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Gardens Formation: Evidence for tectonic activity at ca. 19 Ma and 
internal drainage rather than throughgoing paleorivers on the 
southwestern Colorado Plateau
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ABSTRACT

The paleogeographic evolution of the Lake Mead region of southern Ne-
vada and northwest Arizona is crucial to understanding the geologic history 
of the U.S. Southwest, including the evolution of the Colorado Plateau and 
formation of the Grand Canyon. The ca. 25–17 Ma Rainbow Gardens Formation 
in the Lake Mead region, the informally named, roughly coeval Jean Conglom-
erate, and the ca. 24–19 Ma Buck and Doe Conglomerate southeast of Lake 
Mead hold the only stratigraphic evidence for the Cenozoic pre-extensional 
geology and paleogeography of this area. Building on prior work, we present 
new sedimentologic and stratigraphic data, including sandstone provenance 
and detrital zircon data, to create a more detailed paleogeographic picture of 
the Lake Mead, Grand Wash Trough, and Hualapai Plateau region from 25 to 
18 Ma. These data confirm that sediment was sourced primarily from Paleo-
zoic strata exposed in surrounding Sevier and Laramide uplifts and active vol-
canic fields to the north. In addition, a distinctive signal of coarse sediment 
derived from Proterozoic crystalline basement first appeared in the south-
western corner of the basin ca. 25 Ma at the beginning of Rainbow Gardens 
Formation deposition and then prograded north and east ca. 19 Ma across the 
southern half of the basin. Regional thermochronologic data suggest that Cre-
taceous deposits likely blanketed the Lake Mead region by the end of Sevier 
thrusting. Post-Laramide northward cliff retreat off the Kingman/Mogollon 
uplifts left a stepped erosion surface with progressively younger strata pre-
served northward, on which Rainbow Gardens Formation strata were depos-
ited. Deposition of the Rainbow Gardens Formation in general and the 19 Ma 
progradational pulse in particular may reflect tectonic uplift events just prior 
to onset of rapid extension at 17 Ma, as supported by both thermochronology 
and sedimentary data. Data presented here negate the California and Arizona 

River hypotheses for an “old” Grand Canyon and also negate models wherein 
the Rainbow Gardens Formation was the depocenter for a 25–18  Ma Little 
Colorado paleoriver flowing west through East Kaibab paleocanyons. Instead, 
provenance and paleocurrent data suggest local to regional sources for depo-
sition of the Rainbow Gardens Formation atop a stripped low-relief western 
Colorado Plateau surface and preclude any significant input from a regional 
throughgoing paleoriver entering the basin from the east or northeast.

INTRODUCTION

The Lake Mead region (Figs. 1 and 2) contains the eastern limit of Sevier 
thrusting and the eastern portion of central Basin and Range extension of Mio-
cene age. Situated north of the Colorado River extensional corridor, west of 
the Colorado Plateau and Grand Canyon, and south of the northern Basin and 
Range (central Nevada), the geology of the Lake Mead region is well poised 
to inform tectonic models of extension as well as regional paleogeographic 
reconstructions and landscape evolution models. Sedimentary deposits of the 
ca. 25 Ma to ca. 17 Ma late Oligocene–early Miocene Rainbow Gardens For-
mation east of Las Vegas—formerly the lowest member of the Horse Spring 
Formation—have been interpreted as predating the onset of extension in the 
central Basin and Range, whereas the younger Horse Spring Formation re-
cords the main phase of extension from ca. 17 to 12  Ma (Bohannon, 1984; 
Beard, 1996; Lamb et al., 2005). Lamb et al. (2015) presented sedimentologic, 
stratigraphic, geochronologic, isotopic, and geochemical data to reconstruct 
the Rainbow Gardens Formation basin and its paleogeography throughout its 
formation and evolution. They concluded that the basin formed prior to exten-
sion and received sediment from local Paleozoic and Mesozoic units, as well as 
volcanic input from the Caliente and Kane Wash volcanic centers to the north. 
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Figure 1. Map of the Lake Mead and Grand 
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Virgin River drainage; dashed black lines 
indicate state boundaries (AZ—Arizona, 
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They hypothesized that the southern part of the basin may contain a record of 
an earlier onset of extension or uplift related to volcanism south of Lake Mead. 
For this study, we had three goals: (1) to better define the paleogeography of 
the southern part of the basin and surrounding region, (2) to test the hypoth-
esis of Lamb et al. (2015) that extension began in the southeastern Lake Mead 
region by ca. 19 Ma and may have created an unconformity within the Rain-
bow Gardens Formation, and (3) to further examine how the Rainbow Gardens 
Formation stratigraphic record informs the formation of the Grand Canyon de-
bate and test the hypothesis that the Rainbow Gardens Formation basin was 
a sink for Little Colorado paleoriver sediment (Fig. 1; Karlstrom et al., 2014).

Goal 1: Better Define the Paleogeography of the Southern Part 
of the Basin and Surrounding Region

Lamb et al. (2015) determined that the Rainbow Gardens Formation basin 
began as an east-northeast–trending valley formed by the inherited topogra-
phy of Sevier and Laramide highlands to the north, west, and south and a 
subtle, low-relief boundary to the east. They concluded that, for much of the 
Cenozoic, the valley was a zone of bypass to the northeast for sediment eroded 
off the nearby topographic highs, but that uplift to the northeast triggered the 
initiation of deposition of sediment around 26 Ma, as first suggested by Beard 
(1996). Lamb et al. (2015) presented paleogeographic diagrams showing the 
basin configuration and focused on the basin fill (their figures 12 and 13), in-
cluding the deposition of fluvial volcaniclastic sediments from the volcanic 
fields to the northeast. They also indicated that the nature of southwest margin 
was obscure (their figure 12).

Goal 2: Test the Hypothesis that Extension Began in the 
Southern Lake Mead Region by ca. 19 Ma

Lamb et al. (2015) hypothesized that the southern margin of the Rainbow 
Gardens Formation basin might contain a previously unrecognized uncon-
formity that could signify uplift to the south and/or an earlier start to exten-
sion, around 19 Ma. They cited the abrupt progradation of coarse clastics into 
the basin during the middle of Rainbow Gardens Formation deposition, at ca. 
19 Ma, as well as an apparent thinning to the south of a stratigraphic package 
immediately above this coarse unit, during the latter half of deposition, as evi-
dence of a possible earlier start to extension. Thermochronologic data may 
support this idea, as these data indicate cooling related to tectonic exhumation 
was clearly under way by ca. 17 Ma in the eastern Lake Mead area, but may 
have begun at 20–19 Ma (e.g., Fitzgerald et al., 1991, 2009; Reiners et al., 2000; 
Quigley et al., 2010). Fitzgerald et al. (2009) documented a thermal history for 
the Gold Butte and White Hills area that begins with Laramide cooling starting 
ca. 75 Ma and transitions to rapid cooling beginning ca. 17 Ma at Gold Butte 
and at 18 Ma in the White Hills. Because these dates reflect cooling through the 

partial annealing zone, Fitzgerald et al. (2009) indicated that the ages may un-
derestimate the onset of cooling by 1–2 m.y. or more, meaning cooling could 
have begun ca. 20–19 Ma. Quigley et al. (2010) found that apatite fission-track 
ages and track length measurements revealed a transition from slow cooling 
beginning 30–26 Ma to rapid cooling at ca. 17 Ma.

Goal 3: Examine How the Rainbow Gardens Formation Stratigraphic 
Record Informs the Debate about the Formation of the Grand Canyon

Karlstrom et al. (2013) summarized generally accepted ideas on the evolu-
tion and integration of the Colorado River system and enumerated the many 
specific controversies related to the Colorado River and carving of the Grand 
Canyon and (e.g., Wernicke, 2011; Flowers et al., 2008; Flowers and Farley, 2012; 
Karlstrom et al., 2013, 2014; Lee et al., 2013). Most researchers agree that during 
the Late Cretaceous and Early Cenozoic, rivers, sourced from Lara mide uplifts, 
flowed north and northeast across the Colorado Plateau and may have flowed 
along Laramide fault-bounded uplifts (Karlstrom et  al., 2014), and along the 
front of the Sevier thrust belt (Dickinson et al., 2012), possibly to depo centers 
in the Uinta basins (Davis et al., 2010). During this time, the southwestern Colo-
rado Plateau was beveled into a complex erosion surface, where Paleozoic units 
dipped north with NW-striking contacts (Fig. 2). Regional base level and peri-
odic aggradation on the Hualapai Plateau from the time of the 65–55 Ma Music 
Mountain Formation through the 24–19 Ma Buck and Doe Formation, to younger 
than ca. 19 Ma (Coyote Springs Formation), have been cited as incompatible 
with any deep paleocanyon of near-modern depth during this time (Young and 
Crow, 2014). Establishment of the modern southwest-flowing Colo rado River 
by 6–5 Ma is supported by many workers (e.g., Young 1979, 1999, 2001; Young 
and Hartman, 2014; Winn et al., 2017). Karlstrom et al. (2014) discussed the five 
separate segments of the modern Grand Canyon (Fig. 1) and concluded that 
the westernmost Grand Canyon segment, closest to Lake Mead, formed after 
6  Ma. They (and Lee et  al., 2013) suggested that the eastern Grand Canyon 
segment was partially carved across the Kaibab Plateau between 25 and 15 Ma, 
likely by the paleo–Little Colorado River (Karlstrom et  al., 2017), which then 
flowed northwest and deposited sedi ment into the Lake Mead area basins from 
the north (Fig. 1). If so, deposits of the pre-and synextensional basins should 
contain evidence of derivation from distal parts of the Colorado Plateau. The 
Lake Mead region lies immediately adjacent to the mouth of the Grand Canyon 
where it emerges from the Colorado Plateau (Figs. 1 and 2), and river incision 
has exposed pre- and synextensional basin sediments that bracket much of the 
time involved in the Grand Canyon controversy (e.g., Peder son, 2008). Thus, 
these basins are well positioned to test the hypothesis that the Lake Mead re-
gion was a sump for sediment originating from a river that carved the eastern 
Grand Canyon segment during the Miocene and emptied into the Rainbow Gar-
dens Formation basin from the northeast (e.g., Karlstrom et al., 2014, 2017; Figs. 
1 and 2). Lamb et al. (2015) concluded that Colorado Plateau paleorivers did not 
empty into the Lake Mead region ca. 25–18 Ma, based on stratigraphic correla-
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tions, paleocurrent data, and detailed facies documentation, and we support 
and build on that work here.

In this study, we present new sandstone provenance and stratigraphic data 
as well as detrital zircon analyses from the Rainbow Gardens Formation and 
correlative Oligocene–Miocene units to the south of Lake Mead to address 
these goals. We better define the southern basin configuration and sediment 
source and pathways of the Rainbow Gardens Formation, further address the 
time of initiation of extension, and further test the hypothesis that the Rainbow 
Gardens Formation basin was a possible sink for Little Colorado paleoriver 
sediment between 25 and 17 Ma.

BACKGROUND GEOLOGY

The Lake Mead region records several major events within the complex 
geologic history of the U.S. Southwest. Proterozoic crystalline basement, i.e., 
plutonic and metamorphic rocks, exposed south of Lake Mead record the 
 suture between the Mojave and Yavapai crustal provinces and the growth of 
the continent (Fig. 2; Bennett and DePaolo, 1987; Duebendorfer et al., 2001). 
Paleozoic sedimentary units that thicken toward the west from the Grand Can-
yon to west of Las Vegas record passive-margin deposition, whereas Meso-
zoic strata mark the transition to a nonmarine setting (e.g., Beard et al., 2007). 
Cretaceous Sevier thrusting north and west of Lake Mead subsequently placed 
Paleozoic carbonates over Mesozoic rocks (e.g., Wernicke et al., 1988). Lara-
mide deformation produced the Kingman Uplift (originally called the Kingman 
Arch) south of Lake Mead and west of the Colorado Plateau (Figs. 1 and 2; 
Bohannon, 1984; Faulds et al., 2001; Beard and Faulds, 2011), roughly coinci-
dent spatially with the Miocene northern Colorado River extensional corridor. 
These Mesozoic and early Cenozoic contractional events created highlands 
in the Lake Mead and Lower Colorado River area, with river systems that 
flowed northeast and carved canyons across what is now the Grand Canyon 
region (Young and Hartman, 2014; Young and Crow, 2014). Contraction was 
followed by a period of tectonic quiescence and erosion that stripped much of 
the Paleozoic and Mesozoic strata. South of Lake Mead, these Phanero zoic de-
posits were completely eroded from the Kingman Uplift, exposing Proterozoic 
basement, and sediment derived from this erosion was deposited across the 
southwestern Colorado Plateau (Young, 1999). These deposits are preserved 
in paleocanyons as the Paleocene–Eocene Music Mountain Formation (Fig. 1; 
Young, 1999; Young and Hartman, 2014; Young and Crow, 2014). Although 
similar drainage systems may have also flowed northeast across the Lake 
Mead region and into southwest Utah, there is no Paleocene–Eocene strati-
graphic record.

On the north and east flanks of the Kingman Uplift, erosion created a 
fairly low-relief, beveled surface across gently north- and northeast-dipping 
Paleozoic and Mesozoic strata (Bohannon, 1984) with one notable exception. 
A distinctive paleotopographic barrier resulted from a south- to southwest-fac-
ing scarp (hachured line on Fig. 1) formed by the resistant Permian Kaibab 

and Toroweap Formations. This escarpment retreated north and northeast by 
under cutting of the soft, underlying Permian Hermit Formation (e.g., Lucchitta, 
1966; Young, 1985, Lucchitta and Young, 1986; Beard, 1996; Faulds et al., 2001).

The latest Oligocene to early Miocene transition from tectonic quiescence 
to extension included volcanic activity to the north and south of the Lake Mead 
region, with concomitant deposition of sedimentary units, the first preserved 
in the Lake Mead region after the long period of erosion. To the north of the 
Lake Mead region, the Caliente caldera complex produced several major silicic 
eruptions from 24 to 18.5 Ma (Fig. 1; Best et al., 2013). To the south, volcanism 
began around 22 Ma (south of Kingman in Fig. 1) and migrated northward 
through time (Faulds et al., 2001). The Rainbow Gardens Formation, along the 
north flank of the uplift, extends from the Rainbow Gardens Recreation Area 
east of Las Vegas to just east of the Nevada-Arizona border (Figs. 1–3; Bohan-
non, 1984; Beard, 1996; Lamb et al., 2015). The deposits are only found north of 
the Permian escarpment that retreated off the Kingman Uplift and only on rocks 
of Permian age and younger. They contain volcanic tuffs and detritus from the 
Caliente volcanic field that help bracket its age between ca. 25 to ca. 18 Ma, but 
it may be as young at ca. 17 Ma (Beard, 1996; Umhoefer et al., 2010). The Rain-
bow Gardens Formation (Fig. 3) records basin filling that is similar throughout 
its outcrop belt. It includes a basal clast-supported alluvial conglomerate (Trc), 
a mixed-lithology middle unit (Trm), which includes fluvial siliciclastics as well 
as palustrine and lacustrine carbonate and evaporite deposits, and a capping 
resistant carbonate unit (Trl) that principally is composed of massive limestone 
beds formed in shallow lakes and marshy environments (Fig. 3).

Oligocene–Lower Miocene sedimentary rocks south of Lake Mead are 
dominantly alluvial sandstones and conglomerate. These southern deposits 
also predate extension, were likely deposited across the Kingman Uplift, and 
are now preserved only on its flanks. They include (1) the Jean Conglomerate 
(Hanson, 2008) and other nearby conglomeratic units in unconformable con-
tact on the Pennsylvanian–Permian Bird Spring Formation (House et al., 2006; 
Garside et al., 2012; Hinz et al., 2015), (2) the McCullough Spring Conglomer-
ate in the McCullough Mountains and Lucy Gray Range (Herrington, 1993), 
(3) various arkosic sandstones and conglomerates (informally called “the basal 
arkose”) in the interior part of the Kingman Uplift south of Lake Mead (e.g., 
Anderson, 1978; Faulds, 1996; Faulds et al., 2001), and (4) the Buck and Doe 
Conglomerate along the western margin of the Colorado Plateau to the east of 
the uplift (Young and Crow, 2014). The Buck and Doe Conglomerate contains 
a 24 Ma tuff (Young and Crow, 2014); the other deposits are only bracketed by 
overlying ca. 20 Ma to 18.5 Ma Miocene volcanic rocks.

According to Faulds et al. (2001), east-west extension that formed the north-
ern Colorado River extensional corridor followed inception of magmatism by 
1–4 m.y., with the peak of extension migrating northward toward Lake Mead 
from ca. 16.5 to 15.5 Ma. They suggested mild north-south extension between 
ca. 20 and 16 Ma that preceded the main period of extension and attributed 
this to southerly collapse of the remnant Kingman Uplift topography into the 
northward-migrating extensional terrane. Major east-west extension in the Lake 
Mead area began ca. 17 Ma, peaked ca. 15 Ma, and continued until at least 10 Ma.  
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1–30 m
Basal clast-rich conglomerate of 
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5–165 m 
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characterized by 
mudstones, sandstones, 
tu�s, tu�aceous 
sandstones, limestone and 
minor evaporite beds.  
Varies from location to 
location. 
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20–60 m
Pedogenically altered limestones

Rainbow Gardens Formation

Pre-Tertiary Rocks: 
Paleozoic and Mesozoic strata

Trl

TrmTrc

Trl

Trm

Trc

A

B

Figure 3. Stratigraphy of the Rainbow Gardens Formation. (A) Simplified schematic stratigraphic 
column of the Rainbow Gardens Formation with radiometric age data from Lamb et  al. (2015). 
(B) Photo of the Rainbow Gardens Formation from the Rainbow Gardens Recreation Area. Bushes 
in foreground are 30–40 cm high. Ridge in background is ~30 m high. Trl—Rainbow Gardens Forma-
tion upper limestone unit; Trm—Rainbow Gardens Formation middle unit; Trc—Rainbow Gardens 
Formation basal conglomerate.
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This foundering of the central Basin and Range relative to the adjacent Colo-
rado Plateau resulted in the development of numerous basins (e.g., Wernicke 
et al., 1988; Duebendorfer et al., 1998; Fryxell and Duebendorfer, 2005; Um-
hoefer et al., 2010). Filling of extensional basins is recorded by the 17 Ma to 
13  Ma Horse Spring Formation (Bohannon, 1984; Beard, 1996; Lamb et  al., 
2005). The Muddy Creek Formation, and the informal red sandstone and Ter-
tiary–Quaternary alluvial deposits (e.g., Bohannon, 1984; Beard et  al., 2007) 
overlie the Horse Spring Formation.

METHODS

In this paper, we examined the southern portion of the Rainbow Gardens 
Formation basin by focusing on the stratigraphy of three north-to-south tran-
sects. We present 11 detailed stratigraphic sections, four of which were previ-
ously presented in Lamb et al. (2015), as well as conglomerate composition 
and paleocurrent data. In order to reconstruct the Rainbow Gardens Forma-
tion basin paleogeography, we use a map of reconstructed fault blocks from 
Lamb et al. (2015) to show the relative locations of our measured sections and 
samples (Fig. 4; for a more complete discussion of retrodeformation of these 
highly simplified blocks and the entire Rainbow Gardens Formation basin re-
construction, see Lamb et al., 2015). To characterize variations in sandstone 
composition through time, we examined over 97 thin sections and point 
counted 23 sandstones from the 10 measured sections in the southern part of 
the basin. Some samples were very poorly sorted, and our point counts used 
a grid spacing that was larger than the estimated mean grain size. This means 
larger grains were typically counted more than once, thus capturing their 
contribution to the overall composition. Finally, we present 11 detrital zircon 
analyses from seven locations (five samples also presented in Crossey et al., 
2015). Detrital zircon analyses were completed at the University of Arizona lab-
oratory (Supplemental File S11). Using the methods of Dickinson and Gehrels 
(2009), we used the detrital zircon data to calculate a maximum depositional 
age for each sample to support the stratigraphic and geochronologic data. We 
calculated maximum depositional ages using techniques from Dickinson and 
Gehrels (2009), including the youngest single grain (YSG), the youngest from 
probability plot (YPP), the youngest 1σ grain cluster (YC1σ), and youngest 2σ 
grain cluster (YC2σ) methods.

RESULTS

Stratigraphy and Facies Changes

The Rainbow Gardens Formation contains lateral and vertical variations 
in composition that can be used to interpret basin geometry, fill, provenance, 
and paleogeography. Here, we focused on the southern half of the basin from 
Frenchman Mountain at the Rainbow Gardens Recreation Area near Las Vegas 
to the Grand Wash Trough (Tassi Wash). Figures 5A and 5B show north-south 
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Fig. 5B
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Rainbow Gardens Formation localities 
from this study and Lamb et al., 2015
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Conglomerate
Iron Mtn. sample

Jean
Conglomerate

HSR

TW

location of transects
shown in Fig. 5 A and B

location of transect
shown in Fig. 5C

Rainbow Gardens 
Formation localities 
used in this study

Colorado
Plateau

Figure 4. Reconstructed Miocene paleogeography: gray shading represents fault 
blocks shown in a pre-extension, retrodeformed configuration from Lamb et al. 
(2015) with the modern features of the Colorado Plateau, White Hills, and Lake 
Mead for visual reference. Key Miocene features present during deposition of 
the Rainbow Gardens Formation, including the Sevier thrust terranes, Kingman 
Uplift, and south-facing paleocliff of Permian strata, are also shown. The King-
man Uplift is a north-plunging, broad antiformal dome. Ovals and stars highlight 
locations of outcrops of Rainbow Gardens Formation and correlative units, with 
new data presented in this paper. Note that only one of two Buck and Doe Con-
glomerate sample localities, the Iron Mountain sample, is shown on this map: 
the other one, Hackberry, is farther south, as shown on Figure 2. Black dots 
represent measured sections presented here and in Lamb et al. (2015). Diagonal 
box shows the location of the base map used in Figure 5B fence diagram. Inset  
rectangular box shows location of image used in Figure 6. Locality name abbre-
viations: BH—Boathouse Cove; EH—Echo Hills; HSR—Horse Spring Ridge; IM—
Iron Mountain, LRF—Lime Ridge fault; LLW—lower Lime Wash; MH—Mud Hills; 
MWn—Mud Wash north; MWs—Mud Wash south; N—Narrows; PR—Pakoon 
Ridge; RGRA—Rainbow Gardens Recrea tion Area; RR—Razorback Ridge; SSTG—
south St. Thomas Gap; TCW—Tom and Cull Wash; TW—Tassi Wash; ULW—upper 
Lime Wash; WE—Wechech.

Supplemental Geochronology Data
U-Pb geochronologic analyses of detrital zircon (Nu HR ICPMS)
Zircon crystals are extracted from samples by traditional methods of crushing and grinding, 
followed by separation with a Wilfley table, heavy liquids, and a Frantz magnetic 
separator. Samples are processed such that all zircons are retained in the final heavy mineral 
fraction. A large split of these grains (generally thousands of grains) is incorporated into a 1” 
epoxy mount together with fragments of our Sri Lanka standard zircon. The mounts are sanded 
down to a depth of ~20 microns, polished, imaged, and cleaned prior to isotopic analysis.

U-Pb geochronology of zircons is conducted by laser ablation multicollector inductively coupled 
plasma mass spectrometry (LA-MC-ICPMS) at the Arizona LaserChron Center (Gehrels et al., 
2006, 2008). The analyses involve ablation of zircon with a Photon Machines Analyte G2 
excimer laser (or, prior to May 2011, a New Wave UP193HE Excimer laser) using a spot 
diameter of 30 microns. The ablated material is carried in helium into the plasma source of a Nu 
HR ICPMS, which is equipped with a flight tube of sufficient width that U, Th, and Pb isotopes 
are measured simultaneously. All measurements are made in static mode, using Faraday 
detectors with 3x1011 ohm resistors for 238U, 232Th, 208Pb-206Pb, and discrete dynode ion counters for 
204Pb and 202Hg. Ion yields are ~0.8 mv per ppm. Each analysis consists of one 15-second 
integration on peaks with the laser off (for backgrounds), 15 one-second integrations with the 
laser firing, and a 30 second delay to purge the previous sample and prepare for the next 
analysis. The ablation pit is ~15 microns in depth.

For each analysis, the errors in determining 206Pb/238U and 206Pb/204Pb result in a measurement error of 
~1-2% (at 2-sigma level) in the 206Pb/238U age. The errors in measurement of 206Pb/207Pb and 206Pb/204Pb 
also result in ~1-2% (at 2-sigma level) uncertainty in age for grains that are >1.0 Ga, but are 
substantially larger for younger grains due to low intensity of the 207Pb signal. For most analyses, 
the cross-over in precision of 206Pb/238U and 206Pb/207Pb ages occurs at ~1.0 Ga.

204Hg interference with 204Pb is accounted for measurement of 202Hg during laser ablation and 
subtraction of 204Hg according to the natural 202Hg/204Hg of 4.35. This Hg is correction is not 
significant for most analyses because our Hg backgrounds are low (generally ~150 cps at mass 
204).

Common Pb correction is accomplished by using the Hg-corrected 204Pb and assuming an initial 
Pb composition from Stacey and Kramers (1975). Uncertainties of 1.5 for 206Pb/204Pb and 0.3 for 
207Pb/204Pb are applied to these compositional values based on the variation in Pb isotopic 
composition in modern crystal rocks. 

Inter-element fractionation of Pb/U is generally ~5%, whereas apparent fractionation of Pb 
isotopes is generally <0.2%. In-run analysis of fragments of a large zircon crystal (generally 
every fifth measurement) with known age of 563.5 ± 3.2 Ma (2-sigma error) is used to correct 
for this fractionation. The uncertainty resulting from the calibration correction is generally 1-2% 
(2-sigma) for both 206Pb/207Pb and 206Pb/238U ages.

1Supplemental Information. Files S1–S2, Figures S1–
S5, and Tables S1–S2. File S1 contains a detailed ex-
planation of the methods used for detrital zircon data 
acquisition. File S2 contains a detailed explanation of 
the methods used for 40Ar/39Ar data acquisition and 
additional information on the sample presented in 
the text. Figures S1–S4 contain detailed measured 
sections of the Rainbow Gardens Formation from all 
four localities. Figure S5 contains individual proba-
bility plots for detrital zircon plots, as well as one for 
all Rainbow Gardens Formation samples combined. 
Tables S1 and S2 present raw detrital zircon data and 
calculations of maximum depositional ages, respec-
tively. Please visit https:// doi .org /10 .1130 /GES01127 
.S1 or the full-text article on www .gsapubs .org to 
view the Supplemental Information.

http://geosphere.gsapubs.org
https://doi.org/10.1130/GES01127.S1
https://doi.org/10.1130/GES01127.S1
https://doi.org/10.1130/GES01127.S1
http://www.gsapubs.org
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field work and mapwork and is therefore slightly approximated. Trl—Rainbow Gardens Formation upper limestone unit; Trm—Rainbow Gardens Formation middle unit; Trc—Rain-
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transects of measured sections from three well-exposed ridges as well as a sin-
gle measured section from Tassi Wash. The lithology of the measured sections 
in Figure 5 has been greatly simplified (original detailed measured sections 
are shown in Figures S1–S4 [footnote 1]). We correlated sections using a dis-
tinctive pebbly conglomerate unit in the middle of the sections, tuffs presented 
in Lamb et al. (2015), and a newly found tuff that we traced laterally between 
sections at Horse Spring Ridge and Upper Lime Wash, which occurs ~2.5 m 
below a tuff dated at 18.513 ± 0.018 Ma (gray dotted line on Figs. 5A and 5B).

The base of the sections from the southern basin contains a conglomeratic 
unit interpreted as fluvial deposits on alluvial fans (Fig. 3; Trc of Lamb et al., 
2015). Figure 6 shows paleocurrent data from the Rainbow Gardens Recre-
ation Area location. Data from the conglomerate show multiple flow direc-
tions, consistent with the interpretation of Lamb et al. (2015) that these depos-
its formed on alluvial fans, or bajadas, sourced from the south, north, and east. 
The conglomerate is overlain by the middle Rainbow Gardens Formation unit 
(Trm), which typically contains a predictable sequence of strata. The lowest is 
a red-weathering, interbedded sandstone and siltstone facies that represents 
deposition within a finer-grained (compared to the underlying conglomerate) 
fluvial system. This is overlain by a white-weathering, mixed sequence of 
sandstone, mudstone, limestone, and dolostone that documents palustrine to 
lacustrine conditions. The middle of every section in the southern part of the 
basin contains a distinctive conglomerate bed or sequence of coarser clastic 
beds (called the middle conglomerate unit hereafter), representing increased 
energy in a fluvial system (Figs. 5A and 5B). This is followed by a return to 
 palustrine and lacustrine conditions with local fluvial input. The middle Rain-
bow Gardens Formation unit is capped by a limestone unit (Trl of Lamb et al., 
2015) that records a low-gradient landscape in which lacustrine to marshy en-
vironments developed across the basin.

Although every section contains this same general vertical sequence of 
facies, there are notable differences in the thicknesses and clast sizes of the 
middle conglomerate unit, as well as lateral facies changes in the upper part 
of the middle unit. The basal and middle conglomerate units at the Rainbow 
Gardens Recreation Area section (Fig. 5A) are thickest and contain the largest 
clasts. Within each north to south transect, the middle conglomerate unit thins 
to the north and contains progressively smaller clasts (Figs. 5A and 5B). The 
middle conglomerate unit also fines from the Rainbow Gardens Recreation 
Area eastward toward Horse Spring Ridge, but we cannot determine its total 
thickness at sections C–F and H until additional mapping is completed. We 
note that there is not a comparable coarse pulse of sedimentation at other 
margins around the basin (Lamb et al., 2015); instead, there is fairly steady 
deposition of volcaniclastic sandstones sourced from the north throughout 
much of the middle unit (Trm) across the basin.

We also note that the overall thickness of the upper part of the middle unit 
(Trm) from the middle conglomerate unit to the base of the upper limestone 
(Trl) at section A at the Horse Spring Ridge locality is thicker than other sec-
tions, including section J at Rainbow Gardens Recreation Area and the Mud 
Hills section (Fig. 5C). Schmidt (2014) documented a similar thickening in 
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the upper part of the middle unit, from Mud Hills southward to the South St. 
Thomas Gap sections (for additional details, see Schmidt, 2014). Prior to the 
deposition of the middle conglomerate unit, the thickness of the middle unit 
(Trm) is uniform across the basin (for additional details, see Lamb et al., 2015), 
but above the middle conglomerate, section A thickens relative to surrounding 
locations.

To the southwest, roughly coeval conglomerate facies that are not part 
of the Rainbow Gardens Formation are found east of the Spring Mountains 
near Sloan and Jean, Nevada, and within the McCullough Mountains and Lucy 
Gray Range between Jean and Nelson (Fig. 1). Near the town of Jean, these 
outcrops, (Jean Conglomerate of Hanson, 2008; also called Tertiary Round-
stone gravels by Garside et al., 2012) rest on the Permian Hermit Formation, 
are overlain by the 15.2 Ma Tuff of Bridge Spring, and contain mainly Paleozoic 
carbonate clasts (Garside et  al., 2012, and references therein). Northeast of 
these and southwest of Sloan, similar deposits, called “Tertiary fluvial gravels” 
by Hinz et al. (2015), rest on the Pennsylvanian–Permian Bird Spring Forma-
tion but contain crystalline basement clasts in addition to Paleozoic carbon-
ate clasts. The McCullough Springs conglomerate in the central McCullough 
Mountains, southeast of Jean, was thought to be deposited sometime be-
tween 40 and 23 Ma (Herrington, 1993), but it is no younger than the overlying 
18.78 ± 0.02 Ma Peach Spring Tuff (Ferguson et al., 2013). Most localities of 
the McCullough Springs conglomerate contain 50%–100% Proterozoic crystal-
line basement clasts, with additional Paleozoic sedimentary clasts. Herrington 
(1993) speculated that the conglomerate was (1) deposited in roughly east-
west paleochannels with easterly flow directions, and (2) sourced locally first 
and then from the thrust terrane to the west.

Similar-age deposits to the southeast of the Rainbow Gardens Formation 
include the Buck and Doe Conglomerate (Young and Crow, 2014), a locally de-
rived gravel sequence on the Hualapai Plateau south of the Grand Canyon 
that overlies the Paleocene–Eocene Music Mountain Formation and contains 
a tuff dated at 24.12 ± 0.04 Ma (40Ar/39Ar from Young and Crow, 2014) near the 
top of the sequence. Its lower member is dominated by Cambrian through 
Mississippian carbonate clasts that were eroded from local cliffs and mesas, 
whereas the upper, arkosic member contains Proterozoic basement clasts, in-
cluding distinctive types that identify the source area as local exposures in the 
southern Hualapai Plateau (Young and Crow, 2014). The Buck and Doe Con-
glomerate covered the Hualapai Plateau and formed a fairly uniform surface 
across which early Miocene volcanic flows were deposited (e.g., Young and 
Hartman, 2014).

Conglomerate and Sandstone Provenance Data

Provenance data (Figs. 5–7; Table 1) document the compositional range 
of the clastic units. We identified three distinct petrofacies. Type 1 petro facies 
(Fig. 7A) contains quartz, calcite, limestone, chert, and lithic sedimentary 
grains and was derived from the nearby Paleozoic passive margin and Meso-

zoic nonmarine strata. Type 2 (Fig. 7B) has many of the same grains as type 1 
but with a significant addition of plutonic and metamorphic grains, mainly 
gneiss. Type 3 (Fig. 7C) has type 1 or 2 grains mixed with a volcanic compo-
nent, including glass shards, lithic volcanic clasts, volcanic quartz grains, and 
tuffaceous material.

Within the basal conglomeratic unit of the Rainbow Gardens Formation, 
the crystalline basement clasts and grains of type 2 only show up in the south-
ern Rainbow Gardens Recreation Area transect (Figs. 5A and 6). Rice (1987) 
presented clast counts for the basal Rainbow Gardens Formation conglom-
erate throughout the Rainbow Gardens Recreation Area locality. His two 
southernmost sample locations (RG-5 and RG-6) match our type 2 petrofacies, 
sourced predominantly from local Paleozoic limestone and Mesozoic siliciclas-
tic formations, but with up to 3% of crystalline basement input, namely, granite 
and gneiss. His other sections to the north, including ones north of the Rain-
bow Gardens Recreation Area transect (Fig. 5), are type 1 sandstones (Rice, 
1987; see also Fig. 6). Beard (1996) similarly noted a predominance of Paleozoic 
limestone lithologies with additional Mesozoic siliciclastic clasts in the basal 
conglomerate at Horse Spring Ridge and Upper Lime Wash localities (Fig. 4). 
These eastern locations were further examined as part of this study, and no 
crystalline basement clasts were observed. The basal conglomerate units at 
these two localities contain only type 1 petrofacies.

Sandstones and conglomerates in the middle unit of the Rainbow Gardens 
Formation record variations of the three petrofacies types (Fig. 5). All locations 
have type 1 petrofacies sandstones. The Rainbow Gardens Recreation Area 
transect contains the greatest vertical and lateral extent of type 2 petrofacies, 
i.e., the greatest overall input of a crystalline basement signal (Fig. 5). At Rain-
bow Gardens Recreation Area, the Proterozoic signal is present in sandstone 
and conglomerate beds throughout much of the middle unit (Fig. 5). Eastward, 
the crystalline basement signal shows up clearly within the middle conglomer-
ate, with a slight hint of the signal lower in the middle unit, just above the basal 
conglomerate, but this is based on only 1–2 grains (Fig. 5). These eastern tran-
sects show less of the crystalline basement signal as the middle conglomerate 
unit thins from west to east. At the Upper Lime Wash and Rainbow Gardens 
Recreation Area locations, the crystalline basement–bearing middle conglom-
erate unit also thins from south to north. At the Horse Spring Ridge locality, 
the type 2 crystalline basement signal is found in a 1–3m-thick middle clastic 
unit that contains a few pebble-granule–bearing sandstones. Thus, the type 2 
signal is greatest in the southwest and least in the northeast.

The type 3 petrofacies records volcanic input in a pattern opposite that of 
petrofacies type 2: The signal is strongest in the north and east sections and 
nonexistent in the southwest. The northernmost measured section A at Horse 
Spring Ridge has volcaniclastic sandstones, reworked tuffs, and tuffs through-
out much of the measured section. This signal extends to the southern Horse 
Spring Ridge sections as well. The signal is also present at the northern end of 
the Rainbow Gardens Recreation Area and Upper Lime Wash. In the southern 
parts of the basin, the type 3 volcanic signal is present only present in the 
middle and upper parts of the middle unit (Fig. 5A), but Figure 5C and data 
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Figure 7. Photomicrographs of the middle unit (Trm) sand-
stones. Black bar is 1 mm in length. PL—plane light; XN—
crossed nicols. (A) Type 1 sandstone petrofacies: locally 
derived quartz, calcite, limestone, chert, and lithic sedimen-
tary clasts sourced from nearby Paleozoic and Meso zoic 
strata. (B) Type 2 sandstone petro facies: a mix of the same 
grains found in type 1 and igneous intrusive and metamor-
phic gneiss lithic grains. 15-UL-8 contains one large plutonic 
grain that makes up most of the photomicrograph. The top 
two thirds of the photomicrograph labeled 15-HR-3 is a 
grain of gneiss. (C) Type 3 sandstone petrofacies: a mix of 
the same grains found in types 1 and 2 but with a volcanic 
component, including glass shards, lithic volcanic clasts, 
vol canic quartz grains, and tuffaceous material.
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from Lamb et al. (2015) and Beard (1996) show its presence throughout the 
middle unit farther north in the basin. The volcanic signal is from both air-
fall and fluvial processes: Pristine glass shards show little signs of reworking, 
whereas other sandstones contain volcanic grains that have been rounded 
by transport.

Discussion of Provenance Results

The crystalline basement signal in the type 2 rocks was likely derived from 
exposures of crystalline basement rocks to the south (Fig. 2; Rice, 1987). Figure 
2 shows the extent of Proterozoic units exposed today south of Lake Mead, 
from the Lucy Gray and McCullough Ranges near I-15 south of Las Vegas to the 

White Hills south of Gold Butte. During the early Miocene, however, crystalline 
basement was likely widely exposed in this region: Many of the ca. 20–13 Ma 
volcanic deposits rest directly on basement. (We note, however, that some 
Proterozoic units, including ones exposed at Gold Butte and the White Hills, 
were not exposed prior to extension but were exhumed during extension [e.g., 
Fitzgerald et al., 1991, 2009].) It is also possible that some of the crystalline 
basement signal was recycled from Cenozoic conglomerate units flanking the 
Kingman Uplift, including the conglomerates in the Jean and Sloan quadran-
gles and the McCullough Springs Conglomerate. Herrington (1993) noted that 
the McCullough Spring Conglomerate rests on crystalline basement and var-
ies in clast composition from 55% to 100% crystalline basement rock.

A fluvial influx of volcanic sediment into the Rainbow Gardens Formation 
basin from the north was first described by Beard (1996), and new dates on 

TABLE 1. POINT COUNT DATA FROM SANDSTONES

Raw Data

Sample Latitude* Longitude* Quartz
Potassium 
feldspar

Plagioclase and feldspar 
undifferentiated Lithic sedimentary

Lithic 
volcanic 

(Lv)

Lithic 
plutonic 

(Lp)

Lithic 
metamorphic 

gneiss
(Lmg)

Polycrystalline quartz

Lithic 
und. 
(Lu)

Matrix/ 
cement Hornblende Total

Lithic 
metamorphic 
polycrystalline 

quartz 
(Lmqp)

Microcrystalline 
quartz 
(lithic)

Polycrystalline 
quartz

Plagioclase 
feldspar

Feldspar 
undifferentiated

Lithic 
sedimentary

(Ls) Limestone Calcite

13-HR-1† 36.31268 –114.145901 54 4 6 38 7 3 2 1 1 184 300
13-HR-2† 36.313236 –114.145608 41 6 17 4 232 300
13-HR-3 36.313334 –114.145959 44 20 7 4 22 18 16 20 8 15 14 14 15 83 300
13-HR-4 36.317375 –114.146769 55 16 4 4 27 16 1 1 38 9 13 9 9 13 85 300
13-HR-5† 36.31706 –114.146166 37 1 4 6 9 7 3 2 231 300
RGGW SS1§ 36.3006 –114.1576 77 1 79 1 5 137 300
RGGW SS2§ 36.3007 –114.1574 146 26 7 121 300
RGGW SS3§ 36.3008 –114.1568 122 2 4 31 4 138 300
RGGW SS4§ 36.0094 –114.1562 23 16 6 10 32 84 15 4 12 5 129 336
13-RG-1 36.17075 –114.936986 46 7 21 33 3 6 26 11 10 2 3 8 124 300
13-RG-2 36.17075 –114.936986 56 27 3 3 6 1 13 46 2 22 15 3 103 300
13-RG-3 36.17075 –114.936986 68 21 3 9 3 18 16 11 9 142 300
13-RG-4 36.119592 –114.960413 39 1 1 29 14 4 4 6 2 4 5 2 2 187 300
13-RG-5 36.119592 –114.960413 43 2 15 38 8 10 6 3 7 4 3 161 300
13-RG-6 36.119592 –114.960413 76 23 4 3 14 16 4 5 32 6 12 2 12 91 300
13-RG-7 36.119592 –114.960413 50 30 3 8 9 2 21 16 3 11 4 65 222
13-RG-8 36.119592 –114.960413 28 10 4 14 75 29 4 4 23 4 13 92 300
15-RG-2 36.169425 –114.9361777 53 2 0 0 2 13 26 0 12 16 0 9 1 0 166 0 300
15-UL-1 36.302974 –114.2330542 133 0 1 2 2 8 15 0 0 0 0 7 1 7 124 0 300
15-UL-4 36.302628 –114.2344804 155 0 2 0 3 5 10 0 0 0 0 1 4 1 119 0 300
15-UL-8 36.302667 –114.2318514 53 6 3 3 13 6 1 0 41 7 0 1 22 4 64 0 224
15-UL-9 36.302666 –114.2318514 53 8 1 0 4 30 22 0 0 0 0 6 7 0 169 0 300
15-UL-16 36.280391 –114.2382265 60 11 1 12 17 7 1 0 51 9 2 4 22 2 98 2 299

*North American datum (NAD) 27 horizontal datum.
†Samples that have a matrix rich in glass shards.
§Approximate locations: Samples were collected prior to global positioning system (GPS) technology. 
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volcanic tuffs were reported in Lamb et al. (2015). The volcanic signal of type 3 
sandstones is mainly derived from the Caliente volcanic field to the north (e.g., 
Best et al., 2013).

There is also evidence for a western sediment source beginning in the 
basal conglomerate of the Rainbow Gardens Formation. Rice (1987) found two 
distinct types of quartzite: highly indurated varieties in the far southern Rain-
bow Gardens Recreation Area sections, which he thought resembled Cam-
brian Tapeats Sandstone and Wood Canyon Formation, and clasts of white, 
well-sorted, fine- to medium-grained quartzite throughout the Rainbow Gar-
dens Recreation Area that are likely Eureka Quartzite. Eureka Quartzite clasts 
are also found in the southern Lime Wash area in the Virgin Mountains but 
not anywhere farther north or east. The Eureka Quartzite is an Ordovician pas-
sive-margin unit that thins eastward. Isopachs of the Eureka Quartzite indi-
cate the nearest sources for clasts of the unit are in thrust plates west of the 
Keystone thrust in the Spring Mountains (Fleck, 1970), and in the upper plate 
of the Dry Lake thrust in the Dry Lake Range west of the Muddy Mountains 
(Beard et  al., 2007). This provenance interpretation supports evidence from 
paleocurrent data (Fig. 6) at the Rainbow Gardens Recreation Area that record 
a component of easterly flow.

Detrital Zircon Results

We present detrital zircon data from six Rainbow Gardens Formation sam-
ples collected at three locations (Figs. 4, 5, and 8; see also Fig. S5; Tables S1 and 
S2 [footnote 1]). These samples were collected specifically to address whether 
the detrital zircon signature would reveal a component of eastern Colorado 
Plateau sediment consistent with input from an ancestral Colorado River. In 
addition to the Rainbow Gardens Formation samples, we present three detrital 
zircon samples from Oligocene–early Miocene conglomeratic units described 
above and two samples from the Cretaceous Lavinia Wash Formation (Figs. 1, 
2, 4, and 8; see also Fig. S5; Table S1 [footnote 1]). Two samples of arkosic Buck 
and Doe Conglomerate were collected along the Grand Wash Cliffs: B14–088 
was collected just south of the mouth of the Grand Canyon in a conglomer-
atic sandstone underlying an 18.00 ± 0.02 Ma basalt at Iron Mountain (File S2 
[footnote 1]), and B14_085 is from a sandstone below ca. 20 Ma basalts and the 
Peach Springs Tuff (Young and Brennan, 1974) just north of Hackberry, Arizona 
(Fig. 2). Detrital zircon sample 06JE1 (Figs. 2 and 8; Hanson, 2008) is from the 
Jean Conglomerate north of Jean, Nevada, which underlies the 15.4 Ma Tuff of 
Bridge Spring. Figure 9 presents two samples of the ca. 100 Ma Lavinia Wash 
Formation, located west of Sloan (Nevada) in the Spring Mountains (Figs. 1, 2, 
and 9; Hanson, 2008).

First, we used the Kolmorogov-Smirnoff (K-S) test to compare sample 
populations and determine the samples, if any, that are not statistically dis-
tinguishable and therefore might have the same source areas (Figs. 8A, 9A, 
and 9B; following the methods of Dickinson and Gehrels, 2009). Gehrels 
et al. (2011) pointed out that the K-S statistic is very sensitive to the propor-

tions of ages present, so that if two samples have somewhat different pro-
portions of the same age groups, the samples could have a similar source 
even with low P values. Although most Rainbow Gardens Formation sam-
ples are weakly to moderately congruent, suggesting similar source areas, 
low P values in some comparisons indicate either local variability or that the 
sample size (n = ~100 grains) was too small (Fig. 8). A strongly congruent 
relationship (P = 0.98) between RBGN3 from the middle conglomerate unit 
at Horse Spring Ridge and RBGN7, the middle sandstone at Tassi Wash, and 
the cumulative and stacked probability plots (Figs. 8B and 8C) indicate these 
sandstones have a very similar detrital zircon signature and likely the same 
source area. Although the Tassi Wash section does not contain pebbly sand-
stone beds, the strongly congruent P value of 0.98 (Fig. 8A) suggests the 
clastic sequence sampled at Tassi Wash is the distal equivalent of the middle 
conglomerate unit. We do not have point-count data from Tassi Wash to test 
this correlation.

The Jean Conglomerate and Buck and Doe Conglomerate samples show 
little statistical similarity with each other and especially with the Rainbow Gar-
dens Formation, as indicated by P values of <0.05 (Fig. 8A). The Jean and Iron 
Mountain samples, shown as the blue and green lines on the cumulative prob-
ability plot (Fig. 8D), are weakly congruent (P = 0.08), probably because of the 
strong Yavapai-Mazatzal peaks in both samples (Figs. 8D and 8E). The Jean 
sample and the lowest sandstone at Tassi Wash (K14_RGBN-5) also share the 
weak Grenville and strong Yavapai-Mazatzal peak (Figs. 8C and 8E).

Lavinia Wash (ca. 100 Ma) detrital zircon data, when compared with a sam-
ple of the ca. 72 Ma quartzite-volcanic clast conglomerate of the Canaan Peak 
Formation (Fig. 1) in southwest Utah (Larsen et al., 2010), suggest they could 
have a similar source or that the Lavinia Wash was reworked into the Canaan 
Peak unit (Fig. 9). Both deposits contain clasts of ca. 100 Ma Delfonte volcanics 
(Goldstrand, 1992) and yield a P value of 0.84 when comparing grains older 
than ca. 150 Ma. Removing grains younger than 150 Ma (Figs. 9E and 9F) re-
moves the effect of the overwhelming number of ca. 95–110 Ma zircons in the 
Lavinia Wash samples (Fig. 9C), but the results should be viewed as suggestive 
only, because the remaining number of grains for comparison is extremely 
small (n = 27).

Second, we examined stacked probability plots that show dominant peaks 
in zircon populations (Figs. 8C and 8E) to understand the possible source 
areas for the Oligocene–Miocene deposits. Rainbow Gardens Formation de-
trital zircon age distributions (Figs. 8B, 8C, and 8F) reflect several sources, 
including both primary-sourced and recycled Oligocene–Miocene volcanics 
(19–28 Ma), and recycled Mesozoic Cordilleran magmatic arc (ca. 280–70 Ma), 
Grenville sources (ca. 1250–850 Ma), 1.4 Ga anorogenic granite, and ca. 1.7–1.6 
Mazatzal- Yavapai sources (e.g., Dickinson et  al., 2012; Gehrels et  al., 2011). 
Similarly, the Jean Conglomerate sample shares those same peaks (Figs. 8D 
and 8E; Fig. S5 [footnote 1]). The Buck and Doe Conglomerate samples (Fig. 
8E; Fig. S5 [footnote 1]) display the Oligocene–Miocene, 1.4 Ga anorogenic 
granite and Mazatzal-Yavapai signals and a weak Cordilleran magmatic arc 
(164–90 Ma) signal.
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Figure 8 (on this and following 
page). Detrital zircon data for all 
late Oligocene–early Miocene 
samples from the Rainbow Gar-
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Buck and Doe Conglomerates. See 
Figure 5 for locations of samples 
within stratigraphic sections and 
Figures 2 and 4 for geographic lo-
cations. (A) Kolmogorov-Smirnov 
(K-S) statistics for all Oligocene–
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lative distribution function; 
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(C) Stacked normalized probability 
plots for individual Rainbow Gar-
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Figure 9. Comparison of detrital zircon 
data from the Cretaceous Lavinia Wash and 
 Canaan Peak Formations. CDF—cumu la-
tive distribution function. (A) Kolmogorov- 
Smirnov (K-S) statistics and normalized 
probability plots for Lavinia Wash, samples 
LW1 and LW2 combined, and Canaan Peak. 
(B) Same as A but for grains older than 
150 Ma. (C) Normalized probability plot for 
Lavinia Wash samples LW1 and LW2 com-
bined. (D) Normalized probability plot for 
the Canaan Peak (Pk) Formation sample 
(Larsen et al., 2010). (E) Normalized prob-
ability plot for grains older than 150  Ma 
from the Lavinia Wash samples LW1 and 
LW2 combined. (F) Normalized probability 
plot for grains older than 150 Ma from the 
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Discussion of Detrital Zircon Results

All Rainbow Gardens Formation samples have a 28–19 Ma signal (Figs. 8B 
and 8C) that likely reflects input from the Indian Peak and Caliente volcanic 
fields (36–18 Ma) to the north. We infer that the younger detrital zircons derive 
from air-fall processes. The ages bracket the younger part of the Indian Peak–
Caliente field (18.51 Ma Hiko Tuff to 27.90–23.04 Ma Isom Formation; Best et al., 
2013), as well as ca. 24–18 Ma tuff ages from the Rainbow Gardens Formation 
(Beard, 1996; Lamb et al., 2015). The peaks suggest much of the detrital zircon 
signal may be related to eruption of rhyolite ignimbrites in the southern part 
of the field after 24 Ma, as described by Best et al. (2013). The Hackberry Buck 
and Doe and Jean Conglomerate samples (Fig. 8E; Table S1 [footnote 1]) each 
have two grains of ca. 25–24 Ma age, and this suggests they are likely correl-
ative in age to the Rainbow Gardens Formation basal conglomerate. The Iron 
Mountain Buck and Doe Conglomerate sample (Fig. 8E; Tables S1and S2 [foot-
note 1]) has a large number grain ages from 23 to 18.5 Ma and is equivalent in 
age to the middle unit of the Rainbow Gardens Formation. Oligocene–Miocene 
zircons in the Iron Mountain Buck and Doe and Jean Conglomerate samples 
may be sourced from either the north or south, whereas the Buck and Doe 
Hackberry location lies farther south, and it was likely sourced from the Aquar-
ius Mountains (Young and Crow, 2014).

A weak but persistent component (1%–8%) of Cordilleran magmatic arc–
age grains (ca. 280–70 Ma; Dickinson et al., 2012) occurs in all samples (Figs. 
8C and 8E). The peaks cluster at around 175 Ma, 150 Ma, ca. 100 Ma, and ca. 
80 Ma. The Cretaceous Willow Tank and Baseline Sandstones, which are locally 
preserved below the basal unconformity of the Rainbow Gardens Formation, 
at both the Rainbow Gardens Recreation Area and in the Virgin Mountains, 
are one possible source. There are no available detrital zircon data for these 
Cretaceous formations, but tuffs within the Willow Tank Formation have been 
dated at 94.4 and 98.4 Ma (K-Ar biotite; Fleck, 1970), 101.6 Ma and 99.9 Ma (sen-
sitive high-resolution ion microprobe [SHRIMP] reverse geometry [RG] zircon 
U-Pb; Troyer et al., 2006), and 98.68 Ma at the base, and 98.56 Ma near the top 
(40Ar/39Ar, sanidine; Pape et al., 2011). In addition, Wells (2016) reported a maxi-
mum depositional age of 101.7 +0.4/–0.5 Ma for sandstone at the base of the 
Willow Tank Formation. Other possible sources include the Cretaceous Lavinia 
Wash Formation and the Cretaceous conglomerate of Brownstone Basin:

(1) The Cretaceous Lavinia Wash Formation. A detrital zircon sample from 
a volcaniclastic facies (Table S1 [footnote 1]; Hanson, 2008) is domi-
nated by zircons with a mean age of 98 Ma and is interpreted as a zir-
con tuff age (Fig. 9). A second sample from a carbonate clast facies 
within the Lavinia Wash Formation has a detrital zircon age population 
at 107 Ma and is also interpreted as a zircon tuff age.

(2) The Cretaceous conglomerate of Brownstone Basin, found in the Spring 
Mountains west of Las Vegas (Fig. 2). Wells (2016) reported maxi mum 
depositional zircon ages of 102.8 +1.0/–1.2 Ma, 103.3 +1.0/–1.1 Ma, and 
102.1 +1.7/–0.9 Ma.

We note that latest Cretaceous plutons (ca. 72–68 Ma) were exposed at the 
surface locally prior to eruption of early, pre-extension (ca. 20 Ma) volcanic 
rocks in the core of the Kingman Uplift south of Lake Mead (Faulds et al., 2001). 
However, no zircons of that age are found in any of the deposits, which we 
infer is because any exposures were too small to be captured by our detrital 
zircon samples (n = ~100) and because the paleoscarp of Permian strata, dis-
cussed in more detail below, was a significant barrier to northward dispersal 
during Rainbow Gardens Formation time.

The lowest sandstone samples from all three Rainbow Gardens Formation 
locations and the Jean Conglomerate (Figs. 8C and 8E; Table S1 [footnote 1]) 
contain one to five zircons of Triassic age that were likely recycled from under-
lying or nearby exposures of the Lower Triassic Moenkopi and Middle Triassic 
Chinle Formations (Dickinson and Gehrels, 2008).

Finally, the Rainbow Gardens Formation samples (Figs. 8B, 8C, and 8F) show 
strong Grenville peaks (ca. 1 Ga), which are typical of rocks sourced from Up-
per Paleozoic Grand Canyon strata (Gehrels et al., 2011), and variable strength 
Yavapai-Mazatzal–age peaks. The exception is RBGN-5, the basal sample at 
Tassi Wash, which has a weak Grenville peak and strong Yavapai- Mazatzal sig-
nal, which may indicate a Lower Paleozoic and Proterozoic basement source 
(Figs. 8B and 8F). Upward in the section at Tassi Wash, the proportion of Gren-
ville-age grains increases, while Yavapai-Mazatzal–age grains decreases (Fig. 
8G); this likely reflects variable input from nearby Paleozoic sources. The two 
Rainbow Gardens Formation samples from the middle conglomerate unit, 
RBGN-3 and RBGN-7, show an increase in the Yavapai-Mazatzal peaks when 
compared to the other Rainbow Gardens Formation samples, and we suggest 
this reflects the addition of the crystalline basement signal (Fig. 8H). As men-
tioned above, the Jean and Iron Mountain Buck and Doe Conglomerate sam-
ples share strong Yavapai-Mazatzal peaks, whereas the Hackberry Buck and 
Doe Conglomerate sample has strong ca. 1.4 Ga and Yavapai- Mazatzal peaks 
(Fig. 8E), all likely sourced from exposures of Proterozoic crystalline basement 
rock in the eroded terrane of the Kingman Uplift. Both Buck and Doe Conglom-
erate samples have strong 1.4 Ga peaks compared to the Jean Conglomer-
ate sample, and this likely reflects their relative positions on either side of the 
Kingman Uplift. Almeida (2014) reported new ages of ca. 1682 Ma for the Davis 
Dam, Lucy Gray, and Newberry Mountains plutons in SE Nevada, which were 
previously thought to be ca. 1.4 Ga. These plutons may be the source for some 
of the ca. 1670–1690 Yavapai-Mazatzal peaks in the detrital zircon plots.

In summary, the Rainbow Gardens Formation detrital zircon signature is 
best explained by a mixture of local volcanic input and the recycling of nearby 
strata, namely, Paleozoic and Mesozoic strata. Of these, the Upper Paleozoic 
Grand Canyon source seems to be the largest, based on comparisons with 
probability plots of Gehrels and Dickinson (2011 ) and Figure 8F. The proba-
bility plots from the middle conglomerate unit (with the crystalline basement 
signal) also indicate a dominant Upper Paleozoic source, but with an enhanced 
Yavapai-Mazatzal source (Fig. 8H). Finally, we suggest that the few Cordilleran 
magmatic arc grains are likely recycled from Cretaceous deposits that were 
once more widespread across the Lake Mead region.
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Age Constraints and Sedimentation Rates

Three recent 40Ar/39Ar dates (shown in stratigraphic position on Figs. 3, 5A, 
and 5C; Lamb et al., 2015) and the detrital zircon data help to constrain the age 
of deposition of the southern part of the Rainbow Gardens Formation basin. 
The oldest 40Ar/39Ar date, 22.88 Ma ± 0.02 Ma, is from a location just north of 
the Horse Spring Ridge transect but correlates to ~21 m on the Horse Spring 
Ridge measured section A, based on observed stratigraphic details and new 
detrital zircon work (Daniel Conrad, 2017, personal commun.; Figs. 5A and 5C). 
A younger date, 18.51 ± 0.02 Ma, is from a tuff high in the Horse Spring Ridge 
section, at 180  m on section A (Figs. 5A and 5C). At the Rainbow Gardens 
Recreation Area section J, a similar-aged tuff, 18.54 Ma ± 0.04 Ma, is found at 
173 m (Figs. 5A and 5C). These tuffs are most likely from the Caliente caldera. 
The 22.88 Ma ± 0.02 tuff may be equivalent to the 23.04 Ma Bauers Tuff and/or 
22.56 Ma Harmony Hills tuff from the Caliente caldera (Best et al., 2013). The 
18.51 ± 0.02 Ma tuff at Horse Spring Ridge is essentially identical to the Hiko 
Tuff at 18.51 Ma (Best et al., 2013), which is the youngest tuff from the Caliente 
volcanic field. Note that this is younger than the Peach Springs Tuff to the 
south, which has an age of 18.78 Ma (Ferguson et al., 2013). The ca. 18.5 Ma 
tuffs are near the top of the Trm unit and the base of the Trl unit.

We used calculated maximum depositional ages from detrital zircon data 
(Table S2 [footnote 1]) to estimate sedimentation rates. The maximum deposi-
tional ages of 19.2 Ma (YSG and YC1σ), 19.6 Ma (YPP), and 20.0 Ma (YC2σ) for 
the middle conglomerate unit at Garden Wash are congruent with 40Ar/39Ar tuff 
ages for the Rainbow Gardens Formation. Lamb et al. (2015) calculated a sedi-

mentation rate of 32 m/m.y. at the Horse Spring Ridge locality for the entire 
middle unit of the Rainbow Gardens Formation. With the new detrital zircon 
data, we can now estimate a rate for the upper and lower parts of the middle 
unit (Table 2). If we use the 19.2 Ma YSG and YC1σ detrital zircon maximum 
depositional age of the middle conglomeratic unit at section F (K14-RBGN 3; 
Table S2 [footnote 1]) and apply it to the same stratigraphic interval at section 
A, where the middle conglomeratic unit is 80 m below the dated ca. 18.5 Ma 
tuff, this yields a minimum sedimentation rate of ~116 m/m.y. for the upper part 
of the middle unit. If we use the YPP maximum depositional age of 19.6 Ma for 
the middle conglomerate unit, then we get a rate of 73 m/m.y. Both of these 
rates are higher than the rates of 21 and 24 m/m.y. for the lower part of the 
middle unit (Table 2). We did not use the YC2σ age to calculate a sedimentation 
rate because this method was determined to typically produce an age older 
than the depositional age of the strata (Dickinson and Gehrels, 2009).

DISCUSSION

Sediment Sources and Pathways

Stratigraphic, petrographic, and detrital zircon data all indicate that the 
source for much of the Rainbow Gardens Formation sediment was from nearby 
and/or underlying Paleozoic to Lower Mesozoic strata. The southern Rainbow 
Gardens Formation was deposited on the north-sloping Kingman Uplift, which 
made up the southern margin of the basin (Lamb et al., 2015), and thus the 

TABLE 2. SEDIMENTATION RATES OF THE MIDDLE UNIT AT HORSE SPRING RIDGE LOCATION, SECTION A

Bed

Height of bed 
in section

(m)

Age/maximum 
depositional age

(Ma)

Total distance 
between two beds

(m)

Total time between 
two beds

(m.y.)

Calculated 
sedimentation rate

(m/m.y.)

Dated tuff with 40Ar/39Ar age 180 18.51

Upper part of middle unit 80 0.69 116

Middle conglomerate unit with detrital zircon 
YSG/YC1σ maximum depositional age

100 19.2

Lower part of middle unit 79 3.68 21

Correlation of tuff layer from Mud Hills to tuff 
LMLL 275 at Horse Spring Ridge section A

21 22.88

Dated tuff with 40Ar/39Ar age 180 18.51

Upper part of middle unit 80 1.09 73

Middle conglomerate unit with detrital zircon 
YPP maximum depositional age

100 19.6

Lower part of middle unit 79 3.28 24

Correlation of tuff layer from Mud Hills to tuff 
LMLL 275 at Horse Spring Ridge section A

21 22.88

Note: YSG—youngest single grain;YC1σ—youngest 1σ grain cluster; YPP—youngest from probability plot.
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Permian and Triassic strata on the Kingman Uplift are likely a significant source 
of the Upper Paleozoic detrital zircon signature discussed above. Our new data 
further support the hypothesis of a northern to northeastern source of volcanic 
tuffs and detritus (Fig. 5), as previously suggested by Beard (1996) and Lamb 
et al. (2015). Most importantly, however, our data imply a new, previously un-
recognized Proterozoic source from the southwest and allow for refinement of 
paleogeographic reconstructions for the southern portion of the basin and the 
geologic evolution of the region.

The abrupt input of crystalline basement sediment into the southwest part 
of the basin and the thinning and fining to both the east and north support a 
southwest source for the crystalline basement type 2 petrofacies. In the south-
ernmost Rainbow Gardens Recreation Area, paleocurrent data combined with 
type 2 petrofacies in the basal conglomerate and lower middle unit (section K 
in Fig. 5) suggest that, from the start of Rainbow Gardens Formation deposi-
tion, the southwesternmost part of the basin received a small amount of sedi-
ment from Proterozoic crystalline basement (“x” on Fig. 10). The maximum 
pulse of the Proterozoic-source signal is marked by deposition of the crystal-
line basement–bearing middle conglomerate unit, which occurs in all three 
transects across the southern portion of the Rainbow Gardens Formation basin 
(Figs. 5A and 10B). We suggest this pulse is also reflected in the detrital zircon 
data, where the middle conglomerate unit shows an increase in the ca. 1.7 Ga 
peak (Fig. 8H). The finest-grained, most-distal pulse of this signal is found far-
thest east, at the Tassi Wash location.

Figure 2 shows the prevalence of Proterozoic basement exposed south of 
Lake Mead today. Prior to early Miocene volcanism, this basement was widely 
exposed in the core of the Kingman Uplift. We concur with Beard (1996) and 
Faulds et al. (2001) that the crystalline basement sediment, for the most part, 
was largely blocked from the Rainbow Gardens Formation basin by south- and 
southeast-facing scarps of Permian and older Paleozoic strata (Fig. 10); this is 
supported by a lack of Proterozoic sediment elsewhere in the Rainbow Gar-
dens Formation strata. South of the paleoscarp, streams drained eastward and 
westward off of the Kingman Uplift, not northward (Fig. 10A).

We suggest that this scarp, however, was either nonexistent on the west 
side of the Kingman Uplift (Fig. 1; see location of question marks on Fig. 10) 
or was breached at some point along its trace (Fig. 10B). First, the paleoscarp 
may not have extended to the west, or it may have been disrupted on the 
west side of the Kingman Uplift. Pavlis et al. (2014) proposed that the Gerstley– 
Nopah Peak thrust (GNPT on Fig. 1; see also Fig. 10), a west-northwest–trend-
ing, northeast-directed, Laramide-age thrust fault with a basement-cored ramp 
anticline they documented in the southeastern Death Valley region, extended 
southeastward and overprinted the north-northeast–trending Sevier thrusts at 
about the latitude of Jean, Nevada. The southernmost extent of the Paleozoic 
autochthonous rocks east of the Sevier thrusts ends at about this latitude as 
well, perhaps cut off by a hypothetical eastern extension of the Gerstley–Nopah 
Peak thrust (see Fig. 2). We suggest the Gerstley–Nopah Peak thrust could 
have extended at least as far east as the Lucy Gray Range, thereby structur-
ally elevating Proterozoic basement south of this trend, disrupting the paleo-

scarp, and allowing detritus coming off the western side of the Kingman Arch 
to make an end run around the western end of the paleoscarp. If there was 
a basement-cored anticline in this location, it also might have been another 
source, in addition to the Kingman Uplift, for the crystalline basement signal.

Another interpretation is that the paleoscarp may have been breached (Fig. 
10B) through headward erosion by streams on the north side of the paleoscarp. 
This in turn might have led to stream capture, whereby a stream draining part 
of the Kingman Uplift on the south side of the paleoscarp would change course 
and drain northward. This would have increased the drainage basin area and 
streamflow, thus increasing the stream energy, sediment load, and ability to 
transport coarser material farther into the Rainbow Gardens Formation basin.

Implications of Change in Sedimentation at ca. 19 Ma

We considered and evaluated explanations for the influx of coarser crys-
talline basement material at ca. 19  Ma and thickness changes in the upper 
part of the middle unit. Stream capture resulting from headward erosion likely 
contributed to the abrupt change in sedimentation at the southern margin of 
the basin at ca. 19 Ma. However, erosion and stream capture alone cannot ac-
count for the thickness and other changes in the upper part of the middle unit. 
The middle unit above the middle conglomerate at Horse Spring Ridge section 
A thickens relative to other sections (Fig. 5C), and it is overall coarser grained 
than in all other localities across the entire basin (Lamb et al., 2015). The upper 
part of the middle unit is dominantly volcaniclastic and sourced from the north, 
and therefore not the result of a breach of the Kingman Uplift to the south. 
This thickening and coarsening of the upper part of the middle unit, particu-
larly at the Horse Spring Ridge locality, suggest an increase in accommodation 
space and the presence of a main fluvial channel along the zone of increased 
subsidence. Experimental data suggest that this can happen where the rate of 
sediment supply is lower than the rate of creation of accommodation space, 
thereby attracting fluvial channels to the subsidence maximum (Sheets et al., 
2002; Hickson et  al., 2005). This interpretation points to a possible tectonic 
signal controlling sedimentation in the upper part of the middle unit after ca. 
19 Ma within the southern portion of the basin.

Further support for a tectonic event at this time derives from possibly syn-
depositional faulting in the Horse Spring Ridge and Upper Lime Wash locali-
ties. Lamb et al. (2015) hypothesized the existence of an unconformity within 
the middle of Rainbow Gardens Formation deposition and suggested that it 
might be due to a tectonic event. One line of their evidence was an appar-
ent southward thinning of the stratigraphic package immediately above the 
ca. 19 Ma middle conglomeratic unit and below the capping limestone at the 
Horse Spring Ridge locality (Lamb et  al., 2015, their figure 11). Subsequent 
field work has revealed structural complexities at the very southern end of the 
Horse Spring Ridge and Upper Lime Wash localities in outcrops near the Gold 
Butte fault to the south (Fig. 5, shown as gaps in section). Mapping is currently 
under way to test this hypothesis.
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There are two possible tectonic events that might have been the underlying 
drivers of these facies changes: initiation of extension or thermal uplift related 
to volcanism south of Lake Mead. Although extension-related faulting and up-
lift were clearly under way by 17 Ma based on multiple lines of evidence (e.g., 
Umhoefer et al., 2010; Fitzgerald et al., 1991, 2009; Reiners et al., 2000; Quig-
ley et al., 2010), thermochronologic data alone suggest extension may have 
started ca. 20–19  Ma. As mentioned earlier, Quigley et  al. (2010) reported a 
transition from slow cooling beginning 30–26 Ma to rapid cooling at ca. 17 Ma, 
and Fitzgerald et al. (2009) suggested that cooling may have started 1–2 m.y. 
before their rapid cooling ages of ca. 17 Ma at Gold Butte and at 18 Ma in the 
White Hills area. Almeida (2014) reported 20–18 Ma apatite fission-track ages 
from clasts inferred to be sourced from the Gold Butte block. Finally, Bernet 
(2002) interpreted that rapid cooling due to the onset of extension began at 
the Gold Butte block at ca. 21 Ma, based on zircon fission-track data. Changes 
in sedimentation rates may also suggest extensional activity. Sedimentation 
rates often reflect faulting: Typical rates in extensional settings vary from 100 
to 2000 m/m.y. (Friedmann and Burbank, 1995). Our minimum sedimentation 
rate for the upper part of the middle unit of the Rainbow Gardens Formation 
at section A (Fig. 5) of ~116 m/m.y. (Table 2), calculated using the YSG and 
YC1σ maximum detrital zircon age of the middle conglomeratic unit, suggests 
active faulting and basin growth. The rate of 73 m/m.y., calculated using the 
YPP maximum depositional age for the marker unit of 19.6 Ma, is somewhat 
low for extensional basins but represents an increase above the rate of 24 
m/m.y. for  the lower part of the middle unit. We recognize that these rates 
were calculated on fairly thin successions, but, nevertheless, they support the 
interpretation that the pulse of coarser material across the southern basin at 
ca. 19 Ma and the stratigraphic observations at section A (coarsest and thickest 
upper middle unit) may have been due to the initiation of faulting and a resul-
tant change in basin configuration.

Uplift to the south related to the beginning of Cenozoic magmatism is 
another possible tectonic explanation for the input of coarse clastic material. 
This magmatism is represented by 19.9–19.6  Ma thin basalt flows exposed 
more than 60 km south of the White Hills and on the Colorado Plateau mar-
gin (Billingsley et al., 2006; Faulds et al., 2001) and by the thick (~1–2 km), ca. 
18.5–16 Ma Dixie Queen Mine stratovolcano in the southernmost White Hills, 
~75 km SSW of the Horse Spring area (Faulds, 1995; Faulds et al., 2001). Ther-
mal uplift may have increased the regional topographic gradient, creating 
higher-energy flows that transported coarse-grained sediments farther into 
the Rainbow Gardens Formation basin.

Climate change can also produce changes in sedimentation as observed at 
ca. 19 Ma. Globally, the mid-Miocene climatic optimum began at ca. 20–19 Ma, 
with the cessation of long-term Cenozoic global cooling; this warming contin-
ued until ca. 16 Ma, (e.g., Feakins et al., 2012; Ruddiman, 2010). Chapin (2008, 
and references therein) summarized the major tectonic and oceanic circula-
tion changes that contributed to this global climatic event, as well as the co-
eval widespread changes in sedimentation across the western United States. 
Retal lack (2007) documented a transition that began ca. 19  Ma to warmer 

and wetter conditions in Oregon, Montana, and the Great Plains, and Wolfe 
(1994) pointed to a warming trend in the Pacific Northwest beginning at 20 Ma. 
Although these more regional comprehensive studies are north and east of 
the Southwest United States, the mid-Miocene climatic optimum may have 
also affected the Rainbow Gardens Formation stratigraphy. It may have pro-
duced a period of increased precipitation that led to more frequent flooding 
events. These higher-energy fluvial flows may have extended farther around 
the southwest margin of the paleoscarp and/or helped create a breach in the 
paleoscarp. We note, however, that a regional climate event would likely pro-
duce higher- energy flows across the region and thus, in turn, produce coarser- 
grained units on all sides of the basin. We do not see coeval pulses of coarse 
sediment prograding into basin from other basin margin sites at ca. 19 Ma. 
Thus, while climate change may have affected Rainbow Gardens Formation 
sedimentation, we do not think climate change alone can explain the abrupt 
input of coarse sediment across the southern basin or increase in accommo-
dation space at Horse Spring Ridge.

In summary, we believe that while stream capture and regional climate 
change may have played a role in the changes in sedimentation documented 
here and in Lamb et al. (2015), they individually and alone cannot account for 
all of the changes. We suggest that a tectonic event, either faulting related to 
extension or thermal uplift relating to volcanism, changed the paleogeography 
and basin configuration.

Paleogeographic Evolution and Colorado River Implications

We suggest that during and by the end of Sevier thrusting, foreland basin 
deposits were widespread across the much or all of the Lake Mead area. The 
ca. 107–93 Ma Lavinia Wash, Willow Tank, and Baseline Sandstone formations 
were deposited east and southeast of Sevier thrusts that were active up to the 
early Late Cretaceous (e.g., Keystone, Wilson Cliffs, and Bird Spring thrusts; 
Garside et al., 2012, and references therein, Burchfiel et al., 1997). Flowers et al. 
(2008, their figsures 1 and 8) hypothesized that the area near the southern tip 
of Nevada, west of Kingman, Arizona, had ~1500 m of Late Cretaceous sedi-
mentary strata at 80 Ma; we suggest this extended into the Lake Mead area as 
well. Erosion of these deposits may have begun with formation of the King-
man Uplift in the Laramide, and they may also have been an additional local 
source for the Rainbow Gardens Formation, contributing the very weak ca. 
100–90 Ma detrital zircon signal.

The various Oligocene–Miocene conglomerates and clastic units deposited 
across the area share a few key features: They predate extensional deforma-
tion, were deposited on older units after a period of erosion, and are locally 
overlain by volcanic strata. Thus, they all reflect a key time period prior to 
extension when the regional paleogeography reflecting Sevier thrusting and 
Laramide uplift was modified by erosion and local deposition. Results of the 
sandstone provenance, stratigraphic correlations, and detrital zircon analysis 
support the interpretation of a scarp mostly isolating the Rainbow Gardens 
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Formation basin from conglomeratic units of the Buck and Doe Conglomer-
ate to the southeast, but connecting to locations to the southwest. Our ini-
tial detrital zircon work on the western Jean Conglomerate and eastern Buck 
and Doe Conglomerate samples suggests they were isolated from each other 
across the Kingman Uplift (Fig. 10), but additional provenance work is needed 
to better constrain their relation to each other and create a more complete 
paleogeographic picture.

The southwestern source for the middle conglomerate unit in the Rain-
bow Gardens Formation, the strong influx of volcanic material from the north, 
and the stratigraphic evidence that the southeast part of the Rainbow Gardens 
Formation basin was distal to both of these sources argue strongly against a 
major fluvial system entering the basin from the east or transecting the area. 
Thus, our data do not support the idea of the Rainbow Gardens Formation 
basin as a sink for paleo–Little Colorado River sediment. Instead, much of the 
sediment was derived locally, with point sources of volcanic materials from 
the north and crystalline basement material from the southwest.

CONCLUSIONS

We refined the source areas for the Rainbow Gardens Formation of Lamb 
et al. (2015) and showed they lay to the south, west, and north. Much of the 
sediment fill was sourced from the nearby Paleozoic strata, with minor input 
from possible Mesozoic rocks, and with an influx of volcaniclastic material 
from the north. Proterozoic clastic material appears to have been sourced from 
the southwest. Changes in the amount and source of clastic sediment during 
deposition of the middle unit of the Rainbow Gardens Formation suggest the 
possibility of tectonic uplift/faulting to the south of Lake Mead ca. 19 Ma as a 
prelude to major extension at 17 Ma. Provenance data for the southern part 
of the Rainbow Gardens Formation basin support the conclusion from Lamb 
et al. (2015) that no paleoriver system flowing westward from the Colorado 
Plateau entered the basin, but the data do allow for a refinement of the paleo-
geography. Comparison of the Rainbow Gardens Formation provenance and 
detrital zircon data with those of conglomeratic units to the south support 
the idea of a north-facing slope into the southern edge of the basin related 
to a south-facing paleoscarp and reinforce the location of the Kingman Up-
lift. These data also lead to the hypothesis that the Lake Mead area was once 
covered by Sevier thrust–related foreland basin Cretaceous deposits that were 
subsequently eroded away during the post-Laramide to late Oligocene period 
of tectonic quiescence.
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