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Abstract— VR rehabilitation is an established field by now,
however, it often refers to computer screen-based interactive
rehabilitation activities. In recent years, there was an increased
use of VR-headsets, which can provide an immersive virtual
environment for real-world tasks, but they are lacking any phys-
ical interaction with the task objects and any proprioceptive
feedback.

Here, we focus on Embodied Virtual Reality (EVR), an
emerging field where not only the visual input via VR-headset
but also the haptic feedback is physically correct. This hap-
pens because subjects interact with physical objects that are
veridically aligned in Virtual Reality. This technology lets us
manipulate motor performance and motor learning through
visual feedback perturbations.

Bill-EVR is a framework that allows interventions in the
performance of real-world tasks, such as playing pool bil-
liard, engaging end-users in motivating life-like situations to
trigger motor (re)learning – subjects see in VR and handle
the real-world cue stick, the pool table and shoot physical
balls. Specifically, we developed our platform to isolate and
evaluate different mechanisms of motor learning to investigate
its two main components, error-based and rewardard-based
motor adaptation. This understanding can provide insights
for improvements in neurorehabilitation: indeed, rewardard-
based mechanisms are putatively impaired by degradation
of the dopaminergic system, such as in Parkinson’s disease,
while error-based mechanisms are essential for recovering from
stroke-induced movement errors.

Due to its fully customisable features, our EVR framework
can be used to facilitate the improvement of several conditions,
providing a valid extension of VR-based implementations and
constituting a motor learning tool that can be completely
tailored to the individual needs of patients.

I. INTRODUCTION

Virtual Reality (VR) is a promising technology for reha-
bilitation, as it provides a safe and controlled environment
for patients to practice and learn new skills. In particular,
this tool has been proved to facilitate motor learning [1]–
[3], as it presents substantial benefits, such as the possibility
of controlling feedback and repetitions, as well as the ar-
ticulated customisation that can be implemented. Moreover,
visual manipulations can be easily introduced, making VR
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an incredible resource for motor learning improvements and
rehabilitation.

This technology has been shown to be effective for rehabil-
itating the motor functions of patients affected by stroke [4]–
[7], brain injury [8] and several neurodegenerative diseases,
such as Alzheimer [9] or Parkinson’s disease [10], [11], for
which it was linked to an enhancement of balance, gait, and
functional abilities [12], [13].

VR systems can be customized to meet the individual re-
quirements and goals of patients, constituting thus a versatile
tool in rehabilitation. For example, these systems can provide
feedback on movement speed, range of motion, and accuracy,
which can be particularly useful in rehabilitation programs
targeting upper limb motor function in patients [14]. Fur-
thermore, VR systems can simulate real-life environments
and activities, such as grocery shopping or cooking, allowing
individuals to practice functional activities from their daily
life [15].

Various types of virtual environments have been used
in VR-based rehabilitation and training, including gaming
[16] and sport [17], [18]. Each environment has its own
advantages and disadvantages and can be tailored to the
specific needs of the patient, such as games that can provide
a high level of engagement and motivation. However, the
current state-of-the-art of Virtual Reality studies has multiple
limitations.

First, a significant proportion of studies are not properly
held in Virtual Reality, but include only interactions with
screens [10], [19] or virtual environments without the use
of any immersive headset [20]. Moreover, traditional VR
paradigms used for rehabilitation lack any physical feedback,
which can make it difficult for patients to transfer the skills
learned to real-world situations.

To overcome these limitations, the extension of VR into
Embodied Virtual Reality (EVR) can be beneficial. Unlike
traditional VR, which involves sitting or standing and using
handheld controllers to interact with virtual objects, EVR
requires whole-body movements that closely simulate real-
world actions. This feature can be particularly useful for
individuals with motor impairments, as it allows them to
practice and improve their motor skills in a safe and con-
trolled environment, favouring generalisability [14], [21].

As body-related visual feedback can be given in real-time,
alone or in combination with other multisensory stimulations
(e.g. tactile or auditory), EVR can deliver sensorimotor
training that can activate brain motor and perceptual areas,
having a potential impact on neurorehabilitation [22], [23].

An additional feature of EVR is the ability to capture



Fig. 1: Bill-EVR experimental setup with a real pool table and
equipment (cue ball and stick), an HTC Vive VR headset, an EEG
eMotiv EPOC+ headset and Optitrack markers for the cameras.

natural behaviour, which makes it a great candidate for the
study of motor learning. Specifically, the current way this
topic is investigated lacks generalisability of results, as lab-
based experiments are often highly controlled and artificial
and may not extend well to real-life situations [24]–[27]. By
studying natural behavior, researchers can better understand
how individuals perform daily activities and can design
interventions that more closely mimic real-life contexts [28].

Finally, the outcomes of motor skills rehabilitation
achieved up to now might be explained by the limited
knowledge we have of the brain and its underlying processes.
Indeed, further understanding of the neural mechanisms
related to movement would be beneficial to increase the
potentialities of recovery and improvement, and for that, it
is fundamental to correctly capture the complexity of reality.
Therefore, the need of investigating real-world situations for
rehabilitation purposes is extremely clear.

In order to pursue the objectives described above, in the
past few years we established a billiard task as a valid and
engaging way to study motor learning [26], [27] and created
Bill-EVR, an innovative Embodied Virtual Reality setup [21].
It filled the gaps of the real-world task limitations while
preserving the possibilities of introducing manipulations and
customising the environment, and maintaining the subjects’
sense of embodiment. The features of this setup make it not
only a useful tool to study real-world motor learning, but
also a promising tool for VR-based rehabilitation.

Multiple mechanisms have been shown to underlie the mo-
tor learning processes which involve the synergic interaction
of adaptive and strategic processes, respectively referred to
as error-based and reward-based learning [29].

Error-based learning concerns the adaption to the error
that we commit, which is quantifiable and distinguishable in
measure, i.e. a small error can be clearly separated by a big
error, making the brain aware of the degree of correction
needed to improve the movement performance [30]. Specif-

ically, this mechanism is driven by sensory-prediction errors
as visual and haptic feedback are fundamental for the clas-
sification of the error and the choice of consequent actions
needed to adapt for it [31]. On the other hand, reward-based
learning is driven by reinforcement of model-free successful
actions [32], which induces subjects to perform movements
based on strategies that can be rewarding, based on past
successes and improvements.

These two learning mechanisms have been usually studied
separately in motor learning experiments where tasks are
typically designed with the objective of isolating one or the
other. However, their coexistence was shown with our billiard
paradigm [27], identifying different groups of subjects with
diverging behavioural and neural signatures.

Here, we use our previously introduced EVR setup [21]
to create specific tasks, with the aim of limiting the visual
feedback and force to use individual learning mechanisms.
This enables us to ask whether such a complex real-world
task could be learned with only one of those feedback
mechanisms, and how those two learning processes differ.
This can be significantly insightful for a wider understanding
of neural processes underlying the learning of motor skills,
which would have consequences in the progress of neurore-
habilitation.

II. METHODS

This section provides a detailed account of the EVR
experimental setup, extended from [21], the experimental
design, participant selection, and data collection and analysis.

A. Experimental Setup

The Bill-EVR setup (figure 1) is composed of a real pool
table. The use of a real scenario lets the subjects maintain
a connection with reality while having all the advantages
of the VR in terms of measurements and manipulations
that can be introduced. The subject is playing pool in real
life while seeing task-dependent visual feedback inside the
virtual environment, including manipulations that vary based

(a) (b)

Fig. 2: (a) Experimental Structure: in the initial baseline phase the
feedback was veridical and no rotation was applied; the angle of
the ball was rotated by 5° during the perturbation phase and a
task-dependent visual feedback was provided; the final washout
block had the same conditions as the baseline; (b) Graphical
representation of the visuomotor rotation applied in the perturbation
phase of the game.



Fig. 3: Task-dependent visual feedback showed in Virtual Reality
for Error feedback: the two balls disappear after their collision.

on the experimental features. The game is performed with
a real stick, which is reconstructed in VR using geometric
characteristics and the position of four markers placed on top
of it; the stick is streamed in VR using Optitrack cameras
with high precision (±0.2mm accuracy), letting the subjects
see it as a virtual object in the game.

The embodiment of the setup allows the participants to
physically interact with real-world objects, receiving the full
somatosensory and proprioceptive feedback of the real-world
task. Indeed, the haptic feedback is preserved making the
participants shoot a real cue ball, as well as through the
provision of the real collision sound when the ball is shot
and an artificial sound when the cue ball collides with the
target ball. This latter object is only virtual, as its features are
completely manipulated through VR, although its dynamics
comply with the real physics of the ball, similarly to all
the objects in the virtual environment (for validation of
the pairing VR/real-world see [21]). The dimensions of the
virtual and real table match to be even more realistic and
this correspondence is achieved through a pre-experiment
calibration via the four cameras and the VR controllers.
The VR headset is an HTC Vive on which an eye-tracking
device has been implemented by SensoriMotor Instrument
(SMI), resulting in an additional source from which data are
collected during the experiment to gain further insights on
learning. The whole paradigm in virtual reality was created
in Unity and coded in C#.

Furthermore, we embedded into the EVR paradigm an
electroencephalogram (EEG) device which records brain
activity during the experiments. We used the eMotiv EPOC+,
a 14-channel wireless device that can be easily set on the
head with the VR headset. To focus on the rehabilitation
aspects of the setup and due to the fact that the data analysis
has not been completed yet, the eye movement and EEG data
will not be discussed here.

B. Experimental Design

16 healthy right-handed volunteers (9 men and 7 women,
ages 20 to 25), with normal or corrected-to-normal vision,
participated in the study. A baseline phase (75 trials, divided
into 3 blocks of 25 trials), a perturbation phase (150 trials,
6 blocks of 25 trials), and a final washout block (25 trials)

were all part of the 250 trials that made up a session in the
lab (fig. 2a). Each trial was a single shot, where the cue ball
and the target ball are starting at a constant location. Since
the shooting was not timed and participants performed at
their pace, the trials length could span between a couple to
more than 10 seconds. Each participant attended 2 sessions.
The target ball was placed close to the far-left (or right)
corner of the pool table, and the same shot was repeatedly
executed with the goal of pocketing. The cue ball trajectory
was rotated, during the perturbation phase, by 5° (fig. 2b);
therefore, in order to correct for this trajectory change and
successfully pocket, the participants had to change their aim
towards the centre of the table.

During this rotation phase, condition-specific feedback
was provided in VR. To force subjects to learn with a
specific mechanism, we designed the task to hide the visual
information contributing to the opposite mechanism. Indeed,
the trajectories of the balls in the error-based feedback
condition were hidden after they collided (fig. 3), allowing
individuals to progress solely based on the error of the
cue ball trajectory, as they could not see the target ball
pocketing. In contrast, in the reward feedback condition,
the balls were hidden after the cue ball was shot. When
a shot was successful, the subject was given a reward by
being shown a fictional successful trajectory, constituting a
reinforcement independent of any possible error correction.

A reward zone to define a shot successful was defined by
the combination of two distinct criteria: (i) shooting inside
a success funnel around the pocket (coherently with the
baseline condition) or (ii) when the shot was more precise
than the median of the past 10 rewarded trials. The perceived
successful trials have been modulated to guide the subjects
towards the perturbation, given that otherwise, without error
feedback, they would have never guessed the new direction
of the ball. This was following a success region method that
is well established in computer-based motor learning tasks
(e.g. [33]) that here we generalised to our pool task.

The 16 subjects performed the experiment in both condi-
tions, over 2 sessions with at least 48 hours in between.
Participants were randomised by the order of feedback
provided and target pocket, in order to counterbalance the
potential effects of individual game features.

C. Data Analysis

Data have been pre-processed to handle extreme values: a
threshold for the outliers removal of the directional errors
was set on the baseline (µ ± 3σ), and applied to the
perturbation learning zone.

As regards the methodology used, in order to correctly
capture the repeated measurements each subject had, the
various tasks were compared using mixed-effects ANOVA:
these were performed on the quantities of interest separating
the different phases, baseline, perturbation and washout and
reported through their F scores, after testing for normality.

All the principal results were evaluated by grouping trials
in blocks of 25 to increase the robustness and reliability of
the trends detected. No significant difference between target



Fig. 4: Mean cue ball trial-by-trial directional error of error-
based subjects (blue) and reward-based subjects (red). Grey area
represents the presence of perturbation, while pink area indicates
the successful angles. Double exponential fit is in bold. N = 16

pockets was found, allowing us to aggregate the samples to
have bigger statistical power.

III. RESULTS

A. Learning Structure

Our framework successfully probed the learning structure
of the individual subjects following the visual manipulation.
All participants learned the task in both learning conditions
(error and reward) but had very different learning patterns
as a result of the visual feedback (fig. 4). The trial-by-
trial directional error was obtained by averaging the errors
made by each of the 16 subjects, separating between the
error and the reward tasks. During the baseline phase, in
both conditions, the participants were presented with full
visual feedback of the tasks and no perturbation and showed
similar behaviour. In the learning phase, during which the
participants were presented with varying visual feedback in
the different conditions and a perturbation to learn, they
showed different learning patterns, which also affected their
performance during the washout phase, with no perturbation
and full feedback.

Fitting two distinct learning curves for the perturbation
data, we found a difference between the two conditions,
with the error sample showing a significant fast learning
component and then a persistent slow one (τfast|error =
588.24, τslow|error = 5.40(†)), whereas the reward sample
did not show an exponential trend over time, but linear
(τfast|reward = 1, τslow|reward = 303.03(†)).

Grouping the trials into blocks of 25 (figure 5a), we
found a similar pattern, with a significant discrepancy be-
tween the two learning trends during the perturbation phase
(Fmode|pert(1, 30) = 29.11∗∗∗; Fint|pert(5, 150) = 2.39∗).
Indeed, as a result of the visible trajectory, the error subjects
did compensate for the perturbation right away. In contrast,
the reward subjects were more inclined to move in the

direction of the rotated trajectory, and while showing slower
learning it was still substantial.

Nevertheless, in both conditions, subjects learned how to
compensate for some of the visuomotor rotation.

B. Success Rate

Coherently with the directional errors, the feedback ma-
nipulation influenced how the participants were able to
perform in terms of success rate. Its definition is feedback-
dependent and intrinsic to the specific task. In particular, for
the error task it is the ratio between pockets and total number
of shots, whereas for the reward experiment it is defined
as the number of perceived successes over the total, as the
participants experienced a successful trajectory every time
they got rewarded. Therefore, in this case, the real pocketing
rate cannot be used as the appropriate measure to capture
success. In baseline and washout conditions the success rate
is the standard measure for both tasks, corresponding to the
error feedback one.

Considering the dynamics of the two conditions (fig. 5b),
we can observe a varying trend depending on the phase.
Indeed, whereas in the baseline and washout blocks the
success rates were similar (Fmode|base(1, 30) = 0.14;
Fmode|wash(1, 30) = 0.42), in the perturbation phase
the behaviour of the two curves was roughly opposite
(Fmode|pert(1, 30) = 5.75∗; Fint|pert(5, 150) = 3.67∗∗).

C. Variability

In order to understand which effect the game feedback
had on the performance, we wanted also to measure the
uncertainty of the shots over the different conditions. To do
so, we investigated the mean variability of the directional
error within blocks (intra-block variability), which then was
grouped by task and averaged across subjects (fig. 5c).

To take into account and remove potential linear trends,
the chosen measure for variability was the corrected vari-
ability, i.e. the standard deviation of the residuals of a linear
regression model that was fit at a block level on the angle
data (for further methodological details see [26]).

The subjects had an evolution similar to the success rate.
In particular, despite the same trend during baseline and
washout (Fmode|base(1, 30) = 0.09; Fmode|wash(1, 30) =
0.02), the two conditions have almost opposing dynamics
over time during the perturbation phase (Fmode|pert(1, 30) =
1.32; Fint|pert(5, 150) = 2.90∗).

IV. DISCUSSION

Our study introduced Bill-EVR, an Embodied Virtual Re-
ality framework to develop a highly manipulable task in
a real-world environment, which allows capturing natural
movement while changing the physics and appearance of
the game. The incorporation of a visuomotor perturbation

∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001
base: baseline; pert: perturbation; int: interaction; wash: washout
(†) the τ ’s represent the fast and slow components of the learning curves



Fig. 5: (a) Mean cue ball directional error over blocks; (b) Success rate over blocks (includes the entire reward zone during perturbation
for the reward condition). (c) Corrected standard deviation (after removal of linear trends within blocks). All calculated over blocks of
25 trials and averaged over subjects within condition. Shaded areas represent inter-subjects variability. Blue: error-based subjects; Red:
reward-based subjects. N = 16

enabled us to investigate the relationship between learning
and visual feedback manipulation in Virtual Reality, while
maintaining the complexity of natural movement unchanged.
Furthermore, the partial concealment of ball dynamics forced
subjects to learn with a specific mechanism, influencing their
improvement prospects.

From a learning perspective, the distinction between error-
based and reward-based tasks was significant, although both
showed significant training. Notably, in the error-based con-
dition, subjects adapted to the rotation of the cue ball faster
than in the reward-based condition, due to the difficulty of
learning from the latter feedback and due to the enhanced
success feedback.

Our results are consistent with previous research indicating
that adaptation to error is faster than adaptation to reward
[34], [35]. These findings contribute to our understanding of
the effectiveness of Embodied Virtual Reality in investigating
motor learning mechanisms in real-world environments.

The manipulation of learning magnitude was reflected
in the success rate of the subjects. As they became more
proficient in the task and narrowed their range of shots, the
dynamics of the error performances were consistent with
typical adaptation experiments (e.g., [36]), indicating suc-
cessful learning. In contrast, the reward condition exhibited
the opposite pattern, due to the definition of the incentive
regime. As the dynamic reward zone shrank over time, the
task became more challenging, leading to a decreasing trend
of successful trials.

Moreover, the different feedback provided to the subjects
resulted in different exploration dynamics, as indicated by
the variability trends. In the error-based condition, the par-
ticipants showed a high exploration initially that decreased
over trials, while in the reward-based condition, they saw
this tendency rise throughout the game due to the increasing
difficulty of the task.

However, this disparity in exploration dynamics may also
be interpreted as a distinct rate of learning, as the reward
subjects may have become aware of the perturbation much
later than the error ones, likely due to the difference in tra-
jectory visibility. Nonetheless, the dynamic reward zone was
designed to guide subjects towards the perturbed direction

without excessive or insufficient reward, consistent with the
paradigm as established.

Overall, our Embodied Virtual Reality paradigm helped us
to gain insights into the motor learning mechanisms of the
human brain. Indeed, its customisable learning dynamics in
a real-world task make it a potentially useful tool for person-
alised training aids that could enhance the learning abilities
of patients in an EVR-based rehabilitation framework for
neurological disorders.

Furthermore, Bill-EVR holds the potential to manipulate
patients’ neural signatures through the change of visual
feedback. In a previous study [27] we found that, while
learning a pool shot in a real-world setting (without the use of
VR), participants tend to show one of two different patterns
in their neural activity - their increased synchronisation in
beta (13-30Hz) oscillations at the end of the movement,
known as Post-Movement Beta Rebound (PMBR), was either
increasing or decreasing during learning. This was then
linked to the main learning mechanism used. With Bill-EVR
we would be able to validate this assumption. This would
imply that neural activity could potentially be influenced
by the visual feedback presented during the task, further
underscoring the potential of our system, particularly for
individuals with neurological diseases.

In addition, the possibility of complete customisation of
visual feedback within our EVR framework could serve as
a tool for motor learning. This customisation allows for
the tailoring of the environment to each individual patient,
including personalised data-driven manipulations to increase
task difficulty and enhance generalisability [37]. Personal-
isation would capture the unique features that each subject
requires, with the aim of maximising retention of information
and improving their ability to perform movements. Taken
together, our results suggest that the Bill-EVR paradigm
represents a promising tool for neurorehabilitation.
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