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A BST R A C T 15 

Neoproterozoic strata in Death Valley, California contain eukaryotic microfossils and 16 

glacial deposits that have been used to assess the severity of putative Snowball Earth 17 

events and the biological response to extreme environmental change.  These successions 18 

also contain evidence for syn-sedimentary faulting that has been related to the rifting of 19 

Rodinia, and in turn the tectonic context of the onset of Snowball Earth.  These 20 

interpretations hinge on local geological relationships and both regional and global 21 

stratigraphic correlations.  Here we present new geological mapping, measured 22 

stratigraphic sections, carbon and strontium isotope chemostratigraphy, and 23 

micropaleontology from the Neoproterozoic glacial deposits and bounding strata in Death 24 

Valley.  These new data enable us to refine regional correlations both across Death 25 

Valley and throughout Laurentia, and construct a new age model for glaciogenic strata 26 

and microfossil assemblages.  Particularly, our remapping of the Kingston Peak 27 

Formation in the Saddle Peak Hills and near the type locality shows for the first time that 28 

glacial deposits of both the Marinoan and Sturtian glaciations can be distinguished in 29 

southeastern Death Valley, and that beds containing vase-shaped microfossils are slump 30 

blocks derived from the underlying strata.  These slump blocks are associated with 31 

multiple overlapping unconformities that developed during syn-sedimentary faulting, 32 

which is a common feature of Cyrogenian strata along the margin of Laurentia from 33 

California to Alaska.  With these data, we conclude that all of the microfossils that have 34 

been described to date in Neoproterozoic strata of Death Valley predate the glaciations 35 

and do not bear on the severity, extent or duration of Neoproterozoic Snowball Earth 36 

events.  37 

38 



IN T R O DU C T I O N 39 

The Neoproterozoic Era (1000-542 Ma) witnessed a major diversification of eukaryotes, 40 

including the origin of animals (Knoll et al., 2006), and extreme swings in climate, 41 

including putative Snowball Earth events (Hoffman et al., 1998; Kirschvink, 1992). The 42 

apparent coincidence between Neoproterozoic glacial events and the appearance of 43 

animals in the fossil record (Erwin et al., 2011; Love et al., 2009; Macdonald et al., 44 

2010b; Peterson et al., 2008; Yin et al., 2007) has fueled speculation concerning the 45 

relationships between extreme climate change and eukaryotic evolution (Boyle et al., 46 

2007; Costas et al., 2008; Hoffman and Schrag, 2002). Alternatively, the presence of 47 

photosynthetic autotrophs and heterotrophs before, and their survival through, 48 

Neoproterozoic glaciations (Corsetti et al., 2003; Corsetti et al., 2006; Olcott et al., 2005; 49 

Porter and Knoll, 2000) has been argued to preclude a Snowball Earth scenario (Corsetti, 50 

2009; Moczydlowska, 2008; Runnegar, 2000). These interpretations are only as good as 51 

the records on which they are based. Although the microfossil record from strata 52 

deposited during the Cryogenian1 glacial interlude has increased dramatically with 53 

discoveries from Namibia (Bosak et al., 2011a; Bosak et al., 2012; Brain et al., 2012; 54 

Pruss et al., 2010) and Mongolia (Bosak et al., 2011b), attempts at integrating Cryogenian 55 

fossil records globally and assessing the biological response to Neoproterozoic glaciation 56 

have been frustrated by the dearth of geochronological constraints, along with 57 

uncertainties in stratigraphic correlations between different fossil localities. 58 

                                                 
1 The Cryogenian Period is formally defined from 850-635 Ma.  Herein we follow the recommendation of 
the IGCP 512 Neoproterozoic stratigraphic sub-commission, which defines the base of the Cryogenian at 
the base of the oldest Neoproterozoic glacial deposit from a global glaciation.  While there is still 
controversy over the possibility of pre-Sturtian, ca. 750 Ma glaciations, we assume that these deposits are 
not global and take the onset of the Sturtian glaciation at 717 Ma as the base of the Cryogenian Period. 



Ease of accessibility and spectacular exposure has made the Pahrump Group of 59 

Death Valley, California (Fig. 1), an iconic record of Neoproterozoic environmental 60 

change.  Distinct early Cryogenian Sturtian  (ca. 717-662 Ma; Bowring et al., 2007; 61 

Macdonald et al., 2010b; Zhou et al., 2004) glacial deposits and late Cryogenian 62 

Marinoan  (ca. 635 Ma; Condon et al., 2005; Hoffmann et al., 2004) glacial deposits are 63 

present in the Kingston Peak Formation on the west side of Death Valley, in the Panamint 64 

Mountains (Miller, 1985; Petterson et al., 2011; Prave, 1999).  However, in southeastern 65 

Death Valley, it has remained unclear if glacial deposits of the Kingston Peak Formation 66 

are Sturtian or Marinoan in age (Mrofka and Kennedy, 2011; Prave, 1999).  Conversely, 67 

in southeastern Death Valley, vase-shaped microfossils (VSMs), filamentous organisms, 68 

possible algae, and cyanobacteria are present in the Pahrump Group (Corsetti et al., 2003; 69 

Licari, 1978; Pierce and Cloud, 1979), whereas Neoproterozoic microfossils have not 70 

been identified on the west side of Death Valley.  These paleontological finds include a 71 

putative syn-glacial biota  Formation (Corsetti 72 

et al., 2003), but because of stratigraphic uncertainties and structural complexity in 73 

southeastern Death Valley (Walker et al., 1986), the age of these microfossil assemblages 74 

has remained unclear (Hoffman and Maloof, 2003; Macdonald et al., 2010b).  75 

Stratigraphic relationships have been complicated by syn-depositional tectonism, which 76 

has left the succession with multiple overlapping unconformities, many redeposited beds, 77 

and large lateral facies changes. Here we present new geological mapping, measured 78 

stratigraphic sections, carbon and strontium isotope chemostratigraphy, and microfossil 79 

discoveries from key localities in southeastern Death Valley (Fig. 1).  These data allow us 80 



to unify Neoproterozoic records across the valley and beyond, and reassess the 81 

stratigraphic relationship between global glaciation and biological turnover. 82 

 83 

G E O L O G I C A L SE T T IN G 84 

Exposures in the Death Valley region of southern California (Fig. 1) record the 85 

geological evolution of the southwestern margin of Laurentia.  The oldest rocks in the 86 

region are ca. 1.76 Ga granitic gneisses of the Mojave crustal province (Barth et al., 87 

2000; Strickland et al., 2012; Wasserburg et al., 1959), which are intruded by ca. 1.4 Ga 88 

porphyritic quartz monzonite (Labotka et al., 1980).  Unconformably overlying those 89 

basement rocks, is the Pahrump Group, a 1.5-4 km thick mixed carbonate and siliciclastic 90 

succession exposed across southeastern Death Valley and the Panamint Mountains 91 

(Hazzard, 1937; Hewett, 1940, 1956; Noble, 1934; Wright et al., 1974).  Upwards, it 92 

consists of the Crystal Spring Formation (here differentiated into the upper and lower 93 

Crystal Spring Formation), the Beck Spring Dolomite, and the Kingston Peak Formation 94 

(Fig. 2). The lower portions of the Crystal Spring Formation are intruded by 1.08 Ga 95 

diabase sills (Heaman and Grotzinger, 1992).  A minimum age for the Pahrump Group is 96 

provided by the overlying Noonday Formation (Hazzard, 1937; Hewett, 1956; Noble, 97 

1934; Wright et al., 1974), the lowest member of which has been identified as a basal 98 

Ediacaran cap dolostone (Petterson et al., 2011), dated globally at 635 Ma (Condon et al., 99 

2005; Hoffmann et al., 2004). The Noonday Formation is succeeded by the Johnnie 100 

Formation, Stirling Quartzite, and the early Cambrian Wood Canyon Formation, which 101 

contains the Precambrian-Cambrian boundary (Corsetti and Hagadorn, 2000).  102 

Following multiple episodes of late Neoproterozoic extension (Prave, 1999; 103 



Stewart, 1975), and subsequent Cambrian passive-margin development (Armin and 104 

Mayer, 1983; Stewart, 1970), the region experienced Permian contraction and 105 

magmatism (Snow et al., 1991). This was followed by the Mesozoic Cordilleran orogeny 106 

(Burchfiel et al., 1992; Burchfiel et al., 1970; Snow and Wernicke, 1990), and Neogene 107 

extension accommodated by break-away detachment faults (Snow and Wernicke, 2000; 108 

Wernicke et al., 1988; Wright, 1976) with associated felsic and mafic intrusions (Calzia 109 

and Ramo, 2000; Fleck, 1970; Wright et al., 1991). 110 

 111 

Stratigraphy of the Pahrump G roup 112 

Crystal Spring Formation 113 

The Pahrump Group begins with the Crystal Spring Formation, which is 300-1000 m 114 

thick and rests nonconformably on Mesoproterozoic granitic to amphibolitic gneissic 115 

basement (Roberts, 1982; Wright, 1968).  Above this surface is a variably developed 116 

basal conglomerate (interestingly, this unit is dominated by light-colored meta-quartzite 117 

clasts rather than gneissic ones) that is overlain by purple to violet quartzite and shale 118 

followed by a thick (many tens of meters) stromatolitic dolostone and then a cherty 119 

mudstone and fine-grained quartzite unit (Roberts, 1982). The 1.08 Ga diabase sills 120 

(Heaman and Grotzinger, 1992) intrude these strata, generating hornfels and talc (Wright, 121 

1968). The lower Crystal Spring Formation is unconformably overlain by the upper 122 

Crystal Spring Formation, which is a mixed siliciclastic-carbonate succession that is 123 

~100-650 m thick, and is not intruded by the diabase.  124 

 125 

Beck Spring Dolomite 126 



The contact between the upper Crystal Spring Formation and the Beck Spring Dolomite 127 

is transitional and conformable (Roberts, 1982), and is placed at the base of the first well-128 

defined, meter-scale carbonate parasequence, where the succession transitions to 129 

carbonate-dominated deposition. The Beck Spring Dolomite is 100-400 m thick, and 130 

consists predominantly of blue-grey dolostone with abundant microbialite and oolitic 131 

packstone, occasional micrite with molar tooth structure, and minor siliciclastic interbeds 132 

(Gutstadt, 1968; Marian and Osborne, 1992).  133 

 134 

Kingston Peak Formation 135 

The Kingston Peak Formation is lithologically diverse, characterized by glacigenic 136 

diamictites, but also including carbonates and other non-glacigenic siliciclastic rocks.  137 

The Kingston Peak Formation has proven to be problematic with regard to establishing a 138 

regional stratigraphic framework.  This is due in part to the presence of only one 139 

widespread diamictite unit in southeastern Death Valley (KP2) whereas in the Panamint 140 

Mountains there are two (Surprise and Wildrose diamictites), including a well-developed 141 

non-glacial stratigraphy between these glaciogenic intervals that is lacking in 142 

southeastern Death Valley.  In the Panamint Mountains, the Kingston Peak Formation has 143 

been divided into the Limekiln Spring, Surprise, Sourdough, Middle Park, Argenta, 144 

Mountain Girl, Thorndike , and Wildrose 145 

members (Miller, 1985; Petterson et al., 2011).  The Surprise and Wildrose members 146 

have been suggested to represent Sturtian and Marinoan glacial deposits, respectively 147 

(Petterson et al., 2011; Prave, 1999).  In contrast, in southeastern Death Valley the 148 

formation consists of three informal mapable units, KP1-2-3, a locally developed fourth 149 



unit, KP4 (Prave, 1999; Wright, 1954), and an enigmatic limestone unit, the Virgin 150 

Spring Limestone (Tucker, 1986), which is variably present at the contact between KP1 151 

and KP2. Some studies have further divided the Kingston Peak Formation into northern 152 

and southern facies belts as a function of clast composition (Mrofka and Kennedy, 2011; 153 

Troxel, 1966, 1967).  Here we use the KP1-KP4 nomenclature, rather than the northern 154 

and southern facies, and further subdivide KP3 into several mappable units. 155 

Unit KP1 is as much as 250 m thick and consists predominantly of thinly-bedded 156 

(1-10 cm-thick beds), mostly flat-laminated (ripple cross-lamination is present locally) to 157 

graded, fine-grained sandstone and shale with minor nodular dolostone.  158 

The Virgin Spring Limestone sharply overlies KP1, and has previously been 159 

described in the Black Mountains and Southern Ibex Hills (Fig. 1) as a <20 m thick, fine-160 

laminated limestone (Tucker, 1986).  In the Kingston Range and Alexander Hills, the 161 

Virgin Spring Limestone is missing and KP2 rests sharply on KP1.  162 

Unit KP2 is a massive, poorly bedded diamictite that is 50 to 370 m thick.  Clasts 163 

range in size from pebbles to boulders and consist of gneissic rocks derived from the 164 

basement, and quartzite and dolostone from the underlying Crystal Spring Formation and 165 

Beck Spring Dolomite; glacially striated clasts are present but rare (Miller et al., 1988).  166 

The matrix varies from brown colored where carbonate-rich to greenish-black, where 167 

dominated by mud- and sand-sized siliciclastics.  The contact at the top of KP2 with the 168 

overlying KP3 rocks is variable; in some places it is sharp and in others gradational.  169 

Unit KP3 has a clast composition similar to KP2 but is typically dominated by 170 

clasts derived from the Beck Spring Dolomite and the Crystal Spring Formation. KP3 171 

consists of several interbedded lithologies: meters-thick, matrix- and clast-supported 172 



sedimentary breccias and conglomerates, centimeter- to meter-thick, fine- to very coarse-173 

grained graded sandstone beds, and shale. KP3 varies enormously in its development, 174 

ranging in thickness from as little as a few tens of meters to as much as several 175 

kilometers; it is green to reddish-brown in color and contains rare beds of iron formation. 176 

An oncolite-bearing dolostone layer was previously mapped as a laterally continuous 177 

marker bed in the KP3 (Calzia, 1990; Wright, 1974). consists of large, 178 

partially silicified ooids and pebble- to cobble-sized oncoids in light-grey dolostone, and 179 

contains a rich microfossil assemblage (Corsetti et al., 2003). KP3 also commonly 180 

contains olistoliths derived from the underlying units that range from car-sized blocks to 181 

having length dimensions of more than a kilometer (Troxel, 1966).  182 

In southeastern Death Valley, additional lenses of massive diamictite, unit KP4, 183 

overlies stratified diamictite of KP3. This massive diamictite and the overlying Noonday 184 

Formation rest unconfomably on all the underlying strata and basement (Prave, 1999; 185 

Wright, 1974).  186 

 187 

M E T H O DS 188 

T ectonostratigraphic Units 189 

Prave (1999) developed a correlation scheme for the Pahrump Group through geological 190 

mapping and the identification of unconformity-bound tectonostratigraphic units.  Here 191 

we refine this framework (Fig. 2) by providing new observations from across the Death 192 

Valley outcrop belt. We focused our efforts on key exposures of the Kingston Peak 193 

Formation in the Black Mountains (Virgin Spring Wash), Kingston Range, Southern Ibex 194 

Hills (Saratoga Springs), and the Saddle Peak Hills (Fig. 1), including detailed mapping 195 



of the latter (Fig. 3). Although formational contacts rarely coincide with the surfaces 196 

defining the tectonostratigraphic units, we retain pre-existing nomenclature as much as 197 

possible for consistency with previously published literature. 198 

Stratigraphic correlations of the map units that bound the Kingston Peak 199 

Formation in Death Valley region are relatively straightforward (i.e. the Beck Spring 200 

Dolomite and the Noonday Formation); however, correlation of map units within 201 

Kingston Peak strata has proven to be frustrating. In large part this is due to syn-202 

depositional tectonism resulting in multiple overlapping unconformities and large lateral 203 

facies and thickness changes. Thus, to avoid forcing layer-cake-like, 204 

lithostratigraphically-based correlations onto a succession of rocks in which units are 205 

laterally discontinuous and/or missing, we have used the unconformity surfaces bounding 206 

our newly refined tectonostratigraphic units as a means of constructing a pan-Death-207 

Valley Pahrump Group correlation scheme (Fig. 2), with the aim to extend these 208 

Neoproterozoic tectonostratigraphic units along the western margin of Laurentia.   209 

 210 

Chemostratigraphy 211 

To test regional and global correlations, we sampled carbonates in measured stratigraphic 212 

sections and constructed detailed carbon ( 13C) and oxygen ( 18O) isotopic profiles 213 

through the Beck Spring Dolomite and the Virgin Spring Limestone in the Black 214 

Mountains, Kingston Range, Saddle Peak Hills, and Southern Ibex Hills (Fig. 1).  In 215 

addition, strontium isotope (87Sr/86Sr) data were obtained for the Virgin Spring 216 

Limestone.  217 



 New carbonate 13 18O measurements were obtained on 290 samples (see 218 

data repository Tables S1 and S2).  Samples were micro-drilled along individual 219 

laminations (where visible) to obtain 5 to 50 mg of powder; areas of veining, fracturing, 220 

and siliciclastic-rich intervals were avoided.  13 18O isotopic data from 221 

the Beck Spring Dolomite were acquired simultaneously at the Scottish Universities 222 

Environmental Research Center using an automated triple-collector gas source mass 223 

spectrometer (Analytical Precision AP2003), and additional samples of the Virgin Spring 224 

Limestone were measured at Harvard University.  Approximately 1-mg of micro-drilled 225 

samples were reacted in an automated gas-preparation device with H3PO4.  Evolved CO2 226 

was collected cryogenically and analyzed using an in-house reference gas. External error 227 

13 18O.  Samples were 228 

calibrated to VPDB (Vienna Pee-Dee Belemnite) using internal standards and NBS 19.  229 

Carbonate 13C and 18O isotopic results are reported in per mil notation relative to the 230 

standard VPDB.  231 

 Major and trace element analyses and 87Sr/86Sr measurements were performed on 232 

19 samples of the Virgin Spring Limestone collected from the Black Mountains, Saddle 233 

Peak Hills, and Southern Ibex Hills (see data repository, Table S2).  50  2 mg of powder 234 

was dissolved in Falcon tubes using 5 ml of 1.4M acetic acid. Duplicates were created of 235 

a subset of samples and subjected to washing steps with methanol and 0.2M ammonium 236 

acetate to remove loosely bound cations from the non-carbonate constituents in the 237 

limestone prior to acid dissolution. Tubes were shaken vigorously and placed in an 238 

ultrasonic bath for 30 minutes to ensure complete dissolution of the carbonate minerals, 239 

and then centrifuged to bead the residue. 3 ml of the affluent was transferred to a clean 240 



tube for major and minor element concentrations, and 1 ml to another clean tube for Sr 241 

column chemistry.  242 

The concentrations of major and minor elements were measured by solution 243 

nebulized-inductively coupled plasma-mass spectrometry (SN-ICP-MS) on a Thermo X 244 

series quadrupole at Harvard University. Standard powders BHVO-2, DNC-1, JB-2, and 245 

W-2 were used to generate calibration curves. An additional in-house standard K1919 246 

was used to monitor the instrument drift throughout the run. The samples were run with a 247 

dilution factor of 1:5K using a matrix solution of 0.2N HNO3 with Ge (10 ppb), In (3 248 

ppb), Tm (3 ppb) and Bi (3 ppb) as internal standard elements for short-term drift 249 

correction. Major and minor elements were measured in two separate but consecutive 250 

runs without exchanging any samples, standards, or blanks. 251 

 Strontium column chemistry was performed on 1 ml of sample to isolate Sr from 252 

coexisting matrix elements.  The samples, previously dissolved in acetic acid, were dried 253 

and redissolved in 3N nitric acid. This step was repeated three times to ensure that all the 254 

acetic acid was evaporated. The solution was then loaded onto a preconditioned Sr Spec 255 

column. After three consecutive loadings of 0.25 ml 3N nitric acid to ensure that other 256 

elements had been removed, Sr was eluted by 1 reservoir loading (~1ml) of ultrapure 257 

water. 87Sr/86Sr values were obtained from a Thermo Neptune multicollector ICP-MS at 258 

Woods Hole Oceanographic Institute (WHOI), Massachusetts. The measurements were 259 

performed with typical 88Sr beam intensities from 30 to 50 volts. 87Sr/86Sr ratios were 260 

corrected for Kr and Rb, and normalized using the exponential law. The standard NBS 261 

987 was analyzed frequently between samples to monitor the consistency of the measured 262 

values. 263 



 264 

Micropaleontology 265 

To further refine the biological record bounding Neoproteorzoic glacial events in the 266 

context of our new tectonostratigraphic framework, we examined the micropaleontology 267 

of the Virgin Spring Limestone, which is the youngest unit preserved directly below the 268 

oldest glacial deposits in southeastern Death Valley.  269 

 Eighteen samples from the Virgin Spring Limestone from the Black Mountains 270 

(with outer weathered surfaces removed) were macerated in acid to obtain residues from 271 

which microfossils could be extracted (e.g. Bosak et al., 2011a; Green, 2001) 272 

Approximately 10-15 g of coarsely cut sample were washed in a bath of 10% buffered 273 

HCl for 24 hours. Clean, prepared samples were then broken into smaller, millimeter-274 

sized pieces and placed in test tubes. Each sample was separately dissolved in 10% HCl 275 

and 10% acetic acid to examine yields under different conditions. The residues were then 276 

rinsed and filtered over 100 m, 41 m, and 0.2 m Millipore nylon mesh filters using a 277 

vacuum filtration device. Organic material was examined in two size fractions, >100 m 278 

and 41-100 m, under a dissecting microscope and a Nikon ® Eclipse TS100, inverted 279 

light microscope. All possible microfossils were picked, mounted on a pin, and coated in 280 

mixture of gold and paladium using a Sputter Coater- Hummer V, in preparation for 281 

investigation under the FEI Quanta 450 Scanning Electron Microscope (SEM) at the 282 

Center for Biological Microscopy and Imaging at Smith College.  283 

 284 

R ESU L TS 285 

T ectonostratigraphic Units 286 



Tectonostratigraphic Unit 0: lower Crystal Spring Formation 287 

We here assign TU0 to the Mesoproterozoic strata of Death Valley to reserve 288 

tectonostratigraphic units TU1-TU5 for Neoproterozoic strata, and assign TU1 to early 289 

Neoproterozoic strata that are exposed on the northwestern margin of Laurentia but are 290 

not present in Death Valley (Macdonald et al., 2012).  Correlation of TU0 and TU2 291 

across Death Valley is relatively straightforward, and utilizes the basal unconformity of 292 

the lower Crystal Spring Formation and the basal unconformity of the upper Crystal 293 

Spring Formation, respectively (Fig. 2).  The upper Crystal Spring Formation is not 294 

intruded by diabase and rests with an angular discordance of up to 20  on the underlying 295 

rocks of the lower Crystal Spring Formation (Mbuyi and Prave, 1993).  This 296 

unconformity surface defines the base of TU2 and is marked by a sharp contact 297 

separating hornfelsed strata below from non-metamorphosed rocks above (Fig. 4a).  A 298 

decimeter-thick, discontinuous conglomerate and breccia containing abundant hornfels 299 

and rare diabase clasts are developed locally along this contact (Fig. 4b).  Immediately 300 

above these rocks is a widespread sandstone unit that contains detrital zircons as young as 301 

ca. 770 Ma (Dehler et al., 2011b).  Given the 1.08 Ga date for the diabase, these data 302 

suggest that the duration of the lower-upper Crystal Spring Formation unconformity is 303 

>300 Ma, spanning deposition of TU1 preserved elsewhere in northern Laurentia 304 

(Macdonald et al., 2012). 305 

 306 

Tectonostratigraphic Unit 2: upper Crystal Spring Formation, Beck Spring Dolomite 307 

and KP1 308 



TU2 consists of the upper Crystal Spring Formation, the Beck Spring Dolomite, and KP1.  309 

All three of these units display large lateral facies changes in southeastern Death Valley.  310 

Particularly, the Saddle Peak Hills marks an east to west transition from siliciclastic-poor 311 

to siliciclastic-rich strata.  To the east in the Kingston Range and Alexander Hills, the 312 

Beck Springs is a massive, brecciated, dolomitic microbialite (Harwood and Sumner, 313 

2011; Marian and Osborne, 1992) whereas to the west in the Saddle Peak Hills and 314 

Southern Ibex Hills it is comprised of hundreds of 1-10 m thick mixed carbonate and 315 

siliciclastic parasequences (Fig. 5).  In the eastern localities, a variably developed, 316 

partially silicified unit of mm- to cm-sized ooids and pebble-sized oncoids occurs near 317 

the top of the Beck Spring Dolomite.  In the western localities, the Beck Spring Dolomite 318 

contains a significant influx of coarse, quartz-rich sediment that is conspicuously absent 319 

in the sections east of Saddle Peak Hills.  In addition to significant facies changes, the 320 

thickness of the Beck Spring Dolomite varies by hundreds of meters (Fig. 5).  321 

The Beck Spring Dolomite passes gradationally (a few to as much as 20 meter-322 

thick transition) into the fine-grained siliciclastic unit KP1 of the Kingston Peak 323 

Formation. In many places this interval is marked by interbedded silty carbonate and 324 

green-grey siltstone beds and has (Corsetti and 325 

Kaufman, 2003; Link et al., 1993), which are succeeded by up to 250 meters of 326 

siliciclastic turbidites of KP1.  Historically, KP1 has been placed within the Kingston 327 

Peak Formation, but the gradational contact with the underlying Beck Spring Dolomite 328 

indicates that it is part of the Beck Spring Dolomite depositional cycle (Prave, 1999).  It 329 

is noteworthy that no diamictite, dropstones, or any other features that would distinguish 330 

KP1 as glaciogenic have ever been documented.  When the Pahrump Group stratigraphy 331 



is further refined and formalized, we suggest that the upper and lower Crystal Spring 332 

Formation are separated into two formations and that unit KP1 is removed from the 333 

Kingston Peak Formation (e.g. KP1 was informally referred to as the Saratoga Springs 334 

Sandstone by Mrofka, 2010). 335 

 336 

Tectonostratigraphic Unit 3: Virgin Spring Limestone, KP2, and KP3 337 

In the Black Mountains, Southern Ibex Hills, and Saddle Peak Hills of southeastern 338 

Death Valley (Fig. 1), the Virgin Spring Limestone, a 5-10 m thick unit of black 339 

limestone, orange-tan dolostone and minor shale and siltstone, sits unconformably on 340 

KP1 (Figs. 6a, 7).  It is this unconformity surface that defines the base of 341 

Tectonostratigraphic Unit 3.  At the type section of the Virgin Spring Limestone in the 342 

Black Mountains, the surface is sharp and strata above and below are concordant (Fig. 343 

6b).  In the southern Ibex Hills, the contact between the Virgin Spring Limestone and 344 

KP1 appears gradational over several tens of centimeters.  There, KP1 thins from south to 345 

north, from a couple of hundred meters to a few tens of meters, with the loss of section 346 

from the top down resulting in an angular discordance with the overlying Virgin Spring 347 

Limestone.  It is our new mapping in the Saddle Peak Hills, though, that reveals most 348 

starkly the unconformable relationship (Fig. 3).  There, the Virgin Spring Limestone sits 349 

variably on KP1, Beck Spring Dolomite, and the Crystal Spring Formation (Fig. 6a). 350 

The Virgin Spring Limestone displays a complicated internal stratigraphy, 351 

varying from limestone- to dolostone-rich and from having abundant to minor siliciclastic 352 

interbeds (Fig. 7).  Three sections were measured in detail: the eponymous type locality 353 

in the Black Mountains, where it is 7 m thick and consists of upper and lower intervals of 354 



dark grey, finely laminated carbonate beds separated by an intervening interval of 355 

centimeter-thick brown to rust-colored beds containing disseminated silt-sized quartz 356 

grains (Fig. 6c); the Southern Ibex Hills where it is 2-3 m thick (Fig. 7), with the basal 357 

0.2 m consisting of interbedded dark grey limestone and siltstone and the remainder 358 

being thinly laminated, dark grey calcilutite; and the Saddle Peak Hills, where it is as 359 

much as 8 m thick (Fig. 7) and composed predominantly of dark grey limestone 360 

interbedded with thin beds of orange to red siltstone and grainstone lenses containing 361 

ooids and cobble-sized intraclasts (Fig. 6d).  Everywhere, the upper contact with the 362 

overlying diamictite of KP2 is erosive (hence the varying thickness from location to 363 

location), commonly displaying karst and partial silicification.  In many places, the 364 

lowermost part of KP2 diamictite contains abundant clasts plucked from the Virgin 365 

Spring Limestone, and in the Saddle Peak Hills, there is an 8 m thick interval of orange-366 

weathered dolostone breccia that separates the main body of the Virgin Spring Limestone 367 

from the overlying KP2 diamictite.  368 

In the Saddle Peak Hills and Southern Ibex Hills, unit KP2 consists of a massive, 369 

dark-weathering diamictite that contains mostly basement clasts.  In the Southern Ibex 370 

Hills, there are no strata exposed that are stratigraphically above KP2, but in the Saddle 371 

Peak Hills a several meter thick arkosic conglomerate-sandstone unit consisting of cm-372 

sized quartz and feldspar grains occurs between massive diamictite of KP2 and stratified 373 

diamictite of KP3 (Fig. 8a), testifying to a proximal basement high.  This unit has a sharp 374 

base and fines upward into KP3.  KP3 was subdivided into 3 units for mapping purposes 375 

(Fig. 3): KP3a, a thin-bedded to laminated light green-, to buff-, to pink-colored siltstone 376 

and sandstone unit with rare dropstones marked by a distinctive black staining along 377 



fractures forming an intricately patterned light-378 

P3b consisting of matrix- and clast-supported carbonate-clast conglomerate, 379 

green- to pale-pink-colored stratified diamictite, thin-bedded fine-grained sandstone and 380 

shale with rare drop/lonestones, and very coarse-grained channelized sandstone lenses 381 

(Fig. 8b); and KP3c, which is characterized by maroon-colored, thin- to thick-bedded, 382 

fine- to very coarse-grained, graded sandstone and siltstone beds with rare lonestones, 383 

dropstones, and thin lenses of iron formation, as well as intervals containing dispersed, 384 

meter-scale blocks composed predominantly of Beck Spring Dolomite and Crystal Spring 385 

Formation.  KP3a and KP3b are only present in the southwestern part of the Saddle Peak 386 

Hills map area, and both display an overall southwestward thickening.  On the southern 387 

flank of the Saddle Peak Hills faulting complicates the base of KP3c, but where followed 388 

to the southwest towards equivalent beds at Sperry Wash (Abolins et al., 2000; Troxel, 389 

1967), KP3c strata onlap and expand along a low-angle unconformity (Fig. 3).  390 

In the Kingston Range and Alexander Hills, the Virgin Spring Limestone is 391 

missing. There, the base of KP2 erodes entirely through the Virgin Spring Limestone to 392 

sit directly on KP1.  In these instances, the base of KP2 and TU3 are coincident, and the 393 

lower part of the KP2 diamictite commonly contains clasts of the Virgin Spring 394 

Limestone.  In the eastern Kingston Range, massive diamictite of KP2 is overlain by the 395 

KP3 megabreccia member of Calzia et al. (1987), which consists of meter to kilometer 396 

scale olistoliths in a poorly sorted siliciclastic matrix with striated clasts (Fig. 8c) and 397 

.  Previously published maps covering the area of outcrop of 398 

399 

very coarse-grained facies of KP2 and KP3 (Calzia et al. 1987).  Our mapping of the 400 



 bed  at several key exposures (including the locality cited by Corsetti et al., 401 

2003) reveals that it is not a continuous unit but actually a series of discontinuous, 402 

elongate olisoliths (100s of meters in length), many of which are rotated at a high angle 403 

to bedding relative to the encasing Kingston Peak rocks (Figs. 8e, 9).  These slabs are 404 

associated with other large blocks and slabs that, in effect, form an armada of olistoliths 405 

derived largely from the Crystal Spring Formation, the Beck Spring Dolomite, and KP1. 406 

In the eastern Kingston Range, the megabreccia member is overlain by >500m of 407 

heterolithic gravity flow deposits with minor diamictite and 10-100 m thick bedded iron 408 

formation (upper member of Calzia et al., 1987; Graff, 1985).  We correlate the 409 

megabreccia member to KP3a and KP3b and the upper member to KP3c in the Saddle 410 

Peak Hills (Fig. 2). 411 

In the Panamint Mountains, glaciogenic strata of the Limekiln Spring and 412 

Surprise members are overlain by a post-glacial succession, the Sourdough cap carbonate 413 

and Middle Park Member, which is absent in southeastern Death Valley (Fig. 2).  We 414 

tentatively place the base of TU3 at the base of the Limekiln Spring Member.  We stress 415 

that the exact nature of the Limekiln Spring Member remains somewhat enigmatic, in 416 

part because of uncertainties in correlations of this unit across the Panamint Range, and 417 

will require further work.  However, assigning the Limekiln Spring Member to TU3 418 

places the first occurrence of glaciogenic rocks across the Death Valley area into the 419 

same succession.  This linkage is supported by the presence of arkosic conglomerates in 420 

KP3a in the Saddle Peak Hills that share lithological characteristics with the Favorable 421 

submember of the Limekiln Spring Member (Carlisle et al., 1980; Kettler, 1982).  In the 422 

southern and central Panamint Mountains, the Surprise Member consists of massive 423 



diamictite intercalated with as much as 60 m of metabasalt (Miller, 1985).  To the north 424 

these massive diamictite facies grade into a bedded heterolithic sequence.  We correlate 425 

this sequence, and the Surprise Member in general, to the iron-rich heterolithic beds of 426 

KP3c in the Saddle Peak Hills and its equivalent in the eastern Kingston Range (Fig. 2). 427 

 428 

Tectonostratigraphic Unit 4: KP4 and the Noonday Formation 429 

In the Saddle Peak Hills, we observed a third diamictite unit, which we attribute to KP4 430 

(Fig. 3).  KP4 is distinguished from KP3 by being a coarser and thicker-bedded, massive, 431 

matrix-supported diamictite in which the matrix is dark red and consists of silt-sized 432 

grains.  It infills lenses and channels that erode into KP3 and contains clasts of lithified 433 

fragments of the underlying KP3 (Fig. 8d).  Further, KP4, along with the capping 434 

Noonday Formation, seal NNE-SSW oriented Precambrian faults (e.g. SE corner of Fig. 435 

3).  Combined, these observations are evidence for a significant hiatus between KP3 and 436 

KP4 and we place the base of TU4 at the base of KP4.  Where KP4 is not present, the 437 

base of TU4 is coincident with the base of the Noonday Formation. 438 

In the Saddle Peak Hills, we follow Petterson et al.  (2011) differentiation of the 439 

Noonday Formation in the Panamint Mountains into three members: the Sentinel Peak, 440 

Radcliff, and Mahogany Flats.  On the northern flank of the Saddle Peak Hills, the 441 

Sentinel Peak Member is a >100 m thick, light-colored dolomicrite with irregular 442 

cements, which locally form giant tubestone stromatolite mounds (Cloud et al., 1974; 443 

Corsetti and Grotzinger, 2005; Wright et al., 1978).  On the southern flank of the Saddle 444 

Peak Hills, the Sentinal Peak member is < 5 m thick and commonly absent where KP4 is 445 

overlain by thin-bedded allodapic carbonate and fine to coarse maroon-colored 446 



siliciclastic graded beds and debrites of the Radcliffe Member (a.k.a. Ibex facies; Troxel, 447 

1982; Wright and Troxel, 1984).  These debrites include tubestone-clast breccias shed off 448 

the Sentinal Peak mounds to the north (Fig. 3), and are useful in distinguishing KP4 449 

diamictite and Noonday debrites.  The break between massive, thick Sentinal Peak facies 450 

and the Ibex facies occurs along the NNW-trending faults that were active during 451 

deposition of the underlying strata. 452 

 The top of TU4c is placed at the base of the overlying Johnnie Formation, which 453 

has been documented as an unconformity (Summa, 1993).  In the northern Saddle Peak 454 

Hills, karst pipes as much as 10 m deep and filled with coarse quartz grains dissect 455 

stromatolitic and laminated dolomicrite of the Mahogany Flats Member.  On the southern 456 

flanks of those Hills, the lower Johnnie Formation is a many tens of meters thick 457 

dolomitic quartz arenite that erodes deeply into the Noonday strata, marking the base of 458 

TU5.  Unfortunately, in most places the contact is faulted such that it becomes difficult to 459 

document the magnitude of the erosional incision.   460 

In the Panamint Range, additional stratigraphy is preserved above the lowermost 461 

glaciogenic rocks and the base of TU4 is tentatively placed at the base of the Argenta 462 

member, which is a clastic wedge of coarse, arkosic sandstone and conglomerate 463 

(Petterson, 2009).  An alternative is to place the base of this unit at the base of the 464 

Mountain Girl Conglomerate.  Which of these two surfaces is the more correct remains to 465 

be substantiated, but in either case, both surfaces seal an episode of deformation: the base 466 

of the clastic wedge of the Argenta member sits locally with angular discordance on 467 

underlying rocks whereas the Mountain Girl Conglomerate appears to cut across the 468 

Argenta wedge (Petterson, 2009).  469 



The subdivision of TU4 into TU4a, TU4b, and TU4c, highlights the syntectonic 470 

deposition and wedge-shaped stratal geometries (Fig. 2).  TU4a consists of granitic grit 471 

and fanglomerate of the Argenta member (Petterson, 2009).  The Argenta fanglomerate is 472 

sharply overlain by the conglomeratic Mountain Girl Member, which in turn is sharply 473 

overlain by the Thorndike Limestone; these units constitute TU4b.  TU4a and TU4b are 474 

absent in southeastern Death Valley.  The base of the overlying massive diamictite of the 475 

Wildrose Diamictite, which commonly has an erosive base and cuts variably through the 476 

underlying strata (e.g. Prave, 1999), defines the base of TU4c.  The Sentinel Peak 477 

Member of the Noonday Formation caps the Wildrose Diamictite, which is equivalent to 478 

KP4 in southeastern Death Valley (e.g. Prave, 1999).  Where the diamictite is missing, 479 

the base of TU4c becomes coincident with the base of the Sentinel Peak Member. 480 

 481 

Chemostratigraphy  482 

Beck Spring Dolomite  483 

The base of the Beck Spring Dolomite exhibits negative C-isotopic values, reaching a 484 

nadir of - .  Values increase up-section , with persistent positive 485 

values through the bulk of the formation before a downturn to -3 to - at the top (Fig. 486 

5).  This trend is consistent with the findings of previous workers (Prave, 1999; Corsetti 487 

and Kaufman, 2003).  The upper negative excursion is best developed in the Kingston 488 

Range (Fig. 5) and, relevant for the discussion to follow, is present within a distinctive 489 

oncolite-bearing dolostone bed.   490 

 491 

Virgin Spring Limestone 492 



13C data from the Virgin Spring Limestone range from +1 to +7 , and 493 

show variable profiles from section to section. The values nevertheless distinguish the 494 

Virgin Spring Limestone from the isotopically depleted Sourdough Limestone (Prave, 495 

1999; Corsetti & Kaufman, 2003; Peterson et al., 2011), but are similar to those of the 496 

13C-enriched Thorndike Limestone.   497 

Several Virgin Spring Limestone samples contain low Rb concentrations and very 498 

high Sr concentrations at an average of ~2300 ppm for unwashed samples (see data 499 

repository).  The latter suggests that the Virgin Spring Limestone was originally 500 

precipitated as aragonite, which is supported by petrographic analyses of Tucker (1986). 501 

However, most of the 87Sr/86Sr values in both washed and unwashed samples is highly 502 

radiogenic, indicating contamination either from fine disseminated clay or from fluids 503 

enriched in radiogenic Sr and/or Rb. Further, the data show a weak relationship between 504 

Sr concentration and 87Sr/86Sr values, and Sr isotope values co-vary with both the 505 

abundance of Rb and with Mn/Sr ratios (see data repository, Table S2).  These results 506 

indicate that the Virgin Spring Limestone has suffered from significant diagenesis.  507 

Consequently, because diagenetic fluid flow from crustally derived sources generally 508 

increases the Sr isotopic ratio to more radiogenic values, we surmise that the lowest 509 

87Sr/86Sr ratios would represent the best estimates for primary 87Sr/86Sr composition. 510 

Most Virgin Spring Limestone samples from the type locality yielded high 511 

87Sr/86Sr values, near 0.71 (see data repository, Table S2).  Samples from the Saddle Peak 512 

and Southern Ibex Hills sections were generally less radiogenic.  The lowest value of 513 

0.70676 came from a limestone sampled near the base of the Saddle Peak Hills section.  514 

This sample was measured several times, and the result was reproduced consistently.  515 



Thus, we consider 0.70676 as the best estimate for the least-altered 87Sr/86Sr value of the 516 

Virgin Spring Limestone.  517 

 518 

Oncolite Bed  in KP3 519 

Carbon isotope values in the oncolite  in KP3 increase upwards from -2.5  to -520 

0.5  (Fig. 10, data repository, Table S1), excluding one negative outlier. 521 

 522 

Micropaleontology 523 

Microfossils were observed both in situ in thin sections and in residues of the Virgin 524 

Spring Limestone.  The microfossils extracted were sparse but several common 525 

morphotypes were documented from 6 samples (see Fig. 7 for stratigraphic position) and 526 

these can be separated into two distinct groups based on morphological characteristics: 527 

some possible VSMs and organic material that lacked a robust test (Fig. 11).  The former 528 

exhibit oval or spheroidal shapes extending into a neck or tapering to a point, and share 529 

features reported previously for VSMs (Marti-Mus and Moczydlowska, 2000; Porter and 530 

Knoll, 2000) (Figs. 11a, 11c, 11e).  They have lengths between 100 s 531 

between 100  ( ; N=6 whole tests and N=18 broken tests), 532 

and a few have putative apertures (Figs. 11a, 11c, 11e).  Some have characteristics of 533 

modern lobose testate amoebae Hyalospheniidae, within Tubulinea (Fig. 11a), such as a 534 

smooth test similar to Nebela sp. (Fig. 11b).  Others exhibit a cratered texture, and the 535 

. 11c) that is similar to 536 

modern test, Nebela penardiana (Fig. 11d), which secretes siliceous scales.  In addition, 537 

size are comparable to modern populations (Ogden and Hedley, 1980).  Although these 538 



ancient forms exhibit broad similarities to modern testate amoebae, we cannot assign 539 

them with confidence to modern groups. 540 

 Organic forms that lack a robust mineralized test were also observed in filtered 541 

residue samples of the Virgin Spring Limestone from the Black Mountains (N=7).  Many 542 

resemble filaments, tubes, and/or possible remnants of cyanobacteria or algae (Fig. 11f, 543 

11g).  in thickness from 544 

10 , and some appear to be hollow or attached to a possible collapsed vesicle (Fig. 545 

11f).  Some forms exhibited a flat, wide, elongate morphology (Fig. 11g) and resemble 546 

previously identified forms, such as the cyanobacterial sheath, Siphonophycus solidum 547 

(Vorob'eva et al., 2009). 548 

 549 

DISC USSI O N  550 

Our new mapping, stratigraphic observations, and geochemistry allow us to refine 551 

regional correlations and integrate these records globally.  Below we discuss how 552 

regional chemostratigraphic correlations help us refine our tectonostratigraphic units and 553 

then extend these 554 

correlations to key successions along the western margin of Laurentia with 555 

paleontological data and geochronological control to construct an age model and discuss 556 

the implications for the relationship between the Neoproterozoic microfossil and glacial 557 

records, the nature of Neoproterozoic iron formations, and the tectonic evolution of the 558 

supercontinent Rodinia. 559 

 560 

Carbon and Strontium Isotope Chemostratigraphy 561 



Previous workers have used the apparent covariance in the 13C and 18O composition of 562 

carbonate rocks in Death Valley to argue that these values have been severely modified 563 

by meteoric alteration (e.g. Kenny and Knauth, 2001; Knauth and Kennedy, 2009).  The 564 

new 13 18O data that we present do not covary (see data repository Tables S1 and 565 

S2) and a qualitative covariance can be observed for carbonate carbon and organic carbon 566 

isotopes through the negative anomaly at the top of the Beck Spring Dolomite (Corsetti & 567 

Kaufman, 2003), which we correlate with the Islay anomaly (Hoffman et al., 2012).  568 

Although there is certainly some alteration of the original isotopic signals, we conclude 569 

that the majority of our 13C values reflect the primary dissolved inorganic carbon isotope 570 

composition of the basin.  The exception is the negative carbonate carbon isotope values 571 

associated with karsted intervals near the top of the Virgin Spring Limestone. These 572 

values covary with oxygen isotopes and likely reflect modification of an original primary 573 

signal. Using our new data, along with previous data (Corsetti and Kaufman, 2003; 574 

Petterson et al., 2011; Prave, 1999), we constructed a composite carbonate carbon isotope 575 

curve recast in the framework of our new correlation scheme (Fig. 12). 576 

 The Virgin Spring Limestone has been previously correlated with the Sourdough 577 

Limestone (Tucker, 1986) and the Thorndike Limestone.  Isotopically enriched 13C 578 

values distinguish the Virgin Spring Limestone from the depleted 13C values of the 579 

Sourdough Limestone (Prave, 1999; Corsetti & Kaufman, 2003; Peterson et al., 2011), 580 

but are similar those of the Thorndike Limestone. To test the plausibility of correlating 581 

the Virgin Spring Limestone to the Thorndike, we can utilize our new 87Sr/86Sr data on 582 

the Virgin Spring Limestone.  The metamorphic grade in the Panamint Mountains 583 

precludes obtaining reliable primary 87Sr/86Sr ratios in the Thorndike Limestone.  But, the 584 



Thorndike Limestone is part of the inter-glacial succession whereas in our proposed 585 

framework, the Virgin Spring Limestone pre-dates the glaciations (Fig. 2).  Thus, 586 

correlations could be tested by comparing the 87Sr/86Sr values in the Virgin Spring 587 

Limestone to the composite strontium isotope curves for the Cryogenian (Halverson et 588 

al., 2007; Halverson et al., 2010).  A composite Cryogenian strontium isotope curve was 589 

constructed (Fig. 12, data repository Table S3) by modifying that of Halverson et al. 590 

(2007; 2010) by adding additional data from Mongolia (Brasier et al., 1996; Shields et al., 591 

2002), Scotland (Sawaki et al., 2010), Greenland (Fairchild et al., 2000), and NW Canada 592 

(Halverson et al., 2007).  This composite shows that pre-Sturtian 87Sr/86Sr values are 593 

below ~0.707, and aside from the Sturtian cap carbonate, 87Sr/86Sr values between the 594 

Sturtian and Marinoan are above ~0.707 (Fig. 12).  595 

Virgin Spring Limestone samples from the type locality yielded extremely 596 

radiogenic 87Sr/86Sr values (>0.71) that were much higher than samples from the Saddle 597 

Peak and Southern Ibex Hills sections (see data repository).  We suggest this regional 598 

difference is due to enhanced local fluid flow related to Neogene extension and plutonism 599 

along the Black Mountains detachment (Calzia and Ramo, 2000; Wright and Troxel, 600 

1984).  This scenario is consistent with petrographic and field observations of intense 601 

veining along tension gashes (Fig. 6b) throughout the exposures in the Black Mountains. 602 

The lowest 87Sr/86Sr values of the Virgin Spring Limestone were from samples 603 

collected on the southern side of the Saddle Peak Hills (Fig. 3).  These exposures are >30 604 

km away from the nearest break-away detachment (Calzia and Ramo, 2000), and 605 

consequently may not have been as intensely flushed with basement-derived fluids as the 606 

samples from the Black Mountains.  Values as low as ~0.70676 are consistent with 607 



87Sr/86Sr values of pre-Sturtian strata or Sturtian cap carbonates (Fig. 12).  However, 608 

unlike Sturtian cap carbonates, such as the Sourdough Limestone, the Virgin Spring 609 

Limestone sits below, not above glacial deposits, and it has enriched instead of depleted 610 

13C values.  Thus, we suggest the Virgin Spring Limestone is pre-Sturtian in age and is 611 

neither correlative with the post-Sturtian Sourdough Limestone nor the pre-Marinoan 612 

Thorndike Limestone.  The enriched 13C values are further similar to Bed Group 20 in 613 

Greenland, which sits above the Isaly anomaly but below Sturtian glacial deposits 614 

(Fairchild et al., 2000). 615 

 616 

Stratigraphic Position of the Oncolite Bed  617 

-glacial 618 

microfossil assemblage, and has been used to question the severity of Snowball Earth 619 

conditions (Corsetti, 2009; Corsetti et al., 2003; Corsetti et al., 2006). Our mapping 620 

demonstrates that the fossiliferous oncolite-bearing dolostone layer in the eastern 621 

Kingston Range is a series of olistoliths (Fig. 9). We correlate these olistoliths with a 622 

lithologically indistinguishable oncolite-bearing interval in the uppermost Beck Spring 623 

Dolomite (Fig. 13). To further test this correlation, we compared 13C values between 624 

measured stratigraphic sections of the oncolite olistoliths in the eastern Kingston Range 625 

with oncolite-bearing beds of the uppermost Beck Spring Dolomite. Carbon isotope 626 

profiles through both contain a negative 13C values, consistent with our correlation. 627 

Thus, we conclude that fossils previously reported as representative of syn-glacial 628 

ecosystems (Corsetti, 2009; Corsetti et al., 2003; Corsetti et al., 2006) are in fact 629 



representative of the pre-glacial, <770 Ma and >717 Ma uppermost Beck Spring 630 

Dolomite.  631 

Previous workers have mistakenly mapped the oncolite blocks as an in situ bed 632 

because the blocks have large aspect ratios (length:thickness) and tend to be aligned 633 

roughly with the bedding of KP3.  This geometric orientation is to be expected in that the 634 

original organization of the oncolitic interval at the top of the Beck Spring Formation, 635 

from which the blocks where derived, consists of meters-thick oncolite layers interbedded 636 

with recessive shaley intervals.  Hence, we envisage the emplacement of the oncolitic 637 

olistoliths as tabular-shaped slide blocks dislodged from the weaker shaley intervals 638 

whereas the more massive Beck Spring Dolomite olistoliths were emplaced as more 639 

chaotically redeposited blocks.  The probable break away-scarp (likely having 640 

considerable relief) would have been located ~ 2 km to the northeast, between the in situ 641 

Beck Springs outcrop belt forming a high ridge along the northern flank of the Kingston 642 

Range and the olistolith-rich KP3 unit in the mapped area of the eastern Kingston Range.  643 

 644 

Laurentian Correlations 645 

Geochronological constraints on Neoproterozoic strata in the Grand Canyon, Idaho, and 646 

northwestern Canada make it attractive to correlate between the Pahrump Group and 647 

other Neoproterozoic successions along Laurentia margin (Fig. 14).  Microfossil 648 

assemblages and chemostratigraphy permit correlating TU2 broadly to the 770 740 Ma 649 

Chuar Group in the Grand Canyon (Karlstrom et al., 2000; Porter et al., 2003) and Uinta 650 

Mountains Group in Utah (Dehler et al., 2010).  Hoffman et al. (2012) suggested that the 651 

negative 13C anomaly at the top of the Beck Spring Dolomite is regionally correlative 652 



with the negative 13C anomaly in the lower portion of the Coppercap Formation in NW 653 

Canada (Halverson, 2006), and that both are globally correlative to the pre-Sturtian Islay 654 

anomaly.  Thus, we suggest that the upper Crystal Spring Formation and much of the 655 

Beck Spring Dolomite is correlative with the Chuar Group and was deposited between 656 

~770 and 740 Ma (Fig. 14).  The uppermost Beck Spring Dolomite and KP1 may be 657 

correlative with the lower Coppercap Formation.  Strontium and carbon isotope 658 

chemostratigraphy further support a correlation between the Virgin Spring Limestone and 659 

the pre-717 Ma uppermost Coppercap Formation (Fig. 12), which records a return to 660 

positive 13C values (Halverson, 2006; Halverson et al., 2007).  661 

An array of ages bracket the Sturtian glaciation(s) to within a ca. 50 Myr window: 662 

the 717.4 ± 0.2 Ma and 716.5 ± 0.2 Ma U-Pb zircon dates from the Mount Harper 663 

Volcanic Complex (Macdonald et al., 2010a); the ca. 663 Ma U-Pb ages on the Datangpo 664 

Formation in South China (Zhou et al., 2004), and the Wilyerpa Formation in Australia 665 

(Fanning & Link, 2008); and the syn-Sturtian U-Pb zircon age constraints of 687.4 ± 1.3 666 

Ma and 685.5 ± 0.4 from Idaho (Condon and Bowring, 2011; Keeley et al., 2013) and 667 

711.5 ± 0.3 from Oman (Bowring et al., 2007).  Other previously reported age constraints 668 

on glaciogenic strata in Idaho (Fanning and Link, 2004) have been shown to be inherited 669 

or detrital (Dehler et al., 2011a; Keeley et al., 2013), whereas the stratigraphic context of 670 

ages from high-grade sequences in central Idaho is uncertain (Lund et al., 2010; Lund et 671 

al., 2003).  Given our new Death Valley data, the KP2 KP3 Limekiln Spring Surprise 672 

diamictites can be correlated with the 717-663 Ma Rapitan Group (Macdonald et al., 673 

2010a), making the Sourdough Limestone correlative with the ca. 662 Ma Twitya cap 674 

carbonate, the Thorndike Limestone with the Keele Formation and enriched 13C values 675 



(Kaufman et al., 1997), and the KP4 Wildrose diamictites with the 676 

Marinoan glacial deposits of the Ice Brook Formation (Aitken, 1991a; Aitken, 1991b; 677 

Hoffman and Halverson, 2011).  As shown previously (Prave, 199; Petterson et al., 678 

2011), the Sentinel Peak Member of the Noonday Formation can be correlated to ca. 635 679 

Ma Ediacaran cap carbonates worldwide (Condon et al., 2005), including the 680 

Ravensthroat Formation (James et al., 2001). 681 

 682 

Micropaleontology 683 

The pre-717 Ma microfossil record contains evidence for the diversification of six 684 

eukaryotic crown groups: amoebozoa, rhizaria, stramenopiles, fungi, red algae, and green 685 

algae (see references in Knoll et al., 2006; Macdonald et al., 2010b); although some of 686 

these fossils could be represent stem groups (e.g. Berney and Pawlowski, 2006).  On the 687 

western margin of Laurentia (Fig. 14), this record includes VSMs in the ca. 770-742 Ma 688 

Chuar Group in the Grand Canyon (Porter et al., 2003), scale microfossils of possible 689 

green algal affinity from northwestern Canada (Allison, 1980; Allison and Hilgert, 1986; 690 

Cohen and Knoll, 2012; Cohen et al., 2011; Macdonald et al., 2010a), and VSMs, 691 

filamentous organisms, possible algae, and cyanobacteria from the Pahrump Group 692 

(Corsetti et al., 2003; Licari, 1978; Pierce and Cloud, 1979).  The latter occurrences were 693 

from the Beck Spring Dolomite, KP1, and the oncolite bed  sampled from the 694 

Alexander Hills and the Kingston Range.  The 695 

Beck Spring Dolomite and the identification of possible VSMs in the Virgin Spring 696 

Limestone, suggests that the Virgin Spring VSMs represent the youngest described to 697 

date in the Cordillera (Fig. 14).  Moreover, all of these microfossil assemblages in the 698 



Pahrump Group are pre-Sturtian in age. To assess the biological response to the Sturtian 699 

glaciation in Death Valley, the microfossil record of the post-Sturtian Sourdough 700 

Formation would need to be examined; however, the high metamorphic-grade of 701 

exposures in the Panamint Mountains may have left these strata inappropriate for 702 

micropaleontological investigations.  More broadly, VSMs appear to be common globally 703 

in pre-Sturtian successions, whereas a variety of tests and agglutinating microfossils are 704 

present in assemblages deposited during the Cryogenian non-glacial interlude (Bosak et 705 

al., 2011a; Bosak et al., 2012; Bosak et al., 2011b; Pruss et al., 2010). The degree to 706 

which this apparent change is a function of taphonomy or biological turnover remains to 707 

be determined. 708 

 709 

Sturtian-Rapitan I ron Formations 710 

Mrofka and Kennedy (2011) suggest that iron formation in the Kingston Peak Formation 711 

is the product of Neogene volcanism. However, locally there is no strong relationship 712 

between the distribution of iron formation and Neogene volcanism. Instead, the 713 

correlation of KP3 with the Surprise Member suggests contemporaneity between 714 

deposition of iron formation in KP3 (Abolins et al., 2000; Calzia et al., 1987; Graff, 715 

1985) and basalt eruptions in the Surprise Member (Miller, 1985). This correlation is 716 

further supported by the identification of volcaniclastic material in the upper member of 717 

KP3 in the eastern Kingston Range (Calzia et al., 1987; Graff, 1985). These results are 718 

consistent with the conclusion of Macdonald et al. (2010c) that the vast majority of 719 

Neoproterozoic iron formations are of Sturtian age.  The combination of lowered sea-720 

level during glaciation, restriction in narrow, actively rifting basins, favorable Fe/S ratios 721 



in the ocean, and enhanced hydrothermal activity in proximity to volcanic rocks, 722 

including large igneous provinces, may have conspired as a perfect backdrop for iron 723 

formation and their return to the rock record after a billion year absence (Bekker et al., 724 

2010).  It is also worth noting the similarities between KP3c and the Sayunei Formation 725 

in northwestern Canada.  Both are composed of maroon-colored turbidites and debris 726 

flows with sporadic dropstones, and both formed during active extension and adjacent to 727 

active volcanism (Macdonald et al., 2010a). 728 

 729 

T ectonic Evolution 730 

Neoproterozoic conglomeratic and volcanic rocks exposed within the North American 731 

Cordillera have long been interpreted as synrift deposits (Stewart, 1975), representing the 732 

breakup of the supercontinent Rodinia (Dalziel, 1991; Hoffman, 1991; Moores, 1991).  733 

However, the number of rifting events, the timing and geometry of breakup, the 734 

arrangement of cratons, and the relationship to large igneous provinces (LIPs) have 735 

remained poorly constrained (e.g. Dalziel, 1997; Evans, 2009; Goodge et al., 2008; Li et 736 

al., 2008; Sears, 2012; Sears and Price, 2003).  Geological arguments have been made for 737 

multiple or protracted rifting episodes on the western margin of Laurentia at 780 740 Ma 738 

(Jefferson and Parrish, 1989; Karlstrom et al., 2000), 720 635 Ma (Eisbacher, 1985; 739 

Lund et al., 2003; Prave, 1999), and 580 560 Ma (Colpron et al., 2002).  Although the 740 

latter is consistent with subsidence analyses that indicate a rift-drift transition near the 741 

Precambrian-Cambrian boundary at ca. 540 Ma (Armin and Mayer, 1983; Bond and 742 

Kominz, 1984), this leaves >200 Myrs of enigmatic basin development.  743 



The identification of major unconformities, their regional correlation, and the 744 

construction of an age model, creates a new framework for the Neoproterozoic tectonic 745 

evolution of the southwestern margin of Laurentia (Fig. 14).  The bases of TU2 and TU3 746 

represent major basin-forming events, accommodating kilometer-scale subsidence with 747 

distinct and different patterns.  The lower Crystal Spring-upper Crystal Spring 748 

unconformity records large-scale regional tilting and a major hiatus.  The unconformity is 749 

succeeded by well-developed parasequences of the upper Crystal Spring Formation and 750 

Beck Spring Dolomite.  We suggest that large lateral facies changes and thickness 751 

variations in the Beck Spring Dolomite are the result of syndepositional faulting.  The 752 

Beck Spring-KP1 transition represents a major drowning and influx of fine siliciclastic 753 

material to the basin.  Subsequently, additional faults, folds, and high-angle 754 

unconformities developed, all of which are sealed by the Virgin Spring Limestone (Fig. 755 

3) or the stratigraphically lowest diamictite at several localities (Labotka et al., 1980; 756 

MacLean et al., 2009; Miller, 1985; Walker et al., 1986).  TU2 of Death Valley, that is 757 

the upper Crystal Spring Formation and the Beck Spring Dolomite, are potentially 758 

correlative with the Chuar Group of the Grand Canyon and Uinta Mountains Group of 759 

Utah, which also host a major deepening prior to a pre-Sturtian unconformity (Dehler et 760 

al., 2010).  It has been suggested that these successions formed during an early phase of 761 

Rodinian extension, and that the Chuar Group in particular was accommodated by syn-762 

depositional faulting along the Butte fault (Timmons et al., 2001).  In northwestern 763 

Canada, this basin-forming episode can also be correlated with that which accommodated 764 

the Callison Lake and Coates Lake groups (Fig. 14; Macdonald et al., 2010a; Jefferson & 765 

Parrish, 1992).   766 



 In northwestern Canada, syn-sedimentary faulting persisted throughout deposition 767 

of the Rapitan Group and the ca. 650 Ma Keele Formation (Eisbacher, 1981).  Our age 768 

model would suggest that Cryogenian tectonism also persisted in southwestern Laurentia 769 

(present coordinates) through the Sturtian glaciation, consistent with recent 770 

paleomagnetic reconstructions (Li and Evans, 2011).  Olistoliths are common in KP3, 771 

and coincide with an expansion in KP3 on the southwestern side of the Saddle Peak Hills 772 

(Fig. 3).  The likely correlative strata in the Panamint Mountains grade from finer-grained 773 

and probably deeper-water deposits southward into massive diamictite of the Surprise 774 

Member (Miller, 1985).  Restoration of Mesozoic thrusting and Neogene extension and 775 

translation places the northern Panamint Mountains at a position closer to the Saddle 776 

Peak Hills (see Figure 13 of Petterson et al., 2011).  In this restoration, stratified 777 

diamictite and coarse-grained sediment-gravity-flow deposits of KP3 are present in a 778 

NW-SE oriented band, which potentially formed in a narrow graben. 779 

In the Saddle Peak Hills, Precambrian faults and associated angular 780 

unconformities are capped by the sub-KP4 erosional unconformity.  Thus, in the Saddle 781 

Peak Hills we cannot distinguish TU3 and TU4 structures.  TU3 is manifested in granitic 782 

grits, fanglomerates, olistostromes and unconformities, and we infer that faulting during 783 

TU4 time reactivated TU3 structures, resulting in dramatic paleo-topography and lateral 784 

facies changes in the basal Noonday Formation.  Thus, we suggest that Cryogenian 785 

tectonism in Death Valley records the formation of narrow grabens during multiple 786 

modest extensional events with low stretching factors.  It is possible that true rifting of 787 

the western margin of Laurentia did not occur until the latest Ediacaran, which is 788 



represented by TU5 (Fig. 14), and was followed by broad regional subsidence in the early 789 

Paleozoic (Armin and Mayer, 1983). 790 

It has been suggested that the Neoproterozoic-Mesozoic deposits of Death Valley 791 

formed on a ribbon continent Rubia that was separated from North America until the 792 

Cretaceous Cordilleran orogeny (Hildebrand, 2009).  The strong similarities between 793 

Neoproterozoic tectonostratigraphic packages in Death Valley and truly autochthonous 794 

successions in the Grand Canyon and northwestern Canada (Fig. 14) tightens the noose 795 

around Rubia, and suggests, if it did ever exist, it must have separated from Laurentia 796 

during the Ediacaran. 797 

 798 

Conclusion 799 

Mapping of the Proterozoic Pahrump Group in the Saddle Peak Hills and the Kingston 800 

Range has facilitated correlations between the Panamint Mountains and southeastern 801 

Death Valley. We have identified four temporally and spatially distinct tectono-802 

stratigraphic packages within the Pahrump Group. Combined with new C and Sr isotopic 803 

data, these data suggest that units KP2 and KP3 of the Kingston Peak Formation are 804 

regionally correlative with the Limekiln Spring and Surprise members in the Panamint 805 

Mountains and globally correlative with the Sturtian glaciation. Our integrated geological 806 

mapping and isotope chemostratigraphy has also demonstrated that a microfossil-bearing 807 

oncolite bed  in KP3 is an olistostrome sourced from the top of the Beck Spring 808 

Dolomite (Fig. 13). Four unconformity-bound tectonostratigraphic successions have been 809 

identified in the Neoproterozoic succession of Death Valley. The oldest defines the base 810 

of the upper Crystal Spring Formation (and records a ca. 300 Myr duration 811 



unconformity), two are intra-Kingston Peak Formation, and the last is at the base of the 812 

Johnnie Formation. These surfaces are used to construct correlations to sections 813 

elsewhere across western Laurentia that have better geochronological control and indicate 814 

that the upper Crystal Spring through Noonday formations in Death Valley were 815 

deposited between ca. 770 and 635 Ma, a time window containing both of the main 816 

Cryogenian glaciations and an episode of extensional tectonism. We further report the 817 

presence of a younger microfossil assemblage in the Virgin Spring Limestone, which 818 

underlies units KP2 and KP3. All microfossil assemblages discovered to date from the 819 

Pahrump Group are pre-Sturtian in age and can no longer be used to independently assess 820 

the severity of the glaciations represented in the Kingston Peak Formation (c.f. Corsetti, 821 

2009; Corsetti et al., 2003; Corsetti et al., 2006). Although it is clear that eukaryotes 822 

survived and flourished in the aftermath of the Sturtian Snowball (Bosak et al., 2011a), 823 

the current biological record is too coarse to determine if the glaciations were the cause 824 

of extinctions or radiations of eukaryotic organisms.  825 
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 1313 
F igure Captions 1314 
Figure 1: Simplified geological map of the Pahrump Group and Noonday Formation in 1315 
Death Valley.  BM = Black Mountains, SS = Southern Ibex Hills (Saratoga Springs), 1316 
SPH = Saddle Peak Hills, SW = Sperry Wash, NR = Nopah Range, AK = Alexander 1317 
Hills, KR = Kingston Range, SH = Silurian Hills. 1318 
 1319 
Figure 2: Schematic and composite stratigraphy of the Pahrump Group in the Panamint 1320 
Mountains, Saddle Peak Hills, and the Kingston Range.  Stratigraphy of the Panamint 1321 
Mountains modified from Petterson et al. (2011).  Note that thicknesses are approximate 1322 
and not from specific measured sections. Colored triangles represent different lithologies 1323 
from the underlying units. 1324 
 1325 
Figure 3: Geological map of the Saddle Peak Hills. Geology mapped by the Harvard 1326 
University field geology class, EPS 74, on the Ibex Pass and Saddle Peak Hills 1:24,000 1327 
topographic maps with UTM gridlines.  Coordinates are marked with crosses. 1328 



 1329 
Figure 4: a) Unconformity surface defining the base of the upper Crystal Spring 1330 
Formation. Hammer head is just below a sharply defined surface in blue that separates 1331 
dark purple-grey hornfelsed siliceous mudstones below from overlying brownish-red, 1332 
unmetamorphosed quartzitic sandstone above. The hornfelsing was a result of 1333 
metamorphism associated with the intrusion of 1.08 Ga diabasic bodies. The overlying 1334 
sandstones contain detrital zircons as young as ca. 770 Ma. Hence, that surface represents 1335 
a ca. 300 Myr time gap. b) Example of patchily developed breccia along the lower 1336 
Crystal Spring-upper Crystal Spring unconformity surface. This lithology occurs as 1337 
lenses and channels eroded into the underlying hornfelsed strata. Clast imbrication and 1338 
coarse-tail grading indicates a transport and sorting prior to deposition. Clasts consist of 1339 
abundant hornfelsed siliceous mudstones and sandstones, light-colored, laminated and 1340 
cross-bedded carbonate and siliciclastic rocks, as well as darker-colored igneous clasts, 1341 
all of which are derived from the underlying lower Crystal Spring Formation.  1342 
 1343 
Figure 5: Chemo- and lithostratigraphy of the Beck Spring Dolomite at Saddle Peak Hills 1344 
and in the Kingston Range.  See Table S1 of the data repository for 13 18O data.   1345 
 1346 
Figure 6: A) Angular unconformity below the Virgin Spring Limestone (blue line) 1347 
overlying the Beck Spring Dolomite and upper Crystal Spring Formation in the Saddle 1348 
Peak Hills. Other contacts between map units are marked with solid white lines, and 1349 
marker beds are dashed. B) Thinly laminated limestone at sharp basal contact of the 1350 
Virgin Spring Limestone; coin for scale. Note veins along tension gashes that are parallel 1351 
to fractures.  These veins and fractures are related to Neogene extension rooted to the 1352 
Black Mountains detachment (Wright and Troxel, 1984) and are consistent with 1353 
significant fluid flow. C) Graded beds in the Virgin Spring Limestone at Virgin Spring 1354 
Wash. Tan beds are limestone with disseminated silt-sized quartz grains that grade 1355 
upwards into black limestone micrite. D) Storm bed of calc-arenite grit with rip-up clast 1356 
in the Virgin Spring Limestone; note, again, the pervasive small-scale veining. 1357 
 1358 
Figure 7: Chemo- and lithostratigraphy of the Virgin Spring Limestone; see Figure 5 for 1359 
key to symbols and Tables S1 and S2 of the data repository for 13 18O data. 1360 
Arrows designate the stratigraphic position of microfossil discoveries shown on Figure 1361 
11.  Filled circles are carbonate carbon isotopes and open circles are oxygen isotopes. 1362 
Lowest Sr87/Sr86 data used in Figure 12 composite shown in red. 1363 
 1364 
Figure 8: Sedimentary features of the Kingston Peak Formation: a) Granitic grit at KP2-1365 
KP3a contact in the Saddle Peak Hills. b) Channelized grit at KP3b-KP3c contact in the 1366 
Saddle Peak Hills. c) Striated clast from KP3 in the Kingston Range. d) Clast of KP3 1367 
diamictite within KP4 in the Saddle Peak Hills.  e) Beck Spring olistoliths in unit KP3 in 1368 
the eastern Kinston Range, looking northeast at the southern portion of the Figure 9 map 1369 
area. Field of view is about 500 m. 1370 
 1371 
Figure 9: Generalized geological map of the oncolite beds in the Kingston Range mapped 1372 
by Prave and Petterson on the Blackwater Mine and East of Kingston Peak 1:24,000 1373 
topographic maps with UTM gridlines.  Coordinates are marked with crosses. KP3u = 1374 



Upper member, heterolithic facies including fanglomerate, fine to coarse graded-beds 1375 
(turbidites) and brown to red-brown mudstone; KP3m = Megabreccia member, 1376 
fanglomerate, brown mudstone and purple-red and yellow-gray shales with dropstones. 1377 
Blue-colored blocks derived from the Beck Spring Dolomite, dark blue-colored blocks 1378 
derived from the Crystal Spring Formation, and green colored layers are blocks of the 1379 
oncolitic- and fossil-bearing Beck Spring unit. 1380 
 1381 
Figure 10: Chemostratigraphy of oncolite bed and olistostromes of the Beck Spring 1382 
Dolomite. See Figure 5 for key to symbols and Table S1 of the data repository for 13C 1383 

18O data, including the one point from section R7 that is off scale, presumably due 1384 
to local remineralization. 1385 
 1386 
Figure 11: SEM images of fossils extracted from the Virgin Spring Limestone at Virgin 1387 
Spring Wash (A, C, E, F, G)and some possible modern equivalents (B, D). Stratigraphic 1388 
position of samples shown in Figure 7. A) Possible vase-shaped form (4.1 m from base of 1389 
section); note smooth exterior and tapering of fossil into aperture. B) Modern testate 1390 
amoebae, Nebela spp. C) Possible microfossil showing cratered surface (5.0 m). D) 1391 
Modern testate amoebae, Nebela penardiana; note scales on surface, creating crater-like 1392 
appearance. E) Possible vase-shaped fossil (4.3 m). F) Organic microfossil; long 1393 
filamentous appearances attached to collapsed cup-shaped terminus (4.1 m). G) Organic 1394 
forms with flat, elongate structure, similar to Siphonophycus solidum (5.0 m) 1395 
et al., 2009).  1396 
 1397 
Figure 12: Composite carbonate carbon and strontium isotope chemostratigraphy of the  1398 
Pahrump Group. Abbreviations used and sources of carbon isotope data: UCS upper 1399 
Crystal Spring Formation (Saratoga Springs, Corsetti and Kauffman, 2003); Beck Spr.1400 
Beck Spring Dolomite (Beck Canyon, this paper); VS Virgin Spring Limestone (Saddle 1401 
Peak Hills and Virgin Spring Wash, this paper); S Sourdough limestone (Wildrose 1402 
Canyon, Petterson et al., 2011); T Thorndike (South Skidoo, Petterson et al., 2011); 11403 
Sentinel Peak Member (Southern Nopah Range; Petterson et al., 2011); ND31404 
Mahogany Flats Member (Eastern Wildrose Canyon Petterson et al., 2011); VSMs vase 1405 
shaped mircrofossils; BIF banded iron formation. Strontium data are color-coded for 1406 
location.  Data tables and references used to construct the strontium composite are in the 1407 
online data repository, Table S3.   1408 
 1409 
Figure 13: Lithological comparison between a) Oncoids in the upper Beck Spring 1410 

1411 
Kingston Peak Formation of the eastern Kingston Range. 1412 
 1413 
Figure 14: Correlation chart of key Neoproterozoic successions on the western margin of 1414 
Laurentia. Schematic stratigraphy and age constraints are modified from: 1) This paper; 1415 
2) Petterson et al. (2011); 3) Keeley et al. (2013); 4) Dehler et al. (2011a; 2010); 5) 1416 
Condon & Bowring (2010); 6) Smith et al. (2011); 7) Macdonald et al. (in press); 8) 1417 
Macdonald et al. (2010a); 9) Thorkelson (2000). 1418 
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