207 research outputs found

    Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.

    Get PDF
    Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. Ten outpatient stroke survivors with chronic (>6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017

    Bill-EVR: an embodied virtual reality framework for reward-and-error-based motor rehab-learning

    Get PDF
    VR rehabilitation is an established field by now, however, it often refers to computer screen-based interactive rehabilitation activities. In recent years, there was an increased use of VR-headsets, which can provide an immersive virtual environment for real-world tasks, but they are lacking any physical interaction with the task objects and any proprioceptive feedback. Here, we focus on Embodied Virtual Reality (EVR), an emerging field where not only the visual input via VR-headset but also the haptic feedback is physically correct. This happens because subjects interact with physical objects that are veridically aligned in Virtual Reality. This technology lets us manipulate motor performance and motor learning through visual feedback perturbations. Bill-EVR is a framework that allows interventions in the performance of real-world tasks, such as playing pool billiard, engaging end-users in motivating life-like situations to trigger motor (re)learning - subjects see in VR and handle the real-world cue stick, the pool table and shoot physical balls. Specifically, we developed our platform to isolate and evaluate different mechanisms of motor learning to investigate its two main components, error-based and reward-based motor adaptation. This understanding can provide insights for improvements in neurorehabilitation: indeed, reward-based mechanisms are putatively impaired by degradation of the dopaminergic system, such as in Parkinson's disease, while error-based mechanisms are essential for recovering from stroke-induced movement errors. Due to its fully customisable features, our EVR framework can be used to facilitate the improvement of several conditions, providing a valid extension of VR-based implementations and constituting a motor learning tool that can be completely tailored to the individual needs of patients

    Congruency of Information Rather Than Body Ownership Enhances Motor Performance in Highly Embodied Virtual Reality

    Get PDF
    In immersive virtual reality, the own body is often visually represented by an avatar. This may induce a feeling of body ownership over the virtual limbs. Importantly, body ownership and the motor system share neural correlates. Yet, evidence on the functionality of this neuroanatomical coupling is still inconclusive. Findings from previous studies may be confounded by the congruent vs. incongruent multisensory stimulation used to modulate body ownership. This study aimed to investigate the effect of body ownership and congruency of information on motor performance in immersive virtual reality. We aimed to modulate body ownership by providing congruent vs. incongruent visuo-tactile stimulation (i.e., participants felt a brush stroking their real fingers while seeing a virtual brush stroking the same vs. different virtual fingers). To control for congruency effects, unimodal stimulation conditions (i.e., only visual or tactile) with hypothesized low body ownership were included. Fifty healthy participants performed a decision-making (pressing a button as fast as possible) and a motor task (following a defined path). Body ownership was assessed subjectively with established questionnaires and objectively with galvanic skin response (GSR) when exposed to a virtual threat. Our results suggest that congruency of information may decrease reaction times and completion time of motor tasks in immersive virtual reality. Moreover, subjective body ownership is associated with faster reaction times, whereas its benefit on motor task performance needs further investigation. Therefore, it might be beneficial to provide congruent information in immersive virtual environments, especially during the training of motor tasks, e.g., in neurorehabilitation interventions

    Learning empathy through virtual reality : Multiple strategies for training empathy-related abilities using body ownership Illusions in embodied virtual reality

    Get PDF
    Several disciplines have investigated the interconnected empathic abilities behind the proverb “to walk a mile in someone else’s shoes” to determine how the presence, and absence, of empathy-related phenomena affect prosocial behavior and intergroup relations. Empathy enables us to learn from others’ pain and to know when to offer support. Similarly, virtual reality (VR) appears to allow individuals to step into someone else’s shoes, through a perceptual illusion called embodiment, or the body ownership illusion. Considering these perspectives, we propose a theoretical analysis of different mechanisms of empathic practices in order to define a possible framework for the design of empathic training in VR. This is not intended to be an extensive review of all types of practices, but an exploration of empathy and empathy-related phenomena. Empathy-related training practices are analyzed and categorized. We also identify different variables used by pioneer studies in VR to promote empathy-related responses. Finally, we propose strategies for using embodied VR technology to train specific empathy-related abilities

    A prospective, double-blind, pilot, randomized, controlled trial of an "embodied" virtual reality intervention for adults with low back pain

    Get PDF
    Adults with chronic low back pain, disability, moderate-to-severe pain, and high fear of movement and reinjury were recruited into a trial of a novel, automated, digital therapeutics, virtual reality, psychological intervention for pain (DTxP). We conducted a 3-arm, prospective, double-blind, pilot, randomized, controlled trial comparing DTxP with a sham placebo comparator and an open-label standard care. Participants were enrolled for 6 to 8 weeks, after which, the standard care control arm were rerandomized to receive either the DTxP or sham placebo. Forty-two participants completed assessments at baseline, immediately posttreatment (6-8 weeks), 9-week, and 5-month follow-up. We found that participants in the DTxP group reported greater reductions in fear of movement and better global impression of change when compared with sham placebo and standard care post treatment. No other group differences were noted at posttreatment or follow-up. When compared with baseline, participants in the DTxP group reported lower disability at 5-month follow-up, lower pain interference and fear of movement post treatment and follow-up, and lower pain intensity at posttreatment. The sham placebo group also reported lower disability and fear of movement at 5-month follow-up compared with baseline. Standard care did not report any significant changes. There were a number of adverse events, with one participant reporting a serious adverse event in the sham placebo, which was not related to treatment. No substantial changes in medications were noted, and participants in the DTxP group reported positive gaming experiences

    A critical appraisal of "Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study"

    Get PDF
    This paper serves as a clinical appraisal resource for the article, “Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study” published through the Journal of NeuroEngineering and Rehabilitation in 2017. The clinical question that led to the selection of this article will be introduced as well as an analysis of the introduction, methods, results, and discussion of the article. The significance of the article’s findings will also be addressed in the discussion as well as the applications that arise from the study

    Putting Oneself in the Body of Others: A Pilot Study on the Efficacy of an Embodied Virtual Reality System to Generate Self-Compassion

    Get PDF
    Compassion-based interventions (CBIs) have been shown to be effective for increasing empathy and compassion, and reducing stress, anxiety, and depression. CBIs are based on constructive meditations where imagery abilities are essential. One of the major difficulties that participants report during the training is the difficulty related to imagery abilities. Virtual reality (VR) can be a useful tool to overcome this limitation because it can facilitate the construction and sustainment of mental images. The machine to be another (TMTBA) uses multi-sensory stimulation to induce a body swap illusion. This system allows participants to see themselves from a third perspective and have the illusion of touching themselves from outside. The main objective of the present study was to analyze the efficacy of a self-compassion meditation procedure based on the TMTBA system versus the usual meditation procedure (CAU) in increasing positive affect states, mindful self-care, and adherence to the practice, and explore the influence of imagery abilities as moderators of the effects of the condition on adherence. A sample of 16 participants were randomly assigned to two conditions: TMTBA-VR and CAU. All participants had to listen to an audio meditation about self-compassion and answer questionnaires before and after the training. The TMTBA-VR condition also had a body swap experience at the end of the meditation while listening to self-compassionate messages. Afterward, they were invited to practice this meditation for 2 weeks and then measured again. After the compassion practice, both conditions significantly increased positive qualities toward self/others, decreased negative qualities toward self, and increased awareness and attention to mental events and bodily sensations, with no differences between the conditions. After 2 weeks, both conditions showed a similar frequency of meditation practice and increases in specific types of self-care behaviors, with the frequency of clinical self-care behaviors being significantly higher in TMTBA. Finally, lower imagery ability in the visual and cutaneous modality were moderators of the efficacy of the TMTBA (vs. CAU) condition in increasing adherence to the practice. Embodied VR could be an interesting tool to facilitate and increase the efficacy of CBIs by facilitating the construction of positive and powerful mental images
    • 

    corecore