11,482 research outputs found

    Petrologic evidence for earliest Miocene tectonic mobility on eastern Taranaki Basin margin

    Get PDF
    At Gibsons Beach on the west coast of central North Island, the earliest Miocene (Waitakian) Otorohanga Limestone, the top-most formation in the Te Kuiti Group, is unconformably overlain on an undulating, locally channelised erosion surface by the Early Miocene (Otaian) Papakura Limestone at the base of the Waitemata Group. The basal facies of the Papakura Limestone is a conglomerate composed exclusively of tightly packed pebble- to cobble-sized clasts of skeletal limestone sourced from the underlying Otorohanga Limestone. This petrographic and geochemical study demonstrates that the Otorohanga Limestone was partially lithified during marine and shallow-burial cementation at subsurface depths down to a few tens of metres prior to uplift, erosion and cannibalisation of the limestone clasts into the Papakura Limestone. Strontium isotope dating of fossils from both the Otorohanga and Papakura Limestones at Gibsons Beach yield comparable ages of about 22 Ma, close to the Waitakian/Otaian boundary, indicating very rapid tectonic inversion and erosion of the section occurred in the earliest Miocene. We envisage the clasts of Otorohanga Limestone were sourced from a proximal shoreline position and redeposited westwards by episodic debris flows onto a shallow-shelf accumulating mixed siliciclastic-skeletal carbonate deposits of the Papakura Limestone. Subsequent burial of both limestones by rapidly accumulating Waitemata Group sandstone and flysch instigated precipitation of widespread burial cements from pressure dissolution of carbonate material at subsurface depths from about 100 m to 1.0 km. The vertical tectonic movements registered at Gibsons Beach can be related to the oblique compression associated with the development of the Australian-Pacific plate boundary through New Zealand at about this time and coincide with overthrusting of basement into Taranaki Basin between mid-Waitakian (earliest Miocene) and Altonian (late Early Miocene) times

    Stratigraphy, facies and geodynamic settings of Jurassic formations in the Bükk Mountains, North Hungary: its relations with the other areas of the Neotethyan realm.

    Get PDF
    Jurassic mélange complexes related to the subduction of the Neotethys Ocean occur in the Bükk Mountains, North Hungary. This paper characterizes the sedimentary sequence of basin and slope facies that occur in the southwestern part of the Bükk Mountains, placing special emphasis on the redeposited sedimentary rocks (olistostromes, olistoliths: Mónosbél Group) in order to obtain information on the provenance of the clasts, and the mode and time of their redeposition. The series of formations studied shows a general coarsening-upwards trend. Based on radiolarians and foraminifera, the Mónosbél Group formed in Early to Late Bathonian time. The lower part of the complex is typified by a predominance of pelagic carbonates, shale and radiolarite with andesitic volcaniclastic intercalations. The higher part of the succession is characterized by polymictic olistostromes. Large olistoliths that are predominantly blocks of Bathonian shallow marine limestone (Bükkzsérc Limestone) appear in the upper part of the sequence. Based on the biostratigraphic and sedimentological data, results of analyses of the redeposited clasts and taking into consideration the concepts of the development of the western Neotethys domain, the evolutionary stages of the sedimentary basins were defined. The onset of the compressional stage led to initiation of nappe stacking that led to the formation of polymict olistostromes and then to the redeposition of large blocks derived from out-of-sequence nappes of the former platform foreland

    The early Pliocene Titiokura Formation: stratigraphy of a thick, mixed carbonate-siliciclastic shelf succession in Hawke's Bay Basin, New Zealand

    Get PDF
    This paper presents a systematic stratigraphic description of the architecture of the early Pliocene Titiokura Formation (emended) in the Te Waka and Maungaharuru Ranges of western Hawke's Bay, and presents a facies, sequence stratigraphic, and paleoenvironmental analysis of the sedimentary succession. The Titiokura Formation is of early Pliocene (Opoitian-Waipipian) age, and unconformably overlies Mokonui Formation, which is a regressive late Miocene and early Pliocene (Kapitean to early Opoitian) succession. In the Te Waka Range and the southern parts of the Maungaharuru Range, the Titiokura Formation comprises a single limestone sheet 20-50 m thick, with calcareous sandstone parts. In the vicinity of Taraponui Trig, and to the northeast, the results of 1:50 000 mapping show that the limestone gradually partitions into five members, which thicken markedly to the northeast to total thicknesses of c. 730 m, and concomitantly become dominated by siliciclastic sandstone. The members (all new) from lower to upper are: Naumai Member, Te Rangi Member, Taraponui Member, Bellbird Bush Member, and Opouahi Member. The lower four members are inferred to each comprise an obliquity-controlled 41 000 yr 6th order sequence, and the Opouahi Member at least two such sequences. The sequences typically have the following architectural elements from bottom to top: disconformable sequence boundary that formed as a transgressive surface of erosion; thin transgressive systems tracts (TSTs) with onlap and backlap shellbeds, or alternatively, a single compound shellbed; downlap surface; and very thick (70-200 m) highstand (HST) and regressive systems tracts (RST) composed of fine sandstone. The sequences in the Opouahi Member have cryptic TSTs, sandy siltstone to silty sandstone HSTs, and cross-bedded, differentially cemented, fine sandstone RSTs; a separate variant is an 11 m thick bioclastic limestone (grainstone and packstone) at the top of the member that crops out in the vicinity of Lake Opouahi. Lithostratigraphic correlations along the crest of the ranges suggest that the Titiokura Formation, and its correlatives to the south around Puketitiri, represent a shoreline-to-shelf linked depositional system. Carbonate production was focused around a rocky seascape as the system onlapped basement in the south, with dispersal and deposition of the comminuted carbonate on an inner shelf to the north, which was devoid of siliciclastic sediment input. The rates of both subsidence and siliciclastic sediment flux increased rapidly to the northeast of the carbonate "platform", with active progradation and offlap of the depositional system into more axial parts of Hawke's Bay Basin

    Early Neoproterozoic limestones from the Gwna Group, Anglesey

    Get PDF
    Limestone megaclasts up to hundreds of metres in size are present within the Gwna Group mélange, North Wales, UK. The mélange has been interpreted as part of a Peri-Gondwanan fore-arc accretionary complex although the age of deposition remains contentious, proposals ranging from Neoproterozoic to Early Ordovician. This paper uses strontium isotope chemostratigraphy to establish the age of the limestone blocks and thus provide a maximum age constraint on mélange formation. Results show that, although the carbonates are locally dolomitized, primary 87Sr/86Sr ratios can be identified and indicate deposition sometime between the late Tonian and earliest Cryogenian. This age is older than that suggested by stromatolites within the limestone and indicates that the limestone did not form as cap carbonate deposits

    Mangarara Formation: exhumed remnants of a middle Miocene, temperate carbonate, submarine channel-fan system on the eastern margin of Taranaki Basin, New Zealand

    Get PDF
    The middle Miocene Mangarara Formation is a thin (1–60 m), laterally discontinuous unit of moderately to highly calcareous (40–90%) facies of sandy to pure limestone, bioclastic sandstone, and conglomerate that crops out in a few valleys in North Taranaki across the transition from King Country Basin into offshore Taranaki Basin. The unit occurs within hemipelagic (slope) mudstone of Manganui Formation, is stratigraphically associated with redeposited sandstone of Moki Formation, and is overlain by redeposited volcaniclastic sandstone of Mohakatino Formation. The calcareous facies of the Mangarara Formation are interpreted to be mainly mass-emplaced deposits having channelised and sheet-like geometries, sedimentary structures supportive of redeposition, mixed environment fossil associations, and stratigraphic enclosure within bathyal mudrocks and flysch. The carbonate component of the deposits consists mainly of bivalves, larger benthic foraminifers (especially Amphistegina), coralline red algae including rhodoliths (Lithothamnion and Mesophyllum), and bryozoans, a warm-temperate, shallow marine skeletal association. While sediment derivation was partly from an eastern contemporary shelf, the bulk of the skeletal carbonate is inferred to have been sourced from shoal carbonate factories around and upon isolated basement highs (Patea-Tongaporutu High) to the south. The Mangarara sediments were redeposited within slope gullies and broad open submarine channels and lobes in the vicinity of the channel-lobe transition zone of a submarine fan system. Different phases of sediment transport and deposition (lateral-accretion and aggradation stages) are identified in the channel infilling. Dual fan systems likely co-existed, one dominating and predominantly siliciclastic in nature (Moki Formation), and the other infrequent and involving the temperate calcareous deposits of Mangarara Formation. The Mangarara Formation is an outcrop analogue for middle Miocene-age carbonate slope-fan deposits elsewhere in subsurface Taranaki Basin, New Zealand

    Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke's Bay, New Zealand

    Get PDF
    Pliocene limestone formations in central Hawke's Bay (eastern North Island, New Zealand) accumulated on and near the margins of a narrow forearc basin seaway within the convergent Australia/Pacific plate boundary zone. The active tectonic setting and varied paleogeographic features of the limestone units investigated, in association with probable glacioeustatic sea-level fluctuations, resulted in complex stratigraphic architectures and contrasting types of carbonate accumulation on either side of the seaway. Here, we recognise recurring patterns of sedimentary facies, and sequences and systems tracts bounded by key physical surfaces within the limestone sheets. The facies types range from Bioclastic (B) to Siliciclastic (S) end-members via Mixed (M) carbonate-siliciclastic deposits. Skeletal components are typical cool-water associations dominated by epifaunal calcitic bivalves, bryozoans, and especially barnacles. Siliciclastic contents vary from one formation to another, and highlight siliciclastic-rich limestone units in the western ranges versus siliciclastic-poor limestone units in the eastern coastal hills. Heterogeneities in facies types, stratal patterns, and also in diagenetic pathways between eastern and western limestone units are considered to originate in the coeval occurrence in different parts of the forearc basin of two main morphodynamic carbonate systems over time

    Sedimentology of the Triassic–Jurassic boundary beds in Pinhay Bay (Devon, SW England)

    Get PDF
    Sedimentology of the Triassic–Jurassic boundary beds in Pinhay Bay(Devon, SW England). Proceedings of the Geologists’ Association, 112. 349–360. New exposures in Pinhay Bay (SE Devon) of the White Lias (Langport Member of the Lilstock Formation)and basal Blue Lias reveal rapidly changing palaeoenvironments during the Triassic–Jurassic(T–J) boundary interval. During deposition of the topmost White Lias a soft seafloor of micritic mudstone was lithified and bored. The resultant hardground was locally eroded, probably in a shallow marine setting, to form a spectacular intraformational conglomerate that was itself lithified. Brief subaerial emergence then followed and produced a fissured and pitted top surface to the White Lias. The regression was short lived and rapid transgression at the base of the Blue Lias established organic-rich shale deposition with a small framboidal pyrite population and low Th/U ratios indicative of a stable, sulphidic lower water column (euxinic conditions). The White Lias/Blue Lias contact thus records a short duration, high amplitude relative sea-level change. This sea-level oscillation has also been postulated for other T–J boundary sections in Europe, although the failure to identify it in regional-scale sequence stratigraphic studies is probably due to its brief duration. Deposition of the basal beds of the Blue Lias was marked by a discrete phase of syn-sedimentary folding and small growth fault activity that may record a regional pulse of extensional tectonic activity

    Detrital-zircon geochronology and provenance of the Ocloyic synorogenic clastic wedge, and Ordovician accretion of the Argentine Precordillera terrane

    Get PDF
    The Precordillera terrane in northwestern Argentina is interpreted to be anexotic (Laurentian) continental fragment that was accreted to western Gondwanaduring the Ordovician. One prominent manifestation of the subductionand collision process is a Middle?Upper Ordovician clastic wedge, which overliesa passive-margin carbonate-platform succession in the Precordillera. U/Pbages of detrital zircons from sandstones within the clastic wedge, as well as zirconsfrom clasts within conglomerates, provide documentation for the compositionof the sediment provenance. The ages of detrital zircons are consistentvertically through the succession, as well as laterally along and across strike ofthe Precordillera, indicating a single, persistent sediment source throughoutdeposition of the clastic wedge. The dominant mode (~1350?1000 Ma) of thedetrital-zircon ages corresponds to the ages of basement rocks in the WesternSierras Pampeanas along the eastern side of the Precordillera. A secondarymode (1500?1350 Ma) corresponds in age to the Granite-Rhyolite province ofLaurentia, an age range which is not known in ages of basement rocks of theWestern Sierras Pampeanas; however, detritus from Granite-Rhyolite-age rocksin the basement of the Precordillera was available through recycling of synriftand passive-margin cover strata. Igneous clasts in the conglomerates haveages (647?614 Ma) that correspond to the ages of minor synrift igneous rocks inthe nearby basement massifs; the same ages are represented in a minor mode(~750?570 Ma) of detrital-zircon ages. A quartzite clast in a conglomerate, aswell as parts of the population of detrital zircons, indicates the importanceof a source in the metasedimentary cover of the leading edge of the Precordillera.The Famatina continental-margin magmatic arc reflects pre-collisionsubduction of Precordillera lithosphere beneath the western Gondwana margin;however, no detrital zircons have ages that correspond to Famatina arcmagmatism, indicating that sedimentary detritus from the arc may have beentrapped in a forearc basin and did not reach the foreland. The indicators ofsedimentary provenance for the foreland deposits are consistent with subductionof the Precordillera beneath western Gondwana, imbrication of basementrocks from either the Precordillera or Gondwana into an accretionary complex,and recycling of deformed Precordillera cover rocks.Fil: Thomas, William A.. Geological Survey of Alabama; Estados UnidosFil: Astini, Ricardo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Mueller, Paul A.. Florida State University; Estados UnidosFil: McClelland, William C.. University of Iowa; Estados Unido

    The laurentian record of neoproterozoic glaciation, tectonism, and eukaryotic evolution in Death Vally, California

    Get PDF
    Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and glacial deposits that have been used to assess the severity of putative Snowball Earth events and the biological response to extreme environmental change. These successions also contain evidence for syn-sedimentary faulting that has been related to the rifting of Rodinia, and in turn the tectonic context of the onset of Snowball Earth. These interpretations hinge on local geological relationships and both regional and global stratigraphic correlations. Here we present new geological mapping, measured stratigraphic sections, carbon and strontium isotope chemostratigraphy, and micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death Valley. These new data enable us to refine regional correlations both across Death Valley and throughout Laurentia, and construct a new age model for glaciogenic strata and microfossil assemblages. Particularly, our remapping of the Kingston Peak Formation in the Saddle Peak Hills and near the type locality shows for the first time that glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in southeastern Death Valley, and that beds containing vase-shaped microfossils are slump blocks derived from the underlying strata. These slump blocks are associated with multiple overlapping unconformities that developed during syn-sedimentary faulting, which is a common feature of Cyrogenian strata along the margin of Laurentia from California to Alaska. With these data, we conclude that all of the microfossils that have been described to date in Neoproterozoic strata of Death Valley predate the glaciations and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth events

    Provenance and Paleogeography of the 25-17 Ma Rainbow Gardens Formation: Evidence for Tectonic Activity at Ca. 19 Ma and Internal Drainage rather than Throughgoing Paleorivers on the Southwestern Colorado Plateau

    Get PDF
    The paleogeographic evolution of the Lake Mead region of southern Nevada and northwest Arizona is crucial to understanding the geologic history of the U.S. Southwest, including the evolution of the Colorado Plateau and formation of the Grand Canyon. The ca. 25–17 Ma Rainbow Gardens Formation in the Lake Mead region, the informally named, roughly coeval Jean Conglomerate, and the ca. 24–19 Ma Buck and Doe Conglomerate southeast of Lake Mead hold the only stratigraphic evidence for the Cenozoic pre-extensional geology and paleogeography of this area. Building on prior work, we present new sedimentologic and stratigraphic data, including sandstone provenance and detrital zircon data, to create a more detailed paleogeographic picture of the Lake Mead, Grand Wash Trough, and Hualapai Plateau region from 25 to 18 Ma. These data confirm that sediment was sourced primarily from Paleozoic strata exposed in surrounding Sevier and Laramide uplifts and active volcanic fields to the north. In addition, a distinctive signal of coarse sediment derived from Proterozoic crystalline basement first appeared in the southwestern corner of the basin ca. 25 Ma at the beginning of Rainbow Gardens Formation deposition and then prograded north and east ca. 19 Ma across the southern half of the basin. Regional thermochronologic data suggest that Cretaceous deposits likely blanketed the Lake Mead region by the end of Sevier thrusting. Post-Laramide northward cliff retreat off the Kingman/Mogollon uplifts left a stepped erosion surface with progressively younger strata preserved northward, on which Rainbow Gardens Formation strata were deposited. Deposition of the Rainbow Gardens Formation in general and the 19 Ma progradational pulse in particular may reflect tectonic uplift events just prior to onset of rapid extension at 17 Ma, as supported by both thermochronology and sedimentary data. Data presented here negate the California and Arizona River hypotheses for an “old” Grand Canyon and also negate models wherein the Rainbow Gardens Formation was the depocenter for a 25–18 Ma Little Colorado paleoriver flowing west through East Kaibab paleocanyons. Instead, provenance and paleocurrent data suggest local to regional sources for deposition of the Rainbow Gardens Formation atop a stripped low-relief western Colorado Plateau surface and preclude any significant input from a regional throughgoing paleoriver entering the basin from the east or northeast
    corecore