371 research outputs found
Large-x Parton Distributions
Reliable knowledge of parton distributions at large x is crucial for many
searches for new physics signals in the next generation of collider
experiments. Although these are generally well determined in the small and
medium x range, it has been shown that their uncertainty grows rapidly for
x>0.1. We examine the status of the gluon and quark distributions in light of
new questions that have been raised in the past two years about "large-x"
parton distributions, as well as recent measurements which have improved the
parton uncertainties. Finally, we provide a status report of the data used in
the global analysis, and note some of the open issues where future experiments,
including those planned for Jefferson Labs, might contribute.Comment: LaTeX, 9 pages, 7 figures. Invited talk presented at the ``Workshop
on Nucleon Structure in the High x-Bjorken Region (HiX2000),'' Temple
University, Philadelphia, Pennsylvania, March 30-April 1, 200
Photoproduction of mesons associated with a leading neutron
The photoproduction of mesons associated with a leading
neutron has been observed with the ZEUS detector in collisions at HERA
using an integrated luminosity of 80 pb. The neutron carries a large
fraction, {}, of the incoming proton beam energy and is detected at
very small production angles, { mrad}, an indication of
peripheral scattering. The meson is centrally produced with
pseudorapidity {
GeV}, which is large compared to the average transverse momentum of the neutron
of 0.22 GeV. The ratio of neutron-tagged to inclusive production is
in the photon-proton
center-of-mass energy range { GeV}. The data suggest that the
presence of a hard scale enhances the fraction of events with a leading neutron
in the final state.Comment: 28 pages, 4 figures, 2 table
Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA
A search for physics beyond the Standard Model has been performed with
high-Q^2 neutral current deep inelastic scattering events recorded with the
ZEUS detector at HERA. Two data sets, e^+ p \to e^+ X and e^- p \to e^- X, with
respective integrated luminosities of 112 pb^-1 and 16 pb^-1, were analyzed.
The data reach Q^2 values as high as 40000 GeV^2. No significant deviations
from Standard Model predictions were observed. Limits were derived on the
effective mass scale in eeqq contact interactions, the ratio of leptoquark mass
to the Yukawa coupling for heavy leptoquark models and the mass scale parameter
in models with large extra dimensions. The limit on the quark charge radius, in
the classical form factor approximation, is 0.85 10^-16 cm.Comment: 28 pages, 4 figures, accepted for publication in Physics Letters
Isolated tau leptons in events with large missing transverse momentum at HERA
A search for events containing isolated tau leptons and large missing
transverse momentum, not originating from the tau decay, has been performed
with the ZEUS detector at the electron-proton collider HERA, using 130 pb^-1 of
integrated luminosity. A search was made for isolated tracks coming from
hadronic tau decays. Observables based on the internal jet structure were
exploited to discriminate between tau decays and quark- or gluon-induced jets.
Three tau candidates were found, while 0.40 +0.12 -0.13 were expected from
Standard Model processes, such as charged current deep inelastic scattering and
single W-boson production. To search for heavy-particle decays, a more
restrictive selection was applied to isolate tau leptons produced together with
a hadronic final state with high transverse momentum. Two candidate events
survive, while 0.20 +-0.05 events are expected from Standard Model processes.Comment: 28 pages, 4 figures, 3 tables, accepted by Phys. Lett. B. Updated
with minor changes to the text requested by the journal refere
Search for lepton-flavor violation at HERA
A search for lepton-flavor-violating interactions and has been performed with the ZEUS detector using the entire HERA I
data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data
were taken at center-of-mass energies, , of 300 and 318 GeV. No
evidence of lepton-flavor violation was found, and constraints were derived on
leptoquarks (LQs) that could mediate such interactions. For LQ masses below
, limits were set on , where
is the coupling of the LQ to an electron and a
first-generation quark , and is the branching ratio of
the LQ to the final-state lepton ( or ) and a quark . For
LQ masses much larger than , limits were set on the four-fermion
interaction term for LQs that couple to an electron and a quark
and to a lepton and a quark , where and are
quark generation indices. Some of the limits are also applicable to
lepton-flavor-violating processes mediated by squarks in -Parity-violating
supersymmetric models. In some cases, especially when a higher-generation quark
is involved and for the process , the ZEUS limits are the most
stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig.
6) adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s
Multijet production rates in neutral current deep inelastic scattering have
been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2.
The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s)
= 318 GeV using the ZEUS detector and correspond to an integrated luminosity of
82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster
algorithm in the longitudinally invariant inclusive mode. Measurements of
differential dijet and trijet cross sections are presented as functions of jet
transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with
E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD
calculations describe the data well. The value of the strong coupling constant
alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections,
is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.)
{+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure
Measurement of (anti)deuteron and (anti)proton production in DIS at HERA
The first observation of (anti)deuterons in deep inelastic scattering at HERA
has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV
using an integrated luminosity of 120 pb-1. The measurement was performed in
the central rapidity region for transverse momentum per unit of mass in the
range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in
terms of the coalescence model. The (anti)deuteron production yield is smaller
than the (anti)proton yield by approximately three orders of magnitude,
consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.
- âŠ