3 research outputs found

    Search for new physics in top quark production in dilepton final states in proton-proton collisions at √s=13TeV

    Get PDF
    A search for new physics in top quark production is performed in proton-proton collisions at 13TeV. The data set corresponds to an integrated luminosity of 35.9fb-1 collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating t W from t t ¯ events and exploiting the specific sensitivity of the t W process to new physics.Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund

    Search for new physics in top quark production in dilepton final states in proton-proton collisions at root s=13 TeV

    Get PDF
    A search for new physics in top quark production is performed in proton-proton collisions at 13 TeV. The data set corresponds to an integrated luminosity of 35.9 fb(-1) collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating tW from t (t) over bar events and exploiting the specific sensitivity of the tW process to new physics.Peer reviewe

    Search for new physics in top quark production in dilepton final states in proton-proton collisions at root s=13 TeV

    No full text
    A search for new physics in top quark production is performed in proton-proton collisions at 13 TeV. The data set corresponds to an integrated luminosity of 35.9 fb(-1) collected in 2016 with the CMS detector. Events with two opposite-sign isolated leptons (electrons or muons), and b quark jets in the final state are selected. The search is sensitive to new physics in top quark pair production and in single top quark production in association with a W boson. No significant deviation from the standard model expectation is observed. Results are interpreted in the framework of effective field theory and constraints on the relevant effective couplings are set, one at a time, using a dedicated multivariate analysis. This analysis differs from previous searches for new physics in the top quark sector by explicitly separating tW from t (t) over bar events and exploiting the specific sensitivity of the tW process to new physics
    corecore