2: Study of Image Denoising Filters 

� Preview 

� Order Statistics Filter 

� Wiener and Lee Filter 

� Anisotropic Diffusion (AD) and Total Variation (TV) Filters 

� Bilateral Filter 

� Non-local Means (NL-means) Filter 

� Wavelet Domain Filters 

� Simulation Results 

� Conclusion 

Chapter-3: Development of Novel Spatial-Domain Image Filters 

� Preview 

� Development of Adaptive Window Wiener Filter 

� Development of Circular Spatial Filter 

� Simulation Results 

� Conclusion 

Chapter-4: Development of Transform-Domain Filters 

� Preview 

� Development of Gaussian Shrinkage based DCT-domain Filter 
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� Development of Total Variation based DWT-domain Filter 

� Development of Region Merging based DWT-domain Filter 

� Simulation Results 

� Conclusion 

Chapter-5: Development of Some Color Image Denoising Filters 

� Preview 

� Multi-Channel Color Image Filtering 

� Multi-Channel Mean Filter 

� Multi-Channel LAWML Filter 

� Development of Multi-Channel Circular Spatial Filter 

� Development of Multi-Channel Region Merging based DWT-domain Filter 

� Simulation Results  

� Conclusion 

Chapter-6: Conclusion 
� Preview 

� Comparative Analysis 

� Conclusion 

� Scope for Future Work 

 

1.7 Conclusion 

In this chapter, the fundamentals of digital image processing, sources of noise 

and types of noise in an image, the existing filters and their merits and demerits and 

the various image metrics are discussed. It is obvious that AWGN is the most 

important type of noise during acquisition and transmission processes. Hence, in 

common applications like television, photo-phone, etc., the digital images are 

supposed to be corrupted with AWGN quite often. Therefore, it is decided to make 

efforts to develop efficient filters to suppress additive noise. The various metrics for 

describing and quantifying the qualities of an image as well those of a filtering 

process are discussed and analyzed here. In addition, details of various hardware 

platforms, on which the filtering algorithms are run, are mentioned for further 

reference in the subsequent chapters. 
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Preview 

 

Image denoising is a common procedure in digital image processing aiming at 

the suppression of additive white Gaussian noise (AWGN) that might have corrupted 

an image during its acquisition or transmission. This procedure is traditionally 

performed in the spatial-domain or transform-domain by filtering. In spatial-domain 

filtering, the filtering operation is performed on image pixels directly. The main idea 

behind the spatial-domain filtering is to convolve a mask with the whole image. The 

mask is a small sub-image of any arbitrary size (e.g., 3×3, 5×5, 7×7, etc.). Other 

common names for mask are: window, template and kernel. An alternative way to 

suppress additive noise is to perform filtering process in the transform-domain. In 

order to do this, the image to be processed must be transformed into the frequency 

domain using a 2-D image transform. Various image transforms such as Discrete 

Cosine Transform (DCT) [2,15,17], Singular Value Decomposition (SVD) Transform 

[2], Discrete Wavelet Transform (DWT) [10-14,18-21] etc. are used.  

In this chapter, various existing spatial-domain and transform-domain image 

denoising filters are studied and their filtering performances are compared. They are 

2
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some well-known, standard and benchmark filters available in literature. Novel filters, 

designed and developed in this research work, are compared against these filters in 

subsequent chapters. Therefore, attempts are made here for detailed and critical 

analysis of these existing filters. 

The organization of the chapter is given below. 

� Order Statistics Filters 

� Wiener and Lee Filter 

� Anisotropic Diffusion (AD) and Total Variation (TV) Filters 

� Bilateral Filter 

� Non-local Means (NL-Means) Filter 

� Wavelet Domain Filters 

� Simulation Results 

� Conclusion 

 

 

2.1 Order Statistics Filters 
 

Usually, sliding window technique [1,2,6] is employed to perform pixel-by-pixel 

operation in a filtering algorithm. The local statistics obtained from the neighborhood 

of the center pixel give a lot of information about its expected value. If the 

neighborhood data are ordered (sorted), then ordered statistical information is 

obtained. If this order statistics vector is applied to a finite impulse response (FIR) 

filter, then the overall scheme becomes an order statistics (OS) filter [1,5,60,61].  

For example, if a 3×3 window is used for spatial sampling, then 9 pixel data are 

available at a time. First of all, the 2-D data is converted to a 1-D data, i.e. a vector. 

Let this vector of 9 data be sorted. Then, if the mid value (5
th

 position pixel value in 

the sorted vector of length = 9) is taken, it becomes median filtering with the filter 

weight vector [0 0 0 0 1 0 0 0 0]. If all the order statistics are given equal weightage, 

then it becomes a moving average or mean filter (MF). Strictly speaking, the MF is a 

simple linear filter and it has nothing to do with the ordered statistics. Since the MF 

operation gives equal emphasis to each input data, it is immaterial whether the input 

vector is sorted or not. Thus, simply to have a generalization of OS filters, the MF is 



 

 

Chapter-2                                                                Study of Image Denoising Filters 

 

 

Development of Some Spatial-Domain and Transform-Domain Digital Image Filters                                                28 

considered a member of this class. Otherwise, it is quite different from all other 

members of this family of filters. The median (MED), alpha-trimmed mean (ATM), 

min, max filters are some members of this interesting family.  

 

2.1.1 Mean and Median Filters 

The moving average or mean filter (MF) is a simple linear filter [1-6]. All the 

input data are summed together and then the sum is divided with the number of data. 

It is very simple to implement in hardware and software. The computational 

complexity is very low. It works fine for low power AWGN. As the noise power 

increases, its filtering performance degrades. If the noise power is high, then a larger 

window should be employed for spatial sampling to have better local statistical 

information. As the window size increases, MF produces a reasonably high blurring 

effect and thus thin edges and fine details in an image are lost. 

 

The median (MED) filter [3,60,61], on the other hand, is a nonlinear filter. The 

median is a very simple operation. Once the sorting (ordering) operation is performed 

on the input vector, the job is done as the mid-value is taken as the output. Of course, 

if the length of the input vector is even, then the average of two mid-ordered statistical 

data is taken as output. Usually, such a computation is not required in most of image 

processing applications as the window length is normally an odd number. Thus, the 

MED operation can be completed in a very short time. That is, a MED filter may be 

used for online and real-time applications to suppress noise. If an image is corrupted 

with a very low variance AWGN, then this filter can perform a good filtering 

operation [42].  

 

2.1.2 Alpha Trimmed Mean Filter  

The alpha-trimmed mean (ATM) filter [1] is based on order statistics and 

varies between a median and mean filter. It is so named because, rather than 

averaging the entire data set, a few data points are removed (trimmed) and the 

remainders are averaged. The points which are removed are most extreme values, 

both low and high, with an equal number of points dropped at each end (symmetric 
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trimming). In practice, the alpha-trimmed mean is computed by sorting the data low 

to high and summing the central part of the ordered array. The number of data values 

which are dropped from the average is controlled by trimming parameter alpha.  

 

Let g(s,t) be a sub-image of noisy image g(x,y). Suppose the 
2

α
 lowest and the 

2

α
 highest gray-level values of g(s,t) are deleted in the neighborhood Sxy. Let gr(s,t) 

represent the remaining mn α−  pixels. A filter formed by averaging these remaining 

pixels is called alpha trimmed mean filter which can be expressed as: 

  

( , )

1ˆ( , ) ( , )
xy

r

s t S

f x y g s t
mn α ∈

=
−

∑                (2.1) 

The alpha-trimmed mean, also known as Rank-Ordered Mean (ROM) filter, is 

used when an image is corrupted with mixed noise (both Gaussian and salt & pepper 

noise) [42]. Choice of parameterα  is very critical and it determines the filtering 

performance. Hence, the ATM filter is usually employed as an adaptive filter whose 

α  may be varied depending on the local signal statistics. Therefore, it is a 

computation-intensive filter as compared to simple mean and median filter. Another 

problem of ATM is that the detailed behavior of the signal cannot be preserved when 

the filter window is large. 

 

2.2 Wiener Filter and Lee Filter 
 

The Wiener filter [9,62-64] and Lee filter [79-89] are spatial-domain filters 

which are developed long back and are used for suppression of additive noise. The 

details of these two filters are explained below. 

2.2.1 Wiener Filter  

Norbert Wiener proposed the concept of Wiener filtering in the year 1942 

[16]. There are two methods: (i) Fourier-transform method (frequency-domain) and 

(ii) mean-squared method (spatial-domain) for implementing Wiener filter. The 

former method is used only for complete restoration (denoising and deblurring) 
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whereas the later is used for denoising. In Fourier transform method of Wiener 

filtering, normally it requires a priori knowledge of the power spectra of noise and the 

original image. But in mean-squared method no such a priori knowledge is required. 

Hence, it is easier to use the mean-squared method for image denoising. Wiener filter 

is based on the least-squared principle, i.e. the filter minimizes the mean-squared 

error (MSE) between the actual output and the desired output.  

Image statistics vary too much from a region to another even within the same 

image. Thus, both global statistics (mean, variance, etc. of the whole image) and 

local statistics (mean, variance, etc. of a small region or sub-image) are important. 

Wiener filtering is based on both the global statistics and local statistics and is given 

by: 

( )
2

2 2
ˆ ( , ) ( , )

f

f n

f x y g g x y g
σ

σ σ
= + −

+
                        (2.2) 

where, g  is the local mean, 2

fσ  is the local signal variance, 2

nσ  is the noise variance 

and ˆ ( , )f x y denotes the restored image. 

 

For (2a+1) × (2b+1) window of noisy image g(x, y), the local mean g and local 

variance 2

gσ  are defined by: 

1
( , )

a b

s a t b

g g s t
L = − = −

= ∑ ∑                 (2.3)       

where, L, is the total number of pixels in a window, i.e.  L = (2a+1) × (2b+1); 

 

and 

( )
22 1

( , )
1

a b

g

s a t b

g s t g
L

σ
= − = −

= −
−
∑ ∑ .                          (2.4) 

The local signal variance, 2

fσ  used in (2.2) is calculated from 2

gσ  with a priori 

knowledge of noise variance, 2

nσ  simply by subtracting 2

nσ  from 2

gσ  with the 

assumption that the signal and noise are not correlated with each other. 

From (2.2) it may be observed that the filter-output is equal to local mean, if 

the current pixel value equals local mean. Otherwise, it outputs a different value; the 
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value being some what different from local mean. If the input current value is more 

(less) than the local mean, then the filter outputs a positive (negative) differential 

amount taking the noise variance and the signal variance into consideration. Thus, the 

filter output varies from the local mean depending upon the local variance and hence 

tries to catch the true original value as far as possible. 

In statistical theory, Wiener filtering is a great land mark. It estimates the 

original data with minimum mean-squared error and hence, the overall noise power in 

the filtered output is minimal. Thus, it is accepted as a benchmark in 1-D and 2-D 

signal processing. 

 

2.2.2 Lee Filter  

The Lee filter [79-82], developed by Jong-Sen Lee, is an adaptive filter which 

changes its characteristics according to the local statistics in the neighborhood of the 

current pixel. The Lee filter is able to smooth away noise in flat regions, but leaves 

the fine details (such as lines and textures) unchanged. It uses small window (3×3, 

5×5, 7×7). Within each window, the local mean and variances are estimated. 

The output of Lee filter at the center pixel of location (x, y) is expressed as: 

[ ]ˆ ( , ) ( , ) ( , )f x y k x y g x y g g= − +                (2.5) 

where, 

2
2 2

2

2 2

1 ,
( , )

0,

n

g n

g

g n

k x y

σ
σ σ

σ

σ σ


− >

= 
 ≤

               (2.6) 

The parameter k(x, y) ranges between 0 (for flat regions) and 1 (for regions 

with high signal activity). 

The distinct characteristic of the filter is that in the areas of low signal activity 

(flat regions) the estimated pixel approaches the local mean, whereas in the areas of 

high signal activity (edge areas) the estimated pixel favors the corrupted image pixel, 

thus retaining the edge information. It is generally claimed that human vision is more 

sensitive to noise in a flat area than in an edge area. The major drawback of the filter 

is that it leaves noise in the vicinity of edges and lines. However, it is still desirable to 

reduce noise in the edge area without sacrificing the edge sharpness. Some variants of 
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Lee filter available in the literature handle multiplicative noise and yield edge 

sharpening [83-87]. 

 

2.3 Anisotropic Diffusion (AD) Filter and Total Variation (TV) 
Filter 

 

Anisotropic Diffusion (AD) and Total Variation (TV) filters are used for 

suppressing AWGN from images [67,69]. The methods are iterative in nature and 

they need more iterations as noise variance increases. 

 

2.3.1 Anisotropic Diffusion (AD) Filter  

It has been proven that it is necessary to extract a family of derived images of 

multiple scales of resolution in order to be able to identify global objects through 

blurring [65,66] and that this may be viewed equivalently as the solution of the heat 

conduction or diffusion equation given by: 

 

2.tg C g= ∇                   (2.7) 

where, 
t

g  is the first derivative of the image signal, g, in time t and 2∇ is the 

Laplacian operator with respect to space variables, respectively. In (2.7) C is 

considered as a constant independent of space location. There is no fundamental 

reason why this must be so. Koenderink [66] considered it so because it simplifies the 

analysis greatly. Perona and Malik [67] developed a smoothing scheme based on 

anisotropic diffusion filtering that overcomes the major drawbacks of conventional 

spatial smoothing filters and improves the image quality significantly. Perona and 

Malik considered the anisotropic diffusion equation as: 

 

2

( , , )
[ ( , , ) . ( , , )]

( , , ) .

t

g x y t
g div C x y t g x y t

t

C x y t g C g

∂
= = ∇

∂

= ∇ + ∇ ∇

              (2.8) 

where, div and ∇  define the divergence and gradient operators with respect to space 

variables, respectively. By letting C(x, y, t) be a constant, (2.8) reduces to (2.7), the 

isotropic diffusion equation.  
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In [68], Perona and Malik considered the image gradient as an estimation of 

edges and ( )C U g= ∇ , in which U(.) has to be a nonnegative monotonically 

decreasing function with U(0) = 1 (in the interval of uniform region) and tends to zero 

at infinity. There are some possible choices for U(.), the obvious being a binary 

valued function. Some other functions [68] could be: 

2

2
( ) exp

s
U s

k

 
= − 

 
 

                 (2.9) 

or 

2

1
( )

1

U s
s

k

=
 

+  
 

               (2.10) 

where, k is the threshold level for removing noise. Equation (2.8) can be discretized 

using four nearest neighbors (north, south, east, west) and the Laplacian operator [4] 

as given by: 

[ ]1( , ) ( , ) . ( , ) . ( , ) . ( , ) . ( , )
nn n

N N S S W W E Eg x y g x y C g x y C g x y C g x y C g x yλ+ = + ∇ + ∇ + ∇ + ∇  2.11) 

where, 1( , )n
g x y

+  is the discrete value of g(x,y) in the (n+1)th   iteration set by n as g is 

determined by t in continuous space. It follows that: 

 

( )( , )
N N

C U g x y= ∇  

( , ) ( 1, ) ( , )
N

g x y g x y g x y∇ = − −             (2.12a) 

( )( , )S SC U g x y= ∇  

( , ) ( 1, ) ( , )
S
g x y g x y g x y∇ = + −            (2.12b) 

( )( , )W WC U g x y= ∇  

( , ) ( , 1) ( , )W g x y g x y g x y∇ = − −             (2.12c) 

( )( , )
E E

C U g x y= ∇  

( , ) ( , 1) ( , )
E
g x y g x y g x y∇ = + −            (2.12d) 

and λ is a single parameter needed for stability [68]. 

The filtered image is then 1ˆ ( , ) ( , )n
f x y g x y

+= .  
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2.3.2 Total Variation (TV) Filter  

Rudin et al. proposed Total variation (TV) [69] which is a constrained 

optimization type of numerical algorithm for removing noise from images. The total 

variation of the image is minimized subject to constraints involving the statistics of 

the noise. The constraints are imposed using Lagrange multipliers. The solution is 

obtained using the gradient-projection method. This amounts to solving a time 

dependent partial differential equation on a manifold determined by the constraints. 

As t→∞ the solution converges to a steady state which is the denoised image. 

 

 In total variation algorithm, the gradients of noisy image, g(x,y) in four 

directions (East, West, North and South) are calculated. The gradients in all four 

directions are calculated as follows. 

 

 ( )( , ) ( , ) ( 1, )N g x y g x y g x y∇ = − −             (2.13a) 

 ( )( , ) ( 1, ) ( , )
S
g x y g x y g x y∇ = + −            (2.13b) 

 ( )( , ) ( , ) ( , 1)W g x y g x y g x y∇ = − −            (2.13c) 

 ( )( , ) ( , 1) ( , )E g x y g x y g x y∇ = + −            (2.13d) 

  

where, ∇ is the gradient operator. 

The noisy image undergoes several iterations to suppress AWGN. The 

resulted output image after (n+1) iterations is expressed as: 
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where,  

( )

( , ) min mod( , )

sgn sgn
min ,

2

m a b a b

a b
a b

=

+ 
=  
 

              (2.15) 

where,  

1, 0
sgn( )

1, 0

x
x

x

≥
= 

− <
               (2.16) 

 

In (2.14), ‘λ’ is a controlling parameter, ‘ t∆ ’ is the discrete time-step and ‘h’ is a 

constant.  

A restriction, imposed for stability, is given by: 

2

t
c

h

∆
≤                   (2.17) 

where, ‘c’ is a constant. 

 

The filtered image is then 1ˆ ( , ) ( , )n
f x y g x y

+= � . 
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2.4 Bilateral Filter 
 

The Bilateral filter [70], a nonlinear filter proposed by Tomasi and Manduchi, 

is used to suppress additive noise from images. Bilateral filtering smooths images 

while preserving edges, by means of a nonlinear combination of nearby image values. 

The method is noniterative, local, and simple. It combines gray levels or colors based 

on both their geometric closeness and their photometric similarity, and prefers near 

values to distant values.  

The Bilateral filter kernel, w, is a product of two sub-kernels (weighing 

functions):  

(i) photometric (gray-level) kernel, wg      and 

(ii) geometric (distance) kernel, wd. 

 

The gray-level distance (i.e., photometric distance) between any arbitrary pixel 

of intensity value g(x1, y1) at location (x1, y1) with respect to its center pixel of 

intensity value g(x, y) at location (x, y) is given by: 

1
22 2

1 1( , ) ( , )gd g x y g x y = −                                                                       (2.18) 

 

The photometric, or gray-level sub-kernel is expressed by: 

2

1
exp

2

g

g

g

d
w

σ

  
 = −      

                                                                                (2.19) 

where, ‘ gσ ’ is the distribution function for gw . 

 

The spatial distance (i.e., geometric distance) between any arbitrary pixel at a 

location (x1, y1) with respect to the center pixel at location (x, y) is the Euclidean 

distance given by: 

( ) ( )
2 2

1 1sd x x y y= − + −                                                                           (2.20) 
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The geometric, or distance sub-kernel, is defined by: 

2

1
exp

2

s
d

d

d
w

σ

  
 = −     

                                                                                (2.21) 

where, ‘
dσ ’ is the standard deviation of the distribution function 

dw .  

 

The kernel for bilateral filter is obtained by multiplying the two sub-kernels 

gw and dw : 

b g dw w w=                                                                                                   (2.22) 

The estimated pixel ˆ ( , )f x y resulted after sliding the filtering kernel 

bw throughout the noisy image is: 

( , ) ( , )
ˆ ( , )

( , )

a b

b

s a t b

a b

b

s a t b

w s t g x s y t

f x y

w s t

=− =−

=− =−

+ +

=
∑ ∑

∑ ∑
                                                       (2.23) 

 

The filter has been used for many applications such as texture removal [71], 

dynamic range compression [72], photograph enhancement [73,74]. It has also been 

adapted to other domains such as mesh fairing [75,76], volumetric denoising [77] and 

exposure corrections of videos [78]. The large success of bilateral filter is because of 

various reasons such as its simple formulation and implementation. The bilateral filter 

is also non-iterative, i.e. it achieves satisfying results with only a single pass.  
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2.5 Non-local Means (NL-Means) Filter 
 

NL-means filter [88,89], introduced by Buades et al., is based on the natural 

redundancy of information in images. It is due to the fact that every small window in 

a natural image has many similar windows in the same image. The property of this 

filter is that the similarity of pixels has been more robust to noise by using a region 

comparison, rather than pixel comparison and also that matching patterns are not 

restricted to be local. That is, the pixels far away from the pixel being filtered are not 

penalized.  

Non-local Means Theory 

The NL-Means algorithm assumes that the image contains an extensive 

amount of self-similarity. Efros and Leung originally developed the concept of self-

similarity for texture synthesis [90]. An example of self-similarity is displayed in     

Fig. 2.1. It shows three pixels p, q1 and q2 and their respective neighborhoods. The 

neighborhoods of pixels p and q1 are similar but that of p and q2 are dissimilar. 

Adjacent pixels tend to have similar neighborhoods, but non-adjacent pixels will also 

have similar neighborhoods when there are similar structures in the image [88]. For 

example, in this figure most of the pixels in the same column as p will have similar 

neighborhoods to p’s neighborhood. The self-similarity assumption can be exploited 

to denoise an image.  Pixels with similar neighborhoods can be used to determine the 

denoised value of a pixel. 
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Non-local Means Method 

Given an image g, the filtered value at a point p located at (x,y) using the    

NL-Means method is calculated as a weighted average of all the pixels in the image 

using the following formula:  

( ) [ ]
1 1

1 1

( , )

ˆ ( , ) ( , ) ( , ), ( , ) ( , )
x y

f x y NL g x y w x y x y g x y
∀

= = ∑                                          (2.24) 

[ ] [ ]
1 1

1 1 1 1

( , )

0 ( , ), ( , ) 1 ( , ), ( , ) 1
x y

with w x y x y and w x y x y
∀

≤ ≤ =∑                           (2.25) 

where, (x1,y1) represents any other image pixel location such as q1 and q2. 

 

 

 

p 

q1 

q2 

Fig. 2.1 Example of self-similarity in an image 

 
Pixels p and q1 have similar neighborhoods, but pixels p and q2 

do not have similar neighborhoods. Because of this, pixel q1 will 

have a stronger influence on the denoised value of p than q2. 
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The weights [ ]1 1( , ),( , )w x y x y  are based on the similarity between the neighborhoods 

of p and any arbitrary pixel q with a user defined radius Rsim. The similarity of 

[ ]1 1( , ),( , )w x y x y is then calculated as: 

[ ]
[ ]1 1

1 1 2

( , ), ( , )1
( , ), ( , ) exp

p

d x y x y
w x y x y

Z h

 
= − 

 
                                                    (2.26) 

[ ]

1 1

1 1

2
( , )

( , ), ( , )
expp

x y

d x y x y
Z

h∀

 
= − 

 
∑                                                                       (2.27) 

where, Zp is the normalizing constant and h is an exponential decay control parameter. 

  The parameter, d  is a Gaussian weighted Euclidian distance of all the pixels 

of each neighborhood: 

[ ] ( )( ) ( )( )
1 1

2

1 1 , ,
( , ), ( , )

sim

x y x y
R

d x y x y G g N g Nσ= −                                                    (2.28) 

N(x,y): pixel located at (x,y) with its neighborhood. 

( )1 1,x y
N : any arbitrary pixel located at (x1,y1) with its neighborhood. 

where, Gσ is a normalized Gaussian weighting function with zero mean and standard 

deviation of σ (usually set to 1) that penalizes pixels far from the center of the 

neighborhood window by giving more weight to pixels near the center. The center 

pixel of the Gaussian weighting window is set to the same value as that of the pixels 

at a distance 1 to avoid over-weighting effects. 

When the pixel to be filtered is compared with itself, the self similarity will be very 

high which will lead to over-weighting effect. To avoid such situation 

[ ]( , ), ( , )w x y x y  is calculated as: 

[ ] ( ) ( )( ) ( ) ( )1 1 1 1( , ),( , ) max , , , , ,w x y x y w x y x y x y x y= ∀ ≠                                  (2.29) 
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Non-local Means Parameters 

The non-local means algorithm has three parameters.  The first parameter, h, is 

the weight-decay control parameter which controls where the weights lay on the 

decaying exponential curve.  If h is set too low, not enough noise will be removed.  If 

h is set too high, the image will become blurred.  When an image contains white noise 

with a standard deviation of σn, h should be set between 10 σn and 15 σn  [88,89]. 

The second parameter, Rsim, is the radius of the neighborhoods used to find 

the similarity between two pixels.  If Rsim is too large, no similar neighborhoods will 

be found, but if it is too small, too many similar neighborhoods will be found.  

Common values for Rsim are 3 and 4 to give neighborhoods of size 7×7 and 9×9, 

respectively [88,89]. 

The third parameter, Rwin, is the radius of a search window.  Because of the 

inefficiency of taking the weighted average of every pixel for every pixel, it will be 

reduced to a weighted average of all pixels in a window.  The window is centered at 

the current pixel being computed.  Common values for Rwin are 7 and 9 to give 

windows of size 15×15 and 19×19, respectively [88,89]. 

Non-local means can be applied to other image applications such as non-local 

movie denoising [91-93], MRI denoising [94,95], image zooming [96], and 

segmentation [97].   
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2.6 Wavelet-Domain Filters 
 

Wavelet domain filters essentially employs Wavelet Transform (WT) and 

hence are named so. Fig. 2.2 shows the block schematic of a wavelet-domain filter. 

Here, the filtering operation is performed in the wavelet-domain. A brief introduction 

to wavelet transform is presented here. 

 

 

 

 

 

 

 

 

 

2.6.1 An Overview of Wavelet Transform 

Wavelet transform [18-21], due to its localization property, has become an 

indispensable signal and image processing tool for a variety of applications, including 

compression and denoising [98-102]. A wavelet is a mathematical function used to 

decompose a given function or continuous-time signal into different frequency 

components and study each component with a resolution that matches its scale. A 

wavelet transform is the representation of a function by wavelets. The wavelets are 

scaled and translated copies (known as daughter wavelets) of a finite length or fast 

decaying oscillating waveform (known as mother wavelet). Wavelet transforms are 

classified into continuous wavelet transform (CWT) and discrete wavelet transform 

(DWT).  

The continuous wavelet transform (CWT) [1,10-13] has received significant 

attention for its ability to perform a time-scale analysis of signals. On the other hand, 

the discrete wavelet transform (DWT) is an implementation of the wavelet transform 

using a discrete set of wavelet scales and translations obeying some definite rules. In 

other words, this transform decomposes the signals into mutually orthogonal set of 

Forward 

WT 

 

Filtering Algorithm 
Inverse 

WT 

Input  

 

Image 

Output  

 
Image 

Fig. 2.2 A Wavelet Domain Filter 
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wavelets. The Haar [1], Daubechies[14], Symlets [20] and Coiflets [21] are compactly 

supported orthogonal wavelets. There are several ways of implementation of DWT 

algorithm. The oldest and most known one is the Mallat-algorithm or Mallat-tree 

decomposition [19]. In this algorithm, the DWT is computed by successive low-pass 

and high-pass filtering of discrete time-domain signal as shown in Fig. 2.3 (a). In this 

figure, the signal is denoted by the sequence f(n), where n is an integer. The low-pass 

filter is denoted by G0 while the high-pass filter is denoted by H0. At each level, the 

high-pass filter produces detailed information d(n), while the low-pass filter 

associated with scaling function produces coarse approximations, a(n).  

The original signal is then obtained by concatenating all the coefficients, a(n) 

and d(n), starting from the last level of decomposition as shown in Fig. 2.3 (b). 

The wavelet decomposition of an image is done as follows: In the first level of 

decomposition, the image is decomposed into four subbands, namely HH (high-high), 

HL (high-low), LH (low-high) and LL (low-low) subbands. The HH subband gives 

the diagonal details of the image, the HL subband gives the horizontal features while 

the LH subband represents the vertical structures. The LL subband is low resolution 

residual consisting of low frequency components and it is further split at higher levels 

of decomposition. It is convenient to label the subbands of transform as shown in   

Fig. 2.4. In Fig. 2.5, an example of second level of decomposition of Lena image 

using Daubechies’ tap-8 (Db-8) wavelet is shown. 
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Fig.2.3 Two-level wavelet Mallat-tree 
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Fig.2.5 Two label decomposition of Lena 
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2.6.2 DWT-Domain Filters 

Recently, a lot of methods have been reported that perform denoising in 

DWT-domain [98-106]. The transform coefficients within the subbands of a DWT 

can be locally modeled as i.i.d (independent identically distributed) random variables 

with generalized Gaussian distribution. Some of the denoising algorithms perform 

thresholding of the wavelet coefficients, which have been affected by additive white 

Gaussian noise, by retaining only large coefficients and setting the rest to zero. These 

methods are popularly known as shrinkage methods. However, their performance is 

not quite effective as they are not spatially adaptive. Some other methods evaluate the 

denoised coefficients by an MMSE (Minimum Mean Square Error) estimator, in 

terms of the noised coefficients and the variances of signal and noise. The signal 

variance is locally estimated by a ML (Maximum Likelihood) estimator in small 

regions for every subband where variance is assumed practically constant. These 

methods present effective results but their spatial adaptivity is not well suited near 

object edges where the variance field is not smoothly varied. Further, these methods 

introduce artifacts in the smooth regions of the output image. Some efficient wavelet-

domain filters are discussed in subsequent sub-sections. 

 

2.6.3 VisuShrink  

VisuShrink [99] is thresholding by applying universal threshold [98] proposed 

by Dohono and Johnston. This threshold is given by: 

2 logU nT Lσ=                (2.30) 

where, 2

nσ  is the noise variance of AWGN and L is the total number of pixels in an 

image. 

It is proved in [99] that a large fraction of any L number of random data array with 

zero mean and variance, 2

nσ  will be smaller than the universal threshold, TU with high 

probability; the probability approaching 1 as L increases. Thus, with high probability, 

a pure noise signal is estimated as being identically zero. Therefore, for denoising 

applications, VisuShrink is found to yield a highly smoothed estimate. This is because 

the universal threshold is derived under the constraint that with high probability, the 
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estimate should be at least as smooth as the signal. So the TU tends to be high for large 

values of L, killing many signal coefficients along with the noise. Thus, the threshold 

does not adapt well to discontinuities in the signal. 

 

2.6.4 SureShrink  

SureShrink [100,101] is an adaptive thresholding method where the wavelet 

coefficients are treated in level-by-level fashion. In each level, when there is 

information that the wavelet representation of that level is not sparse, a threshold that 

minimizes Stein’s unbiased risk estimate (SURE) is applied. SureShrink is used for 

suppression of additive noise in wavelet-domain where a threshold TSURE is employed 

for denoising. The threshold parameter TSURE is expressed as: 

( )arg min ( ;
hSURE T hT SURE T Y=              (2.31) 

SURE(T;Y) is defined by: 

 ( )
22 2

1

1
( ; ) 2 . # : min ,

L

h n n i h i h

i

SURE T Y i Y T Y T
L

σ σ
=

  
= − × ≤ −  

  
∑          (2.32) 

 

where, 2

n
σ  is the noise variance of AWGN; 

L is the total number of coefficients in a particular subband; 

Yi is a wavelet coefficient in the particular subband. 

[ ]0,h UT T∈ , TU is Donoho’s universal threshold. 

  

2.6.5 BayesShrink  

In BayesShrink [102], an adaptive data-driven threshold is used for image 

denoising. The wavelet coefficients in a sub-band of a natural image can be 

represented effectively by a generalized Gaussian distribution (GGD). Thus, a 

threshold is derived in a Bayesian framework as: 

 

2ˆ

ˆ
n

B

F

T
σ

σ
=                 (2.33) 
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where, 2ˆ
nσ  is the estimated noise variance of AWGN by robust median estimator and 

ˆ
F

σ is the estimated signal standard deviation in wavelet-domain. 

The robust median estimator is stated as: 

 
{ }( )

1
ˆ ,

0.6745

ij

n ij

Median Y
Y subband HHσ = ∈             (2.34) 

 

This estimator is used when there is no a priori knowledge about the noise variance.  

 

The estimated signal standard deviation is calculated as: 

 

( )2 2ˆ ˆ ˆmax ( ),0F Y nσ σ σ= −                (2.35) 

where, 2ˆ
Yσ  is the variance of Y. Since Y is modeled as zero-mean, 2ˆ

Yσ  can be found 

empirically by 

 

2 2

,2
, 1

1
ˆ

n

Y i j

i j

Y
n

σ
=

= ∑                 (2.36) 

 

In case 2 2ˆ ˆ
n Y

σ σ≥ , ˆ
F

σ will become 0. That is, 
B

T becomes∞ . Hence, for this case 

{ }( )maxB ijT Y= . 

 

2.6.6 OracleShrink and OracleThresh 

OracleShrink and OracleThresh [102] are two wavelet thresholding methods 

used for image denoising. These methods are implemented with the assumption that 

the wavelet coefficients of original decomposed image are known. The OracleShrink 

and OracleThresh employ two different thresholds denoted as TOS and TOT 

respectively.  Mathematically they are represented by: 

 

( )
2

, 1

arg min ( )
h

h

n

OS T ij ij
T

i j

T Y Fξ
=

= −∑              (2.37) 
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( )
2

, 1

arg min ( )
h

h

n

OT T ij ij
T

i j

T Y Fζ
=

= −∑              (2.38) 

 

where, with {Fij }are the wavelet coefficient of original decomposed image;  

and, ( )
hTξ i  and ( )

hTζ i  are soft-thresholding and hard-thresholding functions defined 

as: 

 

( )( ) sgn( ) . max ,0T x x x Tξ = −              (2.39) 

and  

{ }( ) .
T

x x x Tζ = >1                (2.40) 

which keeps the input if it is larger than the threshold T ; otherwise, it is set to zero. 

 

2.6.7 NeighShrink 

Chen et al. proposed a wavelet-domain image thresholding scheme by 

incorporating neighboring coefficients, namely NeighShrink [103]. The method 

NeighShrink thresholds the wavelet coefficients according to the magnitude of the 

squared sum of all the wavelet coefficients, i.e., the local energy, within the 

neighborhood window. The   neighborhood window size may be 3×3, 5×5, 7×7, 9×9, 

etc. But, the authors have already demonstrated through the results that the 3×3 

window is the best among all window sizes []. 

 

The shrinkage function for NeighShrink of any arbitrary 3×3 window 

centered at (i,j) is expressed as: 

2

2
1 U

ij

ij

T

S
+

 
Γ = −  

 
               (2.41) 

where, 
UT is the universal threshold and 2

ijS  is the squared sum of all wavelet 

coefficients in the respective 3×3  window given by: 

1 1
2 2

,

1 1

j i

ij m n

n j m i

S Y
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= − = −
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Here, + sign at the end of the formula means to keep the positive values while setting 

it to zero when it is negative.  

The estimated center wavelet coefficient ˆ
ij

F is then calculated from its noisy 

counterpart ijY as:  

ˆ
ij ij ijF Y= Γ                 (2.43) 

 

2.6.8 SmoothShrink 

Mastriani et al. proposed SmoothShrink [104], wavelet-domain image 

denoising method, for images corrupted with speckle noise. It employs a convolution 

kernel based on a directional smoothing (DS) function applied on the wavelet 

coefficients of the noisy decomposed image. The size of the window may vary from 

3×3 to 33×33, but the studies [104] show that the 3×3 window gives better result as 

compared to others. Though this approach is meant for speckle noise, it is observed 

that it works satisfactorily even for additive noise. Therefore, the method: 

SmoothShrink is stated here. 

 

SmoothShrink Algorithm 

Step-1: 

The average of the wavelet coefficients in four directions (d1, d2, d3, d4) as shown in    

Fig. 2.4 is calculated. 
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Fig. 2.6 A 3×3 directional smoothing window  
showing four directions d1, d2, d3, d4.    
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Step-2: 

The absolute difference between the center wavelet coefficient and each directional 

average is calculated as: 

, 1, 2,3, 4
nn d ijd Y Y n∆ = − =               (2.44) 

where, 
ndY = average of wavelet coefficients in n

th
 direction. 

 

 

Step-3: 

The directional average which gives minimum absolute difference is found out. 

{ }( )arg min
dn

n
Y

d= ∆K                 (2.45) 

Step-4: 

The estimated center wavelet coefficient is therefore replaced with the minimum 

directional average obtained in Step-3, i.e.: 

ˆ
ijF =K                  (2.46) 

The SmoothShrink algorithm is applied to all subbands of noisy decomposed image 

except the LL subband. 

 

2.6.9 LAWML 

Mihcak et al. [105] proposed a simple spatially adaptive statistical model for 

wavelet coefficients and applied it to image denoising. The resulting method for 

image denoising is called as locally adaptive window based denoising using maximum 

likelihood (LAWML). The size of the window used in the method may be 3×3, 5×5, 

7×7, etc. In this method, the variance of original decomposed image of a particular 

window in a given sub-band is estimated using maximum likelihood (ML) estimator. 

The ML estimator can be mathematically expressed as: 
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where, ( )2.P σ is the Gaussian distribution with zero mean and variance 2 2

nσ σ+ , L is 

the number of coefficients in N(k), and 2

nσ  is the noise variance of AWGN.  

The estimated wavelet coefficient of original decomposed image is calculated by 

using minimum mean squared error (MMSE) estimator [106].  

Thus, the estimated wavelet coefficient is calculated by the MMSE estimator given 

by: 

 
2

2 2

ˆ ( )ˆ ( ) ( )
ˆ ( ) n

k
F k Y k

k

σ

σ σ
= ⋅

+
               (2.48) 

 

2.7 Simulation Results 
 

The existing spatial-domain filters: Mean, Median, Alpha-trimmed-mean 

(ATM), Wiener, Lee, Anisotropic Diffusion (AD), Total Variation (TV), Bilateral, 

Non-local means and existing wavelet-domain filters: VisuShrink, SureShrink, 

BayesShrink, OracleShrink, NeighShrink, SmoothShrink, locally adaptive window 

maximum likelihood (LAWML) are simulated  on MATLAB 7.0 platform. The test 

images: Lena, Pepper, Goldhill and Barbara of sizes 512×512 corrupted with AWGN 

of standard deviation σn = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 are used for 

simulation purpose. The peak-signal-to-noise ratio (PSNR), root-mean-squared error 

(RMSE), universal quality index (UQI) and method noise and execution time are 

taken as performance measures. 

 

The PSNR values of the different filters for various images are given in the 

tables: Table-2.1 to Table-2.4. The highest (best) PSNR value for a particular standard 

deviation of Gaussian noise is highlighted to show the best performance. 

 

The RMSE values of different filters are given in the tables: Table-2.5 to 

Table-2.8. The smallest (best) RMSE value for a particular standard deviation of 

Gaussian noise is highlighted for analysis. 
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The UQI of various filters are given in the tables: Table-2.9 to Table-2.12. The 

value of UQI is always less than 1. The highest (best) value of UQI for a particular 

standard deviation of Gaussian noise is identified and is highlighted for analysis. 

 

The method noise of the various filters is shown in Table-2.13. The filtering 

performance is better if the method noise is very low since it talks of little distortion 

when a non-noisy image is passed through a filter. Therefore, a least value of method 

noise for a particular noise standard deviation is highlighted to show the best 

performance. 

 

The execution time of the different filters is given in Table-2.14. The filter 

having less execution time is usually required for online and real-time applications. 

The least value of execution time is highlighted. 

Fig 2.7, Fig.2.8 and Fig. 2.9 illustrate the resulting performance measures 

(PSNR, RMSE and UQI) of some high performing filters (Mean, ATM, BayesShrink, 

NeighShrink and LAWML) under different noise conditions for various test images. 

The best performance value for a particular standard deviation of AWGN irrespective 

of window size of a filter is taken in the figures. These figures, based on Table-2.1 –

Table-2.12, are given for ease of analysis. 

For subjective evaluation, the filtered output images of various filters are 

shown in the figures: Fig. 2.10 to Fig. 2.17. The images corrupted with AWGN of 

standard deviation, σn = 15 (moderate-noise) and σn = 40 (high-noise) are applied to 

different filters and the resulted output images are shown in these figures. 
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Table-2.1: Filtering performance of various filters, in terms of PSNR (dB), operated on Lena 

image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Lena  

1 Mean [3×3] 33.88 32.70 31.27 29.78 28.48 27.28 26.26 25.30 24.45 23.62 

2 Mean [5×5] 29.77 29.59 29.31 28.92 28.48 28.05 27.48 26.96 26.49 25.93 

3 Mean [7×7] 27.66 27.60 27.50 27.37 27.21 27.01 26.77 26.49 26.23 25.89 

4 Median [3×3] 34.98 32.16 29.85 27.94 26.36 24.98 23.77 22.77 21.75 20.94 

5 Median [5×5] 31.70 30.74 29.78 28.75 27.81 26.84 26.08 25.26 24.53 23.82 

6 Median [7×7] 29.60 29.17 28.65 28.13 27.58 26.99 26.44 26.01 25.45 24.96 

7 ATM [3×3] 33.96 32.71 31.26 29.83 28.44 27.24 26.07 25.03 24.08 23.22 

8 ATM [5×5] 29.77 29.59 29.32 28.93 28.50 28.07 27.52 27.03 26.47 25.86 

9 ATM [7×7] 27.88 27.59 27.52 27.41 27.28 27.13 26.89 26.66 26.41 26.13 

10 Wiener [3×3] 37.88 34.01 31.37 29.15 27.38 25.9 24.62 23.56 22.67 21.86 

11 Wiener [5×5] 36.57 32.94 31.47 30.19 29.00 27.96 26.99 26.13 25.43 24.69 

12 Wiener [7×7] 35.78 31.54 30.46 29.44 28.57 27.78 27.15 26.55 25.93 25.34 

13 AD 34.68 31.37 30.37 29.27 28.21 27.22 26.28 25.40 24.65 23.93 

14 TV 35.49 33.22 31.70 30.25 29.01 27.85 26.77 25.85 24.92 24.12 

15 Lee [3×3] 37.87 33.45 30.77 28.78 27.34 26.04 24.97 24.11 23.31 22.68 

16 Lee [5×5] 37.55 33.47 31.29 29.74 28.66 27.70 27.07 26.41 25.78 25.34 

17 Lee [7×7] 37.12 33.04 30.91 29.52 28.57 27.84 27.28 26.77 26.30 25.95 

18 Bilateral [3×3] 33.70 32.58 31.20 29.77 28.48 27.27 26.21 25.31 24.47 23.68 

19 Bilateral [5×5] 32.76 29.14 28.88 28.55 28.13 27.72 27.27 26.71 26.22 25.73 

20 Bilateral [7×7] 31.09 26.62 26.55 26.43 26.30 26.13 25.89 25.73 25.47 25.19 

21 NL-Means 37.87 34.43 29.43 25.53 22.91 20.97 19.47 18.28 17.29 16.36 

22 VisuShrink 31.65 30.56 29.60 28.75 27.91 26.78 25.41 23.95 22.57 21.48 

23 SureShrink 29.80 29.61 29.28 28.82 28.39 27.93 27.45 27.01 26.64 26.21 

24 BayesShrink 37.47 33.64 31.58 30.20 29.18 28.40 27.77 27.11 26.64 26.07 

25 OracleShrink 36.13 31.70 28.80 26.51 24.52 22.90 21.48 20.21 19.10 18.15 

26 OracleThresh 35.34 29.97 26.45 23.85 21.83 20.13 18.65 17.41 16.31 15.42 

27 NeighShrink 38.70 34.45 31.97 30.11 28.80 27.69 26.76 26.08 25.42 24.97 

28 SmoothShrink 32.34 30.41 28.93 27.43 26.06 24.88 23.81 22.89 22.03 21.31 

29 LAWML [3×3] 38.39 34.13 31.61 29.78 28.47 27.41 26.48 25.72 25.08 24.58 

30 LAWML [5×5] 38.60 34.59 32.26 30.66 29.41 28.53 27.74 27.09 26.56 26.02 

31 LAWML [7×7] 38.53 34.58 32.34 30.86 29.69 28.84 28.00 27.41 26.89 26.38 

 



 

 

Chapter-2                                                                Study of Image Denoising Filters 

 

 

Development of Some Spatial-Domain and Transform-Domain Digital Image Filters                                                55 

 

Table-2.2: Filtering performance various filters, in terms of PSNR (dB), operated on Pepper 

image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

1 Mean [3×3] 31.90 31.16 30.15 28.99 27.88 26.82 25.86 24.95 24.15 23.45 

2 Mean [5×5] 30.61 30.39 30.01 29.55 29.02 28.40 27.81 27.22 26.56 26.01 

3 Mean [7×7] 28.62 28.55 28.41 28.18 27.93 27.71 27.32 26.96 26.58 26.18 

4 Median [3×3] 35.55 32.57 30.10 28.13 26.48 25.10 23.88 22.79 21.84 21.02 

5 Median [5×5] 34.23 32.76 31.30 29.96 28.72 27.64 26.65 25.68 24.93 24.19 

6 Median [7×7] 33.19 31.62 30.75 29.87 29.00 28.23 27.48 26.78 26.20 25.62 

7 ATM [3×3] 32.33 31.74 30.58 29.32 28.10 26.94 25.82 24.83 23.98 23.12 

8 ATM [5×5] 31.12 30.67 30.38 29.93 29.40 28.85 28.18 27.57 26.88 26.32 

9 ATM [7×7] 29.01 28.76 28.69 28.58 28.41 28.19 27.82 27.56 27.24 26.87 

10 Wiener [3×3] 38.11 34.45 31.77 29.44 27.56 25.99 24.67 23.56 22.67 21.85 

11 Wiener [5×5] 37.67 33.82 32.16 30.74 29.41 28.18 27.14 26.19 25.34 24.60 

12 Wiener [7×7] 35.98 32.52 31.25 30.08 29.06 28.15 27.36 26.58 25.90 25.26 

13 AD 33.48 30.68 29.79 28.81 27.82 26.85 25.97 25.11 24.36 23.61 

14 TV 33.58 31.21 30.13 29.08 28.03 27.10 26.13 25.31 24.45 23.76 

15 Lee [3×3] 37.89 33.69 31.05 29.03 27.40 26.08 25.02 24.12 23.34 22.71 

16 Lee [5×5] 37.77 33.91 31.77 30.28 29.02 28.05 27.27 26.56 25.94 25.47 

17 Lee [7×7] 37.28 33.45 31.38 30.03 29.03 28.21 27.57 27.02 26.51 26.09 

18 Bilateral [3×3] 31.76 31.07 30.06 28.97 27.85 26.83 25.84 24.97 24.20 23.48 

19 Bilateral [5×5] 30.88 29.81 29.50 29.10 28.63 28.11 27.56 26.97 26.41 25.92 

20 Bilateral [7×7] 29.96 27.36 27.24 27.12 26.92 26.72 26.40 26.16 25.90 25.52 

21 NL-Means 37.96 34.62 29.58 25.68 23.02 21.14 19.63 18.43 17.36 16.51 

22 VisuShrink 27.94 27.40 26.67 25.87 25.34 24.75 24.01 23.21 22.33 21.37 

23 SureShrink 26.71 26.67 26.58 26.42 26.25 25.96 25.64 25.29 24.96 24.54 

24 BayesShrink 37.43 33.69 31.45 29.90 28.98 28.24 27.45 26.69 25.98 25.05 

25 OracleShrink 36.48 32.00 28.95 26.66 24.74 23.07 21.63 20.40 19.30 18.35 

26 OracleThresh 35.32 30.17 26.94 24.50 22.36 20.44 18.89 17.62 16.54 15.64 

27 NeighShrink 38.29 34.37 31.94 30.17 28.68 27.55 26.52 25.78 25.09 24.51 

28 SmoothShrink 26.72 25.88 24.52 23.19 21.90 20.79 19.74 18.82 18.03 17.28 

29 LAWML [3×3] 38.37 34.28 31.81 30.03 28.61 27.38 26.41 25.65 25.01 24.47 

30 LAWML [5×5] 38.77 34.64 32.46 30.84 29.52 28.43 27.54 26.79 26.10 25.60 

31 LAWML [7×7] 
38.42 34.63 32.45 30.88 29.67 28.57 27.67 26.95 26.21 25.75 
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Table-2.3: Filtering performance of various filters, in terms of PSNR (dB), operated on Goldhill 

image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Goldhill 

1 Mean [3×3] 31.54 30.82 29.83 28.77 27.69 26.66 25.73 24.83 24.01 23.32 

2 Mean [5×5] 28.15 28.02 27.79 27.48 27.13 26.69 26.25 25.74 25.25 24.77 

3 Mean [7×7] 26.48 26.44 26.34 26.2 26.07 25.83 25.56 25.25 24.95 24.53 

4 Median [3×3] 33.76 30.44 28.78 27.22 25.90 24.67 23.61 22.65 21.77 21.02 

5 Median [5×5] 30.77 28.60 27.96 27.32 26.63 25.95 25.32 24.66 24.01 23.43 

6 Median [7×7] 29.34 27.29 26.95 26.62 26.19 25.78 25.43 24.99 24.67 24.20 

7 ATM [3×3] 31.88 30.81 29.80 28.69 27.60 26.55 25.56 24.62 23.77 22.98 

8 ATM [5×5] 29.12 28.03 27.82 27.57 27.21 26.85 26.48 26.05 25.57 25.15 

9 ATM [7×7] 27.02 26.45 26.38 26.29 26.16 26.03 25.86 25.68 25.46 25.21 

10 Wiener [3×3] 36.63 32.35 30.41 28.59 26.96 25.62 24.41 23.32 22.47 21.62 

11 Wiener [5×5] 34.88 30.43 29.56 28.67 27.76 26.88 26.00 25.17 24.45 23.68 

12 Wiener [7×7] 32.99 28.87 28.31 27.67 27.08 26.51 25.89 25.26 24.71 24.07 

13 AD 33.07 29.88 29.13 28.27 27.38 26.50 25.65 24.83 24.06 23.40 

14 TV 33.11 31.30 30.19 29.13 28.09 27.16 26.27 25.41 24.62 23.78 

15 Lee [3×3] 36.60 32.38 30.03 28.31 26.96 25.86 24.85 23.98 23.21 22.58 

16 Lee [5×5] 36.29 32.00 29.95 28.59 27.65 26.87 26.12 25.49 24.93 24.51 

17 Lee [7×7] 35.98 31.56 29.48 28.22 27.32 26.62 26.05 25.59 25.15 24.69 

18 Bilateral [3×3] 31.44 30.73 29.77 28.67 27.63 26.63 25.67 24.83 23.99 23.25 

19 Bilateral [5×5] 30.17 27.72 27.49 27.20 26.83 26.39 25.97 25.50 24.98 24.51 

20 Bilateral [7×7] 29.13 25.75 25.64 25.50 25.32 25.12 24.85 24.62 24.27 24.00 

21 NL-Means 36.59 32.93 28.92 25.61 23.10 21.26 19.80 18.60 17.59 16.68 

22 VisuShrink 29.71 28.64 27.78 26.93 25.91 24.84 23.70 22.47 21.35 20.26 

23 SureShrink 27.44 27.38 27.18 26.90 26.60 26.23 25.89 25.45 25.12 24.62 

24 BayesShrink 36.48 32.34 30.20 28.68 27.50 26.54 25.82 25.17 24.58 24.09 

25 OracleShrink 33.02 29.45 27.07 25.47 24.16 22.93 21.82 20.87 20.00 19.21 

26 OracleThresh 33.71 29.14 26.56 24.55 22.93 21.58 20.30 19.19 18.18 17.24 

27 NeighShrink 37.37 33.05 30.63 29.02 27.79 26.75 25.95 25.27 24.65 24.11 

28 SmoothShrink 28.13 26.81 25.22 23.72 22.37 21.19 20.13 19.16 18.37 17.62 

29 LAWML [3×3] 36.55 32.78 30.37 28.77 27.42 26.44 25.58 24.77 24.20 23.61 

30 LAWML [5×5] 37.22 33.02 30.78 29.20 28.03 27.10 26.29 25.56 24.92 24.43 

31 LAWML [7×7] 
36.89 33.02 30.78 29.27 28.11 27.24 26.40 25.73 25.11 24.43 
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Table-2.4: Filtering performance of various filters, in terms of PSNR (dB), operated on Barbara 

image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Barbara 

1 Mean [3×3] 26.52 26.02 25.68 25.25 24.75 24.19 23.64 23.06 22.50 21.95 

2 Mean [5×5] 23.81 23.76 23.68 23.57 23.43 23.25 23.04 22.84 22.56 22.31 

3 Mean [7×7] 23.53 23.51 23.47 23.41 23.32 23.21 23.07 22.92 22.75 22.53 

4 Median [3×3] 27.66 25.85 25.09 24.31 23.52 22.76 22.02 21.33 20.62 19.98 

5 Median [5×5] 24.76 23.26 23.14 22.96 22.77 22.49 22.19 21.90 21.57 21.21 

6 Median [7×7] 24.11 23.54 23.44 23.31 23.17 22.98 22.75 22.58 22.35 22.14 

7 ATM [3×3] 31.99 30.81 29.80 28.69 27.60 26.55 25.56 24.62 23.77 22.98 

8 ATM [5×5] 29.06 28.03 27.82 27.57 27.21 26.85 26.48 26.05 25.57 25.15 

9 ATM [7×7] 27.34 26.45 26.38 26.29 26.16 26.03 25.86 25.68 25.46 25.21 

10 Wiener [3×3] 36.57 31.67 28.65 29.21 27.50 26.06 24.89 23.90 22.97 22.13 

11 Wiener [5×5] 34.78 28.31 27.43 26.53 25.70 24.99 24.32 23.66 23.09 22.55 

12 Wiener [7×7] 33.19 27.38 26.73 26.04 25.45 24.89 24.34 23.84 23.37 22.93 

13 AD 28.59 26.06 25.75 25.35 24.88 24.37 23.86 23.30 22.78 22.26 

14 TV 27.49 26.47 25.99 25.48 24.94 24.42 23.88 23.33 22.81 22.31 

15 Lee [3×3] 36.54 31.59 28.90 27.05 25.68 24.62 23.69 22.91 22.23 21.66 

16 Lee [5×5] 36.21 31.56 28.96 27.32 26.13 25.17 24.36 23.78 23.26 22.77 

17 Lee [7×7] 36.09 31.30 28.80 27.22 26.10 25.28 24.64 24.06 23.58 23.19 

18 Bilateral [3×3] 26.22 26.01 25.67 25.24 24.74 24.20 23.65 23.08 22.53 21.99 

19 Bilateral [5×5] 26.03 23.69 23.61 23.51 23.37 23.20 23.00 22.79 22.57 22.29 

20 Bilateral [7×7] 25.58 23.17 23.14 23.08 23.01 22.93 22.80 22.67 22.52 22.31 

21 NL-Means 36.88 32.59 28.68 25.40 23.01 21.24 19.74 18.58 17.52 16.67 

22 VisuShrink 26.61 25.72 24.75 23.91 23.25 22.61 21.99 21.35 20.74 19.89 

23 SureShrink 24.34 24.30 24.23 24.12 23.97 23.80 23.58 23.33 23.12 22.86 

24 BayesShrink 35.91 31.38 29.04 27.48 26.34 25.39 24.53 23.68 23.11 22.71 

25 OracleShrink 31.01 26.28 25.07 24.42 23.84 23.25 22.56 21.88 21.15 20.44 

26 OracleThresh 34.03 27.43 25.19 23.76 22.29 20.95 19.83 18.80 17.87 17.08 

27 NeighShrink 37.50 32.92 30.33 28.57 27.25 26.11 25.27 24.55 23.85 23.26 

28 SmoothShrink 27.67 25.87 24.53 23.19 21.97 20.84 19.82 18.92 18.09 17.39 

29 LAWML [3×3] 37.13 32.57 30.02 28.21 26.87 25.81 24.91 24.19 23.52 22.95 

30 LAWML [5×5] 37.27 32.78 30.30 28.65 27.42 26.42 25.60 24.83 24.21 23.71 

31 LAWML [7×7] 37.16 32.76 30.29 28.65 27.44 26.47 25.66 24.94 24.33 23.78 
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Table-2.5: Filtering performance of various filters, in terms of RMSE, operated on a Lena image 

under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

1 Mean [3×3] 5.15 5.90 6.96 8.27 9.60 11.02 12.40 13.85 15.27 16.80 

2 Mean [5×5] 8.28 8.45 8.73 9.13 9.60 10.09 10.77 11.44 12.07 12.88 

3 Mean [7×7] 10.55 10.63 10.75 10.91 11.11 11.37 11.69 12.07 12.44 12.94 

4 Median [3×3] 4.54 6.27 8.18 10.20 12.24 14.35 16.49 18.51 20.83 22.87 

5 Median [5×5] 6.63 7.395 8.26 9.30 10.35 11.57 12.64 13.89 15.12 16.42 

6 Median [7×7] 8.44 8.84 9.40 9.99 10.63 11.39 12.13 12.75 13.59 14.38 

7 ATM [3×3] 5.11 5.89 6.96 8.21 9.639 11.06 12.67 14.28 15.93 17.59 

8 ATM [5×5] 8.28 8.44 8.69 9.10 9.562 10.04 10.71 11.34 12.08 12.98 

9 ATM [7×7] 10.29 10.63 10.71 10.86 11.01 11.22 11.52 11.83 12.18 12.57 

10 Wiener [3×3] 3.25 5.07 6.88 8.87 10.88 12.90 14.96 16.90 18.74 20.57 

11 Wiener [5×5] 3.78 5.73 6.78 7.87 9.02 10.17 11.39 12.57 13.64 14.84 

12 Wiener [7×7] 4.14 6.73 7.62 8.59 9.48 10.40 11.19 11.98 12.87 13.77 

13 AD 4.70 6.88 7.72 8.74 9.89 11.09 12.36 13.69 14.91 16.21 

14 TV 4.28 5.55 6.63 7.82 9.02 10.32 11.67 12.98 14.45 15.86 

15 Lee [3×3] 3.25 5.40 7.36 9.25 10.94 12.69 14.38 15.88 17.41 18.71 

16 Lee [5×5] 3.38 5.40 6.93 8.28 9.38 10.50 11.29 12.18 13.10 13.77 

17 Lee [7×7] 3.55 5.66 7.24 8.51 9.48 10.32 11.01 11.67 12.34 12.85 

18 Bilateral [3×3] 5.26 5.96 7.01 8.26 9.58 11.04 12.47 13.82 15.22 16.67 

19 Bilateral [5×5] 5.86 8.89 9.15 9.51 9.99 10.48 11.04 11.75 12.44 13.18 

20 Bilateral [7×7] 7.11 11.88 11.98 12.13 12.34 12.57 12.92 13.00 13.56 14.02 

21 NL-Means 3.25 4.81 8.59 13.49 18.23 22.79 27.08 31.08 34.83 38.76 

22 VisuShrink 6.66 7.56 8.44 9.31 10.25 11.68 13.67 16.18 18.96 21.50 

23 SureShrink 8.25 8.43 8.76 9.23 9.70 10.23 10.81 11.37 11.87 12.47 

24 BayesShrink 3.41 5.30 6.72 7.88 8.86 9.69 10.42 11.24 11.87 12.67 

25 OracleShrink 3.98 6.63 9.25 12.05 15.15 18.26 21.50 24.89 28.28 31.55 

26 OracleThresh 4.36 8.09 12.13 16.37 20.65 25.12 29.78 34.35 38.99 43.20 

27 NeighShrink 2.96 4.83 6.42 7.96 9.25 10.52 11.71 12.66 13.66 14.38 

28 SmoothShrink 6.15 7.69 9.12 10.84 12.69 14.53 16.44 18.28 20.18 21.93 

29 LAWML [3×3] 3.06 5.01 6.69 8.27 9.61 10.86 12.09 13.19 14.20 15.05 

30 LAWML [5×5] 2.99 4.74 6.21 7.47 8.63 9.55 10.46 11.27 11.98 12.75 

31 LAWML [7×7] 3.02 4.75 6.15 7.30 8.35 9.21 10.15 10.86 11.53 12.23 
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Table-2.6: Filtering performance of various filters, in terms of RMSE, operated on Pepper image 

under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

1 Mean [3×3] 6.47 7.05 7.92 9.05 10.29 11.62 12.98 14.42 15.81 17.14 

2 Mean [5×5] 7.51 7.70 8.05 8.49 9.02 9.69 10.37 11.10 11.98 12.76 

3 Mean [7×7] 9.45 9.52 9.68 9.94 10.23 10.49 10.97 11.44 11.95 12.51 

4 Median [3×3] 4.25 5.99 7.95 9.99 12.08 14.15 16.29 18.48 20.63 22.67 

5 Median [5×5] 4.95 5.86 6.93 8.08 9.33 10.55 11.85 13.26 14.433 15.73 

6 Median [7×7] 5.58 6.68 7.39 8.18 9.02 9.86 10.76 11.67 12.47 13.33 

7 ATM [3×3] 6.16 6.57 7.52 8.69 10.02 11.45 13.03 14.61 16.116 17.79 

8 ATM [5×5] 7.08 7.44 7.70 8.10 8.61 9.18 9.91 10.65 11.52 12.31 

9 ATM [7×7] 9.03 9.28 9.35 9.48 9.66 9.91 10.35 10.65 11.06 11.55 

10 Wiener [3×3] 3.16 4.81 6.55 8.59 10.65 12.75 14.89 16.90 18.743 20.60 

11 Wiener [5×5] 3.33 5.17 6.27 7.39 8.61 9.91 11.19 12.49 13.77 14.99 

12 Wiener [7×7] 4.05 6.01 6.96 7.98 8.97 9.97 10.91 11.93 12.903 13.89 

13 AD 5.40 7.44 8.23 9.23 10.35 11.57 12.80 14.15 15.428 16.80 

14 TV 5.34 7.01 7.93 8.95 10.09 11.24 12.57 13.82 15.275 16.52 

15 Lee [3×3] 3.25 5.25 7.14 9.00 10.86 12.64 14.30 15.86 17.34 18.64 

16 Lee [5×5] 3.29 5.12 6.55 7.80 9.02 10.07 11.04 11.95 12.852 13.56 

17 Lee [7×7] 3.48 5.40 6.85 8.03 9.00 9.89 10.65 11.34 12.036 12.64 

18 Bilateral [3×3] 6.58 7.11 8.00 9.07 10.32 11.60 13.00 14.38 15.708 17.06 

19 Bilateral [5×5] 7.28 8.23 8.51 8.92 9.43 10.02 10.65 11.42 12.189 12.87 

20 Bilateral [7×7] 8.10 10.91 11.06 11.22 11.49 11.75 12.20 12.54 12.903 13.49 

21 NL-Means 3.22 4.71 8.46 13.26 18.00 22.36 26.59 30.54 34.553 38.09 

22 VisuShrink 10.22 10.88 11.83 12.97 13.78 14.75 16.07 17.62 19.51 21.77 

23 SureShrink 11.77 11.83 11.95 12.17 12.41 12.83 13.32 13.86 14.40 15.12 

24 BayesShrink 3.42 5.27 6.82 8.15 9.06 9.87 10.81 11.80 12.81 14.25 

25 OracleShrink 3.82 6.40 9.10 11.84 14.77 17.90 21.13 24.35 27.64 30.83 

26 OracleThresh 4.37 7.90 11.46 15.18 19.43 24.24 28.97 33.53 37.97 42.12 

27 NeighShrink 3.10 4.87 6.44 7.90 9.38 10.69 12.03 13.10 14.19 15.17 

28 SmoothShrink 11.74 12.95 15.15 17.66 20.49 23.28 26.27 29.21 31.99 34.87 

29 LAWML [3×3] 3.07 4.92 6.54 8.03 9.46 10.90 12.19 13.30 14.32 15.24 

30 LAWML [5×5] 2.93 4.72 6.07 7.32 8.52 9.66 10.70 11.66 12.63 13.38 

31 LAWML [7×7] 3.05 4.73 6.08 7.28 8.37 9.50 10.54 11.45 12.47 13.15 
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Table-2.7: Filtering performance of various filters, in terms of RMSE, operated on Goldhill image 

under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Goldhill 

1 Mean [3×3] 6.75 7.33 8.22 9.29 10.52 11.84 13.18 14.62 16.07 17.40 

2 Mean [5×5] 9.97 10.12 10.41 10.77 11.22 11.80 12.41 13.16 13.93 14.72 

3 Mean [7×7] 12.09 12.14 12.29 12.48 12.67 13.03 13.44 13.93 14.42 15.13 

4 Median [3×3] 5.23 7.65 9.25 11.09 12.90 14.89 16.80 18.79 20.78 22.67 

5 Median [5×5] 7.37 9.46 10.17 10.96 11.88 12.85 13.82 14.89 16.06 17.16 

6 Median [7×7] 8.70 11.01 11.45 11.88 12.49 13.10 13.64 14.33 14.89 15.70 

7 ATM [3×3] 6.49 7.34 8.23 9.35 10.60 11.98 13.43 14.96 16.49 18.07 

8 ATM [5×5] 8.92 10.09 10.35 10.65 11.11 11.57 12.08 12.69 13.41 14.07 

9 ATM [7×7] 11.36 12.11 12.21 12.34 12.54 12.72 12.98 13.26 13.59 13.97 

10 Wiener [3×3] 3.75 6.14 7.67 9.46 11.42 13.33 15.32 17.39 19.17 21.14 

11 Wiener [5×5] 4.59 7.65 8.46 9.38 10.42 11.52 12.77 14.05 15.27 16.67 

12 Wiener [7×7] 5.71 9.18 9.79 10.53 11.27 12.03 12.92 13.89 14.81 15.93 

13 AD 5.66 8.16 8.89 9.81 10.88 12.06 13.28 14.61 15.96 17.23 

14 TV 5.63 6.93 7.87 8.89 10.04 11.16 12.36 13.66 14.96 16.49 

15 Lee [3×3] 3.77 6.12 8.03 9.79 11.42 12.98 14.58 16.11 17.62 18.94 

16 Lee [5×5] 3.90 6.40 8.10 9.46 10.55 11.55 12.59 13.54 14.43 15.14 

17 Lee [7×7] 4.05 6.73 8.54 9.89 10.96 11.88 12.69 13.38 14.07 14.84 

18 Bilateral [3×3] 6.83 7.39 8.26 9.38 10.58 11.88 13.26 14.61 16.09 17.51 

19 Bilateral [5×5] 7.90 10.48 10.76 11.11 11.60 12.21 12.80 13.51 14.35 15.14 

20 Bilateral [7×7] 8.91 13.13 13.31 13.51 13.82 14.14 14.58 14.96 15.58 16.06 

21 NL-Means 3.77 5.73 8.92 13.36 17.82 22.03 26.01 29.93 33.63 37.35 

22 VisuShrink 8.33 9.43 10.41 11.48 12.91 14.60 16.65 19.18 21.82 24.74 

23 SureShrink 10.82 10.90 11.15 11.52 11.92 12.44 12.94 13.61 14.14 14.98 

24 BayesShrink 3.82 6.15 7.88 9.38 10.75 12.01 13.04 14.06 15.05 15.92 

25 OracleShrink 5.69 8.59 11.29 13.58 15.79 18.19 20.68 23.07 25.5 27.92 

26 OracleThresh 5.26 8.90 11.98 15.10 18.19 21.25 24.63 27.99 31.44 35.03 

27 NeighShrink 3.45 5.67 7.49 9.02 10.41 11.72 12.85 13.90 14.92 15.88 

28 SmoothShrink 10.00 11.64 13.98 16.61 19.41 22.23 25.12 28.08 30.76 33.53 

29 LAWML [3×3] 3.79 5.85 7.72 9.29 10.85 12.14 13.41 14.72 15.72 16.82 

30 LAWML [5×5] 3.51 5.69 7.37 8.84 10.11 11.26 12.36 13.44 14.47 15.31 

31 LAWML [7×7] 3.64 5.69 7.37 8.77 10.02 11.08 12.20 13.18 14.15 15.31 
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Table-2.8: Filtering performance of various filters, in terms of RMSE, operated on Barbara image 

under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Barbara 

1 Mean [3×3] 12.03 12.75 13.26 13.93 14.75 15.74 16.77 17.92 19.12 20.37 

2 Mean [5×5] 16.44 16.54 16.69 16.90 17.18 17.54 17.97 18.38 18.99 19.54 

3 Mean [7×7] 16.98 17.02 17.10 17.22 17.41 17.62 17.90 18.22 18.58 19.05 

4 Median [3×3] 10.55 12.98 14.17 15.50 16.98 18.53 20.19 21.87 23.74 25.55 

5 Median [5×5] 14.74 17.51 17.74 18.13 18.51 19.12 19.81 20.47 21.26 22.16 

6 Median [7×7] 15.88 16.95 17.13 17.41 17.69 18.07 18.56 18.94 19.43 19.91 

7 ATM [3×3] 6.41 7.34 8.23 9.35 10.60 11.98 13.43 14.96 16.49 18.07 

8 ATM [5×5] 8.98 10.09 10.35 10.65 11.11 11.57 12.08 12.69 13.41 14.07 

9 ATM [7×7] 10.95 12.11 12.21 12.34 12.54 12.72 12.98 13.26 13.59 13.97 

10 Wiener [3×3] 3.78 5.27 9.40 8.82 10.73 12.67 14.50 16.26 18.10 19.94 

11 Wiener [5×5] 4.65 9.79 10.83 12.01 13.20 14.33 15.50 16.72 17.85 18.99 

12 Wiener [7×7] 5.58 10.88 11.73 12.69 13.59 14.50 15.45 16.37 17.28 18.18 

13 AD 9.48 12.67 13.13 13.77 14.53 15.40 16.34 17.41 18.51 19.63 

14 TV 10.76 12.08 12.77 13.56 14.43 15.32 16.29 17.36 18.43 19.53 

15 Lee [3×3] 3.79 6.70 9.12 11.32 13.26 14.96 16.65 18.23 19.71 21.06 

16 Lee [5×5] 3.94 6.73 9.07 10.96 12.57 14.05 15.42 16.49 17.51 18.51 

17 Lee [7×7] 3.99 6.93 9.25 11.09 12.62 13.87 14.94 15.96 16.88 17.64 

18 Bilateral [3×3] 12.46 12.75 13.26 13.94 14.76 15.70 16.72 17.87 19.04 20.27 

19 Bilateral [5×5] 12.73 16.65 16.80 17.00 17.28 17.62 18.02 18.48 18.94 19.58 

20 Bilateral [7×7] 13.41 17.69 17.74 17.87 18.02 18.18 18.46 18.74 19.07 19.53 

21 NL-Means 3.65 5.96 9.38 13.69 18.02 22.08 26.26 30.01 33.91 37.40 

22 VisuShrink 11.91 13.19 14.75 16.25 17.54 18.88 20.27 21.82 23.41 25.82 

23 SureShrink 15.47 15.54 15.66 15.86 16.14 16.46 16.88 17.38 17.80 18.34 

24 BayesShrink 4.08 6.87 9.00 10.77 12.29 13.71 15.13 16.69 17.82 18.66 

25 OracleShrink 7.17 12.37 14.22 15.33 16.38 17.54 18.99 20.53 22.33 24.24 

26 OracleThresh 5.07 10.84 14.02 16.54 19.59 22.85 26.00 29.27 32.58 35.68 

27 NeighShrink 3.40 5.76 7.76 9.50 11.06 12.61 13.90 15.10 16.37 17.52 

28 SmoothShrink 10.54 12.97 15.13 17.66 20.32 23.14 26.03 28.87 31.77 34.43 

29 LAWML [3×3] 3.54 5.99 8.04 9.90 11.56 13.06 14.48 15.74 17.00 18.15 

30 LAWML [5×5] 3.49 5.85 7.79 9.41 10.85 12.17 13.38 14.62 15.70 16.63 

31 LAWML [7×7] 3.53 5.86 7.79 9.41  10.82 12.10 13.29 14.43 15.49 16.50 
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Table-2.9: Filtering performance of various filters, in terms of UQI, operated on a Lena image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

1 Mean [3×3] 0.9941 0.9922 0.9892 0.9849 0.9797 0.9732 0.9663 0.9579 0.9488 0.9376 

2 Mean [5×5] 0.9845 0.9838 0.9827 0.9811 0.9791 0.9769 0.9736 0.9700 0.9665 0.9613 

3 Mean [7×7] 0.9743 0.9739 0.9733 0.9725 0.9714 0.9701 0.9683 0.9659 0.9636 0.9601 

4 Median [3×3] 0.9955 0.9913 0.9853 0.9773 0.9676 0.9559 0.9425 0.9286 0.9117 0.8951 

5 Median [5×5] 0.9903 0.9878 0.9848 0.9808 0.9762 0.9703 0.9648 0.9577 0.9503 0.9419 

6 Median [7×7] 0.9841 0.9824 0.9801 0.9775 0.9745 0.9709 0.9669 0.9636 0.9585 0.9539 

7 ATM [3×3] 0.9939 0.9922 0.9892 0.9851 0.9795 0.9731 0.9649 0.9558 0.9454 0.9340 

8 ATM [5×5] 0.9878 0.9838 0.9828 0.9812 0.9792 0.9772 0.9740 0.9710 0.9671 0.9621 

9 ATM [7×7] 0.9812 0.9739 0.9734 0.9728 0.9720 0.9710 0.9694 0.9678 0.9659 0.9637 

10 Wiener [3×3] 0.9977 0.9943 0.9896 0.9827 0.9742 0.964 0.9517 0.9386 0.9249 0.9098 

11 Wiener [5×5] 0.9958 0.9926 0.9897 0.9861 0.9818 0.9768 0.9709 0.9646 0.9581 0.9503 

12 Wiener [7×7] 0.9907 0.9897 0.9868 0.9833 0.9797 0.9755 0.9715 0.9671 0.9617 0.9557 

13 AD 0.9951 0.9895 0.9867 0.9830 0.9784 0.9728 0.9663 0.9586 0.9506 0.9417 

14 TV 0.9959 0.9931 0.9902 0.9864 0.9820 0.9765 0.9701 0.9633 0.9547 0.9458 

15 Lee [3×3] 0.9977 0.9936 0.9881 0.9813 0.9740 0.9650 0.9554 0.9456 0.9346 0.9239 

16 Lee [5×5] 0.9955 0.9936 0.9893 0.9847 0.9805 0.9755 0.9715 0.9666 0.9610 0.9566 

17 Lee [7×7] 0.9936 0.9929 0.9884 0.9839 0.9799 0.9761 0.9725 0.9688 0.9648 0.9613 

18 Bilateral [3×3] 0.9939 0.9921 0.9891 0.9849 0.9797 0.9731 0.9658 0.9578 0.9487 0.9385 

19 Bilateral [5×5] 0.9916 0.9828 0.9816 0.9802 0.9781 0.9757 0.9728 0.9686 0.9646 0.9598 

20 Bilateral [7×7] 0.9879 0.9706 0.9702 0.9693 0.9682 0.9664 0.9642 0.9623 0.9592 0.9557 

21 NL-Means 0.9977 0.9947 0.9840 0.9616 0.9318 0.8971 0.8601 0.8230 0.7861 0.7451 

22 VisuShrink 0.9902 0.9874 0.9843 0.9809 0.9769 0.9704 0.9607 0.9473 0.9321 0.9178 

23 SureShrink 0.9848 0.9841 0.9828 0.9808 0.9788 0.9764 0.9734 0.9704 0.9675 0.9636 

24 BayesShrink 0.9943 0.9938 0.9900 0.9863 0.9826 0.9790 0.9755 0.9711 0.9675 0.9621 

25 OracleShrink 0.9965 0.9903 0.9811 0.9680 0.9500 0.9283 0.9018 0.8712 0.8372 0.8021 

26 OracleThresh 0.9959 0.9858 0.9685 0.9439 0.9133 0.8759 0.8329 0.7873 0.7399 0.6953 

27 NeighShrink 0.9981 0.9949 0.9910 0.9861 0.9812 0.9757 0.9698 0.9642 0.9582 0.9530 

28 SmoothShrink 0.9729 0.9658 0.9521 0.9336 0.9118 0.8867 0.8687 0.8284 0.7984 0.7661 

29 LAWML [3×3] 0.9979 0.9945 0.9902 0.9850 0.9797 0.9740 0.9676 0.9613 0.9547 0.9484 

30 LAWML [5×5] 0.9980 0.9950 0.9915 0.9877 0.9835 0.9797 0.9755 0.9712 0.9670 0.9622 

31 LAWML [7×7] 0.9980 0.9951 0.9916 0.9882 0.9845 0.9811 0.9773 0.9731 0.9693 0.9649 
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Table-2.10: Filtering performance of various filters, in terms of UQI, operated on Pepper image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

1 Mean [3×3] 0.9927 0.9912 0.9889 0.9856 0.9814 0.9762 0.9702 0.9631 0.9557 0.9476 

2 Mean [5×5] 0.9900 0.9894 0.9884 0.9871 0.9853 0.9831 0.9805 0.9776 0.9737 0.9699 

3 Mean [7×7] 0.9839 0.9836 0.9830 0.9821 0.9809 0.9799 0.9779 0.9758 0.9734 0.9706 

4 Median [3×3] 0.9969 0.9938 0.9890 0.9828 0.9750 0.9659 0.9552 0.9431 0.9298 0.9163 

5 Median [5×5] 0.9957 0.9940 0.9916 0.9885 0.9848 0.9805 0.9756 0.9696 0.9641 0.9578 

6 Median [7×7] 0.9938 0.9921 0.9903 0.9882 0.9855 0.9827 0.9795 0.9759 0.9725 0.9687 

7 ATM [3×3] 0.9929 0.9924 0.9901 0.9868 0.9824 0.9772 0.9706 0.9631 0.9553 0.9460 

8 ATM [5×5] 0.9911 0.9901 0.9894 0.9883 0.9868 0.9850 0.9825 0.9798 0.9764 0.9732 

9 ATM [7×7] 0.9886 0.9844 0.9842 0.9838 0.9832 0.9823 0.9807 0.9796 0.9780 0.9760 

10 Wiener [3×3] 0.9978 0.9959 0.9925 0.9871 0.9802 0.9715 0.9614 0.9503 0.9389 0.9261 

11 Wiener [5×5] 0.9955 0.9953 0.9930 0.9903 0.9868 0.9824 0.9775 0.9718 0.9655 0.9588 

12 Wiener [7×7] 0.9941 0.9935 0.9913 0.9886 0.9855 0.9820 0.9782 0.9738 0.9692 0.9638 

13 AD 0.9949 0.9901 0.9879 0.9848 0.9809 0.9761 0.9707 0.9641 0.9571 0.9488 

14 TV 0.9950 0.9913 0.9889 0.9859 0.9820 0.9778 0.9722 0.9665 0.9594 0.9525 

15 Lee [3×3] 0.9982 0.9952 0.9912 0.9859 0.9795 0.9722 0.9645 0.9563 0.9475 0.9392 

16 Lee [5×5] 0.9960 0.9954 0.9925 0.9893 0.9857 0.9820 0.9784 0.9742 0.9701 0.9665 

17 Lee [7×7] 0.9954 0.9949 0.9917 0.9886 0.9856 0.9825 0.9796 0.9766 0.9734 0.9702 

18 Bilateral [3×3] 0.9925 0.9912 0.9888 0.9855 0.9813 0.9762 0.9700 0.9632 0.9559 0.9476 

19 Bilateral [5×5] 0.9913 0.9885 0.9876 0.9862 0.9843 0.9821 0.9795 0.9761 0.9726 0.9689 

20 Bilateral [7×7] 0.9879 0.9807 0.9799 0.9791 0.9778 0.9763 0.9742 0.9721 0.9697 0.9662 

21 NL-Means 0.9978 0.9961 0.9877 0.9702 0.9462 0.9191 0.8885 0.8572 0.8224 0.7908 

22 VisuShrink 0.9817 0.9793 0.9756 0.9710 0.9676 0.9634 0.9575 0.9502 0.9408 0.9289 

23 SureShrink 0.9751 0.9749 0.9743 0.9732 0.9720 0.9700 0.9675 0.9645 0.9613 0.9568 

24 BayesShrink 0.9980 0.9952 0.9919 0.9883 0.9855 0.9826 0.9789 0.9745 0.9696 0.9617 

25 OracleShrink 0.9975 0.9928 0.9855 0.9753 0.9617 0.9437 0.9222 0.8974 0.8697 0.8400 

26 OracleThresh 0.9967 0.9893 0.9775 0.9610 0.9372 0.9049 0.8683 0.8294 0.7885 0.7484 

27 NeighShrink 0.9983 0.9959 0.9928 0.9891 0.9845 0.9798 0.9743 0.9692 0.9636 0.9579 

28 SmoothShrink 0.9734 0.9693 0.9583 0.9439 0.9257 0.9054 0.8817 0.8561 0.8305 0.8022 

29 LAWML [3×3] 0.9984 0.9958 0.9925 0.9887 0.9843 0.9791 0.9736 0.9683 0.9630 0.9575 

30 LAWML [5×5] 0.9987 0.9885 0.9876 0.9862 0.9843 0.9821 0.9795 0.9761 0.9713 0.9675 

31 LAWML [7×7] 0.9988 0.9961 0.9935 0.9907 0.9876 0.9838 0.9800 0.9761 0.9726 0.9689 
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Table-2.11: Filtering performance of various filters, in terms of UQI, operated on Goldhill image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Goldhill 

1 Mean [3×3] 0.9939 0.9928 0.9909 0.9884 0.9850 0.9809 0.9762 0.9705 0.964 0.9575 

2 Mean [5×5] 0.9866 0.9861 0.9853 0.9841 0.9827 0.9807 0.9784 0.9754 0.9722 0.9687 

3 Mean [7×7] 0.9801 0.9799 0.9793 0.9785 0.9777 0.9762 0.9744 0.9722 0.9699 0.9665 

4 Median [3×3] 0.9945 0.9922 0.9886 0.9838 0.9781 0.9710 0.9631 0.9542 0.9444 0.9345 

5 Median [5×5] 0.9916 0.9880 0.9861 0.9839 0.9812 0.9780 0.9746 0.9705 0.9658 0.9610 

6 Median [7×7] 0.9878 0.9838 0.9824 0.9810 0.9790 0.9769 0.9749 0.9723 0.9702 0.9669 

7 ATM [3×3] 0.9946 0.9928 0.9909 0.9883 0.9850 0.9809 0.9760 0.9703 0.9639 0.9569 

8 ATM [5×5] 0.9923 0.9862 0.9855 0.9847 0.9833 0.9819 0.9802 0.9782 0.9757 0.9732 

9 ATM [7×7] 0.9883 0.9800 0.9797 0.9792 0.9786 0.9780 0.9771 0.9761 0.9749 0.9734 

10 Wiener [3×3] 0.9971 0.9950 0.9921 0.9880 0.9824 0.9760 0.9682 0.9589 0.9497 0.9385 

11 Wiener [5×5] 0.9942 0.9921 0.9903 0.9880 0.9852 0.9816 0.9773 0.9724 0.9670 0.9602 

12 Wiener [7×7] 0.9917 0.9886 0.9870 0.9848 0.9824 0.9798 0.9764 0.9725 0.9684 0.9628 

13 AD 0.9957 0.9910 0.9893 0.9869 0.9838 0.9801 0.9755 0.9702 0.9641 0.9578 

14 TV 0.9958 0.9936 0.9917 0.9894 0.9865 0.9833 0.9795 0.9750 0.9700 0.9636 

15 Lee [3×3] 0.9981 0.9950 0.9914 0.9872 0.9824 0.9773 0.9711 0.9645 0.9572 0.9501 

16 Lee [5×5] 0.9956 0.9946 0.9912 0.9879 0.9848 0.9817 0.9780 0.9743 0.9704 0.9670 

17 Lee [7×7] 0.9947 0.9940 0.9902 0.9868 0.9836 0.9805 0.9775 0.9747 0.9716 0.9680 

18 Bilateral [3×3] 0.9938 0.9927 0.9908 0.9881 0.9848 0.9807 0.9757 0.9703 0.9636 0.9565 

19 Bilateral [5×5] 0.9916 0.9853 0.9844 0.9832 0.9815 0.9793 0.9770 0.9740 0.9703 0.9662 

20 Bilateral [7×7] 0.9810 0.8936 0.9764 0.9754 0.9742 0.9725 0.9704 0.9683 0.9649 0.9620 

21 NL-Means 0.9967 0.9956 0.9891 0.9767 0.9590 0.9381 0.9147 0.8896 0.8631 0.8339 

22 VisuShrink 0.9908 0.9882 0.9856 0.9826 0.9784 0.9730 0.9659 0.9562 0.9454 0.9328 

23 SureShrink 0.9843 0.9840 0.9831 0.9819 0.9804 0.9785 0.9765 0.9736 0.9712 0.9673 

24 BayesShrink 0.9981 0.9950 0.9917 0.9881 0.9842 0.9801 0.9761 0.9719 0.9673 0.9627 

25 OracleShrink 0.9957 0.9901 0.9828 0.9750 0.9660 0.9546 0.9412 0.9266 0.9105 0.8926 

26 OracleThresh 0.9964 0.9895 0.9810 0.9699 0.9563 0.9404 0.9206 0.8981 0.8732 0.8443 

27 NeighShrink 0.9984 0.9957 0.9925 0.9891 0.9854 0.9813 0.9773 0.9731 0.9684 0.9638 

28 SmoothShrink 0.9878 0.9816 0.9736 0.9627 0.9494 0.9340 0.9162 0.8959 0.8760 0.8541 

29 LAWML [3×3] 0.9982 0.9955 0.9921 0.9884 0.9841 0.9798 0.9751 0.9696 0.9648 0.9592 

30 LAWML [5×5] 0.9984 0.9956 0.9927 0.9895 0.9861 0.9826 0.9787 0.9744 0.9699 0.9656 

31 LAWML [7×7] 0.9986 0.9957 0.9928 0.9896 0.9863 0.9831 0.9791 0.9754 0.9711 0.9658 
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Table-2.12: Filtering performance of various filters, in terms of UQI, operated on Barbara image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Barbara 

1 Mean [3×3] 0.9753 0.9739 0.9718 0.9688 0.9649 0.9601 0.9545 0.9478 0.9403 0.9318 

2 Mean [5×5] 0.9560 0.9554 0.9545 0.9532 0.9515 0.9491 0.9462 0.9433 0.939 0.9346 

3 Mean [7×7] 0.9525 0.9521 0.9516 0.9507 0.9494 0.948 0.9458 0.9433 0.9407 0.9371 

4 Median [3×3] 0.9818 0.9733 0.9683 0.9622 0.9549 0.9466 0.9371 0.9268 0.9145 0.9024 

5 Median [5×5] 0.9807 0.9508 0.9495 0.9475 0.9450 0.9416 0.9374 0.9335 0.9286 0.9227 

6 Median [7×7] 0.9766 0.9536 0.9524 0.9508 0.9491 0.9469 0.9440 0.9420 0.9390 0.9360 

7 ATM [3×3] 0.9786 0.9740 0.9717 0.9686 0.9647 0.9600 0.9538 0.9474 0.9401 0.9314 

8 ATM [5×5] 0.9769 0.9555 0.9548 0.9538 0.9524 0.9504 0.9481 0.9458 0.9430 0.9398 

9 ATM [7×7] 0.9716 0.9523 0.9522 0.9516 0.9512 0.9501 0.9490 0.9476 0.9432 0.9411 

10 Wiener [3×3] 0.9933 0.9904 0.9861 0.9803 0.9734 0.9651 0.9552 0.9447 0.9331 0.9201 

11 Wiener [5×5] 0.9919 0.9847 0.9812 0.9767 0.9718 0.9665 0.9607 0.9538 0.9470 0.9395 

12 Wiener [7×7] 0.9898 0.9808 0.9776 0.9737 0.9696 0.9652 0.9603 0.9550 0.9495 0.9434 

13 AD 0.9857 0.9741 0.9722 0.9694 0.9659 0.9614 0.9564 0.9503 0.9436 0.9358 

14 TV 0.9816 0.9766 0.9738 0.9707 0.9668 0.9626 0.9576 0.9520 0.9461 0.9396 

15 Lee [3×3] 0.9978 0.9930 0.9870 0.9800 0.9724 0.9646 0.9559 0.9470 0.9377 0.9284 

16 Lee [5×5] 0.9949 0.9929 0.9871 0.9810 0.9748 0.9682 0.9613 0.9554 0.9490 0.9425 

17 Lee [7×7] 0.9932 0.9925 0.9865 0.9805 0.9744 0.9688 0.9634 0.9576 0.9519 0.9469 

18 Bilateral [3×3] 0.9751 0.9738 0.9716 0.9686 0.9646 0.9597 0.9542 0.9475 0.9400 0.9316 

19 Bilateral [5×5] 0.9734 0.9543 0.9534 0.9520 0.9501 0.9478 0.9447 0.9414 0.9378 0.9329 

20 Bilateral [7×7] 0.9688 0.9483 0.9477 0.9466 0.9453 0.9436 0.9414 0.9386 0.9357 0.9312 

21 NL-Means 0.9957 0.9943 0.98 
65 

0.9716 0.9516 0.9285 0.9010 0.8737 0.8423 0.8127 

22 VisuShrink 0.9777 0.9726 0.9661 0.9596 0.9540 0.9479 0.9417 0.9342 0.9261 0.9138 

23 SureShrink 0.9613 0.9609 0.9602 0.9590 0.9573 0.9552 0.9526 0.9493 0.9463 0.9424 

24 BayesShrink 0.9974 0.9927 0.9874 0.9817 0.9759 0.9696 0.9624 0.9534 0.9461 0.9401 

25 OracleShrink 0.9919 0.9756 0.9674 0.9618 0.9560 0.9492 0.9400 0.9294 0.9158 0.9005 

26 OracleThresh 0.9960 0.9817 0.9690 0.9569 0.9398 0.9188 0.8961 0.8702 0.8422 0.8136 

27 NeighShrink 0.9982 0.9949 0.9907 0.9859 0.9808 0.9747 0.9691 0.9631 0.9560 0.9491 

28 SmoothShrink 0.9813 0.9726 0.9630 0.9501 0.9344 0.9159 0.8949 0.8721 0.8477 0.8233 

29 LAWML [3×3] 0.9974 0.9944 0.9900 0.9846 0.9789 0.9728 0.9663 0.9598 0.9524 0.9433 

30 LAWML [5×5] 0.9976 0.9946 0.9904 0.9860 0.9813 0.9763 0.9710 0.9650 0.9589 0.9517 

31 LAWML [7×7] 0.9981 0.9947 0.9905 0.9861 0.9814 0.9765 0.9713 0.9656 0.9598 0.9521 
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Table-2.13: Method Noise, 
M
N   of  various filters operated on different test images 

Sl. No 

 

Denoising                 Images 

Filters 

Lena Pepper Goldholl Barbara 

1 Mean [3×3] 2.62 2.90 4.10 6.68 

2 Mean [5×5] 4.43 4.08 6.42 9.46 

3 Mean [7×7] 5.73 5.20 7.93 10.35 

4 Median [3×3] 1.32 1.53 2.52 4.38 

5 Median [5×5] 2.70 2.39 4.43 6.93 

6 Median [7×7] 3.95 3.11 4.99 7.44 

7 ATM [3×3] 2.62 2.90 4.10 6.68 

8 ATM [5×5] 4.43 4.08 6.42 9.46 

9 ATM [7×7] 5.73 5.20 7.93 10.35 

10 Wiener [3×3] 1.86 2.04 3.18 3.87 

11 Wiener [5×5] 3.67 3.51 5.40 6.37 

12 Wiener [7×7] 4.64 3.87 5.76 6.68 

13 AD 2.04 2.37 2.95 4.97 

14 TV 2.11 2.34 3.34 5.73 

15 Lee [3×3] 0.0118 1.09 0.0336 0.0583 

16 Lee [5×5] 0.0530 1.14 0.1109 0.2057 

17 Lee [7×7] 0.1315 2.01 0.1853 1.10 

18 Bilateral [3×3] 2.88 3.08 4.23 6.80 

19 Bilateral [5×5] 4.97 4.33 6.63 9.66 

20 Bilateral [7×7] 6.01 5.45 8.26 11.04 

21 NL-Means 1.17 1.37 1.86 2.11 

22 VisuShrink 3.18 4.23 4.71 6.37 

23 SureShrink 5.17 6.73 7.70 10.07 

24 BayesShrink 0.0232 0.0273 0.0194 0.0190 

25 OracleShrink 0.0285 0.0267 0.0242 0.0238 

26 OracleThresh 0.0285 0.0267 0.0242 0.0238 

27 NeighShrink 4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

28 SmoothShrink 6.60 7.52 6.45 7.90 

29 LAWML [3×3] 4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

30 LAWML [5×5] 4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

31 LAWML [7×7] 4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10
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Table-2.14: Execution time (seconds), TE taken by various filters for Lena image 

Execution time (seconds) in three different hardware platforms 
Sl. No. Denoisg Filters 

SYSTEM-1 SYSTEM-2 SYSTEM-3 

1 Mean [3×3] 3.18 7.01 17.13 

2 Mean [5×5] 3.23 7.12 17.49 

3 Mean [7×7] 3.27 7.20 17.76 

4 Median [3×3] 4.02 7.42 24.45 

5 Median [5×5] 4.09 7.47 24.69 

6 Median [7×7] 4.15 8.12 24.90 

7 ATM [3×3] 7.32 16.77 30.18 

8 ATM [5×5] 8.09 17.23 30.56 

9 ATM [7×7] 8.13 17.84 30.84 

10 Wiener [3×3] 7.87 15.59 28.06 

11 Wiener [5×5] 8.07 15.98 28.76 

12 Wiener [7×7] 8.43 16.70 30.06 

13 AD ------ ------- ------ 

14 TV ------ ------- ------ 

15 Lee [3×3] 8.74 14.26 35.09 

16 Lee [5×5] 8.87 14.46 35.45 

17 Lee [7×7] 9.68 15.79 37.79 

18 Bilateral [3×3] 5.36 11.00 32.65 

19 Bilateral [5×5] 5.83 13.53 35.20 

20 Bilateral [7×7] 5.88 13.59 36.39 

21 NL-Means 446.67 996.20 2218.38 

22 VisuShrink 0.540 1.19 3.92 

23 SureShrink 0.60 1.34 4.42 

24 BayesShrink 1.88 4.15 13.69 

25 OracleShrink 2 4.40 14.52 

26 OracleThresh 1.97 4.35 14.35 

27 NeighShrink 4.14 9.12 30.09 

28 SmoothShrink 1.08 2.39 7.88 

29 LAWML [3×3] 3.67 8.09 26.69 

30 LAWML [5×5] 3.70 8.15 26.89 

31 LAWML [7×7] 3.74 8.23 27.15 
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Fig. 2.7 Performance comparison of various filters in terms of PSNR (dB) under  

different noise levels of AWGN on the images: 

 
(a) Lena  

(b) Pepper 
(c) Goldhill 

(d) Barbara 
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Fig. 2.8 Performance comparison of various filters in terms of RMSE under  
different noise levels of AWGN on the images: 
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Fig. 2.9 Performance comparison of various filters in terms of UQI under  

different noise levels of AWGN on the images: 
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(b) Pepper 
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Fig. 2.10 Performance of Various Filters for Lena Image with AWGN σn = 15 

 

 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d)  Median (e)  ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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Fig. 2.11 Performance of Various Filters for Lena Image (Smooth Region) with  

   AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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 (a)  (b)  (c)  (d)  (e)  (f)  (g) 

 (h)  (i)  (j)  (k) (l) 

(m) 

 (l)  (m)  (n) 

 (o)  (p) 
 (q)  (r)  (s) 

Fig. 2.12 Performance of Various Filters for Lena Image (Complex Region) with  
   AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (s) : Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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Fig. 2.13 Performance of Various Filters for Pepper Image with AWGN σn = 15 
 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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Fig. 2.14 Performance of Various Filters for Lena Image with AWGN σn = 40 
 

 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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Fig. 2.15 Performance of Various Filters for Lena Image (Smooth Region) with 

   AWGN σn = 40  

 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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Fig. 2.16 Performance of Various Filters for Lena Image (Complex Region) with  
   AWGN σn = 40  

 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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Fig. 2.17 Performance of Various Filters for Pepper Image with AWGN σn = 40 

 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) VisuShrink (m) SureShrink (n) BayesShrink (o) OracleShrink 

(p) OracleThresh  (q) NeighShrink (r) SmoothShrink (s) LAWML 
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2.8 Conclusion 
 

The performance of various spatial-domain filters: Mean, Median, ATM, 

Wiener, AD, TV, Lee, Bilateral, NL-Means and various wavelet-domain filters: 

VisuShrink, SureShrink, BayesShrink, OracleShrink, OracleThresh, NeighShrink, 

SmoothShrink, LAWML are studied under low, moderate and high noise conditions.  

 

From Table-2.1 to Table-2.4, it is observed that the filters: ATM, NeighShrink 

and LAWML perform better in terms of PSNR. The wavelet-domain filter 

NeighShrink performs better under low noise conditions. Under moderate noise 

conditions, LAWML generally gives better performance. The spatial-domain filter 

ATM works well under high noise conditions.  

 

The RMSE values of different filters are shown in tables: Table-2.5 to    

Table-2.8. From the tables, it is observed that the filters: ATM, NeighShrink and 

LAWML give better performance as compared to others. 

 

From tables: Table-2.9 to Table-2.12, it is observed that LAWML gives better 

UQI values under low and moderate noise conditions. When noise level is high, the 

spatial-domain filter ATM yields better performance in terms of UQI values.  

 

Table-2.13 shows the method noise of different spatial-domain and wavelet-

domain filters. From the table, it is seen that the method noise of LAWML is 

minimum (quite negligible). Hence, the LAWML filter is best, among all the filters 

compared here, for yielding minimal noise when the input is undistorted. 

 

The execution time of different filters is shown in the Table-2.14. The wavelet-

domain filter VisuShrink takes least execution time as compared to other spatial-

domain and wavelet-domain filters. However, among the spatial-domain filters, the 

simplest mean filter takes quite less execution time as compared to other spatial-

domain filters. 
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For proper judgment of performance of filters, the subjective evaluation 

should be taken into consideration. The filtering performances of various filters on a 

smooth region and a complex region of Lena image are shown in the figures:         

Fig. 2.11, Fig 2.12, Fig. 2.15 and Fig. 2.16.  From these figures, it is observed that the 

wavelet-domain filters yield artifacts in the smooth regions. However, the wavelet-

domain filters are effective in preserving the edges and other detailed information up 

to some extent. Further, when the various wavelet-domain filters are compared, then it 

is observed that NeighShrink and LAWML filters yield very high visual quality. 

Hence, they are expected to be good competitors for the novel filters proposed in this 

research work. 
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Preview 

 

Mean and Wiener filters suppress additive white Gaussian noise (AWGN) 

from an image very effectively under low and moderate noise conditions. But, these 

filters distort and blur the edges unnecessarily. Lee filter and non-local means (NL-

Means) filter work well under very low noise condition. The method noise [88] for 

these filters is low as compared to other spatial-domain filters. The computational 

complexity of simple mean filter is low whereas that of NL-Means filter is very high. 

Mean, Wiener, Lee and NL-means filters are incapable of suppressing the Gaussian 

noise quite efficiently under high noise conditions.  

 

 

Therefore, some efficient spatial-domain filters should be designed with the 

following ideal characteristics. 

i) Suppressing Gaussian noise very well under low, moderate and high noise 

conditions without distorting the edges and intricate details of an image; 

ii)  Having low method noise; and 

iii) Having less computational complexity. 

3
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In this chapter, two novel spatial-domain image denoising schemes are 

proposed. The Adaptive Window Wiener filter (AWWF) [P1] developed here is a 

very good scheme to suppress Gaussian noise under moderate noise conditions. On 

the other hand, the second proposed filter, the Circular Spatial filter (CSF) [P2], is 

found to be quite efficient in suppressing the additive noise under moderate and high 

noise conditions. It also retains the edges and textures of an image very well. 

 

 

 

The following topics are covered in this chapter. 

 

� Development of Adaptive Window Wiener Filter  

� Development of Circular Spatial Filter  

� Simulation Results 

� Conclusion 
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3.1 Development of Adaptive Window Wiener Filter 
 

An Adaptive Window Wiener Filter (AWWF) [P1] is developed for suppressing 

Gaussian noise under low (the noise standard deviation, σn≤10) and moderate noise 

(10<σn≤ 30) conditions very efficiently. But, it does not perform well under high 

noise (30<σn≤5 0) conditions. This filter is a modified version of Wiener filter [9,62] 

where the size of the window varies with the level of complexity of a particular region 

in an image and the noise power as well. A smooth or flat region (also called as 

homogenous region) is said to be less complex as compared to an edge region. The 

region containing edges and textures are treated as highly complex regions. The 

window size is increased for a smoother region and also for an image with high noise 

power. 

 

Since the edges in an image are specially taken care of in this algorithm, the 

proposed filter is found to be good in edge preservation. The work begins by using a 

mean filter on a noisy image to get the blurred version of the image. Using the edge 

extraction operator, the edges of the resulted blurred image is found out. The Wiener 

filter of variable size is applied throughout the noisy image to suppress the noise.  The 

window size is made larger in smooth regions and is kept smaller in the regions where 

edges are located. This scheme is adopted not to blur a complex or edge region too 

much. 

 

 

 

The organization of this section is outlined below. 

� The AWWF Theory 

� The AWWF Algorithm 

� Window Selection 
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3.1.1  The AWWF Theory 

 

It is a fact that a noise-free sample can be estimated with better accuracy from 

a large number of noisy samples. Similarly, in order to estimate a true pixel in a 

particular region from a noisy 2-D image, a large number of pixels in the 

neighborhood surrounding the noisy pixel are required. In other words, a larger-sized 

window, surrounding the pixel to be filtered, can be considered for better estimation. 

In a homogenous region, the correlation amongst the pixels is high. Hence, a larger-

sized   window can be taken if the pixel to be filtered belongs to a homogenous 

region. On the other hand, a pixel that belongs to a non-homogenous region or the 

region containing edges has got less number of correlated pixels in its neighborhood. 

In such a case, smaller-sized window has to be taken for denoising a pixel belonging 

to a non-homogenous region. However, a little bit of noise will still remain in the non-

homogenous or edge region even after filtration. But human eye is not so sensitive to 

noise in any edge region. Hence, a variable sized window may be a right choice for 

efficient image denoising. 

 

In the proposed adaptive window Wiener filter, the window is made adaptive 

i.e. the size of the window varies from region to region. In a flat or homogenous 

region, the size of the window taken is large enough. The size of window is small in 

the regions containing edges. The problem here is to distinguish the edge and smooth 

regions. The edges and smooth regions are easily distinguished if the edge extraction 

operators are used. Many edge extraction operators such as Sobel, Canny, Roberts, 

Prewitt etc. are proposed in the literature [22-27].  But, finding the true edges in a 

noisy environment is not so easy. The edge extraction operator works well on noise 

free images. So, it is important to make the noisy image a little bit blurred before edge 

extraction. In the proposed filter, the mean filter of window size 5×5 is used when the 

noise level is low and moderate to get the blurred version of the noisy image, whereas 

a 7×7 window is taken for high-noise AWGN. The Sobel operator is then used on the 

resulted blurred image to find the edges.  

A small amount of noise still remains in different regions even after passing 

the noisy image through the mean filter.  The Sobel operator is less sensitive to 
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isolated high intensity point variations since the local averaging over sets of three 

pixels tends to reduce this. In effect, it is a “small bar” detector, rather than a point 

detector. Secondly, it gives an estimate of edge direction as well as edge magnitude at 

a point which is more informative. Also, the Sobel operator is still relatively easy to 

implement in hardware form, most obviously by a pipeline approach. 

 

3.1.2  The AWWF Algorithm 

The proposed algorithm is given below. 

Step-1: 

The noisy image is passed through a mean filter, as shown in Fig. 3.1, to get a blurred 

version of the image.  

Step-2: 

Edge operator (Sobel operator) is applied on the blurred image, obtained in Step-1 to 

get the edge image. The pixels belong to smooth region and edge region are identified 

as ‘p’ and ‘q’, respectively. This operation is shown in Fig. 3.2. 

Step-3: 

Adaptive window Wiener filter is applied on the noisy image. The size of the window 

is varied with the following concepts. 

A-i) If the center pixel is an edge pixel, then the size of the window is small; 

A-ii) If the center pixel belongs to smooth region, the size of the window is large. 

B-i) If the noise power is low (σn≤10 ), then the size of the window is small; 

B-ii) If the noise power is moderate (10<σn≤30 ), then the size of the window is 

medium; 

B-iii)  If the noise power is high (30<σn≤50), then the size of the window is large. 

 

This adaptive filtering concept is depicted in Fig. 3.3. 

Step-4: 

All the filtered pixels are united together to obtain the denoised (filtered) image as 

shown in Fig. 3.4.  

The exact window sizes taken for various conditions are presented in the next 

sub-section. 
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Fig. 3.1 Blurred Image resulted from mean filter 
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Fig. 3.2 Edge Image using ‘Sobel’ operator 
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Fig. 3.4 Filtered image showing filtered pixels  

Fig. 3.3 Filtering operation of AWWF for the pixels ‘p’ (belonging to 
smooth region) and ‘q’ (belonging to edge region) 
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3.1.3  Window Selection 

The selection of window is based on the level of noise present in the noisy 

image. If the noise level is unknown, a robust median estimator [102] may be applied 

to predict the level of noise.  

When the noise level is low (σn≤10),  

i) a 3×3 window is selected for filtering the noisy pixels belonging to 

homogenous regions; 

ii) the pixel is unaltered if the noisy pixels belong to edges. 

 

When the noise level is moderate (10<σn≤ 30), 

i) a 5×5 window is chosen for filtration of noisy pixels of flat regions; 

ii) the window size is 3×3 if the noisy pixels to be filtered are identified as edge 

pixels. 

When the noise level is high (30<σn≤50), 

i) a 7×7 window is used for filtration of noisy pixels of flat regions; 

ii) if the noisy pixels to be filtered are identified as edge pixels the window size 

used is 5×5. 

 

The proposed filter: AWWF is implemented on MATLAB 7.0 platform and its 

simulation results are presented in Section 3.3. 
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3.2 Development of Circular Spatial Filter   

 

A novel circular spatial filter (CSF) is proposed [P2] for suppressing additive 

white Gaussian noise (AWGN). In this method, a circular spatial-domain window, 

whose weights are derived from two independent functions: (i) spatial distance and 

(ii) gray level distance is employed for filtering. The proposed filter is different from 

Bilateral filter [70] and performs well under moderate and high noise conditions. The 

filter is also capable of retaining the edges and intricate details of the image. 

The organization of this section is outlined below. 

� The circular spatial filtering method 

� The parameter and window selection 

� Simulation Results 

� Conclusion 

 

3.2.1 The circular spatial filtering method 

In circular spatial filter (CSF), the name circular refers to the shape of the 

filtering kernel or window being circular. In this method, the filtering kernel consists 

of distance kernel and gray level kernel. The circular shaped kernel is moved 

invariably throughout the image to remove the noise. The proposed filter has got some 

resemblance with Bilateral filter where the filtering kernel is a combination of 

domain-filtering kernel and range-filtering kernel. The weighting function used in 

gray level kernel of circular spatial filter is similar to the weighting function used in 

range-filtering kernel. But the weighting function used in distance kernel of CSF and         

domain-filtering kernel of Bilateral filter are different. The weighting function used in     

domain-filtering kernel is exponential whereas it is a simple nonlinear function in case 

of distance kernel of the proposed method.   
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3.2.1.1 Distance kernel 

In an image, the spatial distance between any arbitrary pixel in a particular 

window at location (x1,y1) and the center pixel at location (x,y) is calculated as 

( ) ( )
2 2

1 1sd x x y y= − + −                                                                                        (3.1) 

Now the distance kernel is defined by 

max

1 s
d

d
w

d
= −                                                                                                            (3.2) 

where, dmax is the maximum radial distance from center. 

The correlation between pixels goes on decreasing as the distance increases. 

Hence, when wd becomes very small the correlation can be taken as zero. When the 

small values of distance kernel are replaced by zero we get a circular shaped filtering 

kernel. The circular shaped kernel is denoted as
dcw . 

 

3.2.1.2 Gray level kernel 

The gray level distance between any arbitrary pixel g(x1,y1) of  a particular 

window at location (x1,y1) and the center pixel g(x,y) at location (x,y) is calculated as 

( )
1

2 2 2

1 1| , ( , ) |gd g x y g x y = −                                                                                  (3.3) 

The gray level distance dg can be used to find the gray level kernel which is defined 

by 

2

2
exp

2

g

g

g

d
w

σ

 −
=   

 
                                                                                                       (3.4) 

where, ‘σg’ is the standard deviation of the distribution function wg. 
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The filtering kernel of CSF can be prepared from 
dcw and 

gw as: 

dc gw w w= ⋅                                                                                                                (3.5) 

The filtering kernel w is slided throughout the image corrupted with noise to get the 

estimated output. The estimated pixel can be expressed as: 

( )
( , ) ( , )

ˆ ,

( , )

a b

s a t b

a b

s a t b

w s t g x s y t

f x y

w s t

= − = −

= − = −

+ +

=

∑ ∑

∑ ∑
                                                                    (3.6) 

 

In the filtering window, the center coefficient is given the highest weight. The 

weight goes on decreasing as distance increases from center and it is zero when 

correlation is insignificant. A pictorial representation of circular spatial filtering mask 

is shown in Figure 3.1 (a). A more general filtering mask, i.e. a square mask, is also 

depicted in Figure 3.1 (b) to illustrate the difference. It is evident from Figure 3.1 (a) 

that there are necessarily some zeros in the circular spatial filter mask whereas it is 

not so in the case of a general square window shown in Figure 3.1 (b).  

 

 

 

 

 

 

 

 

 

Fig. 3.5 (a) A typical Circular Spatial Filtering mask   of size 7 × 7 

              (b) A square filtering mask of size 7 × 7. 
 

(a) (b) 
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3.2.2 The parameter and window selection 

The circular spatial filter has one parameter, ‘σg’, which controls the weights in 

the gray level kernel. For efficient filtering operation, the value σg should be 

optimum. The choice of σg is based on experimentation. Two experiments are 

performed to find the optimal value of σg. 

 

Experiment 1 

An experiment is conducted to find the peak-signal-to-noise ratio (PSNR) for 

various values of σg under different noise conditions. In this experiment, Lena and 

Goldhill images are selected and their noisy versions are generated by adding 

Gaussian noise of standard deviation σn = 30, 40 and 50. The PSNR values obtained 

are plotted against the values of σg which are shown in Fig. 3.6. From the figure, it is 

observed that the PSNR values settle at σg = 1 and do not change much even if σg is 

increased significantly. 

 

Experiment 2 

The noisy versions of Lena and Goldhill are used to perform this experiment. 

Here, the universal quality index (UQI) values for different values of σg under the 

Gaussian noise of standard deviation σn = 30, 40 and 50 are calculated. The UQI 

values are plotted for different values of σg and are shown in Fig. 3.7. As σg increases 

and approaches 1, the UQI value increases and approaches steady state value. The 

value of UQI remains constant with further increase of σg. 

From these two experiments, it is learnt that the optimum value of σg should 

be taken as 1. 

 

The selection of window in CSF is equally important as the selection of 

parameter. The noise levels of AWGN are taken into consideration for selection of 

window. If there is no a-priori knowledge of the noise level, the robust median 

estimator is used to find it. For low, moderate and high noise conditions 3×3, 5×5 and 

7×7 windows are selected respectively for effective suppression of Gaussian noise. 

The size of the window is kept constant and is never varied even though the image 

statistics change from point to point for a particular noise level. 
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Fig. 3.6 PSNR  vs.  σg    under AWGN of σn = 30, 40 and 50  
 

(a) Lena image  

(b) Goldhill image 
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Fig. 3.7  UQI vs. σg    under AWGN of σn = 30, 40 and 50  
 

  (a) Lena image  

  (b) Goldhill image 
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3.3 Simulation Results 
 

Extensive computer simulation is carried out on MATLAB 7.0 platform to 

access the performance of the proposed filters: Adaptive Window Wiener Filter 

(AWWF) and Circular Spatial Filter (CSF) and the standard existing filters: Mean 

filter, Median filter, Alpha Trimmed Mean (ATM) filter, Wiener filter, Anisotropic 

Diffusion (AD) filter, Total Variation (TV) filter, Lee filter, Bilateral filter, Non-local 

Means (NL-Means) filter and. The test images: Lena, Pepper, Goldhill and Barbara of 

sizes 512×512 corrupted with AWGN of standard deviation    σn = 5, 10, 15, 20, 25, 

30, 35, 40, 45 and 50 are used for testing the filtering performance. The peak-signal-

to-noise ratio (PSNR), root-mean-square error (RMSE), universal quality index 

(UQI), method noise and execution time are taken as performance measures.  

 

The PSNR values of different filters are given in the tables: Table-3.1 to       

Table-3.4. When the noise level is high, the proposed filter: CSF exhibits very high 

performance. For moderate noise conditions its performance is close to that of 

AWWF. The largest PSNR value for a particular standard deviation of Gaussian noise 

is highlighted to show the best performance in these tables.  

 

The RMSE values of different filters are given in the tables: Table-3.5 to      

Table-3.8. The smallest (best) RMSE value for a particular standard deviation of 

Gaussian noise is highlighted for analysis purpose. 

 

The UQI values of various filters are given in the tables: Table-3.9 to Table 

3.12. The largest (best) value of UQI for a particular standard deviation of Gaussian 

noise is identified and is highlighted for analysis purpose.  

 

The method noise of various filters for different images is given in the          

Table 3.13. It is observed that the Lee filter is the best performer whereas the         

NL-Means filter is the second best in terms of method noise. The proposed filter CSF 
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also gives very low method noise and its performance is comparable with that of the     

NL-Means filter. 

 

The spatial-domain filters are simulated on three different computing systems 

depicted in Table-1.1 in Section 1.5. The execution time taken for different filtering 

schemes is shown in Table-3.14. As the AD and TV filters are iterative in nature, their 

simulation times are not included in the table. The execution time of CSF is close to 

the simplest mean filter. Thus, it is quite useful for real-time applications. 

 

The performance of proposed filters and some high performing filters in terms 

of PSNR, RMSE and UQI are illustrated in figures: Fig. 3.8 to Fig. 3.10 for easy 

analysis. 

 

For subjective evaluation, the output images of different spatial-domain filters 

are shown in the figures: Fig. 3.11 to Fig. 3.18. The test images: Lena and Pepper are 

used for subjective evaluation. A smooth region and a complex region of Lena image 

are also demonstrated through various figures for critical analysis.  

 

Conclusions are drawn in the next section. 
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Table-3.1: Filtering performance of various filters, in terms of PSNR (dB), operated on Lena 
image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Lena  

1 Mean [3×3] 33.88 32.70 31.27 29.78 28.48 27.28 26.26 25.30 24.45 23.62 

2 Mean [5×5] 29.77 29.59 29.31 28.92 28.48 28.05 27.48 26.96 26.49 25.93 

3 Mean [7×7] 27.66 27.60 27.50 27.37 27.21 27.01 26.77 26.49 26.23 25.89 

4 Median [3×3] 34.98 32.16 29.85 27.94 26.36 24.98 23.77 22.77 21.75 20.94 

5 Median [5×5] 31.70 30.74 29.78 28.75 27.81 26.84 26.08 25.26 24.53 23.82 

6 Median [7×7] 29.60 29.17 28.65 28.13 27.58 26.99 26.44 26.01 25.45 24.96 

7 ATM [3×3] 33.96 32.71 31.26 29.83 28.44 27.24 26.07 25.03 24.08 23.22 

8 ATM [5×5] 29.77 29.59 29.32 28.93 28.50 28.07 27.52 27.03 26.47 25.86 

9 ATM [7×7] 27.88 27.59 27.52 27.41 27.28 27.13 26.89 26.66 26.41 26.13 

10 Wiener [3×3] 37.88 34.01 31.37 29.15 27.38 25.9 24.62 23.56 22.67 21.86 

11 Wiener [5×5] 36.57 32.94 31.47 30.19 29.00 27.96 26.99 26.13 25.43 24.69 

12 Wiener [7×7] 35.78 31.54 30.46 29.44 28.57 27.78 27.15 26.55 25.93 25.34 

13 AD 34.68 31.37 30.37 29.27 28.21 27.22 26.28 25.40 24.65 23.93 

14 TV 35.49 33.22 31.70 30.25 29.01 27.85 26.77 25.85 24.92 24.12 

15 Lee [3×3] 37.87 33.45 30.77 28.78 27.34 26.04 24.97 24.11 23.31 22.68 

16 Lee [5×5] 37.55 33.47 31.29 29.74 28.66 27.70 27.07 26.41 25.78 25.34 

17 Lee [7×7] 37.12 33.04 30.91 29.52 28.57 27.84 27.28 26.77 26.30 25.95 

18 Bilateral [3×3] 33.70 32.58 31.20 29.77 28.48 27.27 26.21 25.31 24.47 23.68 

19 Bilateral [5×5] 32.76 29.14 28.88 28.55 28.13 27.72 27.27 26.71 26.22 25.73 

20 Bilateral [7×7] 31.09 26.62 26.55 26.43 26.30 26.13 25.89 25.73 25.47 25.19 

21 NL-Means 37.87 34.43 29.43 25.53 22.91 20.97 19.47 18.28 17.29 16.36 

22 AWWF 34.88 33.36 31.78 30.56 29.29 28.13 27.41 26.88 26.01 25.85 

23 CSF [3×3] 37.19 32.87 29.71 27.35 25.51 23.97 22.69 21.55 20.60 19.70 

24 CSF [5×5] 33.71 32.80 31.58 30.31 29.11 27.96 26.88 25.98 25.07 24.32 

25 CSF [7×7] 30.15 29.87 29.62 29.32 28.96 28.47 28.01 27.49 26.99 26.46 
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Table-3.2: Filtering performance various filters, in terms of PSNR (dB), operated on Pepper 
image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

1 Mean [3×3] 31.90 31.16 30.15 28.99 27.88 26.82 25.86 24.95 24.15 23.45 

2 Mean [5×5] 30.61 30.39 30.01 29.55 29.02 28.40 27.81 27.22 26.56 26.01 

3 Mean [7×7] 28.62 28.55 28.41 28.18 27.93 27.71 27.32 26.96 26.58 26.18 

4 Median [3×3] 35.55 32.57 30.10 28.13 26.48 25.10 23.88 22.79 21.84 21.02 

5 Median [5×5] 34.23 32.76 31.30 29.96 28.72 27.64 26.65 25.68 24.93 24.19 

6 Median [7×7] 33.19 31.62 30.75 29.87 29.00 28.23 27.48 26.78 26.20 25.62 

7 ATM [3×3] 32.33 31.74 30.58 29.32 28.10 26.94 25.82 24.83 23.98 23.12 

8 ATM [5×5] 31.12 30.67 30.38 29.93 29.40 28.85 28.18 27.57 26.88 26.32 

9 ATM [7×7] 29.01 28.76 28.69 28.58 28.41 28.19 27.82 27.56 27.24 26.87 

10 Wiener [3×3] 38.11 34.45 31.77 29.44 27.56 25.99 24.67 23.56 22.67 21.85 

11 Wiener [5×5] 37.67 33.82 32.16 30.74 29.41 28.18 27.14 26.19 25.34 24.60 

12 Wiener [7×7] 35.98 32.52 31.25 30.08 29.06 28.15 27.36 26.58 25.90 25.26 

13 AD 33.48 30.68 29.79 28.81 27.82 26.85 25.97 25.11 24.36 23.61 

14 TV 33.58 31.21 30.13 29.08 28.03 27.10 26.13 25.31 24.45 23.76 

15 Lee [3×3] 37.89 33.69 31.05 29.03 27.40 26.08 25.02 24.12 23.34 22.71 

16 Lee [5×5] 37.77 33.91 31.77 30.28 29.02 28.05 27.27 26.56 25.94 25.47 

17 Lee [7×7] 37.28 33.45 31.38 30.03 29.03 28.21 27.57 27.02 26.51 26.09 

18 Bilateral [3×3] 31.76 31.07 30.06 28.97 27.85 26.83 25.84 24.97 24.20 23.48 

19 Bilateral [5×5] 30.88 29.81 29.50 29.10 28.63 28.11 27.56 26.97 26.41 25.92 

20 Bilateral [7×7] 29.96 27.36 27.24 27.12 26.92 26.72 26.40 26.16 25.90 25.52 

21 NL-Means 37.96 34.62 29.58 25.68 23.02 21.14 19.63 18.43 17.36 16.51 

22 AWWF 35.16 33.96 32.58 31.01 30.11 28.91 28.21 27.43 27.10 26.38 

23 CSF [3×3] 36.80 32.75 29.68 27.39 25.52 24.00 22.71 21.59 20.63 19.73 

24 CSF [5×5] 34.99 33.81 32.35 30.84 29.49 28.19 27.05 26.07 25.14 24.34 

25 CSF [7×7] 32.17 31.26 30.91 30.44 29.91 29.25 28.61 27.92 27.30 26.96 
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Table-3.3: Filtering performance of various filters, in terms of PSNR (dB), operated on Goldhill 
image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Goldhill 

1 Mean [3×3] 31.54 30.82 29.83 28.77 27.69 26.66 25.73 24.83 24.01 23.32 

2 Mean [5×5] 28.15 28.02 27.79 27.48 27.13 26.69 26.25 25.74 25.25 24.77 

3 Mean [7×7] 26.48 26.44 26.34 26.2 26.07 25.83 25.56 25.25 24.95 24.53 

4 Median [3×3] 33.76 30.44 28.78 27.22 25.90 24.67 23.61 22.65 21.77 21.02 

5 Median [5×5] 30.77 28.60 27.96 27.32 26.63 25.95 25.32 24.66 24.01 23.43 

6 Median [7×7] 29.34 27.29 26.95 26.62 26.19 25.78 25.43 24.99 24.67 24.20 

7 ATM [3×3] 31.88 30.81 29.80 28.69 27.60 26.55 25.56 24.62 23.77 22.98 

8 ATM [5×5] 29.12 28.03 27.82 27.57 27.21 26.85 26.48 26.05 25.57 25.15 

9 ATM [7×7] 27.02 26.45 26.38 26.29 26.16 26.03 25.86 25.68 25.46 25.21 

10 Wiener [3×3] 36.63 32.35 30.41 28.59 26.96 25.62 24.41 23.32 22.47 21.62 

11 Wiener [5×5] 34.88 30.43 29.56 28.67 27.76 26.88 26.00 25.17 24.45 23.68 

12 Wiener [7×7] 32.99 28.87 28.31 27.67 27.08 26.51 25.89 25.26 24.71 24.07 

13 AD 33.07 29.88 29.13 28.27 27.38 26.50 25.65 24.83 24.06 23.40 

14 TV 33.11 31.30 30.19 29.13 28.09 27.16 26.27 25.41 24.62 23.78 

15 Lee [3×3] 36.60 32.38 30.03 28.31 26.96 25.86 24.85 23.98 23.21 22.58 

16 Lee [5×5] 36.29 32.00 29.95 28.59 27.65 26.87 26.12 25.49 24.93 24.51 

17 Lee [7×7] 35.98 31.56 29.48 28.22 27.32 26.62 26.05 25.59 25.15 24.69 

18 Bilateral [3×3] 31.44 30.73 29.77 28.67 27.63 26.63 25.67 24.83 23.99 23.25 

19 Bilateral [5×5] 30.17 27.72 27.49 27.20 26.83 26.39 25.97 25.50 24.98 24.51 

20 Bilateral [7×7] 29.13 25.75 25.64 25.50 25.32 25.12 24.85 24.62 24.27 24.00 

21 NL-Means 36.59 32.93 28.92 25.61 23.10 21.26 19.80 18.60 17.59 16.68 

22 AWWF 34.34 32.34 30.87 29.18 28.15 27.20 26.38 25.39 25.10 24.46 

23 CSF [3×3] 36.15 32.50 29.60 27.38 25.59 24.11 22.82 21.71 20.79 19.92 

24 CSF [5×5] 31.89 31.27 30.41 29.40 28.38 27.41 26.41 25.52 24.64 23.89 

25 CSF [7×7] 29.14 28.54 28.36 28.09 27.76 27.30 26.92 26.44 25.90 25.34 
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Table-3.4: Filtering performance of various filters, in terms of PSNR (dB), operated on Barbara 
image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Barbara 

1 Mean [3×3] 26.52 26.02 25.68 25.25 24.75 24.19 23.64 23.06 22.50 21.95 

2 Mean [5×5] 23.81 23.76 23.68 23.57 23.43 23.25 23.04 22.84 22.56 22.31 

3 Mean [7×7] 23.53 23.51 23.47 23.41 23.32 23.21 23.07 22.92 22.75 22.53 

4 Median [3×3] 27.66 25.85 25.09 24.31 23.52 22.76 22.02 21.33 20.62 19.98 

5 Median [5×5] 24.76 23.26 23.14 22.96 22.77 22.49 22.19 21.90 21.57 21.21 

6 Median [7×7] 24.11 23.54 23.44 23.31 23.17 22.98 22.75 22.58 22.35 22.14 

7 ATM [3×3] 31.99 30.81 29.80 28.69 27.60 26.55 25.56 24.62 23.77 22.98 

8 ATM [5×5] 29.06 28.03 27.82 27.57 27.21 26.85 26.48 26.05 25.57 25.15 

9 ATM [7×7] 27.34 26.45 26.38 26.29 26.16 26.03 25.86 25.68 25.46 25.21 

10 Wiener [3×3] 36.57 31.67 28.65 28.21 27.50 26.06 24.89 23.90 22.97 22.13 

11 Wiener [5×5] 34.78 28.31 27.43 26.53 25.70 24.99 24.32 23.66 23.09 22.55 

12 Wiener [7×7] 33.19 27.38 26.73 26.04 25.45 24.89 24.34 23.84 23.37 22.93 

13 AD 28.59 26.06 25.75 25.35 24.88 24.37 23.86 23.30 22.78 22.26 

14 TV 27.49 26.47 25.99 25.48 24.94 24.42 23.88 23.33 22.81 22.31 

15 Lee [3×3] 36.54 31.59 28.90 27.05 25.68 24.62 23.69 22.91 22.23 21.66 

16 Lee [5×5] 36.21 31.56 28.96 27.32 26.13 25.17 24.36 23.78 23.26 22.77 

17 Lee [7×7] 36.09 31.30 28.80 27.22 26.10 25.28 24.64 24.06 23.58 23.19 

18 Bilateral [3×3] 26.22 26.01 25.67 25.24 24.74 24.20 23.65 23.08 22.53 21.99 

19 Bilateral [5×5] 26.03 23.69 23.61 23.51 23.37 23.20 23.00 22.79 22.57 22.29 

20 Bilateral [7×7] 25.58 23.17 23.14 23.08 23.01 22.93 22.80 22.67 22.52 22.31 

21 NL-Means 36.88 32.59 28.68 25.40 23.01 21.24 19.74 18.58 17.52 16.67 

22 AWWF 33.19 31.69 30.28 29.54 27.98 26.71 25.85 24.75 23.60 22.73 

23 CSF [3×3] 31.88 30.13 29.22 28.51 26.98 26.66 25.51 24.45 22.49 21.69 

24 CSF [5×5] 28.65 28.20 27.92 27.56 27.14 26.71 26.18 25.57 25.04 24.55 

25 CSF [7×7] 27.96 27.44 27.39 27.29 27.16 27.01 26.83 26.62 26.33 26.07 
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Table-3.5: Filtering performance of various filters, in terms of RMSE, operated on a Lena image 
under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

1 Mean [3×3] 5.15 5.90 6.96 8.27 9.60 11.02 12.40 13.85 15.27 16.80 

2 Mean [5×5] 8.28 8.45 8.73 9.13 9.60 10.09 10.77 11.44 12.07 12.88 

3 Mean [7×7] 10.55 10.63 10.75 10.91 11.11 11.37 11.69 12.07 12.44 12.94 

4 Median [3×3] 4.54 6.27 8.18 10.20 12.24 14.35 16.49 18.51 20.83 22.87 

5 Median [5×5] 6.63 7.395 8.26 9.30 10.35 11.57 12.64 13.89 15.12 16.42 

6 Median [7×7] 8.44 8.84 9.40 9.99 10.63 11.39 12.13 12.75 13.59 14.38 

7 ATM [3×3] 5.11 5.89 6.96 8.21 9.63 11.06 12.67 14.28 15.93 17.59 

8 ATM [5×5] 8.28 8.44 8.69 9.10 9.56 10.04 10.71 11.34 12.08 12.98 

9 ATM [7×7] 10.29 10.63 10.71 10.86 11.01 11.22 11.52 11.83 12.18 12.57 

10 Wiener [3×3] 3.25 5.07 6.88 8.87 10.88 12.90 14.96 16.90 18.74 20.57 

11 Wiener [5×5] 3.78 5.73 6.78 7.87 9.02 10.17 11.39 12.57 13.64 14.84 

12 Wiener [7×7] 4.14 6.73 7.62 8.59 9.48 10.40 11.19 11.98 12.87 13.77 

13 AD 4.70 6.88 7.72 8.74 9.89 11.09 12.36 13.69 14.91 16.21 

14 TV 4.28 5.55 6.63 7.82 9.02 10.32 11.67 12.98 14.45 15.86 

15 Lee [3×3] 3.25 5.40 7.36 9.25 10.94 12.69 14.38 15.88 17.41 18.71 

16 Lee [5×5] 3.38 5.40 6.93 8.28 9.38 10.50 11.29 12.18 13.10 13.77 

17 Lee [7×7] 3.55 5.66 7.24 8.51 9.48 10.32 11.01 11.67 12.34 12.85 

18 Bilateral [3×3] 5.26 5.96 7.01 8.26 9.58 11.04 12.47 13.82 15.22 16.67 

19 Bilateral [5×5] 5.86 8.89 9.15 9.51 9.99 10.48 11.04 11.75 12.44 13.18 

20 Bilateral [7×7] 7.11 11.88 11.98 12.13 12.34 12.57 12.92 13.00 13.56 14.02 

21 NL-Means 3.25 4.81 8.59 13.49 18.23 22.79 27.08 31.08 34.83 38.76 

22 AWWF 4.59 5.45 6.55 7.54 8.74 9.99 10.86 11.52 12.75 12.95 

23 CSF [3×3] 3.52 5.78 8.31 10.94 13.51 16.14 18.69 21.31 23.79 26.39 

24 CSF [5×5] 5.26 5.83 6.70 7.77 8.92 10.17 11.52 12.80 14.20 15.50 

25 CSF [7×7] 7.92 8.18 8.41 8.69 9.07 9.61 10.12 10.76 11.39 12.11 
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Table-3.6: Filtering performance of various filters, in terms of RMSE, operated on Pepper image 
under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

1 Mean [3×3] 6.47 7.05 7.92 9.05 10.29 11.62 12.98 14.42 15.81 17.14 

2 Mean [5×5] 7.51 7.70 8.05 8.49 9.02 9.69 10.37 11.10 11.98 12.76 

3 Mean [7×7] 9.45 9.52 9.68 9.94 10.23 10.49 10.97 11.44 11.95 12.51 

4 Median [3×3] 4.25 5.99 7.95 9.99 12.08 14.15 16.29 18.48 20.63 22.67 

5 Median [5×5] 4.95 5.86 6.93 8.08 9.33 10.55 11.85 13.26 14.433 15.73 

6 Median [7×7] 5.58 6.68 7.39 8.18 9.02 9.86 10.76 11.67 12.47 13.33 

7 ATM [3×3] 6.16 6.57 7.52 8.69 10.02 11.45 13.03 14.61 16.116 17.79 

8 ATM [5×5] 7.08 7.44 7.70 8.10 8.61 9.18 9.91 10.65 11.52 12.31 

9 ATM [7×7] 9.03 9.28 9.35 9.48 9.66 9.91 10.35 10.65 11.06 11.55 

10 Wiener [3×3] 3.16 4.81 6.55 8.59 10.65 12.75 14.89 16.90 18.743 20.60 

11 Wiener [5×5] 3.33 5.17 6.27 7.39 8.61 9.91 11.19 12.49 13.77 14.99 

12 Wiener [7×7] 4.05 6.01 6.96 7.98 8.97 9.97 10.91 11.93 12.903 13.89 

13 AD 5.40 7.44 8.23 9.23 10.35 11.57 12.80 14.15 15.428 16.80 

14 TV 5.34 7.01 7.93 8.95 10.09 11.24 12.57 13.82 15.275 16.52 

15 Lee [3×3] 3.25 5.25 7.14 9.00 10.86 12.64 14.30 15.86 17.34 18.64 

16 Lee [5×5] 3.29 5.12 6.55 7.80 9.02 10.07 11.04 11.95 12.852 13.56 

17 Lee [7×7] 3.48 5.40 6.85 8.03 9.00 9.89 10.65 11.34 12.036 12.64 

18 Bilateral [3×3] 6.58 7.11 8.00 9.07 10.32 11.60 13.00 14.38 15.708 17.06 

19 Bilateral [5×5] 7.28 8.23 8.51 8.92 9.43 10.02 10.65 11.42 12.189 12.87 

20 Bilateral [7×7] 8.10 10.91 11.06 11.22 11.49 11.75 12.20 12.54 12.903 13.49 

21 NL-Means 3.22 4.71 8.46 13.26 18.00 22.36 26.59 30.54 34.553 38.09 

22 AWWF 4.45 5.10 5.96 7.16 7.95 9.12 9.89 10.83 11.24 12.21 

23 CSF [3×3] 3.68 5.86 8.36 10.88 13.49 16.06 18.64 21.21 23.71 26.29 

24 CSF [5×5] 4.53 5.17 6.14 7.31 8.54 9.91 11.32 12.67 14.10 15.45 

25 CSF [7×7] 6.28 6.96 7.24 7.65 8.13 8.77 9.460 10.22 10.99 11.42 
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Table-3.7: Filtering performance of various filters, in terms of RMSE, operated on Goldhill image 

under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Goldhill 

1 Mean [3×3] 6.75 7.33 8.22 9.29 10.52 11.84 13.18 14.62 16.07 17.40 

2 Mean [5×5] 9.97 10.12 10.41 10.77 11.22 11.80 12.41 13.16 13.93 14.72 

3 Mean [7×7] 12.09 12.14 12.29 12.48 12.67 13.03 13.44 13.93 14.42 15.13 

4 Median [3×3] 5.23 7.65 9.25 11.09 12.90 14.89 16.80 18.79 20.78 22.67 

5 Median [5×5] 7.37 9.46 10.17 10.96 11.88 12.85 13.82 14.89 16.06 17.16 

6 Median [7×7] 8.70 11.01 11.45 11.88 12.49 13.10 13.64 14.33 14.89 15.70 

7 ATM [3×3] 6.49 7.34 8.23 9.35 10.60 11.98 13.43 14.96 16.49 18.07 

8 ATM [5×5] 8.92 10.09 10.35 10.65 11.11 11.57 12.08 12.69 13.41 14.07 

9 ATM [7×7] 11.36 12.11 12.21 12.34 12.54 12.72 12.98 13.26 13.59 13.97 

10 Wiener [3×3] 3.75 6.14 7.67 9.46 11.42 13.33 15.32 17.39 19.17 21.14 

11 Wiener [5×5] 4.59 7.65 8.46 9.38 10.42 11.52 12.77 14.05 15.27 16.67 

12 Wiener [7×7] 5.71 9.18 9.79 10.53 11.27 12.03 12.92 13.89 14.81 15.93 

13 AD 5.66 8.16 8.89 9.81 10.88 12.06 13.28 14.61 15.96 17.23 

14 TV 5.63 6.93 7.87 8.89 10.04 11.16 12.36 13.66 14.96 16.49 

15 Lee [3×3] 3.77 6.12 8.03 9.79 11.42 12.98 14.58 16.11 17.62 18.94 

16 Lee [5×5] 3.90 6.40 8.10 9.46 10.55 11.55 12.59 13.54 14.43 15.14 

17 Lee [7×7] 4.05 6.73 8.54 9.89 10.96 11.88 12.69 13.38 14.07 14.84 

18 Bilateral [3×3] 6.83 7.39 8.26 9.38 10.58 11.88 13.26 14.61 16.09 17.51 

19 Bilateral [5×5] 7.90 10.48 10.76 11.11 11.60 12.21 12.80 13.51 14.35 15.14 

20 Bilateral [7×7] 8.91 13.13 13.31 13.51 13.82 14.14 14.58 14.96 15.58 16.06 

21 NL-Means 3.77 5.73 8.92 13.36 17.82 22.03 26.01 29.93 33.63 37.35 

22 AWWF 4.89 6.14 7.29 8.84 9.97 11.11 12.21 13.69 14.15 15.24 

23 CSF [3×3] 3.97 6.04 8.44 10.88 13.38 15.88 18.41 20.93 23.28 25.73 

24 CSF [5×5] 6.48 6.96 7.67 8.61 9.71 10.86 12.18 13.49 14.94 16.29 

25 CSF [7×7] 8.90 9.53 9.71 10.04 10.42 10.99 11.47 12.13 12.90 13.77 
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Table-3.8: Filtering performance of various filters, in terms of RMSE, operated on Barbara image 

under various noise conditions (σn varies from 5 to 50) 

Root-Mean-Squared Error (RMSE) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Barbara 

1 Mean [3×3] 12.03 12.75 13.26 13.93 14.75 15.74 16.77 17.92 19.12 20.37 

2 Mean [5×5] 16.44 16.54 16.69 16.90 17.18 17.54 17.97 18.38 18.99 19.54 

3 Mean [7×7] 16.98 17.02 17.10 17.22 17.41 17.62 17.90 18.22 18.58 19.05 

4 Median [3×3] 10.55 12.98 14.17 15.50 16.98 18.53 20.19 21.87 23.74 25.55 

5 Median [5×5] 14.74 17.51 17.74 18.13 18.51 19.12 19.81 20.47 21.26 22.16 

6 Median [7×7] 15.88 16.95 17.13 17.41 17.69 18.07 18.56 18.94 19.43 19.91 

7 ATM [3×3] 6.41 7.34 8.23 9.35 10.60 11.98 13.43 14.96 16.49 18.07 

8 ATM [5×5] 8.98 10.09 10.35 10.65 11.11 11.57 12.08 12.69 13.41 14.07 

9 ATM [7×7] 10.95 12.11 12.21 12.34 12.54 12.72 12.98 13.26 13.59 13.97 

10 Wiener [3×3] 3.78 5.27 9.40 8.82 10.73 12.67 14.50 16.26 18.10 19.94 

11 Wiener [5×5] 4.65 9.79 10.83 12.01 13.20 14.33 15.50 16.72 17.85 18.99 

12 Wiener [7×7] 5.58 10.88 11.73 12.69 13.59 14.50 15.45 16.37 17.28 18.18 

13 AD 9.48 12.67 13.13 13.77 14.53 15.40 16.34 17.41 18.51 19.63 

14 TV 10.76 12.08 12.77 13.56 14.43 15.32 16.29 17.36 18.43 19.53 

15 Lee [3×3] 3.79 6.70 9.12 11.32 13.26 14.96 16.65 18.23 19.71 21.06 

16 Lee [5×5] 3.94 6.73 9.07 10.96 12.57 14.05 15.42 16.49 17.51 18.51 

17 Lee [7×7] 3.99 6.93 9.25 11.09 12.62 13.87 14.94 15.96 16.88 17.64 

18 Bilateral [3×3] 12.46 12.75 13.26 13.94 14.76 15.70 16.72 17.87 19.04 20.27 

19 Bilateral [5×5] 12.73 16.65 16.80 17.00 17.28 17.62 18.02 18.48 18.94 19.58 

20 Bilateral [7×7] 13.41 17.69 17.74 17.87 18.02 18.18 18.46 18.74 19.07 19.53 

21 NL-Means 3.65 5.96 9.38 13.69 18.02 22.08 26.26 30.01 33.91 37.40 

22 AWWF 5.58 6.63 7.80 8.49 10.17 11.75 12.98 14.73 16.83 18.61 

23 CSF [3×3] 6.49 7.93 8.79 9.56 11.39 11.83 13.51 15.27 19.12 20.98 

24 CSF [5×5] 9.41 9.91 10.22 10.65 11.19 11.75 12.49 13.41 14.25 15.09 

25 CSF [7×7] 10.19 10.81 10.88 11.01 11.16 11.37 11.60 11.88 12.29 12.67 
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Table-3.9: Filtering performance of various filters, in terms of UQI, operated on a Lena image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

1 Mean [3×3] 0.9941 0.9922 0.9892 0.9849 0.9797 0.9732 0.9663 0.9579 0.9488 0.9376 

2 Mean [5×5] 0.9845 0.9838 0.9827 0.9811 0.9791 0.9769 0.9736 0.9700 0.9665 0.9613 

3 Mean [7×7] 0.9743 0.9739 0.9733 0.9725 0.9714 0.9701 0.9683 0.9659 0.9636 0.9601 

4 Median [3×3] 0.9955 0.9913 0.9853 0.9773 0.9676 0.9559 0.9425 0.9286 0.9117 0.8951 

5 Median [5×5] 0.9903 0.9878 0.9848 0.9808 0.9762 0.9703 0.9648 0.9577 0.9503 0.9419 

6 Median [7×7] 0.9841 0.9824 0.9801 0.9775 0.9745 0.9709 0.9669 0.9636 0.9585 0.9539 

7 ATM [3×3] 0.9939 0.9922 0.9892 0.9851 0.9795 0.9731 0.9649 0.9558 0.9454 0.9340 

8 ATM [5×5] 0.9878 0.9838 0.9828 0.9812 0.9792 0.9772 0.9740 0.9710 0.9671 0.9621 

9 ATM [7×7] 0.9812 0.9739 0.9734 0.9728 0.9720 0.9710 0.9694 0.9678 0.9659 0.9637 

10 Wiener [3×3] 0.9977 0.9943 0.9896 0.9827 0.9742 0.964 0.9517 0.9386 0.9249 0.9098 

11 Wiener [5×5] 0.9958 0.9926 0.9897 0.9861 0.9818 0.9768 0.9709 0.9646 0.9581 0.9503 

12 Wiener [7×7] 0.9907 0.9897 0.9868 0.9833 0.9797 0.9755 0.9715 0.9671 0.9617 0.9557 

13 AD 0.9951 0.9895 0.9867 0.9830 0.9784 0.9728 0.9663 0.9586 0.9506 0.9417 

14 TV 0.9959 0.9931 0.9902 0.9864 0.9820 0.9765 0.9701 0.9633 0.9547 0.9458 

15 Lee [3×3] 0.9977 0.9936 0.9881 0.9813 0.9740 0.9650 0.9554 0.9456 0.9346 0.9239 

16 Lee [5×5] 0.9955 0.9936 0.9893 0.9847 0.9805 0.9755 0.9715 0.9666 0.9610 0.9566 

17 Lee [7×7] 0.9936 0.9929 0.9884 0.9839 0.9799 0.9761 0.9725 0.9688 0.9648 0.9613 

18 Bilateral [3×3] 0.9939 0.9921 0.9891 0.9849 0.9797 0.9731 0.9658 0.9578 0.9487 0.9385 

19 Bilateral [5×5] 0.9916 0.9828 0.9816 0.9802 0.9781 0.9757 0.9728 0.9686 0.9646 0.9598 

20 Bilateral [7×7] 0.9879 0.9706 0.9702 0.9693 0.9682 0.9664 0.9642 0.9623 0.9592 0.9557 

21 NL-Means 0.9977 0.9947 0.9840 0.9616 0.9318 0.8971 0.8601 0.8230 0.7861 0.7451 

22 AWWF 0.9953 0.9934 0.9898 0.9865 0.9820 0.9765 0.9721 0.9690 0.9620 0.9568 

23 CSF [3×3] 0.9973 0.9949 0.9849 0.9742 0.9611 0.9452 0.9272 0.9067 0.8854 0.8614 

24 CSF [5×5] 0.9938 0.9924 0.9900 0.9866 0.9822 0.9771 0.9710 0.9640 0.9555 0.9469 

25 CSF [7×7] 0.9912 0.9848 0.9839 0.9828 0.9813 0.9789 0.9765 0.9735 0.9700 0.9659 
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Table-3.10: Filtering performance of various filters, in terms of UQI, operated on Pepper image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

1 Mean [3×3] 0.9927 0.9912 0.9889 0.9856 0.9814 0.9762 0.9702 0.9631 0.9557 0.9476 

2 Mean [5×5] 0.9900 0.9894 0.9884 0.9871 0.9853 0.9831 0.9805 0.9776 0.9737 0.9699 

3 Mean [7×7] 0.9839 0.9836 0.9830 0.9821 0.9809 0.9799 0.9779 0.9758 0.9734 0.9706 

4 Median [3×3] 0.9969 0.9938 0.9890 0.9828 0.9750 0.9659 0.9552 0.9431 0.9298 0.9163 

5 Median [5×5] 0.9957 0.9940 0.9916 0.9885 0.9848 0.9805 0.9756 0.9696 0.9641 0.9578 

6 Median [7×7] 0.9938 0.9921 0.9903 0.9882 0.9855 0.9827 0.9795 0.9759 0.9725 0.9687 

7 ATM [3×3] 0.9929 0.9924 0.9901 0.9868 0.9824 0.9772 0.9706 0.9631 0.9553 0.9460 

8 ATM [5×5] 0.9911 0.9901 0.9894 0.9883 0.9868 0.9850 0.9825 0.9798 0.9764 0.9732 

9 ATM [7×7] 0.9886 0.9844 0.9842 0.9838 0.9832 0.9823 0.9807 0.9796 0.9780 0.9760 

10 Wiener [3×3] 0.9978 0.9959 0.9925 0.9871 0.9802 0.9715 0.9614 0.9503 0.9389 0.9261 

11 Wiener [5×5] 0.9955 0.9953 0.9930 0.9903 0.9868 0.9824 0.9775 0.9718 0.9655 0.9588 

12 Wiener [7×7] 0.9941 0.9935 0.9913 0.9886 0.9855 0.9820 0.9782 0.9738 0.9692 0.9638 

13 AD 0.9949 0.9901 0.9879 0.9848 0.9809 0.9761 0.9707 0.9641 0.9571 0.9488 

14 TV 0.9950 0.9913 0.9889 0.9859 0.9820 0.9778 0.9722 0.9665 0.9594 0.9525 

15 Lee [3×3] 0.9982 0.9952 0.9912 0.9859 0.9795 0.9722 0.9645 0.9563 0.9475 0.9392 

16 Lee [5×5] 0.9960 0.9954 0.9925 0.9893 0.9857 0.9820 0.9784 0.9742 0.9701 0.9665 

17 Lee [7×7] 0.9954 0.9949 0.9917 0.9886 0.9856 0.9825 0.9796 0.9766 0.9734 0.9702 

18 Bilateral [3×3] 0.9925 0.9912 0.9888 0.9855 0.9813 0.9762 0.9700 0.9632 0.9559 0.9476 

19 Bilateral [5×5] 0.9913 0.9885 0.9876 0.9862 0.9843 0.9821 0.9795 0.9761 0.9726 0.9689 

20 Bilateral [7×7] 0.9879 0.9807 0.9799 0.9791 0.9778 0.9763 0.9742 0.9721 0.9697 0.9662 

21 NL-Means 0.9978 0.9961 0.9877 0.9702 0.9462 0.9191 0.8885 0.8572 0.8224 0.7908 

22 AWWF 0.9974 0.9960 0.9941 0.9912 0.9888 0.9852 0.9791 0.9745 0.9700 0.9656 

23 CSF [3×3] 0.9976 0.9962 0.9879 0.9796 0.9689 0.9561 0.9412 0.9246 0.9068 0.8862 

24 CSF [5×5] 0.9964 0.9952 0.9949 0.9915 0.9871 0.9828 0.9778 0.9716 0.9652 0.9571 

25 CSF [7×7] 0.9925 0.9913 0.9906 0.9895 0.9889 0.9861 0.9838 0.9810 0.9785 0.9766 
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Table-3.11: Filtering performance of various filters, in terms of UQI, operated on Goldhill image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Goldhill 

1 Mean [3×3] 0.9939 0.9928 0.9909 0.9884 0.9850 0.9809 0.9762 0.9705 0.964 0.9575 

2 Mean [5×5] 0.9866 0.9861 0.9853 0.9841 0.9827 0.9807 0.9784 0.9754 0.9722 0.9687 

3 Mean [7×7] 0.9801 0.9799 0.9793 0.9785 0.9777 0.9762 0.9744 0.9722 0.9699 0.9665 

4 Median [3×3] 0.9945 0.9922 0.9886 0.9838 0.9781 0.9710 0.9631 0.9542 0.9444 0.9345 

5 Median [5×5] 0.9916 0.9880 0.9861 0.9839 0.9812 0.9780 0.9746 0.9705 0.9658 0.9610 

6 Median [7×7] 0.9878 0.9838 0.9824 0.9810 0.9790 0.9769 0.9749 0.9723 0.9702 0.9669 

7 ATM [3×3] 0.9946 0.9928 0.9909 0.9883 0.9850 0.9809 0.9760 0.9703 0.9639 0.9569 

8 ATM [5×5] 0.9923 0.9862 0.9855 0.9847 0.9833 0.9819 0.9802 0.9782 0.9757 0.9732 

9 ATM [7×7] 0.9883 0.9800 0.9797 0.9792 0.9786 0.9780 0.9771 0.9761 0.9749 0.9734 

10 Wiener [3×3] 0.9971 0.9950 0.9921 0.9880 0.9824 0.9760 0.9682 0.9589 0.9497 0.9385 

11 Wiener [5×5] 0.9942 0.9921 0.9903 0.9880 0.9852 0.9816 0.9773 0.9724 0.9670 0.9602 

12 Wiener [7×7] 0.9917 0.9886 0.9870 0.9848 0.9824 0.9798 0.9764 0.9725 0.9684 0.9628 

13 AD 0.9957 0.9910 0.9893 0.9869 0.9838 0.9801 0.9755 0.9702 0.9641 0.9578 

14 TV 0.9958 0.9936 0.9917 0.9894 0.9865 0.9833 0.9795 0.9750 0.9700 0.9636 

15 Lee [3×3] 0.9981 0.9950 0.9914 0.9872 0.9824 0.9773 0.9711 0.9645 0.9572 0.9501 

16 Lee [5×5] 0.9956 0.9946 0.9912 0.9879 0.9848 0.9817 0.9780 0.9743 0.9704 0.9670 

17 Lee [7×7] 0.9947 0.9940 0.9902 0.9868 0.9836 0.9805 0.9775 0.9747 0.9716 0.9680 

18 Bilateral [3×3] 0.9938 0.9927 0.9908 0.9881 0.9848 0.9807 0.9757 0.9703 0.9636 0.9565 

19 Bilateral [5×5] 0.9916 0.9853 0.9844 0.9832 0.9815 0.9793 0.9770 0.9740 0.9703 0.9662 

20 Bilateral [7×7] 0.9810 0.8936 0.9764 0.9754 0.9742 0.9725 0.9704 0.9683 0.9649 0.9620 

21 NL-Means 0.9967 0.9956 0.9891 0.9767 0.9590 0.9381 0.9147 0.8896 0.8631 0.8339 

22 AWWF 0.9961 0.9950 0.9938 0.9895 0.9872 0.9840 0.9786 0.9750 0.9733 0.9713 

23 CSF [3×3] 0.9979 0.9961 0.9940 0.9843 0.9762 0.9666 0.9550 0.9418 0.9282 0.9126 

24 CSF [5×5] 0.9944 0.9935 0.9920 0.9899 0.9873 0.9847 0.9797 0.9749 0.9693 0.9630 

25 CSF [7×7] 0.9886 0.9877 0.9871 0.9862 0.9850 0.9832 0.9815 0.9792 0.9762 0.9751 
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Table-3.12: Filtering performance of various filters, in terms of UQI, operated on Barbara image 

under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
Standard deviation of AWGN 

Sl.No Denoising Filters 
5 10 15 20 25 30 35 40 45 50 

Test Image: Barbara 

1 Mean [3×3] 0.9753 0.9739 0.9718 0.9688 0.9649 0.9601 0.9545 0.9478 0.9403 0.9318 

2 Mean [5×5] 0.9560 0.9554 0.9545 0.9532 0.9515 0.9491 0.9462 0.9433 0.939 0.9346 

3 Mean [7×7] 0.9525 0.9521 0.9516 0.9507 0.9494 0.948 0.9458 0.9433 0.9407 0.9371 

4 Median [3×3] 0.9818 0.9733 0.9683 0.9622 0.9549 0.9466 0.9371 0.9268 0.9145 0.9024 

5 Median [5×5] 0.9807 0.9508 0.9495 0.9475 0.9450 0.9416 0.9374 0.9335 0.9286 0.9227 

6 Median [7×7] 0.9766 0.9536 0.9524 0.9508 0.9491 0.9469 0.9440 0.9420 0.9390 0.9360 

7 ATM [3×3] 0.9786 0.9740 0.9717 0.9686 0.9647 0.9600 0.9538 0.9474 0.9401 0.9314 

8 ATM [5×5] 0.9769 0.9555 0.9548 0.9538 0.9524 0.9504 0.9481 0.9458 0.9430 0.9398 

9 ATM [7×7] 0.9716 0.9523 0.9522 0.9516 0.9512 0.9501 0.9490 0.9476 0.9432 0.9411 

10 Wiener [3×3] 0.9933 0.9904 0.9861 0.9803 0.9734 0.9651 0.9552 0.9447 0.9331 0.9201 

11 Wiener [5×5] 0.9919 0.9847 0.9812 0.9767 0.9718 0.9665 0.9607 0.9538 0.9470 0.9395 

12 Wiener [7×7] 0.9898 0.9808 0.9776 0.9737 0.9696 0.9652 0.9603 0.9550 0.9495 0.9434 

13 AD 0.9857 0.9741 0.9722 0.9694 0.9659 0.9614 0.9564 0.9503 0.9436 0.9358 

14 TV 0.9816 0.9766 0.9738 0.9707 0.9668 0.9626 0.9576 0.9520 0.9461 0.9396 

15 Lee [3×3] 0.9978 0.9930 0.9870 0.9800 0.9724 0.9646 0.9559 0.9470 0.9377 0.9284 

16 Lee [5×5] 0.9949 0.9929 0.9871 0.9810 0.9748 0.9682 0.9613 0.9554 0.9490 0.9425 

17 Lee [7×7] 0.9932 0.9925 0.9865 0.9805 0.9744 0.9688 0.9634 0.9576 0.9519 0.9469 

18 Bilateral [3×3] 0.9751 0.9738 0.9716 0.9686 0.9646 0.9597 0.9542 0.9475 0.9400 0.9316 

19 Bilateral [5×5] 0.9734 0.9543 0.9534 0.9520 0.9501 0.9478 0.9447 0.9414 0.9378 0.9329 

20 Bilateral [7×7] 0.9688 0.9483 0.9477 0.9466 0.9453 0.9436 0.9414 0.9386 0.9357 0.9312 

21 NL-Means 0.9957 0.9943 0.9865 0.9716 0.9516 0.9285 0.9010 0.8737 0.8423 0.8127 

22 AWWF 0.9943 0.9918 0.9893 0.9836 0.9748 0.9690 0.9614 0.9568 0.9492 0.9453 

23 CSF [3×3] 0.9964 0.9945 0.9895 0.9773 0.9721 0.9666 0.9536 0.9485 0.9313 0.9261 

24 CSF [5×5] 0.9913 0.9896 0.9866 0.9838 0.9793 0.9779 0.9692 0.9576 0.9517 0.9458 

25 CSF [7×7] 0.9834 0.9818 0.9799 0.9783 0.9779 0.9752 0.9717 0.9659 0.9600 0.9534 
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Table-3.13: Method Noise, 
M
N  of  various filters operated on different test images 

Sl. No 

 

Denoising                Images 

Filters 

Lena Pepper Goldholl Barbara 

1 Mean [3×3] 2.62 2.90 4.10 6.68 

2 Mean [5×5] 4.43 4.08 6.42 9.46 

3 Mean [7×7] 5.73 5.20 7.93 10.35 

4 Median [3×3] 1.32 1.53 2.52 4.38 

5 Median [5×5] 2.70 2.39 4.43 6.93 

6 Median [7×7] 3.95 3.11 4.99 7.44 

7 ATM [3×3] 2.62 2.90 4.10 6.68 

8 ATM [5×5] 4.43 4.08 6.42 9.46 

9 ATM [7×7] 5.73 5.20 7.93 10.35 

10 Wiener [3×3] 1.86 2.04 3.18 3.87 

11 Wiener [5×5] 3.67 3.51 5.40 6.37 

12 Wiener [7×7] 4.64 3.87 5.76 6.68 

13 AD 2.04 2.37 2.95 4.97 

14 TV 2.11 2.34 3.34 5.73 

15 Lee [3×3] 0.0118 1.09 0.0336 0.0583 

16 Lee [5×5] 0.0530 1.14 0.1109 0.2057 

17 Lee [7×7] 0.1315 2.01 0.1853 1.10 

18 Bilateral [3×3] 2.88 3.08 4.23 6.80 

19 Bilateral [5×5] 4.97 4.33 6.63 9.66 

20 Bilateral [7×7] 6.01 5.45 8.26 11.04 

21 NL-Means 1.17 1.37 1.86 2.11 

22 AWWF 1.83 2.06 3.21 3.87 

23 CSF [3×3] 1.22 1.42 1.83 3.18 

24 CSF [5×5] 2.72 2.57 4.02 6.75 

25 CSF [7×7] 4.437 3.90 6.19 9.07 
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Table-3.14: Execution time (seconds), TE taken by various filters for Lena image 

Execution time (seconds) in three different hardware 

platforms Sl. No. Denoisg Filters 

SYSTEM-1 SYSTEM-2 SYSTEM-3 

1 Mean [3×3] 3.18 7.01 17.13 

2 Mean [5×5] 3.23 7.12 17.49 

3 Mean [7×7] 3.27 7.20 17.76 

4 Median [3×3] 4.02 7.42 24.45 

5 Median [5×5] 4.09 7.47 24.69 

6 Median [7×7] 4.15 8.12 24.90 

7 ATM [3×3] 7.32 16.77 30.18 

8 ATM [5×5] 8.09 17.23 30.56 

9 ATM [7×7] 8.13 17.84 30.84 

10 Wiener [3×3] 7.87 15.59 28.06 

11 Wiener [5×5] 8.07 15.98 28.76 

12 Wiener [7×7] 8.43 16.70 30.06 

13 AD ------ ------- ------ 

14 TV ------ ------- ------ 

15 Lee [3×3] 8.74 14.26 35.09 

16 Lee [5×5] 8.87 14.46 35.45 

17 Lee [7×7] 9.68 15.79 37.79 

18 Bilateral [3×3] 5.36 11.00 32.65 

19 Bilateral [5×5] 5.83 13.53 35.20 

20 Bilateral [7×7] 5.88 13.59 36.39 

21 NL-Means 446.67 996.20 2218.38 

22 AWWF 11.81 24.17 45.46 

23 CSF [3×3] 3.38 7.06 18.66 

24 CSF [5×5] 3.43 7.17 18.98 

25 CSF [7×7] 3.52 7.29 19.30 
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Fig. 3.8 Performance comparison of various filters in terms of PSNR (dB) under  

different noise levels of AWGN on the images 
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Fig. 3.9 Performance comparison of various filters in terms of RMSE under  

different noise levels of AWGN on the images 
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Fig. 3.10 Performance comparison of various filters in terms of UQI under  
different noise levels of AWGN on the images 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) 

Fig. 3.11 Performance of Various Filters for Lena Image with AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (m): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) AWWF (m) CSF 
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Fig. 3.12 Performance of Various Filters for Lena Image (Smooth Region) 

 with AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (m): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee  

(j) Bilateral (k) NL-Means (l) AWWF (m) CSF 
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) (l) (m) 

Fig. 3.13 Performance of Various Filters for Lena Image (Complex Region) with 

 AWGN σn = 15 
 

 (a)  Original image (b) Noisy image   

 (c) – (m): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) AWWF (m) CSF 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) 

Fig. 3.14 Performance of Various Filters for Pepper Image with AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) AWWF (m) CSF 
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 

(m) 

Fig. 3.15 Performance of Various Filters for Lena Image with AWGN σn = 40 

 
 (a)  Original image (b) Noisy image   

 (c) – (s): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) AWWF (m) CSF 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) 

Fig. 3.16 Performance of Various Filters for Lena Image (Smooth Region) with 

 AWGN σn = 40  
 

 (a)  Original image (b) Noisy image   

 (c) – (m): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee 

(j) Bilateral (k) NL-Means (l) AWWF (m) CSF 
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(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

(k) 
  

(l) (m) 

Fig. 3.17 Performance of Various Filters for Lena Image (Complex Region) 
 with AWGN σn = 40  

 
 (a)  Original image (b) Noisy image   

 (c) – (m): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee  

(j) Bilateral (k) NL-Means (l) AWWF (m) CSF 
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Fig. 3.18 Performance of Various Filters for Pepper Image with AWGN σn = 40 
 

 (a)  Original image (b) Noisy image   

 (c) – (m): Results of various filtering schemes 

 (c) Mean (d) Median (e) ATM (f) Wiener (g) AD (h) TV (i) Lee (j) Bilateral  

(k) NL-Means (l) AWWF (m) CSF 

(d) 
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3.4 Conclusion 

 
It is observed that the proposed filters: AWWF and CSF are very efficient in 

suppressing AWGN from images.  

It is seen that AWWF outperforms the other existing spatial-domain filters in 

suppressing additive noise under moderate noise (10< σn≤30) conditions. The PSNR 

and UQI values are relatively high as compared to other filters under moderate noise 

conditions. The NL-means filter shows better performance under low noise (σn≤10) 

condition.  

Hence, it may be concluded that the AWWF is best spatial-domain filter in 

suppressing additive noise under moderate noise conditions. It preserves the edges 

and fine details very well, as observed in Fig. 3.13, compared to other filters. The 

filter does not perform well under high noise conditions as observed in Fig. 3.17 and 

tables: Table 3.1- Table 3.12.  

On the other hand, the proposed circular spatial filter (CSF) is an excellent 

filter for suppressing high power additive noise. Its performance is observed to be 

much better as compared to other spatial-domain filters under high noise conditions. 

This is quite evident from the observation tables for PSNR, RMSE and UQI. 

Moreover, the visual quality of its output under high noise conditions is very good as 

observed in Fig 3.15. The filter CSF is also seen to preserve fine details and edges and 

is seen not to yield unnecessarily high blurring effect in smooth regions under high 

noise conditions. This is evident from Fig 3.16. 

Thus, it is observed that the proposed filter: AWWF is very good in 

suppressing moderate power AWGN whereas the CSF is found to be a very efficient 

filter under nigh noise conditions. 

Comparing the method noise of various spatial-domain filters, it is found from 

Table 3.13 that the existing Lee filter is best among all. Nevertheless, the proposed 

filter: CSF with a window of 3×3 is also observed to be a good competitor for the test 

image: Pepper. 
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The execution time, TE, taken by a filter is an important measure to find its 

computational complexity. It is observed from Table 3.14 that the proposed filter: 

CSF is second only to the simplest mean filter. Hence, its computational complexity is 

found to be very low whereas the other proposed filter: AWWF is observed to possess 

moderate computational complexity.  

The proposed filter: CSF may be used in many real-time applications due to its 

following advantages [P2]: 

i) The circular spatial filter has got relatively low computational 

complexity as compared to other efficient spatial-domain filters and it 

is very close to the simplest mean filter. 

ii) It suppresses AWGN very effectively from homogenous and 

monotonically increasing and decreasing regions as compared to 

others. 

iii) The filter retains the detailed information very well as compared to 

other spatial-domain filters. 

iv) As the method noise is quite less which is very close to NL-Means 

filter, the filter causes little distortion to the original image. 

Thus, the proposed filtering schemes are observed to be very good             

spatial-domain image denoising filters. 
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Preview 

Image transforms play an important role in digital image processing. Various 

image transforms such as Discrete Cosine Transform (DCT) [15,17], Singular Value 

Decomposition (SVD) Transform [2], Discrete Wavelet Transform (DWT) [18-21] 

etc. are employed for various applications like image denoising, image compression, 

object recognition, etc. 

 

The two-dimensional DCT is a very efficient transform for achieving a sparse 

representation of image blocks. For natural images, its decorrelating performance is 

close to the optimum Karhunen-Loève (KL) transform [2]. Thus, the DCT has been 

successfully used as the key element in many denoising applications. However, in the 

presence of singularities or edges, such near-optimality fails. Because of the lack of 

sparsity, edges can not be restored effectively, and ringing artifacts arising from Gibbs 

phenomenon become visible. 

 

The Discrete Wavelet Transform (DWT) is another powerful tool for image 

denoising. Image denoising using wavelet techniques is effective because of its ability 

to capture most of the energy of a signal in a few significant transform coefficients 

4 
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when image is corrupted with Gaussian noise. One method that has received 

considerable attention in recent years is wavelet thresholding or shrinkage: an idea of 

killing coefficients of low magnitude relative to some threshold. The various 

thresholding or shrinkage techniques proposed in the literature are VisuShrink [98,99], 

SureShrink [100,101], BayesShrink [102], NeighShrink [103], SmoothShrink [104], 

OracleShrink [102], OracleThresh [102 ] etc. The windowing techniques such as 

locally adaptive window maximum likelihood (LAWML) estimation [105] are also 

available in the literature where the statistical relationship of coefficients in a 

neighborhood is considered. The wavelet domain methods are suitable in retaining the 

detailed structures, but they introduce mat-like structures in the smooth regions of the 

filtered image.  

 

In this chapter, three transform-domain image denoising filters: (i) Gaussian 

Shrinkage based DCT-domain (GS-DCT) Filter [P3] (ii) Total Variation based DWT-

domain (TV-DWT) Filter [P4] (iii) Region Merging based DWT-domain (RM-DWT) 

Filter [P5] are developed. The performances of the developed filters are compared 

with existing transform-domain filter in terms of objective and subjective evaluations 

to demonstrate the effectiveness of the developed filters. 

 

The organization of this chapter is outlined below. 

� Development of Gaussian Shrinkage based DCT-domain Filter  

� Development of Total Variation based DWT-domain Filter 

� Development of Region Merging based DWT-domain Filter 

� Simulation Results 

� Conclusion 
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4.1 Development of Gaussian Shrinkage based DCT-domain 

Filter 
 

The proposed filter: Gaussian Shrinkage based DCT-domain (GS-DCT) filter 

[P3] presents a simple image denoising scheme by using an adaptive Gaussian 

smoothing based thresholding in the discrete cosine transform (DCT) domain. The 

edge pixel density on the current sliding window decides the threshold level in the 

DCT domain for removing the high frequency components, e.g. noise. Since the hard 

threshold approach is discontinuous in nature and it tends to yield artifacts (like Gibbs 

phenomenon) in the recovered image, a method of associating Gaussian weights to 

DCT coefficients is proposed.  

 

The section is organized as follows. 

• The Proposed  Scheme 

• Mask Selection 

• Parameters Selection 

 

4.1.1  The Proposed Scheme 

In the proposed method, soft thresholding technique is applied in DCT domain 

for suppression of additive white Gaussian noise (AWGN). The soft thresholding 

decision is based on the image complexity in the windowed data. Here, the percentage 

of edge pixel (PEP) is considered to determine the image complexity. The block 

diagram of the proposed method is shown in Figure 4.1. Seven threshold values are 

predefined which are selected adaptively depending on the percentage of edge pixels 

in the current window. The PEP can be defined as follows. 

 

100
Number of edge pixels

PEP
Total number of pixels in the current window

= ×                                    (4.1) 

 

Thresholding is nothing but considering certain number of DCT coefficients and 

making others zero. In other words, the DCT coefficient matrix is multiplied point-by-
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point by another matrix of same size of suitable values at desired row and column to 

get the modified DCT coefficient matrix. This matrix is termed as mask. The values 

of mask are obtained from a Gaussian function, defined in equation (4.2).  
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                                                                                            (4.2) 

 

where,  x = spatial-distance; 

 σ = standard deviation of the Gaussian function;  

k = a constant;  

c =σ2/k = controlling parameter. 

 

Thus, a mask contains varying weights for the DCT coefficients.  These 

weights are tapered from low frequency to high frequency components so that noise 

gets less scope to reproduce itself. Choosing a mask is very important.  The shaded 

portions represented in the Fig.4.1 in the mask represent the non-zero Gaussian values 

and rests are zeros.  
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Fig. 4.1 Block Diagram of the Proposed Filter 
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4.1.2  Mask Selection 

The selection of an appropriate mask depends on the PEP value. If in a 

window the percentage of edge pixels (PEP) is low, then the image segment most 

probably contains a flat or almost a flat or monotonic region that may be encoded in 

DCT domain with less number of coefficients. On the other hand, if the PEP is high, 

then the selected image segment must be encoded with more number of DCT 

coefficients in order to preserve the edges and fine details of the image. Based on this 

heuristic, a mask selection criterion is proposed here. 

 

1 5

2 5 8

3 8 12

4 12 18

5 18 24

6 24 30

7 30

Mask if PEP

Mask if PEP

Mask if PEP

Mask Mask if PEP

Mask if PEP

Mask if PEP

Mask if PEP

≤
 < ≤
 < ≤


= < ≤
 < ≤


< ≤


<

                                                                   (4.3) 

 

The mask provides the Gaussian weights to the DCT coefficients of the image 

block. The DC coefficient, which is located at the upper left corner, holds most of the 

image energy and represents the average value. This DC coefficient should be 

retained as it is and hence it should be provided with unity weight. Other DCT 

coefficients are necessarily given weights less than unity. The weights are varied in 

accordance with (4.2). 
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4.1.3  Parameters Selection 

The appropriate value of the parameter ‘A’ and the parameter ‘c’ has to be 

chosen for efficient suppression of Gaussian noise.  

 

The selection of parameter ‘A’: 

In (4.2), for x = 0, f (0) = A.  

The DC coefficient of DCT block should be provided with a weight of 1, i.e. f(0) = 1.  

Hence, A = 1. 

So the parameter, A in (4.2) is set to 1.  

 

The selection of parameter ‘c’: 

The filtering performance of the proposed method in terms of peak-signal-to-

noise ratio (PSNR) is tested on the noisy images: Lena, Pepper and Goldhill for 

different values of ‘c’. The noisy version of the test images are generated by 

corrupting the images with Gaussian noise of standard deviation σn = 20 and 30.  The 

values of c are varied from 0.01 to 0.1. It is observed that the PSNR increases upto     

c = 0.04. Between the values of c = 0.04 and 0.07 the PSNR almost remains constant. 

Then, the PSNR detoriates slightly beyond 0.07. The PSNR values obtained are 

plotted against the values of c which are shown in Fig. 4.2.  

 

 It is observed that high values of PSNR are obtained while the parameter ‘c’ 

lies within 0.04 to 0.07 for various images under different noise conditions. Therefore, 

an optimal value of 0.05 is chosen for the parameter ‘c’ in (4.2) for efficient 

suppression of additive noise. 

 

 The developed filter: GS-DCT is tested and its simulation results are presented 

in Section 4.4. 
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4.2    Development of Total Variation based DWT-domain Filter 
 

The proposed filter introduces a Total Variation (TV) based wavelet domain 

scheme for image denoising. The TV algorithm [69] is employed in spatial-domain 

and is found to be effective in suppressing Gaussian noise from a homogenous region 

(small variation in image pixel values) of an image corrupted with a low power noise 

(standard deviation, σn≤10). However, the method undergoes several iterations for 

suppressing the noise when the level of noise is high. Hence, to estimate the number 

of iteration for suppressing noise is a major disadvantage in TV based denoising. 

Another disadvantage of TV based denoising is to find the tuning parameter ‘λ’. The 

value of ‘λ’ increases with increase of noise.  

In wavelet domain methods [98-106], the noisy image is decomposed to 

around five levels for efficient denoising. This leads to increase in computational 

complexity, extra hardware and extra cost.  

 

To take the advantages of TV algorithm for observing image variations in 

different directions as well as to take the advantages of wavelet-domain processing for 

analyzing an image at different levels of resolution, it is proposed to develop a filter 

based on TV-algorithm in DWT-domain. Here, the noisy image is decomposed to 

single level and TV algorithm undergoes only single iteration. The tuning parameter 

‘λ’ in TV algorithm used in the proposed filter varies from 0.2 to 0.8. 

 

The section is organized as follows. 

� The Proposed  Method 

� The Proposed Algorithm 

� The Choice of Tuning Parameter 
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4.2.1. The Proposed Method 

In the proposed method, the total variation algorithm is applied on a noisy 

image decomposed in wavelet domain for suppression of additive white Gaussian 

noise (AWGN). After the decomposition process, four different subbands: low-low 

(LL), low-high (LH), high-low (HL), and high-high (HH) are obtained. The LL 

subband is a coarse (low resolution) version of the image, and the HL, LH and HH 

subbands contain details with vertical, horizontal and diagonal orientations 

respectively. The total number of coefficients in the four subbands is equal to the total 

number of pixels in the image. The Daubechies’ tap-8 wavelet (Db8) [14] is used in 

the proposed method for the purpose of decomposition. The edge detection algorithm 

is applied on the LL subband of a single decomposed noisy image to find horizontal, 

vertical and diagonal edges. Many edge detection algorithms such as Sobel, Canny, 

Roberts, Prewitt etc. are proposed in the literature [22-27]. In the proposed algorithm, 

the Sobel operator is used for finding the edges (horizontal, vertical and diagonal) of 

the LL subband. Using the pixel positions of the resulting horizontal edges, the 

corresponding wavelet coefficients in HL subband are retained thresholding others to 

zero. Adopting the same procedure, the vertical and diagonal details of LH and HH 

subands are retained. The method TV is applied to LL subband for one iteration only. 

Applying inverse wavelet transform on modified wavelet coefficients, the denoised 

image is obtained. This output contains some noise. The residual noise is quite low as 

compared to the input noise level. This noise can further be suppressed using the TV 

algorithm, with single iteration, in the spatial-domain.  

 

The advantage of Sobel operator 

The Sobel operator has the advantage of providing both a differencing and a 

smoothing effect [1]. Because derivatives enhance noise, the smoothing effect is 

particularly an attractive feature of Sobel operator. The operator also gives an 

estimate of edge direction as well as edge magnitude at a point which is more 

informative. It is relatively easy to implement the operator in hardware, most 

obviously by a pipeline approach. 
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4.2.2. The Proposed Algorithm 

The proposed algorithm is given below. 

 

Step – 1:  

The noisy image is decomposed to one level using Daubechies’ tap-8 (Db8) wavelet. 

This gives rise to four subbands (LL, HL, LH and HH). 

 

Step – 2:  

The Sobel operator is used to find the horizontal, vertical and diagonal edges of the 

LL subband obtained in Step-1. 

 

Step – 3:  

Using the pixel positions of the resulting horizontal, vertical and diagonal edges, the 

corresponding wavelet coefficients of HL, LH and HH subbands are retained 

thresholding others to zero.  This gives rise to the modified wavelet coefficients of the 

subbands: HL, LH and HH, i.e.�HL , �LH and�HH , respectively. 

 

Step – 4:  

Total variation (TV) algorithm with single iteration is applied on the LL subband (low 

resolution version of the image) to suppress the Gaussian noise. Here, the modified 

wavelet coefficients corresponding to LL subband, i.e.�LL , is obtained.  

 

Step – 5:  

The inverse wavelet transform is applied on the modified wavelet coefficients 

(�LL ,�HL , �LH  and �HH ) to get the image with a small residual noise, f� . 

 

Step – 6:  

The TV filter with single iteration is applied on the image, f� obtained in Step-5 to get 

the filtered image, f̂ . 
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4.2.3. The Choice of  Tuning Parameter 

The tuning parameter, λ of the TV algorithm used in the proposed method is 

important for efficient denoising. The choice of λ is completely based on 

experimentation. An experiment is conducted on the various noisy test images at 

different noise levels for various values of λ to obtain optimal PSNR.  The experiment 

does not converge to a single value of λ. The value is different for different images as 

well as for different noise levels. However, the value of PSNR does not differ much 

for slight variations of λ. From the experiment, it is found that the value of λ is varied 

from 0.2 to 0.8. The observation details are given in the Table-4.1. 

 

Table-4.1:  Optimal value of λ for TV algorithm used in the proposed filter at different 

noise levels of AWGN for obtaining optimal PSNR 

Noise level of AWGN 

Sl. No 

 

Value of λ at different steps  

of proposed algorithm 
 

Low 

(σn≤10) 

Moderate 

(10< σn≤30) 

High 

(30< σn≤50) 

1 
Optimal value of λ in DWT-

domain (for Step-4) 
0.2 0.4 0.5 

2 
Optimal value of λ in 

spatial-domain (for Step-6) 0.3 0.55 0.8 

 

 The proposed TV-DWT image filtering scheme is implemented on    

MATLAB 7.0 platform and its simulation results are presented in Section 4.4.  
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4.3  Development of Region Merging based DWT-domain Filter 
 

The proposed region merging based DWT-domain (RM-DWT) filter 

introduces an image denoising scheme with region merging approach in wavelet-

domain. In the proposed method, the wavelet transform is applied on the noisy image 

to yield the wavelet coefficients in different subbands. A region including the 

denoising point in the particular subband is partitioned in order to get distinct sub-

regions. The signal-variance in a sub-region is estimated by using maximum 

likelihood (ML) estimation [105]. It distinguishes a sub-region with some reasonably 

high ac signal power from a sub-region containing negligible ac signal power. The 

sub-regions containing some appreciable ac signal power are merged together to get a 

large homogenous region. However, if the sub-region including denoising point has 

negligible ac signal power, then this sub-region can be merged with other likelihood 

sub-regions with negligible ac signal power to get a homogenous region. Now, in a 

large homogenous region, in wavelet domain, the signal variance is estimated with 

better accuracy. Using the estimated signal variance, the wavelet coefficients of 

original (noise-free) decomposed image in wavelet domain are estimated using the 

minimum mean squared error (MMSE) estimator [105].   

 

The section is organized as follows. 

� The Proposed  Scheme 

� The Proposed Algorithm 
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4.3.1 The Proposed Scheme 

In order to find the filtered image it is necessary to estimate the wavelet 

coefficients of the original (noise-free) image decomposed in wavelet domain. The 

minimum mean squared error (MMSE) estimator plays an efficient role in estimating 

coefficients of original (noise-free) decomposed image from the wavelet coefficients 

of noisy decomposed image. The minimum mean squared error estimator is defined 

as: 

 

2
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It is then important to estimate the signal variance in a region. However, this 

can be estimated from maximum likelihood (ML) principle which is defined as: 
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where, Y(j) is the wavelet coefficients in a sub-region N(k) and M is the total number 

of coefficients in the particular sub-region.   

 

In the proposed scheme, the noisy image undergoes five levels of 

decomposition in wavelet domain to yield wavelet coefficients in different subbands. 

The Daubechies’ tap-8 (Db8) [14] wavelet is used for the purpose of decomposition. 

After a decomposition process, four different subbands: low-low (LL), low-high 

(LH), high-low (HL), and high-high (HH) are found. In a particular subband, a square 

shaped 9×9 region is divided into distinct 3×3 sub-regions. So, in a large region nine 

distinct sub-regions are obtained. In each distinct sub-region, the signal variance is 

estimated using ML estimator. Depending upon the ac power level, the sub-regions 
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are merged to form a larger sub-region for better estimation of signal component. 

Then the MMSE algorithm is applied to this large sub-region to estimate the wavelet 

coefficients of original image. 

The RM-DWT algorithm is presented below. 

4.3.2 The Proposed Algorithm 

The proposed algorithm: RM-DWT is presented in the form of a flow-chart 

shown in Fig. 4.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input  

DWT 

Get a sub-image by 

windowing  
(Sliding window of size 9×9) 

Split into 3×3 sub-regions 

Find signal variance using 

ML Estimation 

Merge similar regions 

Estimate wavelet coefficients of 
original image using MMSE 

(applied on large homogenous region) 

IDWT 

ˆ ( , )f x y  
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 The proposed filter: RM-DWT is implemented on MATLAB 7.0 platform and 

its simulation results are presented in Section 4.4. 

 

4.4    Simulation Results 
 

The proposed transform-domain filters: Gaussian Shrinkage based DCT-

domain (GS-DCT) filter, Total Variation based DWT-domain (TV-DWT) filter, and 

Region Merging based DWT-domain (RM-DWT) filter are simulated in MATLAB 

7.0 platform. The test images: Lena, Pepper, Goldhill and Barbara of sizes 512×512 

corrupted with AWGN of standard deviation, σn = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 

50 are used for simulation purpose. The performances of the proposed transform-

domain filters are compared with those of existing wavelet-domain filters: VisuShrink, 

SureShrink, BayesShrink, OracleShrink, OracleThresh, NeighShrink, SmoothShrink 

and Locally adaptive window maximum likelihood (LAWML). The peak-signal-to-

noise ratio (PSNR), root-mean-squared error (RMSE), universal quality index (UQI), 

method noise (
M
N ) and execution-time (TE) are taken as performance measures.  

 

The PSNR values of the different transform-domain filters for various images 

are given in the tables: Table-4.2 to Table-4.5. The largest PSNR value for a 

particular standard deviation of Gaussian noise is highlighted to show the best 

performance. The PSNR values under different noise conditions are graphically 

represented in Fig. 4.4. Only high performing filters are included in the figure. 

 

The RMSE values of different filters are given in the tables: Table-4.6 to 

Table-4.9. The smallest RMSE value for a particular standard deviation of Gaussian 

noise is highlighted. The RMSE values vs. Standard deviation of AWGN for various 

images are shown in Fig. 4.5. The proposed filters are compared with only some high 

performing filters. 

 

The UQI of various filters are given in the tables: Table-4.10 to Table-4.13. 

The value of UQI is always less than 1. The greatest value of UQI for a particular 

standard deviation of Gaussian noise is identified and is highlighted. The UQI values 
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of proposed filters and some existing high performing filters under different noise 

conditions for various images are plotted in Fig. 4.6. 

 

The method noise of the proposed transform-domain filters are compared with 

existing transform-domain filters and the values are tabulated in Table-4.14. The 

filtering performance is better if the method noise is very low since it talks of little 

distortion when a non-noisy image is passed through a filter. Therefore, a least value 

of method noise for a particular noise standard deviation is highlighted to show the 

best performer. 

The filters are simulated on three different computing systems: SYSTEM-1, 

SYSTEM-2 and SYSTEM-3 presented in Table-1.1 in Section-1.5. The execution 

time of the different filters is given in Table-4.15. The filter having less execution 

time is usually required for online and real-time applications. The least value of 

execution time is highlighted.  

 

For subjective evaluation, the filtered output images are shown in figures:    

Fig. 4.7 to Fig. 4.14. The test images: Lena and Pepper are used for subjective 

evaluation. A smooth region and a complex region of Lena image are taken for 

critical analysis. The performance of various filters for smooth regions is shown in 

Fig. 4.13 whereas that for complex regions is shown in Fig. 4.14. 

  

 Conclusions are drawn in Section 4.5. 
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Table-4.2: Filtering performance of mean filter and various transform-domain filters, in terms 

of PSNR (dB), operated on Lena image under various noise conditions (σn varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Lena 

 
1 Mean [3×3] 33.88 32.70 31.27 29.78 28.48 27.28 26.26 25.30 24.45 23.62 

 

2 Mean [5×5] 29.77 29.59 29.31 28.92 28.48 28.05 27.48 26.96 26.49 25.93 

 

3 Mean [7×7] 27.66 27.60 27.50 27.37 27.21 27.01 26.77 26.49 26.23 25.89 

 

4 VisuShrink 31.65 30.56 29.60 28.75 27.91 26.78 25.41 23.95 22.57 21.48 

 
5 SureShrink 29.80 29.61 29.28 28.82 28.39 27.93 27.45 27.01 26.64 26.21 

 

6 BayesShrink 37.47 33.64 31.58 30.20 29.18 28.40 27.77 27.11 26.64 26.07 

 

7 OracleShrink 36.13 31.70 28.80 26.51 24.52 22.90 21.48 20.21 19.10 18.15 

 

8 OracleThresh 35.34 29.97 26.45 23.85 21.83 20.13 18.65 17.41 16.31 15.42 

 

9 NeighShrink 38.70 34.45 31.97 30.11 28.80 27.69 26.76 26.08 25.42 24.97 

 
10 SmoothShrink 32.34 30.41 28.93 27.43 26.06 24.88 23.81 22.89 22.03 21.31 

 
11 LAWML [3×3] 38.39 34.13 31.61 29.78 28.47 27.41 26.48 25.72 25.08 24.58 

 

12 LAWML[5×5] 38.60 34.59 32.26 30.66 29.41 28.53 27.74 27.09 26.56 26.02 

 

13 LAWML [7×7] 38.53 34.58 32.34 30.86 29.69 28.84 28.00 27.41 26.89 26.38 

 

14 GS-DCT 33.76 33.13 31.88 30.98 30.01 29.11 27.46 27.06 26.89 26.11 

 

15 TV-DWT 34.65 33.76 32.29 30.56 29.6 28.44 27.36 26.67 25.58 24.77 

 

16 RM-DWT 39.10 34.72 32.36 30.69 29.48 28.58 27.81 27.23 26.55 26.02 
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Table-4.3: Filtering performance of mean filter and various transform-domain filters, in 

terms of PSNR (dB), operated on Pepper image under various noise conditions (σn varies 
from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Pepper 

 

1 Mean [3×3] 31.90 31.16 30.15 28.99 27.88 26.82 25.86 24.95 24.15 23.45 

 
2 Mean [5×5] 30.61 30.39 30.01 29.55 29.02 28.40 27.81 27.22 26.56 26.01 

 

3 Mean [7×7] 28.62 28.55 28.41 28.18 27.93 27.71 27.32 26.96 26.58 26.18 

 

4 VisuShrink 27.94 27.40 26.67 25.87 25.34 24.75 24.01 23.21 22.33 21.37 

 
5 SureShrink 26.71 26.67 26.58 26.42 26.25 25.96 25.64 25.29 24.96 24.54 

 

6 BayesShrink 37.43 33.69 31.45 29.90 28.98 28.24 27.45 26.69 25.98 25.05 

 

7 OracleShrink 36.48 32.00 28.95 26.66 24.74 23.07 21.63 20.40 19.30 18.35 

 

8 OracleThresh 35.32 30.17 26.94 24.50 22.36 20.44 18.89 17.62 16.54 15.64 

 

9 NeighShrink 38.29 34.37 31.94 30.17 28.68 27.55 26.52 25.78 25.09 24.51 

 

10 SmoothShrink 26.72 25.88 24.52 23.19 21.90 20.79 19.74 18.82 18.03 17.28 

 

11 LAWML [3×3] 38.37 34.28 31.81 30.03 28.61 27.38 26.41 25.65 25.01 24.47 

 

12 LAWML[5×5] 38.77 34.64 32.46 30.84 29.52 28.43 27.54 26.79 26.10 25.60 

 

13 LAWML [7×7] 38.42 34.63 32.45 30.88 29.67 28.57 27.67 26.95 26.21 25.75 

 

14 GS-DCT 33.79 33.10 32.59 31.00 29.76 28.55 27.66 26.21 26.10 25.62 

 
15 TV-DWT 32.78 31.83 30.75 29.7 28.65 27.72 26.75 25.93 25.07 24.38 

 

16 RM-DWT 39.18 34.81 31.89 30.83 29.71 28.52 27.48 26.87 25.23 24.54 
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Table-4.4: Filtering performance of mean filter and various transform-domain filters, in 

terms of PSNR (dB), operated on Goldhill image under various noise conditions (σn 
varies from 5 to 50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Goldhill 

 

1 Mean [3×3] 31.54 30.82 29.83 28.77 27.69 26.66 25.73 24.83 24.01 23.32 

 
2 Mean [5×5] 28.15 28.02 27.79 27.48 27.13 26.69 26.25 25.74 25.25 24.77 

 

3 Mean [7×7] 26.48 26.44 26.34 26.2 26.07 25.83 25.56 25.25 24.95 24.53 
 

4 VisuShrink 29.71 28.64 27.78 26.93 25.91 24.84 23.70 22.47 21.35 20.26 

 
5 SureShrink 27.44 27.38 27.18 26.90 26.60 26.23 25.89 25.45 25.12 24.62 

 

6 BayesShrink 36.48 32.34 30.20 28.68 27.50 26.54 25.82 25.17 24.58 24.09 

 

7 OracleShrink 33.02 29.45 27.07 25.47 24.16 22.93 21.82 20.87 20.00 19.21 

 

8 OracleThresh 33.71 29.14 26.56 24.55 22.93 21.58 20.30 19.19 18.18 17.24 

 

9 NeighShrink 37.37 33.05 30.63 29.02 27.79 26.75 25.95 25.27 24.65 24.11 

 

10 SmoothShrink 28.13 26.81 25.22 23.72 22.37 21.19 20.13 19.16 18.37 17.62 

 

11 LAWML [3×3] 36.55 32.78 30.37 28.77 27.42 26.44 25.58 24.77 24.20 23.61 

 

12 LAWML[5×5] 37.22 33.02 30.78 29.20 28.03 27.10 26.29 25.56 24.92 24.43 

 

13 LAWML [7×7] 36.89 33.02 30.78 29.27 28.11 27.24 26.40 25.73 25.11 24.43 

 

14 GS-DCT 33.25 31.61 30.89 29.56 28.21 27.16 26.23 25.18 24.74 24.01 

 
15 TV-DWT 27.82 26.93 26.45 25.94 25.4 24.88 24.34 23.79 23.27 22.77 

 

16 RM-DWT 38.12 33.31 30.76 29.22 28.00 27.19 26.35 25.55 24.97 24.42 
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Table-4.5: Filtering performance of mean filter and various transform-domain filters, in terms 

of PSNR (dB), operated on Barbara image under various noise conditions (σn varies from 5 to 
50) 

Peak-Signal-to-Noise Ratio, PSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Barbara 

 

1 Mean [3×3] 26.52 26.02 25.68 25.25 24.75 24.19 23.64 23.06 22.50 21.95 

 

2 Mean [5×5] 23.81 23.76 23.68 23.57 23.43 23.25 23.04 22.84 22.56 22.31 

 
3 Mean [7×7] 23.53 23.51 23.47 23.41 23.32 23.21 23.07 22.92 22.75 22.53 

 

4 VisuShrink 26.61 25.72 24.75 23.91 23.25 22.61 21.99 21.35 20.74 19.89 

 

5 SureShrink 24.34 24.30 24.23 24.12 23.97 23.80 23.58 23.33 23.12 22.86 

 
6 BayesShrink 35.91 31.38 29.04 27.48 26.34 25.39 24.53 23.68 23.11 22.71 

 

7 OracleShrink 31.01 26.28 25.07 24.42 23.84 23.25 22.56 21.88 21.15 20.44 
 

8 OracleThresh 34.03 27.43 25.19 23.76 22.29 20.95 19.83 18.80 17.87 17.08 

 

9 NeighShrink 37.50 32.92 30.33 28.57 27.25 26.11 25.27 24.55 23.85 23.26 

 

10 SmoothShrink 27.67 25.87 24.53 23.19 21.97 20.84 19.82 18.92 18.09 17.39 
 

11 LAWML [3×3] 37.13 32.57 30.02 28.21 26.87 25.81 24.91 24.19 23.52 22.95 

 

12 LAWML[5×5] 37.27 32.78 30.30 28.65 27.42 26.42 25.60 24.83 24.21 23.71 

 

13 LAWML [7×7] 37.16 32.76 30.29 28.65 27.44 26.47 25.66 24.94 24.33 23.78 

 
14 GS-DCT 33.76 31.95 30.85 29.95 28.08 26.49 25.44 24.39 24.16 23.21 

 

15 TV-DWT 27.12 26.93 26.45 25.94 25.4 24.88 24.34 23.79 23.27 22.77 

 

16 RM-DWT 37.93 33.10 30.12 28.34 26.89 25.88 24.96 24.31 23.72 23.25 
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Table-4.6: Filtering performance of mean filter and various transform-domain filters, in 

terms of RMSE, operated on Lena image under various noise conditions (σn varies from 5 to 
50)  

Root-Mean-Squared Error (RMSE) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Lena 

 

1 Mean [3×3] 5.15 5.90 6.96 8.27 9.60 11.02 12.40 13.85 15.27 16.80 

 

2 Mean [5×5] 8.28 8.45 8.73 9.13 9.60 10.09 10.77 11.44 12.07 12.88 

 

3 Mean [7×7] 10.55 10.63 10.75 10.91 11.11 11.37 11.69 12.07 12.44 12.94 

 

4 VisuShrink 6.66 7.56 8.44 9.31 10.25 11.68 13.67 16.18 18.96 21.50 

 

5 SureShrink 8.25 8.43 8.76 9.23 9.70 10.23 10.81 11.37 11.87 12.47 

 

6 BayesShrink 3.41 5.30 6.72 7.88 8.86 9.69 10.42 11.24 11.87 12.67 

 
7 OracleShrink 3.98 6.63 9.25 12.05 15.15 18.26 21.50 24.89 28.28 31.55 

 

8 OracleThresh 4.36 8.09 12.13 16.37 20.65 25.12 29.78 34.35 38.99 43.20 

 

9 NeighShrink 2.96 4.83 6.42 7.96 9.25 10.52 11.71 12.66 13.66 14.38 

 

10 SmoothShrink 6.15 7.69 9.12 10.84 12.69 14.53 16.44 18.28 20.18 21.93 

 

11 LAWML [3×3] 3.06 5.01 6.69 8.27 9.61 10.86 12.09 13.19 14.20 15.05 

 

12 LAWML[5×5] 2.99 4.75 6.21 7.47 8.63 9.55 10.46 11.27 11.98 12.75 

 

13 LAWML [7×7] 3.02 4.75 6.15 7.30 8.35 9.21 10.15 10.86 11.53 12.23 

 
14 GS-DCT 5.58 5.62 6.49 7.20 8.05 8.93 10.80 11.31 11.53 12.61 

 

15 TV-DWT 4.72 5.23 6.19 7.56 8.44 9.65 10.92 11.83 13.41 14.72 

 

16 RM-DWT 2.82 4.68 6.14 7.44 8.56 9.49 10.37 11.09 11.99 12.75 
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Table-4.7: Filtering performance of mean filter and various transform-domain filters, in 

terms of RMSE, operated on Pepper image under various noise conditions (σn varies from 
5 to 50)  

Root-Mean-Squared Error (RMSE) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Pepper 

 
1 Mean [3×3] 6.47 7.05 7.92 9.05 10.29 11.62 12.98 14.42 15.81 17.14 

 

2 Mean [5×5] 7.51 7.70 8.05 8.49 9.02 9.69 10.37 11.10 11.98 12.76 

 

3 Mean [7×7] 9.45 9.52 9.68 9.94 10.23 10.49 10.97 11.44 11.95 12.51 

 

4 VisuShrink 10.22 10.88 11.83 12.97 13.78 14.75 16.07 17.62 19.51 21.77 

 

5 SureShrink 11.77 11.83 11.95 12.17 12.41 12.83 13.32 13.86 14.40 15.12 

 

6 BayesShrink 3.42 5.27 6.82 8.15 9.06 9.87 10.81 11.80 12.81 14.25 

 
7 OracleShrink 3.82 6.40 9.10 11.84 14.77 17.90 21.13 24.35 27.64 30.83 

 

8 OracleThresh 4.37 7.90 11.46 15.18 19.43 24.24 28.97 33.53 37.97 42.12 

 

9 NeighShrink 3.10 4.87 6.44 7.90 9.38 10.69 12.03 13.10 14.19 15.17 

 

10 SmoothShrink 11.74 12.95 15.15 17.66 20.49 23.28 26.27 29.21 31.99 34.87 

 

11 LAWML [3×3] 3.07 4.92 6.54 8.03 9.46 10.90 12.19 13.30 14.32 15.24 

 

12 LAWML[5×5] 2.93 4.72 6.07 7.32 8.52 9.66 10.70 11.66 12.63 13.38 

 

13 LAWML [7×7] 3.05 4.73 6.08 7.28 8.37 9.50 10.54 11.45 12.47 13.15 

 
14 GS-DCT 5.21 5.64 5.98 7.18 8.28 9.52 10.55 12.47 12.63 13.35 

 

15 TV-DWT 5.85 6.53 7.39 8.34 9.41 10.48 11.72 12.88 14.22 15.40 

 

16 RM-DWT 2.80 4.63 6.48 7.32 8.33 9.56 10.77 11.56 13.96 15.12 
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Table-4.8: Filtering performance of mean filter and various transform-domain filters, in 

terms of RMSE, operated on Goldhill image under various noise conditions (σn varies 
from 5 to 50)  

Root-Mean-Squared Error (RMSE) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Goldhill 

 
1 Mean [3×3] 6.75 7.33 8.22 9.29 10.52 11.84 13.18 14.62 16.07 17.4 

 

2 Mean [5×5] 9.97 10.12 10.41 10.77 11.22 11.80 12.41 13.16 13.93 14.72 

 

3 Mean [7×7] 12.09 12.14 12.29 12.48 12.67 13.03 13.44 13.93 14.42 15.13 

 

4 VisuShrink 8.33 9.43 10.41 11.48 12.91 14.60 16.65 19.18 21.82 24.74 

 

5 SureShrink 10.82 10.90 11.15 11.52 11.92 12.44 12.94 13.61 14.14 14.98 

 

6 BayesShrink 3.82 6.15 7.88 9.38 10.75 12.01 13.04 14.06 15.05 15.92 

 
7 OracleShrink 5.69 8.59 11.29 13.58 15.79 18.19 20.68 23.07 25.5 27.92 

 

8 OracleThresh 5.26 8.90 11.98 15.10 18.19 21.25 24.63 27.99 31.44 35.03 

 

9 NeighShrink 3.45 5.67 7.49 9.02 10.41 11.72 12.85 13.90 14.92 15.88 

 

10 SmoothShrink 10.00 11.64 13.98 16.61 19.41 22.23 25.12 28.08 30.76 33.53 

 

11 LAWML [3×3] 3.79 5.85 7.72 9.29 10.85 12.14 13.41 14.72 15.72 16.82 

 

12 LAWML[5×5] 3.51 5.69 7.37 8.84 10.11 11.26 12.36 13.44 14.47 15.31 

 

13 LAWML [7×7] 3.64 5.69 7.37 8.77 10.02 11.08 12.20 13.18 14.15 15.31 

 
14 GS-DCT 5.54 6.69 7.27 8.48 9.90 11.18 12.44 14.04 14.77 16.07 

 

15 TV-DWT 10.36 11.48 12.13 12.86 13.69 14.53 15.47 16.48 17.5 18.53 

 

16 RM-DWT 3.16 5.50 7.38 8.82 10.15 11.14 12.27 13.46 14.38 15.33 
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Table-4.9: Filtering performance of mean filter and various transform-domain filters, in terms 

of RMSE, operated on Barbara image under various noise conditions (σn varies from 5 to 50)  

Root-Mean-Squared Error (RMSE) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Barbara 

 
1 Mean [3×3] 12.03 12.75 13.26 13.93 14.75 15.74 16.77 17.92 19.12 20.37 

 

2 Mean [5×5] 16.44 16.54 16.69 16.90 17.18 17.54 17.97 18.38 18.99 19.54 

 

3 Mean [7×7] 16.98 17.02 17.10 17.22 17.41 17.62 17.90 18.22 18.58 19.05 

 

4 VisuShrink 11.91 13.19 14.75 16.25 17.54 18.88 20.27 21.82 23.41 25.82 

 

5 SureShrink 15.47 15.54 15.66 15.86 16.14 16.46 16.88 17.38 17.80 18.34 

 
6 BayesShrink 4.08 6.87 9.00 10.77 12.29 13.71 15.13 16.69 17.82 18.66 

 

7 OracleShrink 7.17 12.37 14.22 15.33 16.38 17.54 18.99 20.53 22.33 24.24 

 

8 OracleThresh 5.07 10.84 14.02 16.54 19.59 22.85 26.00 29.27 32.58 35.68 

 
9 NeighShrink 3.40 5.76 7.76 9.50 11.06 12.61 13.90 15.10 16.37 17.52 

 

10 SmoothShrink 10.54 12.97 15.13 17.66 20.32 23.14 26.03 28.87 31.77 34.43 

 

11 LAWML [3×3] 3.54 5.99 8.04 9.90 11.56 13.06 14.48 15.74 17.00 18.15 

 

12 LAWML[5×5] 3.49 5.85 7.79 9.41 10.85 12.17 13.38 14.62 15.70 16.63 

 

13 LAWML [7×7] 3.53 5.86 7.79 9.41 10.82 12.10 13.29 14.43 15.49 16.50 

 
14 GS-DCT 5.23 6.44 7.31 8.11 10.05 12.07 13.63 15.38 15.79 17.62 

 

15 TV-DWT 11.23 11.48 12.13 12.86 13.69 14.53 15.47 16.48 17.51 18.53 

 

16 RM-DWT 3.23 5.64 7.95 9.76 11.53 12.95 14.40 15.52 16.61 17.54 
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Table-4.10: Filtering performance of mean filter and various transform-domain filters, in terms 

of UQI, operated on Lena image under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Lena 

 

1 Mean [3×3] 0.9941 0.9922 0.9892 0.9849 0.9797 0.9732 0.9663 0.9579 0.9488 0.9376 

 

2 Mean [5×5] 0.9845 0.9838 0.9827  0.9811 0.9791 0.9769 0.9736 0.9700 0.9665 0.9613 

 

3 Mean [7×7] 0.9743 0.9739 0.9733 0.9725 0.9714 0.9701 0.9683 0.9659 0.9636 0.9601 

 
4 VisuShrink 0.9902 0.9874 0.9843 0.9809 0.9769 0.9704 0.9607 0.9473 0.9321 0.9178 

 

5 SureShrink 0.9848 0.9841 0.9828 0.9808 0.9788 0.9764 0.9734 0.9704 0.9675 0.9636 

 

6 BayesShrink 0.9943 0.9938 0.9900 0.9863 0.9826 0.9790 0.9755 0.9711 0.9675 0.9621 

 

7 OracleShrink 0.9965 0.9903 0.9811 0.9680 0.9500 0.9283 0.9018 0.8712 0.8372 0.8021 

 

8 OracleThresh 0.9959 0.9858 0.9685 0.9439 0.9133 0.8759 0.8329 0.7873 0.7399 0.6953 

 
9 NeighShrink 0.9981 0.9949 0.9910 0.9861 0.9812 0.9757 0.9698 0.9642 0.9582 0.9530 

 

10 SmoothShrink 0.9729 0.9658 0.9521 0.9336 0.9118 0.8867 0.8687 0.8284 0.7984 0.7661 

 

11 LAWML [3×3] 0.9979 0.9945 0.9902 0.9850 0.9797 0.9740 0.9676 0.9613 0.9547 0.9484 

 

12 LAWML[5×5] 0.9980 0.9950 0.9915 0.9877 0.9835 0.9797 0.9755 0.9712 0.9670 0.9622 

 

13 LAWML [7×7] 0.9980 0.9951 0.9916 0.9882 0.9845 0.9811 0.9773 0.9731 0.9693 0.9649 

 
14 GS-DCT 0.9944 0.9937 0.9911 0.9896 0.9856 0.9813 0.9740 0.9720 0.9626 0.9578 

 

15 TV-DWT 0.9968 0.9938 0.9925 0.9877 0.9843 0.9788 0.9724 0.9652 0.9570 0.9481 

 

16 RM-DWT 0.9985 0.9954 0.9917 0.9878 0.9844 0.9808 0.9766 0.9692 0.9654 0.9596 
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Table-4.11: Filtering performance of mean filter and various transform-domain filters, in terms 

of UQI, operated on Pepper image under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Pepper 

 

1 Mean [3×3] 0.9927 0.9912 0.9889 0.9856 0.9814 0.9762 0.9702 0.9631 0.9557 0.9476 

 

2 Mean [5×5] 0.9900 0.9894 0.9884 0.9871 0.9853 0.9831 0.9805 0.9776 0.9737 0.9699 

 

3 Mean [7×7] 0.9839 0.9836 0.9830 0.9821 0.9809 0.9799 0.9779 0.9758 0.9734 0.9706 

 
4 VisuShrink 0.9817 0.9793 0.9756 0.9710 0.9676 0.9634 0.9575 0.9502 0.9408 0.9289 

 

5 SureShrink 0.9751 0.9749 0.9743 0.9732 0.9720 0.9700 0.9675 0.9645 0.9613 0.9568 

 

6 BayesShrink 0.9980 0.9952 0.9919 0.9883 0.9855 0.9826 0.9789 0.9745 0.9696 0.9617 

 

7 OracleShrink 0.9975 0.9928 0.9855 0.9753 0.9617 0.9437 0.9222 0.8974 0.8697 0.8400 

 

8 OracleThresh 0.9967 0.9893 0.9775 0.9610 0.9372 0.9049 0.8683 0.8294 0.7885 0.7484 

 
9 NeighShrink 0.9983 0.9959 0.9928 0.9891 0.9845 0.9798 0.9743 0.9692 0.9636 0.9579 

 

10 SmoothShrink 0.9734 0.9693 0.9583 0.9439 0.9257 0.9054 0.8817 0.8561 0.8305 0.8022 

 

11 LAWML [3×3] 0.9984 0.9958 0.9925 0.9887 0.9843 0.9791 0.9736 0.9683 0.9630 0.9575 

 

12 LAWML[5×5] 0.9987 0.9885 0.9876 0.9862 0.9843 0.9821 0.9795 0.9761 0.9713 0.9675 

 

13 LAWML [7×7] 0.9988 0.9961 0.9935 0.9907 0.9876 0.9838 0.9800 0.9761 0.9726 0.9689 

 
14 GS-DCT 0.9971 0.9960 0.9954 0.9921 0.9883 0.9822 0.9754 0.9721 0.9689 0.9635 

 

15 TV-DWT 0.9953 0.9932 0.9908 0.9878 0.9839 0.9797 0.9741 0.9684 0.9613 0.9544 

 

16 RM-DWT 0.9991 0.9971 0.9885 0.9868 0.9853 0.9833 0.9798 0.9752 0.9708 0.9639 
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Table-4.12: Filtering performance of mean filter and various transform-domain filters, in terms 

of UQI, operated on Goldhill image under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Goldhill 

 

1 Mean [3×3] 0.9939 0.9928 0.9909 0.9884 0.9850 0.9809 0.9762 0.9705 0.964 0.9575 

 

2 Mean [5×5] 0.9866 0.9861 0.9853 0.9841 0.9827 0.9807 0.9784 0.9754 0.9722 0.9687 

 

3 Mean [7×7] 0.9801 0.9799 0.9793 0.9785 0.9777 0.9762 0.9744 0.9722 0.9699 0.9665 
 

4 VisuShrink 0.9908 0.9882 0.9856 0.9826 0.9784 0.9730 0.9659 0.9562 0.9454 0.9328 

 

5 SureShrink 0.9843 0.9840 0.9831 0.9819 0.9804 0.9785 0.9765 0.9736 0.9712 0.9673 

 
6 BayesShrink 0.9981 0.9950 0.9917 0.9881 0.9842 0.9801 0.9761 0.9719 0.9673 0.9627 

 

7 OracleShrink 0.9957 0.9901 0.9828 0.9750 0.9660 0.9546 0.9412 0.9266 0.9105 0.8926 

 

8 OracleThresh 0.9964 0.9895 0.9810 0.9699 0.9563 0.9404 0.9206 0.8981 0.8732 0.8443 

 
9 NeighShrink 0.9984 0.9957 0.9925 0.9891 0.9854 0.9813 0.9773 0.9731 0.9684 0.9638 

 

10 SmoothShrink 0.9878 0.9816 0.9736 0.9627 0.9494 0.9340 0.9162 0.8959 0.8760 0.8541 

 

11 LAWML [3×3] 0.9982 0.9955 0.9921 0.9884 0.9841 0.9798 0.9751 0.9696 0.9648 0.9592 

 

12 LAWML[5×5] 0.9984 0.9956 0.9927 0.9895 0.9861 0.9826 0.9787 0.9744 0.9699 0.9656 

 

13 LAWML [7×7] 0.9986 0.9957 0.9928 0.9896 0.9863 0.9831 0.9791 0.9754 0.9711 0.9658 

 
14 GS-DCT 0.9958 0.9949 0.9939 0.9913 0.9881 0.9845 0.9789 0.9756 0.9703 0.9648 

 

15 TV-DWT 0.9976 0.9954 0.9935 0.9902 0.9873 0.9841 0.9779 0.9768 0.9718 0.9654 

 

16 RM-DWT 0.9992 0.9961 0.9926 0.9889 0.9859 0.9788 0.9759 0.9698 0.9659 0.9599 
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Table-4.13: Filtering performance of mean filter and various transform-domain filters, in terms 

of UQI, operated on Barbara image under various noise conditions (σn varies from 5 to 50) 

Universal Quality Index (UQI) 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

 

Test Image: Barbara 

 

1 Mean [3×3] 0.9753 0.9739 0.9718 0.9688 0.9649 0.9601 0.9545 0.9478 0.9403 0.9318 

 
2 Mean [5×5] 0.9560 0.9554 0.9545 0.9532 0.9515 0.9491 0.9462 0.9433 0.939 0.9346 

 

3 Mean [7×7] 0.9525 0.9521 0.9516 0.9507 0.9494 0.948 0.9458 0.9433 0.9407 0.9371 

 

4 VisuShrink 0.9777 0.9726 0.9661 0.9596 0.9540 0.9479 0.9417 0.9342 0.9261 0.9138 

 

5 SureShrink 0.9613 0.9609 0.9602 0.9590 0.9573 0.9552 0.9526 0.9493 0.9463 0.9424 

 
6 BayesShrink 0.9974 0.9927 0.9874 0.9817 0.9759 0.9696 0.9624 0.9534 0.9461 0.9401 

 

7 OracleShrink 0.9919 0.9756 0.9674 0.9618 0.9560 0.9492 0.9400 0.9294 0.9158 0.9005 

 

8 OracleThresh 0.9960 0.9817 0.9690 0.9569 0.9398 0.9188 0.8961 0.8702 0.8422 0.8136 

 

9 NeighShrink 0.9982 0.9949 0.9907 0.9859 0.9808 0.9747 0.9691 0.9631 0.9560 0.9491 

 
10 SmoothShrink 0.9813 0.9726 0.9630 0.9501 0.9344 0.9159 0.8949 0.8721 0.8477 0.8233 

 

11 LAWML [3×3] 0.9974 0.9944 0.9900 0.9846 0.9789 0.9728 0.9663 0.9598 0.9524 0.9433 

 

12 LAWML[5×5] 0.9976 0.9946 0.9904 0.9860 0.9813 0.9763 0.9710 0.9650 0.9589 0.9517 

 

13 LAWML [7×7] 0.9981 0.9947 0.9905 0.9861 0.9814 0.9765 0.9713 0.9656 0.9598 0.9521 

 
14 GS-DCT 0.9945 0.9933 0.9913 0.9867 0.9823 0.9764 0.9701 0.9645 0.9532 0.9512 

 

15 TV-DWT 0.9801 0.9783 0.9755 0.9724 0.9685 0.9643 0.9593 0.9537 0.9478 0.9413 

 

16 RM-DWT 0.9989 0.9951 0.9898 0.9859 0.9807 0.9759 0.9700 0.9647 0.9573 0.9511 
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Table-4.14: Method Noise, 
M
N  of  mean filter and various transform-domain 

filters operated on different test images 

Sl. No.                             Images                  
Denoising 

Filters 

Lena Pepper Goldhill Barbara 

 

1 Mean [3×3] 

2.62 2.90 4.10 6.68 

 
2 Mean [5×5] 

4.43 4.08 6.42 9.46 

 

3 Mean [7×7] 

5.73 5.20 7.93 10.35 

 
4 VisuShrink 

3.18 4.23 4.71 6.37 

 

5 SureShrink 

5.17 6.73 7.70 10.07 

 

6 BayesShrink 

0.0232 0.0273 0.0194 0.0190 

 
7 OracleShrink 

0.0285 0.0267 0.0242 0.0238 

 

8 OracleThresh 

0.0285 0.0267 0.0242 0.0238 

 

9 NeighShrink 

4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

 

10 SmoothShrink 

6.60 7.52 6.4515 7.90 

 

11 LAWML [3×3] 

4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

 

12 LAWML[5×5] 

4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

 

13 LAWML [7×7] 

4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10

 

 

14 GS-DCT 

0.5737 0.72675 0.67065 0.7930 

 

15 TV-DWT 

2.01 2.26 3.41 4.79 

 
16 RM-DWT 

4.08×10
-10 

4.66×10
-10

 3.34×10
-10

 4.97×10
-10
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Table-4.15: Execution time (seconds), TE taken by mean filter and various transform-
domain filters for Lena image 

Execution time (seconds) in three different hardware 

platforms Sl. No. Denoising Filters 
 

SYSTEM-1 

 

SYSTEM-2 

 

SYSTEM-3 

 

1 Mean [3×3] 3.18 7.01 23.13 

 

2 Mean [5×5] 3.23 7.12 23.49 

 

3 Mean [7×7] 3.27 7.20 23.76 

 

4 VisuShrink 0.540 1.19 3.92 

 

5 SureShrink 0.60 1.34 4.42 

 

6 BayesShrink 1.88 4.15 13.69 

 

7 OracleShrink 2 4.40 14.52 

 
8 OracleThresh 1.97 4.35 14.35 

 

9 NeighShrink 4.14 9.12 30.09 

 

10 SmoothShrink 1.08 2.39 7.88 

 

11 LAWML [3×3] 3.67 8.09 26.69 

 

12 LAWML[5×5] 3.70 8.15 26.89 

 

13 LAWML [7×7] 3.74 8.23 27.15 

 

14 GS-DCT 13.81 30.38 70.25 

 

15 TV-DWT 0.4261 0.9375 3.09 

 

16 RM-DWT 5.15 11.34 37.42 
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Fig. 4.4 Performance comparison of various filters in terms of PSNR (dB) under  
different noise levels of AWGN on the images 

 
(a) Lena  

(b) Pepper 

(c) Goldhill 

(d) Barbara 
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Fig. 4.5 Performance comparison of various filters in terms of RMSE values under  
different noise levels of AWGN on the images 
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Fig. 4.6 Performance comparison of various filters in terms of UQI values under  

different noise levels of AWGN on the images 
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(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

(k) 

Fig. 4.7 Performance of Various Filters for Lena Image with AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 

 

(l) 

 

(m) 

 

(n) 
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(k) 

Fig. 4.8 Performance of Various Filters for Lena Image (Smooth Region) with AWGN  

σn = 15 
 

 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 

 
(l) 

 
(m) 
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 (a)  (b)  (c)  (d)  (e) 

 (f)  (g)  (h)  (i)  (j) 

Fig. 4.9 Performance of Various Filters for Lena Image (Complex Region) with  
AWGN σn = 15 

 
 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 

(h) (i) (j) 

(m) 
 (k) 

 
(l) 

  (m) (n) 
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Fig. 4.10 Performance of Various Filters for Pepper Image with AWGN σn = 15 
 

 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 

 

  

(l) 

(m) (n) 
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Fig. 4.11 Performance of Various Filters for Lena Image with AWGN σn = 40 
 
 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT 

(m) TV-DWT (n) RM-DWT 

  

(l) 

(m) (n) 
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Fig. 4.12 Performance of Various Filters for Lena Image (Smooth Region) with  
AWGN σn = 40  

 
 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 
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Fig. 4.13 Performance of Various Filters for Lena Image (Complex Region) with  
AWGN σn = 40  

 
 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 

 (f) 

   
(m) (n) (l) 
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Fig. 4.14 Performance of Various Filters for Pepper Image with AWGN σn = 40 
 

 (a)  Original image (b) Noisy image   

 (c) – (n): Results of various filtering schemes 

(c) Mean (d) VisuShrink (e) SureShrink (f) BayesShrink (g) OracleShrink 

(h) OracleThresh  (i) NeighShrink (j) SmoothShrink (k) LAWML (l) GS-DCT  

(m) TV-DWT (n) RM-DWT 
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4.5   Conclusion 
 

Three transform-domain filters: GS-DCT, TV-DWT and RM-DWT are 

proposed for suppression of AWGN from images. These filters are found to perform 

well as compared to other existing filters.  

From tables: Table-4.2 to Table-4.5, it is observed that the developed filters: 

RM-DWT and GS-DCT have higher PSNR  values as compared to other filters at low 

and moderate noise conditions respectively.  Under such noise conditions the filters 

have smaller RMSE values which can be seen from tables: Table-4.6 to Table-4.9. 

These filters also give superior performance in terms of UQI values which can be 

observed from tables: Table-4.10 to Table-4.13. From Table-4.14 it can be seen that 

this two developed filters yield relatively less method noise. 

It is observed from these tables that the other proposed filter: TV-DWT shows 

moderate performance in terms of PSNR, RMSE and UQI. But its execution-time is 

minimal as depicted in Table-4.15. Further, it yields reasonably low method noise as 

shown in Table-4.14. Thus, the TV-DWT is a very good candidate for real-time 

applications. 

From subjective evaluations, it can be seen that the wavelet-domain filters 

introduce artifacts in the smooth regions of the filtered image. However, they are 

effective up to some extent in preserving the complex regions at the time of filtering.  

These are evident from Fig. 4.12 and Fig. 4.13. The proposed filter: RM-DWT is 

found to be the best in filtering smooth and complex regions with quite little distortion 

and giving the best visual quality among all filters compared here. 
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Preview 

 

Most of the denoising techniques available in literature are developed and 

tested only for gray images [62-106]. Recently, a few color image denoising filters are 

reported in the literature [8,137-142]. Hence, there is sufficient scope for developing 

very good color image filters. Efforts are made, in this research work, to develop 

novel color image filters both in spatial-domain and in transform-domain. 

Since the circular spatial filter (CSF) and region merging based DWT-domain 

(RM-DWT) filter are found, in the preceding two chapters, to be very efficient in 

suppressing AWGN from gray images, necessary modifications are made to develop 

their multi-channel versions to cater to the need of color image processing. 

In this chapter, two multi-channel filters: Multi-channel Circular Spatial Filter 

(MCSF) and Multi-channel Region Merging based DWT-domain (MRM-DWT) Filter 

are developed for suppression of additive noise from color images. The developed 

filters: MCSF and MRM-DWT are based on three-channel-processing (e.g., RGB-

5
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processing, YCbCr-processing, etc.) and hence are necessarily 3-Channel CSF and 3-

Channel RM-DWT, respectively.  

The filtering performance is compared with Multi-channel versions of existing 

filters:   (i) mean filter (simplest and oldest filter) [1] and (ii) locally adaptive window 

maximum likelihood (LAWML) filter [105] (best performer among the existing 

wavelet-domain filters examined in Chaper-2). 

 

The organization of this chapter is given below. 

� Multi-Channel Color Image Filtering 

� Multi-Channel Mean Filter 

� Multi-Channel LAWML Filter 

� Development of Multi-Channel Circular Spatial Filter 

� Development of Multi-Channel Region Merging based DWT-domain 

Filter 

� Simulation Results 

� Conclusion 
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5.1   Multi-Channel Color Image Filtering 
 

Multi-channel filters can be employed for denoising color images where each 

color component of noisy image is applied to an independent channel processor. The 

denoising can be performed either in the basic RGB-color space or in any other color 

space, C , such as YCbCr, CMY, CIE Lab, etc. [1,8]. The block diagram of a multi-

channel filter is shown in   Fig. 5.1. A Type-I filter (RGB-color image filter) is 

illustrated in Fig. 5.1 (a) while a Type-II filter (any other color-space) is shown in 

Fig. 5.1 (b). A combination of a pre-processing transformation (RGB-to-other color 

space) at the front end and a corresponding inverse transformation for post-processing 

distinguishes a Type-II filter from Type-I filter. 
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Fig. 5.1 Block Diagram of a Multi-Channel Filter 

 

(a) Type-I Filter (RGB-Color Space)  

(b) Type-II Filter (Color Space, C : other than RGB)  

Filter R-Channel 

G-Channel 

R
G

B
 –

 C
 

 
T

ra
n

sf
o

rm
a

ti
o

n
 

 

C
 –

 R
G

B
  

 
T

ra
n

sf
o

rm
a

ti
o

n
 

 

B-Channel 

(b) 

R-Channel 

G-Channel 

B-Channel 
· · Filter 

 

Filter 

Input  

Color Image 
  

(RGB) 

Output  
Color Image 

 

(RGB) 



 

 

Chapter-5                               Development of Some Color Image Denoising Filters 

 

 

Development of Some Spatial-Domain and Transform-Domain Digital Image Filters                                                173 

 

Helbert et al. [137], Lian et al. [139], Kim et al. [140] and Luisier et al.  [141] 

have shown that the RGB and YCbCr color spaces are found to be quite effective 

color representation spaces for image (2-D) and video (3-D) denoising applications. 

Since the performance of denoising filters degrades in other color spaces, more 

concentrated efforts are made, in this research work, to develop color image denoising 

filters only in RGB and YCbCr color spaces. Nevertheless, two other standard color 

spaces: CMY and CIE Lab are also employed initially to study their performance.  

An RGB to YCbCr-color space conversion [6] is given by: 

 

0.29900000 0.58700000 0.14400000

0.16873000 0.33126400 0.50000000

0.50000000 0.41866800 0.08131200

Y R

Cb G

Cr B

     
     = − −     
     − −     

           (5.1) 

 

where, Y is the luminance component of the color image, and the Cb and Cr are the 

blue-chrominance and red-chrominance of color image in YCbCr-color space. 

 The conversion of RGB to CMY-color space is performed using the following 

expression [1]: 

 

 

1

1

1

C R

M G

Y B

     
     = −     
          

                 (5.2) 

 The RGB to CIE Lab-color space conversion is given by [153,154]: 

 

 

1

3

1 1

3 3
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n n
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Y
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  = −   
 

 
    = −         

 
    = −         

                 (5.3) 
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where, the tristimulus values Xn, Yn, Zn are those of nominally white object color 

stimulus and the values X, Y and Z are defined by: 

 

 

0.412 0.358 0.180

0.213 0.715 0.072

0.019 0.119 0.950

X R G B

Y R G B

Z R G B

= + +

= + +

= + +

               (5.4) 

 

Table 5.1 illustrates the performance of the denoising filters in four color 

spaces: RGB, YCbCr, CMY and CIE Lab. It is observed that all filters exhibit their 

best performance in YCbCr-color space. Further, it may be concluded that: RGB is 

the second-best color representation. Hence, CSF and RM-DWT filters are developed 

for the basic color space: RGB and the best color space: YCbCr. The performance of 

various filters in terms of CPSNR (dB) is demonstrated as a bar plot in Fig. 5.2. The 

best CPSNR value for a particular standard deviation of AWGN, irrespective of 

window size of a filter, is considered for the bar plot. 

Thus it is observed from Table-5.1 and Fig. 5.2 that YCbCr-color space is the 

most effective color representation space for image denoising applications. Hence, 

only YCbCr-color space is considered for Type-II filter design hereafter. 

 

  A brief introduction to the multi-channel versions of existing filters: MF and 

LAWML are given in Section 5.2 and Section 5.3 respectively. The developed multi-

channel CSF (MCSF) is presented in the Section 5.4. Section 5.5 describes the 

developed multi-channel RM-DWT (MRM-DWT) filter.  
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Table-5.1: Filtering performance of color image denoising filters in different color spaces, in terms of 

CPSNR (dB) [Test Image: Lena] 

 

RGB color space 

 

YCbCr color  space 

 

CMY color space 

 

CIE LAB color space 

 

Standard deviation of 
AWGN 

 

Standard deviation of 
AWGN 

 

Standard deviation of 
AWGN 

 

Standard deviation of 
AWGN 

Sl. 

No 

Denoising 

Filters 

 

10 

 

25 

 

40 

 

10 

 

25 

 

40 

 

10 

 

25 

 

40 

 

10 

 

25 

 

40 

 

1 M-MF [3×3] 33.50 28.68 25.72 37.45 33.26 30.03 33.11 28.49 25.55 32.40 27.89 24.99 

 

2 M-MF [5×5] 30.29 28.88 27.01 34.37 33.22 31.59 29.90 28.69 26.84 29.19 28.09 26.28 

 

3 M-MF [7×7] 28.20 27.71 26.60 32.42 31.95 31.10 27.81 27.53 26.43 27.10 26.92 25.87 

 

4 M-LAWML [3×3] 34.25 29.25 25.83 38.97 34.16 31.59 33.86 29.16 25.66 33.15 28.46 25.10 

 

5 M-LAWML [5×5] 34.55 30.11 27.12 38.57 33.41 30.08 34.16 29.93 26.95 33.45 29.32 26.39 

 

6 M-LAWML [7×7] 34.96 30.48 27.55 38.24 32.66 27.93 34.57 30.28 27.38 33.86 29.69 26.82 

 

7 MCSF [3×3] 33.57 26.54 22.45 37.64 30.44 26.59 33.18 26.31 22.28 32.47 25.75 21.72 

 

8 MCSF [5×5] 33.30 30.49 26.86 37.51 34.17 30.80 32.91 30.30 26.69 32.20 29.70 26.13 

 
9 MCSF [7×7] 31.01 29.98 28.35 34.58 33.57 32.04 30.62 29.79 28.18 29.91 29.19 27.62 

 

10 MRM-DWT 35.02 30.11 27.65 39.87 33.88 31.49 34.63 29.92 27.48 33.92 29.32 26.92 
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Fig. 5.2 Bar plot showing the filtering performance in terms of CPSNR (dB)  

in different color spaces of various filters on Lena image corrupted  

with AWGN of the standard deviation 

 
(a) σn=10 (low noise) 

(b) σn=25 (moderate noise) 

(c) σn=40 (high noise) 
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5.2   Multi-Channel Mean Filter 
 

 

The mean filter is the simplest filter used for suppressing AWGN from gray 

images. For denoising color images, the mean filter can be modified to multi-channel 

mean filter (M-MF) by employing the ‘mean’ operation in three independent channels 

of color space (e.g., RGB, YCbCr, CMY, CIE Lab etc.) separately. Its multi-channel 

versions: Type-I M-MF (RGB-color space) and Type-II M-MF (YCbCr-color 

space) are developed here, in accordance with Fig. 5.1 (a) and Fig. 5.1 (b) 

respectively, for color image denoising. These two filters are represented in block 

schematic in Fig. 5.3.  

 

 

The performance of these filters is examined by extensive simulation work 

presented in Section-5.6.  
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Fig. 5.3 Block Diagram of a Multi-Channel Mean Filter 

 

(a) Type-I Filter (RGB-Color Space)  

(b) Type-II Filter (Color Space: YCbCr) 
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5.3    Multi-Channel LAWML Filter 
 

 

The locally adaptive window maximum likelihood (LAWML) filter [105] is a 

wavelet-domain filter that performs well for suppressing additive noise. The filtering 

performance of LAWML has already been examined and found to be very promising 

for gray images. Therefore, its multi-channel versions: Type-I M-LAWML (RGB-

color space) and Type-II M-LAWML (YCbCr color space) are developed here, in 

accordance with Fig. 5.1 (a) and Fig. 5.1 (b) respectively, for color image denoising. 

These two filters are represented in block schematic in Fig. 5.4.  

 

 

The performance of these filters is examined by extensive simulation work 

presented in Section-5.6.  
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Fig. 5.4 Block Diagram of a Multi-Channel LAWML Filter 

 

(a) Type-I Filter (RGB-Color Space)  

(b) Type-II Filter (Color Space: YCbCr) 
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5.4    Development of Multi-Channel Circular Spatial Filter 
 

 

The Circular Spatial Filter (CSF) is a spatial-domain filter that performs very 

well for suppressing AWGN from gray images. The filtering operation for 

suppressing AWGN is explained in Chaper-3. The CSF is found to be quite efficient 

in suppressing AWGN under moderate and high noise conditions yielding less 

distortion to the filtered image. The filtering performance of CSF has already been 

examined and found to be very promising for gray images. Therefore, its multi-

channel versions: Type-I MCSF (RGB-color space) and Type-II MCSF (YCbCr-

color space) are developed here [P6], in accordance with Fig. 5.1 (a) and Fig. 5.1 (b) 

respectively, for color image denoising. These two filters are represented in block 

schematic in Fig. 5.5.  

 

 

The performance of these filters is examined by extensive simulation work 

presented in Section-5.6. 
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Fig. 5.5 Block Diagram of a Multi-Channel CSF Filter 

 
(a) Type-I Filter (RGB-Color Space)  

(b) Type-II Filter (Color Space: YCbCr) 
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5.5    Development of Multi-Channel Region Merging based  

         DWT-domain Filter 
 

 

The noise suppression capability of the Region Merging based DWT-domain 

(RM-DWT) filter has been examined for the gray image in Chapter-4. It has been 

observed that it performs very well for low noise conditions. For denoising color 

images, its multi-channel versions: Type-I MRM-DWT (RGB-color space) and 

Type-II MRM-DWT filters are developed here, in accordance with Fig. 5.1 (a) and 

Fig. 5.1 (b) respectively. These two filters are represented in block schematic in     

Fig. 5.6.  

 

 

The performance of these filters is examined by extensive simulation work 

presented in Section-5.6. 
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Fig. 5.6 Block Diagram of a Multi-Channel RM-DWT Filter 

 
(a) Type-I Filter (RGB-Color Space)  

(b) Type-II Filter (Color Space: YCbCr) 
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5.6   Simulation Results 
 

Extensive simulation is carried out to study the performance of the multi-

channel filters: M-MF, M-LAWML, MCSF and MRM-DWT. The performance of 

these filters is studied in RGB-, and YCbCr-color spaces. The performance measures: 

color-peak-signal-to-noise ratio (CPSNR), root-mean-squared error (RMSE) and 

universal quality index (UQI), method noise (
MN ) and execution time (TE) are 

evaluated and presented in tables: Table-5.2 to Table-5.18. 

 The simulation work is performed on color test images: Lena (512×512×3 

pixels) and Pepper (512×512×3 pixels) corrupted with AWGN of standard deviation 

σn = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The noise level of additive noise is 

categorized as low (noise standard deviation, σn≤10), moderate (10<σn≤30) and high 

(30<σn≤50).  

 The CPSNR values of multi-channel filters for RGB-color space are given in 

Table-5.2 and Table-5.3 and for YCbCr-color space are given in Table-5.8 and Table-

5.9. The largest CPSNR value for a particular standard deviation of Gaussian noise is 

highlighted to show the best performance.  

The RMSE values of multi-channel filters for RGB-color space are given in 

the tables: Table-5.4 to Table-5.5. For YCbCr-color space, the RMSE values of multi-

channel filters are given in the tables: Table-5.10 to Table-5.11. The smallest RMSE 

value (best performance) for a particular standard deviation of Gaussian noise is 

highlighted. 

The UQI values of various multi-channel filters for RGB-color space are given 

in the tables: Table 5.6 to Table 5.7. For YCbCr-color space, the performances of 

different multi-channel filters in terms of UQI values are given in Table-5.12 to 

Table-5.13. The maximum value of UQI for a particular standard deviation of 

Gaussian noise is identified and is highlighted as the best performance.  

 The method noise of various multi-channel filters for the images: Lena and 

Pepper is presented in the table: Table 5.14 to Table 5.15. 
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The filters are simulated on three different computing systems: SYSTEM-1, 

SYSTEM-2 and SYSTEM-3 presented in Table-1.1 in Section-1.5. The execution 

time taken for different filtering schemes is given in the Table-5.16 and   Table-5.17.  

  Fig. 5.7 illustrates the resulting CPSNR of different multi-channel filters in 

RGB-, and YCbCr-color spaces for Lena image that is corrupted with different levels 

of AWGN. The best performance measure for a particular standard deviation of 

AWGN irrespective of window size of a filter is shown in the figures. The execution 

time (TE) of various filters is shown as bar plot in Fig. 5.8. The TE of a filter with 

larger window size (for worst-case analysis) is taken in the bar plot. 

 For subjective evaluation, the filtered output images of various multi-channel 

filters are shown in the figures: Fig. 5.9 to Fig. 5.20. The images corrupted with 

AWGN of standard deviation, σn = 15 (moderate-noise) and σn = 40 (high-noise) are 

applied to different filters and the resulted output images are shown.  

It has been observed from Table-5.1 that the filters perform very well in 

YCbCr-color space. It needs further investigations whether the Type-II versions 

(YCbCr-color space) exhibit good filtering characteristics in flat and smooth regions 

as well as complex regions of an image. To examine the distortion and artifacts, the 

different multi-channel filters in YCbCr-color space are applied on a smooth region 

and a complex region of color Lena image corrupted with AWGN of σn = 15 and σn = 

40 and the filtering performances are shown in the figures: Fig. 5.17 to Fig. 5.20 to 

demonstrate the effectiveness of the filters.  

In Fig. 5.21, the magnified (zoomed) versions of output-images of the filters: 

M-LAWML, MCSF and MRM-DWT of complex regions that are already 

demonstrated in Fig. 5.20 are shown. In Fig. 5.21, six regions (containing textures 

and fine details) are chosen which are identified with green circles, for critical 

analysis.  

 

Conclusions are drawn in Section 5.7. 
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Table-5.2: Filtering performance of  Type-I color image denoising filters in RGB-color space, in 

terms of CPSNR (dB), operated on Lena image under various noise conditions (σn varies 

from 5 to 50) 

CPSNR (dB) 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

 

1 M-MF [3×3] 34.70 33.50 32.27 30.78 28.68 27.78 26.86 25.72 24.95 24.58 
 

2 M-MF[5×5] 30.51 30.29 29.77 29.02 28.88 28.55 27.83 27.01 26.59 25.99 

 
3 M-MF[7×7] 28.29 28.20 27.89 27.76 27.61 27.14 26.89 26.60 26.45 25.91 

 

4 M-LAWML [3×3] 35.01 34.25 32.63 30.78 29.25 27.77 26.62 25.83 25.13 24.76 

 

5 M-LAWML[5×5] 35.13 34.55 33.36 31.61 30.11 28.93 27.69 27.12 26.82 26.23 

 
6 M-LAWML [7×7] 35.37 34.96 33.44 31.79 30.48 29.05 28.67 27.55 26.98 26.58 

 
7 MCSF [3×3] 34.88 33.57 30.77 28.45 26.54 24.77 23.55 22.45 21.89 20.83 

 

8 MCSF [5×5] 34.02 33.88 33.75 31.79 30.49 28.76 27.74 26.86 25.95 25.41 

 

9 MCSF [7×7] 33.31 31.01 30.85 30.39 29.98 29.52 29.42 28.35 27.89 27.33 

 

10 MRM-DWT 35.87 35.02 33.73 31.75 30.46 29.08 28.76 27.65 26.98 26.61 

 

 
Table-5.3: Filtering performance of Type-I color image denoising filters in RGB-color space, in 

terms of CPSNR (dB), operated on  Pepper  image under various noise conditions (σn varies 

from 5 to 50) 

CPSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

 

1 M-MF [3×3] 33.46 31.76 30.87 29.42 28.31 27.25 26.29 25.38 24.58 23.88 

 

2 M-MF[5×5] 32.71 30.97 30.65 30.09 29.56 28.94 28.35 27.76 27.13 26.73 

 
3 M-MF[7×7] 31.62 29.14 29.16 28.59 28.34 28.12 27.73 27.37 27.34 26.82 

 

4 M-LAWML [3×3] 35.38 35.01 32.54 30.76 29.34 28.11 27.14 26.38 25.74 25.20 

 

5 M-LAWML[5×5] 35.79 35.43 33.25 31.63 30.31 29.22 28.33 27.58 26.89 26.39 

 

6 M-LAWML [7×7] 35.93 35.45 33.27 31.70 30.49 29.39 28.49 27.77 27.03 26.57 

 

7 MCSF [3×3] 34.43 33.46 30.39 28.1 26.23 24.71 23.42 22.3 21.34 20.44 

 

8 MCSF [5×5] 34.62 34.64 33.27 31.74 30.32 29.02 27.88 26.9 25.97 25.17 

 
9 MCSF [7×7] 34.32 33.13 32.78 31.31 30.78 30.12 29.48 28.79 28.17 27.83 

 
10 MRM-DWT 35.96 35.48 33.18 31.67 30.53 29.41 28.56 27.81 27.12 26.56 
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Table-5.4: Filtering performance of Type-I color image denoising filters in RGB-color space, 

in terms of RMSE, operated on Lena image under various noise conditions (σn varies from 5 

to 50) 

RMSE 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

 

1 M-MF [3×3] 4.69 5.38 6.20 7.37 9.38 10.41 11.57 13.19 14.42 15.05 

 
2 M-MF[5×5] 7.60 7.79 8.28 9.02 9.17 9.52 10.35 11.37 11.94 12.79 

 

3 M-MF[7×7] 9.81 9.92 10.28 10.67 10.49 11.20 11.53 11.92 12.13 12.91 

 

4 M-LAWML [3×3] 4.52 4.94 5.95 7.37 8.79 10.42 11.90 13.03 14.12 14.74 

 

5 M-LAWML[5×5] 4.46 4.77 5.47 6.69 7.96 9.12 10.52 11.23 11.62 12.44 

 

6 M-LAWML [7×7] 4.34 4.55 5.42 6.56 7.63 8.99 9.39 10.69 11.41 11.95 

 
7 MCSF [3×3] 4.59 5.34 7.37 9.63 12.01 14.72 16.94 19.23 20.51 23.17 

 

8 MCSF [5×5] 5.07 5.51 5.23 6.56 7.62 9.30 10.46 11.57 12.85 13.67 

 

9 MCSF [7×7] 5.50 7.17 7.20 7.65 8.08 8.52 8.62 9.75 10.28 10.96 

 

10 MRM-DWT 4.12 4.52 6.60 6.92 7.96 8.96 9.30 10.56 11.41 11.91 

 
Table-5.5: Filtering performance of Type-I color image denoising filters in RGB color space, 

in terms of  RMSE, operated on  Pepper  image under various noise conditions (σn varies 

from 5 to 50) 

RMSE 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

 

1 M-MF [3×3] 5.41 6.58 7.29 8.62 9.79 11.06 12.36 13.72 15.05 16.31 

 

2 M-MF[5×5] 5.90 7.21 7.48 7.98 8.48 9.11 9.78 10.43 11.22 11.75 

 

3 M-MF[7×7] 6.69 8.90 8.88 9.48 9.762 10.01 10.47 10.915 10.95 11.62 

 
4 M-LAWML [3×3] 4.34 4.52 6.01 7.38 8.70 10.02 11.20 12.233 13.16 14.01 

 

5 M-LAWML[5×5] 4.14 4.31 5.54 6.68 7.78 8.82 9.77 10.655 11.53 12.21 

 

6 M-LAWML [7×7] 4.07 4.30 5.53 6.63 7.62 8.65 9.59 10.424 11.35 11.96 

 
7 MCSF [3×3] 4.84 5.41 7.70 10.03 12.44 14.82 17.22 19.568 21.85 24.24 

 

8 MCSF [5×5] 4.73 4.72 5.53 6.59 7.77 9.02 10.29 11.522 12.82 14.06 

 

9 MCSF [7×7] 4.90 6.31 6.56 6.93 7.37 7.95 8.56 9.2692 9.95 10.35 

 

10 MRM-DWT 4.06 4.29 5.59 6.65 7.58 8.63 9.51 10.376 11.23 11.98 
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Table-5.6: Filtering performance of Type-I color image denoising filters in RGB-color space, in 

terms of  UQI, operated on  Lena  image under various noise conditions (σn varies from 5 to 50) 

UQI 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

 

1 M-MF [3×3] 0.9954 0.9936 0.9906 0.9863 0.9811 0.9746 0.9677 0.9593 0.9502 0.9392 

 
2 M-MF[5×5] 0.9871 0.9853 0.9842 0.9826 0.9806 0.9784 0.9751 0.9715 0.9682 0.9628 

 
3 M-MF[7×7] 0.9768 0.9755 0.9749 0.9741 0.9733 0.9717 0.9699 0.9675 0.9652 0.9617 

 

4 M-LAWML [3×3] 0.9966 0.9959 0.9916 0.9864 0.9811 0.9754 0.969 0.9627 0.9561 0.9498 

 

5 M-LAWML[5×5] 0.9978 0.9965 0.9932 0.9892 0.9852 0.9812 0.9772 0.9727 0.9685 0.9637 

 

6 M-LAWML [7×7] 0.9977 0.9966 0.9932 0.9898 0.9861 0.9827 0.9788 0.9747 0.9709 0.9665 

 
7 MCSF [3×3] 0.9972 0.9963 0.9863 0.9756 0.9625 0.9466 0.9286 0.9081 0.8868 0.8628 

 

8 MCSF [5×5] 0.9945 0.9939 0.9934 0.9899 0.9861 0.9828 0.9725 0.9655 0.9572 0.9484 

 

9 MCSF [7×7] 0.9912 0.9903 0.9855 0.9844 0.9829 0.9805 0.9789 0.9751 0.9716 0.9675 

 

10 MRM-DWT 0.9982 0.9973 0.9915 0.9881 0.9837 0.9786 0.9788 0.9747 0.9708 0.9663 

 
Table-5.7: Filtering performance of Type-I color image denoising filters in RGB-color space, in 

terms of  UQI, operated on  Pepper  image under various noise conditions (σn varies from 5 to 50) 

UQI 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

 

1 M-MF [3×3] 0.9917 0.9901 0.9873 0.9836 0.9788 0.9731 0.9663 0.9587 0.9506 0.9410 

 

2 M-MF[5×5] 0.9886 0.9878 0.9867 0.9849 0.9827 0.9800 0.9770 0.9731 0.9688 0.9639 

 

3 M-MF[7×7] 0.9820 0.9815 0.9807 0.9794 0.9780 0.9760 0.9738 0.9708 0.9678 0.9641 

 
4 M-LAWML [3×3] 0.9980 0.9950 0.9912 0.9867 0.9816 0.9758 0.9702 0.9639 0.9576 0.9505 

 

5 M-LAWML[5×5] 0.9978 0.9906 0.9897 0.9883 0.9864 0.9842 0.9816 0.9782 0.9747 0.971 

 

6 M-LAWML [7×7] 0.9991 0.9983 0.9957 0.9929 0.9898 0.9861 0.9822 0.9783 0.9735 0.9697 

 

7 MCSF [3×3] 0.9987 0.9983 0.99 0.9817 0.971 0.9582 0.9433 0.9267 0.9089 0.8883 

 

8 MCSF [5×5] 0.9979 0.9971 0.9968 0.9934 0.9898 0.9847 0.9797 0.9735 0.9671 0.959 

 
9 MCSF [7×7] 0.9921 0.9913 0.9906 0.9895 0.9889 0.9862 0.9838 0.9810 0.9785 0.9766 

 

10 MRM-DWT 0.9993 0.9986 0.9961 0.9929 0.9890 0.9861 0.9821 0.9776 0.9731 0.9695 
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Table-5.8: Filtering performance of Type-II color image denoising filters in YCbCr-color space, 

in terms of CPSNR (dB), operated on Lena image under various noise conditions (σn varies 

from 5 to 50) 

CPSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

 
1 M-MF [3×3] 38.63 37.45 36.02 34.60 33.26 32.09 30.99 30.03 29.17 28.38 

 

2 M-MF[5×5] 34.56 34.37 34.07 33.66 33.22 32.67 32.16 31.59 31.00 30.46 

 

3 M-MF[7×7] 32.49 32.42 32.30 32.17 31.95 31.72 31.43 31.10 30.76 30.40 

 
4 M-LAWML [3×3] 41.73 38.97 36.83 35.37 34.16 33.23 32.36 31.59 30.88 30.19 

 

5 M-LAWML[5×5] 41.45 38.57 36.08 34.56 33.41 32.24 30.99 30.08 29.38 28.40 

 

6 M-LAWML [7×7] 41.29 38.24 35.55 33.85 32.66 31.07 29.63 27.93 27.82 26.94 

 

7 MCSF [3×3] 40.78    38.64 34.55 32.24 30.44 28.95 27.67 26.59 25.67 24.84 

 

8 MCSF [5×5] 39.76 37.81 37.74 36.17 34.17 32.76 31.74 30.80 29.91 29.13 

 

9 MCSF [7×7] 37.86 34.58 34.32 33.98 33.57 33.43 32.60 32.04 31.50 30.95 

 

10 MRM-DWT 43.72 39.87 36.52 35.08 33.88 33.08 32.24 31.49 30.76 30.16 

 

 
Table-5.9: Filtering performance of Type-II color image denoising filters in YCbCr-color space, 

in terms of CPSNR (dB), operated on  Pepper  image under various noise conditions (σn 

varies from 5 to 50) 

CPSNR (dB) 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

 

1 M-MF [3×3] 36.56 35.81 34.75 33.64 32.53 31.52 30.52 29.67 28.84 28.12 

 

2 M-MF[5×5] 35.20 34.94 34.54 34.03 33.46 32.86 32.22 31.56 30.94 30.30 

 

3 M-MF[7×7] 33.24 33.12 32.94 32.71 32.41 32.06 31.70 31.26 30.83 30.32 

 

4 M-LAWML [3×3] 41.21 38.11 36.11 34.53 33.33 32.24 31.31 30.47 29.60 28.81 

 
5 M-LAWML[5×5] 41.05 37.81 35.75 33.90 32.61 31.27 30.28 29.29 28.35 27.60 

 

6 M-LAWML [7×7] 40.87 37.47 35.05 33.54 31.95 30.47 29.26 28.12 27.24 25.95 
 

7 MCSF [3×3] 40.18 37.43 34.46 32.20 30.42 28.93 27.72 26.65 25.72 24.91 

 
8 MCSF [5×5] 39.45 38.21 36.96 35.40 34.18 32.82 31.74 30.77 29.85 29.04 

 

9 MCSF [7×7] 38.32 35.65 35.24 34.74 34.14 33.55 32.90 32.21 31.56 30.87 

 

10 MRM-DWT 42.12 38.95 36.76 35.35 34.02 33.14 32.12 31.30 30.50 29.74 
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Table-5.10: Filtering performance of Type-II color image denoising filters in YCbCr-color 

space, in terms of RMSE, operated on Lena image under various noise conditions (σn varies 

from 5 to 50) 

RMSE 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

 

1 M-MF [3×3] 2.98 3.42 4.03 4.74 5.54 6.33 7.19 8.03 8.87 9.71 

 

2 M-MF[5×5] 4.77 4.87 5.04 5.29 5.56 5.92 6.22 6.71 7.18 7.64 

 

3 M-MF[7×7] 6.05 6.10 6.18 6.28 6.44 6.61 6.83 7.10 7.38 7.70 

 

4 M-LAWML [3×3] 2.08 2.87 3.67 4.34 4.99 5.55 6.14 6.71 7.28 7.88 

 
5 M-LAWML[5×5] 2.15 3.00 4.00 4.77 5.44 6.23 7.19 7.98 8.66 9.69 

 

6 M-LAWML [7×7] 2.19 3.12 4.25 5.17 5.93 7.12 8.41 10.23 10.36 11.46 

 

7 MCSF [3×3] 2.32 3.34 4.77 6.23 7.66 9.12 10.54 11.94 13.27 14.60 

 

8 MCSF [5×5] 2.62 3.27 3.30 3.91 4.98 5.86 6.59 7.35 8.14 8.91 

 

9 MCSF [7×7] 3.26 4.75 4.90 5.09 5.34 5.43 5.97 6.37 6.78 7.22 

 

10 MRM-DWT 1.66 2.58 3.89 4.49 5.15 5.65 6.17 6.81 7.38 7.93 

 

 
Table-5.11: Filtering performance of Type-II color image denoising filters in YCbCr-color 

space, in terms of  RMSE, operated on  Pepper  image under various noise conditions (σn 

varies from 5 to 50) 

RMSE 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

 

1 M-MF [3×3] 3.78 4.13 4.66 5.30 6.02 6.76 7.59 8.37 9.21 10.01 

 

2 M-MF[5×5] 4.43 4.56 4.78 5.07 5.41 5.80 6.24 6.73 7.23 7.79 

 

3 M-MF[7×7] 5.55 5.63 5.74 5.90 6.11 6.36 6.63 6.97 7.32 7.77 

 

4 M-LAWML [3×3] 2.21 3.16 3.99 4.78 5.49 6.23 6.93 7.63 8.44 9.24 

 

5 M-LAWML[5×5] 2.25 3.28 4.15 5.14 5.97 6.96 7.80 8.75 9.75 10.63 

 
6 M-LAWML [7×7] 2.30 3.41 4.50 5.36 6.44 7.63 8.78 10.01 11.08 12.85 

 

7 MCSF [3×3] 2.49 3.42 4.82 6.25 7.68 9.12 10.48 11.85 13.19 14.48 

 

8 MCSF [5×5] 2.71 3.13 3.61 4.33 4.98 5.82 6.59 7.37 8.20 9.00 

 

9 MCSF [7×7] 3.09 4.20 4.41 4.67 5.00 5.35 5.77 6.25 6.73 7.29 

 

10 MRM-DWT 1.99 2.87 3.70 4.35 5.07 5.61 6.31 6.94 7.61 8.30 



 

 

Chapter-5                               Development of Some Color Image Denoising Filters 

 

 

Development of Some Spatial-Domain and Transform-Domain Digital Image Filters                                                192 

 

 
Table-5.12: Filtering performance of Type-II color image denoising filters in YCbCr-color space, 

in terms of UQI, operated on Lena image under various noise conditions (σn varies from 5 to 50) 

UQI 
 

Standard deviation of AWGN Sl. 

No. 

Denoising 

Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Lena 

 

1 M-MF [3×3] 0.9926 0.9903 0.9865 0.9813        0.9747    0.9671 0.9579 0.9475 

 

0.9366 0.9245 
 

2 M-MF[5×5] 0.9807 0.9799 0.9784 0.9764 0.9739 0.9704 0.9667 0.9623 0.9570 0.9515 

 
3 M-MF[7×7] 0.9686 0.9681 0.9673 0.9663 0.9646 0.9627 0.9601 0.9572 0.9540 0.9504 

 

4 

M-LAWML 

[3×3] 0.9977 0.9945 0.9910 0.9870 0.9834 0.9796 0.9751 0.9705 0.9656 0.9598 

 

5 

M-

LAWML[5×5] 0.9975 0.9939 0.9894 0.9848 0.9803 0.9739 0.9659 0.9577 0.9506 0.9384 

 
6 

M-LAWML 
[7×7] 0.9974 0.9935 0.9880 0.9820 0.9764 0.9665 0.9533 0.9280 0.9288 0.9131 

 

7 MCSF [3×3] 0.9943     0.9908 0.9815 0.9687 0.9533 0.9354 0.9149 0.8928 0.8701 0.8457 

 

8 MCSF [5×5] 0.9924 0.9920 0.9918 0.9871 0.9837 0.9717 0.9641 0.9559 0.9462 0.9361 
 

9 MCSF [7×7] 0.9912 0.9901 0.9896 0.9861 0.9819 0.9798 0.9776 0.9727 0.9668 0.9613 

 
10 MRM-DWT 0.9982 0.9953 0.9873 0.9832 0.9789 0.9788 0.9744 0.9699 0.9644 0.9596 

 

 
Table-5.13: Filtering performance of Type-II color image denoising filters in YCbCr color space, in 

terms of  UQI, operated on  Pepper  image under various noise conditions (σn varies from 5 to 50) 

UQI 
 

Standard deviation of AWGN Sl. 

No. 
Denoising Filters 

5 10 15 20 25 30 35 40 45 50 

Test Image: Pepper 

 

1 M-MF [3×3] 0.9917 0.9901 0.9873 0.9836 0.9787 0.9731 0.9661 0.9588 0.9501 0.9411 

 

2 M-MF[5×5] 0.9886 0.9879 0.9866 0.9849 0.9827 0.9802 0.9769 0.9731 0.9689 0.9640 

 

3 M-MF[7×7] 0.9820 0.9815 0.9806 0.9795 0.9780 0.9760 0.9739 0.9710 0.9680 0.9641 

 

4 M-LAWML [3×3] 0.9956 0.9932 0.9904 0.9872 0.9837 0.9806 0.9752 0.9703 0.9641 0.9571 

 

5 M-LAWML[5×5] 0.9955 0.9929 0.9908 0.9855 0.9812 0.9750 0.9689 0.9613 0.9524 0.9423 

 

6 M-LAWML [7×7] 0.9954 0.9925 0.9884 0.9843 0.9783 0.9704 0.9607 0.9501 0.9385 0.9177 

 
7 MCSF [3×3] 0.9960 0.9931 0.9865 0.9774 0.9661 0.9528 0.9380 0.9213 0.9035 0.8850 

 

8 MCSF [5×5] 0.9950 0.9943 0.9922 0.9888 0.9849 0.9801 0.9744 0.9681 0.9605 0.9526 

 

9 MCSF [7×7] 0.9903 0.9897 0.9886 0.9872 0.9853 0.9831 0.9804 0.9769 0.9732 0.9686 

 

10 MRM-DWT 0.9976 0.9950 0.9920 0.9889 0.9852 0.9812 0.9762 0.9711 0.9653 0.9585 
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Table-5.14: Method Noise, 
MN  of various Type-I multi-channel filters in RGB-color 

space operated on different test images 

 
Sl. 

No 

                                  Images 
 

Denoising Filters 
Lena Pepper 

1 M-MF [3×3] 2.65 3.08 

2 M-MF[5×5] 4.46 4.25 

3 M-MF[7×7] 5.73 5.63 

4 M-LAWML [3×3] 3.79×10
-10 

4.56×10
-10 

5 M-LAWML[5×5] 3.79×10
-10 

4.56×10
-10 

6 M-LAWML [7×7] 3.79×10
-10 

4.56×10
-10 

7 MCSF [3×3] 1.24 1.50 

8 MCSF [5×5] 2.75 2.70 

9 MCSF [7×7] 4.38 4.00 

10 MRM-DWT 3.79×10
-10 

4.56×10
-10 

 

 

Table-5.15: Method Noise, 
M
N  of various Type-II multi-channel filters in     

YCbCr-color space operated on different test images 

 

Sl. 

No 

                                  Images 

 

Denoising Filters 
Lena Pepper 

1 M-MF [3×3] 2.65 3.08 

2 M-MF[5×5] 4.46 4.25 

3 M-MF[7×7] 5.73 5.63 

4 M-LAWML [3×3] 3.79×10
-10 

4.56×10
-10 

5 M-LAWML[5×5] 3.79×10
-10 

4.56×10
-10 

6 M-LAWML [7×7] 3.79×10
-10 

4.56×10
-10 

7 MCSF [3×3] 1.24 1.50 

8 MCSF [5×5] 2.75 2.70 

9 MCSF [7×7] 4.38 4.00 

10 MRM-DWT 3.79×10
-10 

4.56×10
-10 
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Table-5.16: Execution Time (seconds), TE taken by various Type-I multi-channel filters in 

RGB-color space for Lena image 

Sl. No.                             Images                  
Denoising 

Filters 

SYSTEM-1 SYSTEM-2 SYSTEM-3 

1 M-MF [3×3] 8.55 15.39 43.09 

2 M-MF[5×5] 8.966 16.14 45.19 

3 M-MF[7×7] 9.45 17.01 47.62 

4 M-LAWML [3×3] 11.88 21.39 59.89 

5 M-LAWML[5×5] 11.98 21.57 60.39 

6 M-LAWML [7×7] 12.45 22.42 62.77 

7 MCSF [3×3] 8.711 15.68 43.90 

8 MCSF [5×5] 9.28 16.72 46.81 

9 MCSF [7×7] 10.01 18.03 50.48 

10 MRM-DWT 13.07 23.53 65.88 

Table-5.17: Execution Time (seconds),  TE  taken by various Type-II multi-channel filters 
in YCbCr-color space for Lena image 

Sl. No.                             Images          

Denoising 

Filters 

SYSTEM-1 SYSTEM-2 SYSTEM-3 

1 M-MF [3×3] 10.42 15.64 48.48 

2 M-MF[5×5] 11.04 16.56 51.33 

3 M-MF[7×7] 11.50 17.26 53.50 

4 M-LAWML [3×3] 16.24 24.36 75.51 

5 M-LAWML[5×5] 16.88 25.32 78.49 

6 M-LAWML [7×7] 17.92 26.88 83.32 

7 MCSF [3×3] 10.67 16.01 49.63 

8 MCSF [5×5] 11.48 17.22 53.38 

9 MCSF [7×7] 12.10 18.16 56.29 

10 MRM-DWT 19.84 29.76 92.25 
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Fig. 5.8 Bar plot showing the execution time (seconds) of various multi-channel  

filters in YCbCr-color space on three different hardware platforms 
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Fig. 5.7 Performance comparison of various multi-channel filters in terms of CPSNR [dB]  

for the various standard deviation of AWGN operated on Lena image  

 
(e) in RGB-color space 

(f) in YCbCr-color space 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.9 Performance of Various Filters in RGB-Color Space 

  for Color Lena Image with AWGN of σn = 15  
 

(a) Original image  

(b) Noisy image 

(c) Type-I M-MF – output image  

(d) Type-I M-LAWML – output image 

(e) Type-I MCSF – output image 

(f) Type-I MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.10 Performance of Various Filters in RGB-Color Space 

  for Color Lena Image with AWGN of σn = 40  

 
(a) Original image  

(b) Noisy image 

(c) Type-I M-MF – output image  

(d) Type-I M-LAWML – output image 

(e) Type-I MCSF – output image 

(f) Type-I MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.11 Performance of Various Filters in RGB-Color Space 
  for Color Pepper Image with AWGN of σn = 15  

 
(a) Original image  

(b) Noisy image 

(c) Type-I M-MF – output image  

(d) Type-I M-LAWML – output image 

(e) Type-I MCSF – output image 

(f) Type-I MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.12 Performance of Various Filters in RGB-Color Space 

  for Color Pepper Image with AWGN of σn = 40  
 

(a) Original image  

(b) Noisy image 

(c) Type-I M-MF – output image  

(d) Type-I M-LAWML – output image 

(e) Type-I MCSF – output image 

(f) Type-I MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.13 Performance of Various Filters in YCbCr-Color Space 

  for Color Lena Image with AWGN of σn = 15  
 

(a) Original image  

(b) Noisy image 

(c) Type-II M-MF – output image  

(d) Type-II M-LAWML – output image 

(e) Type-II MCSF – output image 

(f) Type-II MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.14 Performance of Various Filters in YCbCr-Color Space 

  for Color Lena Image with AWGN of σn = 40  

 
(a) Original image  

(b) Noisy image 
(c) Type-II M-MF – output image  

(d) Type-II M-LAWML – output image 
(e) Type-II MCSF – output image 

(f) Type-II MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.15 Performance of Various Filters in YCbCr-Color Space 

  for Color Pepper Image with AWGN of σn = 15 

 

(a) Original image  
(b) Noisy image 

(c) Type-II M-MF – output image  
(d) Type-II M-LAWML – output image 

(e) Type-II MCSF – output image 
(f) Type-II MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.16 Performance of Various Filters in YCbCr-Color Space 

  for Color Pepper Image with AWGN of σn = 40 

 
(a) Original image  

(b) Noisy image 
(c) Type-II M-MF – output image  

(d) Type-II M-LAWML – output image 
(e) Type-II MCSF – output image 

(f) Type-II MRM-DWT – output image 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 

(e) 

 

(f) 

Fig. 5.17 Performance of Various Filters in YCbCr-Color Space 
  for Color Lena Image (Smooth Region) with AWGN of σn = 15 

 
(a) Original image  

(b) Noisy image 

(c) Type-II M-MF – output image  

(d) Type-II M-LAWML – output image 

(e) Type-II MCSF – output image 

(f) Type-II MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.18 Performance of Various Filters in YCbCr-Color Space 

  for Color Lena Image (Complex Region) with AWGN of σn = 15 

 
(a) Original image  

(b) Noisy image 

(c) Type-II M-MF – output image  
(d) Type-II M-LAWML – output image 

(e) Type-II MCSF – output image 
(f) Type-II MRM-DWT – output image 
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(a) 

 
(b) 

 
(c) 

 

(d) 

 

(e) 

 
(f) 

Fig. 5.19 Performance of Various Filters in YCbCr-Color Space 

  for Color Lena Image (Smooth Region) with AWGN of σn = 40 

 
(a) Original image  

(b) Noisy image 

(c) Type-II M-MF – output image  

(d) Type-II M-LAWML – output image 

(e) Type-II MCSF – output image 

(f) Type-II MRM-DWT – output image 
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(a) (b) (c) 

(d) (e) (f) 

Fig. 5.20 Performance of Various Filters in YCbCr-Color Space 

  for Color Lena Image (Complex Region) with AWGN of σn = 40 

 
(a) Original image  

(b) Noisy image 
(c) Type-II M-MF – output image  

(d) Type-II M-LAWML – output image 
(e) Type-II MCSF – output image 

(f) Type-II MRM-DWT – output image 
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Fig. 5.21 Zoomed versions of Fig. 5.20 (a), (d), (e), (f) showing  six various regions 

containing texture and fine details in complex regions of color Lena  image 

 
(a) Original image  

(b) Type-II M-LAWML – output image  

(c) Type-II MCSF – output image  

(d) Type-II MRM-DWT – output image  
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5.7   Conclusion 
 

 The performance of multi-channel filters: Multi-Channel Mean Filter (M-MF), 

Multi-Channel LAWML (M-LAWML) Filter, Multi-Channel Circular Spatial Filter 

(MCSF) and Multi-Channel Region Merging based DWT-domain (MRM-DWT) 

Filter are studied in RGB-, and YCbCr-color spaces. It is observed that the filtering 

performance is better in YCbCr-color space for all filters. 

 

 From Table-5.2 and Table-5.3 (for RGB-color space) and Table-5.8 and 

Table-5.9 (for YCbCr-color space), it is observed that the CPSNR values are higher 

for MCSF under moderate and high noise conditions. When the noise level is low, the 

MRM-DWT performs better than other multi-channel filters.  

 

 From Table-5.4 and Table-5.5 (for RGB-color space) and Table-5.10 and     

Table-5.11 (for YCbCr-color space), it is observed that the RMSE values are smaller 

for MCSF under moderate and high noise conditions. When the noise level is low, the 

RMSE values are smaller for MRM-DWT.  

 

 The UQI values of various multi-channel filters are given in the Table 5.6 and 

Table-5.7 (for RGB-color space) and in Table-5.12 and Table-5.13 (for YCbCr-color 

space). From the tables, it is observed that the MRM-DWT filter is found to be 

effective in terms of UQI under low noise conditions. Under moderate and high noise 

conditions, the UQI values are higher for MCSF. 

 

 Considering the performance measures: CPSNR, RMSE and UQI, it can be 

concluded that the MRM-DWT is efficient in noise suppression under low noise 

conditions, whereas the MCSF filter suppresses additive noise quite effectively under 

moderate and high noise conditions effectively. 

 The filtering performance in terms of method noise is shown in Table-5.14 

(RGB-color space) and Table-5.15 (YCbCr-color space). From these tables, it is 

observed that the method noise is low in case of MRM-DWT and M-LAWML. So, 

these filters yield less distortion to the original noise-free image while filtering  
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operation is done. These tables also illustrate that the performance MCSF in terms of 

method noise is moderate. 

 The execution time (TE) of various filters is shown in Table-5.16 (RGB-color 

space) and Table-5.17 (YCbCr-color space). From these tables it is seen that the 

execution time of MCSF is smaller than other multi-channel filters (except M-MF) 

and is close to the simplest M-MF. 

 The subjective evaluation should also be taken into consideration to judge the 

filtering performance. The filtering performances of various multi-channel filters on a 

smooth region and a complex region of Lena image are shown in the figures:         

Fig. 5.17 to Fig. 5.20. From these figures, it is observed that the wavelet-domain 

multi-channel filter M-LAWML yield a lot of artifacts in the smooth region. The 

other wavelet-domain filter MRM-DWT also yields artifacts but it is less than         

M-LAWML filter. The MCSF does not introduce artifacts in the smooth region. In 

Fig. 5.21, some textures and detailed structures are identified in a complex region. 

From the figure it is seen that the developed filter MCSF retains the detailed 

information and texture effectively as compared to other multi-channel filters. This is 

quite obvious when the regions 5 and 6 are examined in details. Only the proposed 

filter: MCSF is found to be capable of preserving the details in these regions. On the 

other hand, the other two high-performing filters: M-LAWML and MRM-DWT yield 

high blurring in these regions. 

 

 Hence, it is concluded that the proposed filter: MCSF [P6] is found to be a 

high performing filter for suppression of AWGN from color images. 
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Preview 

 

In this thesis, various spatial-domain and transform-domain filters for 

suppression of additive white Gaussian noise (AWGN), available in literature, are 

studied and their performances are analyzed. Considering the limitations of the 

existing filters, efforts have been made to develop two spatial-domain filters: (i) 

adaptive window Wiener filter (AWWF) [P1] and (ii) circular spatial filter (CSF) [P2] 

and three transform-domain filters: (i) Gaussian shrinkage based DCT-domain 

filter  (GS-DCT) [P3], (ii) Total variation based DWT-domain (TV-DWT) filter [P4], 

and Region Merging based DWT-domain (RM-DWT) filter [P5].  The performances of 

the proposed filters are compared with existing spatial-domain and transform-domain 

filters. The objective evaluation metrics: peak-signal-to-noise ratio (PSNR), root-

mean-squared error (RMSE), universal quality index (UQI), method noise (
M
N ) and 

execution time (TE) are considered for comparing their filtering performances.  

In this research work, two multi-channel filters: multi-channel circular spatial 

filter (MCSF) and multi-channel region merging based DWT-domain (RM-DWT) 

filter are developed for suppression of additive noise from color images. The 
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developed filters are based on three-channel processing (e.g., RGB-processing, 

YCbCr-processing, etc.) and hence are necessarily 3-channel CSF and 3-channel RM-

DWT, respectively. The objective evaluation metrics: color-peak-signal-to-noise ratio 

(CPSNR), root-mean-squared error (RMSE), universal quality index (UQI), method 

noise ( MN ) and execution time (TE) are considered for comparing filter performances.  

All the developed filters are compared against some well-known filters 

available in literature. 

 

 

 

 

The following topics are covered in this chapter. 

 

� Comparative Analysis 

� Conclusion 

� Scope for Future Work 

 

 

 

6.1   Comparative Analysis  
 

The filtering performances of developed filters for gray and color images are 

analyzed here. 

 

6.1.1 Comparative Analysis of Developed Filters for Denoising Gray 

Images  

 

The proposed spatial-domain filters and transform-domain filters are simulated 

on test images: Lena, Pepper, Goldhill and Barbara of sizes 512×512 pixels each 

corrupted with AWGN of standard deviation σn = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 

50.  The noise level of AWGN is categorized as low (noise standard deviation, 



 

 

Chapter-6                                                                                                     Conclusion 

 

 

Development of Some Spatial-Domain and Transform-Domain Digital Image Filters                                                214 

σn≤10), moderate (10<σn≤30) and high (30<σn≤50). The proposed filters are 

compared with the existing spatial-domain filters: mean filter, median filter, alpha-

trimmed mean (ATM) filter, Wiener filter, anisotropic diffusion (AD) filter, total 

variation (TV) filter, Lee filter, Bilateral filter and non-local means (NL-Means) filter  

and existing wavelet-domain filters: VisuShrink, SureShrink, BayesShrink, 

OracleShrink, OracleThresh, NeighShrink, SmoothShrink and locally adaptive 

window maximum likelihood (LAWML). To check the filtering performance of the 

proposed filters as well as the existing filters, the performance-measures: PSNR, 

RMSE, UQI, 
M
N and TE are evaluated for all cases. To give a concise presentation of 

all simulation results so as to have a precise comparative study, the performance-

measures of the proposed filters as well as some high-performing existing filters are 

shown in Table-6.1 and Table-6.2 only for three cases of noise level:  σn = 10, σn = 20 

and σn = 40 just to give an insight to low, moderate and high noise power conditions, 

respectively. Here, Lena is taken as test image. 

Table-6.1 shows the performance of the various filters in terms of PSNR, 

RMSE and UQI whereas Table-6.2 shows method noise and execution time of 

different filters. The execution time is evaluated for Pentium IV Duo Processor 

(Clock: 2.8 GHz; RAM: 1 GB; Windows XP 32 bit OS), i.e. the hardware platform: 

SYSTEM-2 presented in Table-1.1, Section-1.5. Since the TV filter is iterative in 

nature, its execution time is necessarily very high and hence is not considered. 

Therefore, it is not included in Table-6.2. 
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Table-6.1: Filtering performance of various filters in terms of PSNR (dB), RMSE and UQI 

operated on Lena image under various noise conditions ( σn = 10, 20 and 40) 

Noise standard deviation, σn 
 

σn = 10 

 

σn = 20 

 
σn = 40 

 

Denoising Filters PSNR RMSE UQI PSNR RMSE UQI PSNR RMSE UQI 

Mean 32.70 5.89 0.9922 29.78 8.26 0.9849 26.96 11.42 0.9700 

ATM 32.71 5.89 0.9922 29.83 8.21 0.9851 27.03 11.34 0.9710 

Wiener 34.01 5.07 0.9943 30.19 7.87 0.9861 26.55 11.98 0.9671 

TV 33.22 5.55 0.9931 30.25 7.82 0.9864 25.85 12.98 0.9633 

Lee 33.47 5.40 0.9936 29.74 8.28 0.9847 26.77 11.67 0.9688 

Bilateral 32.58 5.96 0.9921 29.77 8.26 0.9849 26.71 11.75 0.9686 

BayesShrink 33.64 5.27 0.9938 30.20 7.87 0.9863 27.11 11.24 0.9711 

NeighShrink 34.45 4.81 0.9949 30.11 7.95 0.9861 26.08 12.64 0.9642 

E
x

is
ti

n
g

 F
il

te
rs

 

LAWML 34.59 4.74 0.9950 30.86 7.29 0.9882 27.32 10.86 0.9721 

AWWF 33.36 5.45 0.9934 30.56 7.54 0.9865 26.88 11.52 0.9690 

CSF 32.87 5.78 0.9949 30.31 7.77 0.9866 27.49 10.76 0.9735 

GS-DCT 33.10 5.63 0.9902 30.98 7.19 0.9896 27.10 11.24 0.9720 

TV-DWT 33.76 5.22 0.9936 30.56 7.54 0.9855 26.67 11.80 0.9652 P
ro

p
o

se
d

 F
il

te
rs

 

RM-DWT 34.72 4.66 0.9954 30.22 7.85 0.9815 27.34 10.83 0.9725 
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Table-6.2: Filtering performance various filters  in terms of  Method Noise, 
M
N  and 

Execution Time, TE on Lena image ( σn = 0 and  σn = 40 for first and second column, 

respectively) 

 Denoising Filters Method Noise Execution Time (sec.) 

Mean 2.62 7.20 

ATM  2.62 17.84 

Wiener 1.86 16.14 

TV 2.11 ------- 

Lee 0.0118 15.08 

Bilateral 2.88 13.47 

BayeShrink 0.0232 4.15 

NeighShrink 4.08×10
-10 9.12 

E
x

is
ti

n
g

  
F

il
te

rs
 

LAWML 4.08×10
-10

 8.09 

AWWF  1.83 24.17 

CSF 1.22 7.29 

GS-DCT 0.5737 30.38 

TV-DWT 2.014 0.9375 

P
ro

p
o

se
d

 F
il

te
rs

 

RM-DWT 4.08×10
-10 11.34 
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It is observed that at low noise conditions the proposed filter: RM-DWT 

outperforms all other filters. Its PSNR is 34.72 dB whereas the existing filter 

LAWML gives a PSNR of 34.59 dB for σn = 10.  

Under moderate noise conditions, the proposed filter: GS-DCT gives superior 

performance. The PSNR value of the filter at σn = 20 is 30.98 dB. The PSNR of 

LAWML is very close to GS-DCT with a value of 30.86 dB at σn = 20.  

 

Under high noise conditions, the proposed filter: CSF gives best performance 

among all filters considered here for comparison. It yields a PSNR of 27.49 dB and a 

UQI of 0.9735 at σn = 40 that are best among all other filters considered here.  

 

The method noise of RM-DWT, LAWML and NeighShrink filters are same 

and found to be 4.08×10-10, i.e. quite negligible and hence are best suited for very low 

noise conditions. 

 From Table-6.2 it is observed that the developed filter: TV-DWT takes 

minimum execution time which is found to be 0.9375 sec. However, the developed 

filter: CSF takes execution time of 7.29 sec. which is close to the execution time of 

the simplest mean filter.  
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6.1.2 Comparative Analysis of Developed Filters for Denoising Color 

Images  

The simulation work is performed on color test image Lena (512×512×3 

pixels) and Pepper (512×512×3 pixels) corrupted with AWGN of standard deviation 

σn = 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50. The filtering performances of multi-

channel filters are examined on various color spaces (e.g., RGB, YCbCr, CMY and 

CIE Lab). The filtering performance is compared with multi-channel versions of 

existing filters: (i) mean filter [1] (simplest and oldest filter) and (ii) locally adaptive 

window maximum likelihood (LAWML) filter [105] (best performer among the 

existing wavelet-domain filters examined in Chapter-2). The performance of various 

filters in YCbCr-color space in terms of CPSNR, RMSE and UQI is given in      

Table-6.3. Here color Lena image corrupted with AWGN of σn = 10 (low noise), σn = 

20 (moderate noise) and σn = 40 (high noise) is taken to test the filter performance. 

Table-6.4 shows the method noise and execution time of various filters in YCbCr-

color space operated on Lena image. 
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Table-6.3: Filtering performance of various filters in terms of CPSNR (dB), RMSE and UQI 

operated on Lena image under various noise conditions ( σn = 10, 20 and 40) in YCbCr-color 

space 

  Noise standard deviation, 

σn = 10 σn = 20 σn = 40 

 Denoising 

Filters 

 

CPSNR 

 

RMSE 

 

UQI 

 

CPSNR 

 

RMSE 

 

UQI 

 

CPSNR 

 

RMSE 

 

UQI 

 

M-MF [3×3] 
37.45 3.42 0.9903 34.60 4.74 0.9813        30.03 8.03 0.9475 

 

M-MF [5×5] 
34.37 4.87 0.9799 33.66 5.29 0.9764 31.59 6.71 0.9623 

 

M-MF [7×7] 
32.42 6.10 0.9681 32.17 6.28 0.9663 31.10 7.10 0.9572 

 

M-LAWML[3×3] 
38.97 2.87 0.9945 35.37 4.34 0.9870 31.59 6.71 0.9705 

 

M-LAWML[5×5] 
38.57 3.00 0.9939 34.56 4.77 0.9848 30.08 7.98 0.9577 

E
x

is
ti

n
g

  
F

il
te

rs
 

 

M-LAWML[7×7] 
38.24 3.12 0.9935 33.85 5.17 0.9820 27.93 10.23 0.9280 

 

MCSF [3×3] 
38.64 3.34 0.9908 32.24 6.23 0.9687 26.59 11.94 0.8928 

 

MCSF [5×5] 
37.81 3.27 0.9920 36.17 3.91 0.9871 30.80 7.35 0.9559 

 

MCSF [7×7] 
34.58 4.75 0.9901 33.98 5.09 0.9861 32.04 6.37 0.9727 

P
ro

p
o

se
d

 F
il

te
rs

 

 

MRM-DWT 
39.87 2.58 0.9953 35.08 4.49 0.9832 31.49 6.81 0.9699 
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Table-6.4: Filtering performance various filters  in terms of  Method 

Noise, 
M
N  and Execution Time, TE on Lena image in YCbCr-color space 

  

Denoising Filters 

 

Method Noise 

 

Execution Time 

 

M-MF [3×3] 
2.65 15.64 

 

M-MF [5×5] 
4.46 16.56 

 

M-MF [7×7] 
5.73 17.26 

 

M-LAWML[3×3] 
3.79×10

-10 

24.36 

 

M-LAWML[5×5] 
3.79×10

-10
 25.32 

E
x

is
ti

n
g

  
F

il
te

rs
 

 

M-LAWML[7×7] 
3.79×10

-10
 26.88 

 

MCSF [3×3] 
1.2495 16.01 

 

MCSF [5×5] 
2.754 17.22 

 

MCSF [7×7] 
4.386 18.16 

P
ro

p
o

se
d

 F
il

te
rs

 

 

MRM-DWT 
3.79×10

-10
 29.76 

 

 

 

 From Table-6.3 it is observed that the proposed filter: MRM-DWT performs 

better under low noise conditions whereas MCSF gives better performance under 

moderate and high noise conditions. From Table-6.4 it is seen that the wavelet-

domain filters: MRM-DWT and M-LAWML have lower method noise as compared 

to other methods. The execution time is lowest in case of simplest M-MF. The 

proposed MCSF has got execution time of 16.01 sec. which is close to that of M-MF. 
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6.2   Conclusion 

 

The developed image denoising filters: AWWF [P1], CSF [P2], GS-DCT 

[P3], TV-DWT [P4], RM-DWT [P5] and MCSF [P6] are examined with extensive 

simulation and the results are presented in the tables: Table-6.1 to Table-6.4. 

From the results presented in Table-6.1 it is observed that:  

(i) The RM-DWT filter performs very efficiently for low-noise power; 

(ii) The GS-DCT filter performs very efficiently for moderate-noise power; 

(iii) The CSF filter performs very efficiently for high-noise power 

 

for gray images. This conclusion is derived on the concept of yielding high values of 

PSNR, UQI and low RMSE so that the filtered output contains very low noise power. 

On the other hand, if method noise and execution time parameters are considered, 

then some other filters should be regarded as best performers. Thus, for the online and 

real-time applications that need low 
M
N and TE values, it is observed that:  

(i) The RM-DWT is the best filter yielding minimum method noise; 

(ii) The TV-DWT is the best filter having minimum execution time; 

(iii) The CSF is an excellent filter having moderate values of both 
M
N and TE. 

 

These observations are quite evident from Table-6.2. If an overall comparison is 

drawn amongst all filters against all the performance measures, i.e. to consider the 

noise suppression capability (PSNR, RMSE, UQI) as well as the system-nonlinearity 

(method noise) and the system-complexity (execution time), then, for gray images, it 

is quite obvious that: 

(i) The proposed filter: Circular Spatial Filter (CSF) [P2] is the best 

performing filter under moderate and high noise conditions.  

(ii) The proposed filter: RM-DWT [P5] is the best filter under low noise 

conditions. 
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It is observed from Table-6.3 that:  

(i) The MRM-DWT performs well under low noise conditions;  

(ii) The MCSF performs well under moderate and high noise conditions  

for suppressing additive noise for color images. 

The results presented in Table-6.4 show that the multi-channel version of the 

existing scheme: LAWML, i.e. M-LAWML yields minimal method noise and is thus 

seen to be a very good candidate for color image denoising applications under very 

low noise conditions. Of course, it does not have high significance since the noise 

power level in practical situation is seldom so low. 

 

 

Finally, it may be concluded that the proposed filter:  CSF [P2] and its 

multi-channel version: MCSF [P6] are the best performers considering all 

performance measures. 

 

 

6.3   Scope for Future Work 

 

Some new directions of research in the field of image denoising are not yet 

fully explored. There is sufficient scope to develop very effective filters in the 

directions mentioned below. 

(a) Fuzzy logic and neural network may be employed for optimizing the tuning 

parameters needed in the different filters. 

(b) The widow size of different filters can be made adaptive for efficient 

denosing. The shape of the window can also be varied and made adaptive to 

develop very effective filters. 

(c) Some other transforms such as DHT, curvelet and slantlet can be used for 

image denoising.  

(d) Very few filters are developed based on blind techniques. Independent 

component analysis can be a very good candidate for blind denoising.  
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