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J. Ciborowski25, R. Ciesielski26, P. Łużniak27, R.J. Nowak, J.M. Pawlak, J. Sztuk28,
T. Tymieniecka29, A. Ukleja29, J. Ukleja30, A.F. Żarnecki
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Abstract

A search for events containing isolated tau leptons and large missing transverse momentum, not originating from the tau
decay, has been performed with the ZEUS detector at the electron–proton collider HERA, using 130 pb−1 of integrated
luminosity. A search was made for isolated tracks coming from hadronic tau decays. Observables based on the internal jet
structure were exploited to discriminate between tau decays and quark- or gluon-induced jets. Three tau candidates were found,
while 0.40+0.12

−0.13 were expected from Standard Model processes, such as charged current deep inelastic scattering and single

W±-boson production. To search for heavy-particle decays, a more restrictive selection was applied to isolate tau leptons
produced together with a hadronic final state with high transverse momentum. Two candidate events survive, while 0.20± 0.05
events are expected from Standard Model processes.
 2004 Published by Elsevier B.V.
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1. Introduction

Events with isolated leptons and large missing
transverse momentum ine±p collisions at HERA
can be a signature for processes beyond the Standard
Model (SM). The H1 and ZEUS Collaborations have
previously reported searches for such events in the
cases where the lepton is an electron49 or a muon
[1–4]. This Letter presents a search for events with
an isolated tau lepton and missing transverse mo-
mentum which does not originate from the tau de-
cay (ep → τχX, whereχ denotes one or more par-
ticles not interacting inside the detector). Such events
are expected to occur at low rates in the SM from de-

cays ofW± bosons intoτ± (−)
ντ , where theW± is pro-

duced radiatively from the quark or the beam lepton.
Events with a large hadronic transverse momentum in
addition to an isolated lepton are of particular interest
since the SM background falls steeply with increas-
ing hadronic transverse momentum. Such events may
result from the decay of a heavy particle. One possi-
ble source for this signature would be the production
of single top quarks through flavour changing neutral
currents (FCNC), with subsequent decayt → bW+,

38 Supported by the Korean Ministry of Education and Korea
Science and Engineering Foundation.

39 Supported by the Netherlands Foundation for Research on
Matter (FOM).

40 Supported by the Polish State Committee for Scientific Re-
search, grant No. 620/E-77/SPB/DESY/P-03/DZ 117/2003-2005.

41 Partially supported by the German Federal Ministry for Educa-
tion and Research (BMBF).

42 Partly supported by the Russian Ministry of Industry, Science
and Technology through its grant for Scientific Research on High
Energy Physics.

43 Supported by the Spanish Ministry of Education and Science
through funds provided by CICYT.

44 Supported by the Particle Physics and Astronomy Research
Council, UK.

45 Supported by the US Department of Energy.
46 Supported by the US National Science Foundation.
47 Supported by the Polish State Committee for Scientific

Research, grant No. 112/E-356/SPUB/DESY/P-03/DZ 116/2003-
2005, 2P03B13922.

48 Supported by the Polish State Committee for Scientific Re-
search, grant No. 115/E-343/SPUB-M/DESY/P-03/DZ 121/2001-
2002, 2 P03B 07022.

49 Here and in the following, the term ‘electron’ denotes generi-
cally both the electron(e−) and the positron(e+).

as predicted by many theories beyond the SM [5].
Production of stop quarks inR-parity (Rp) violat-
ing SUSY models [6] with subsequent two-body de-
cay (e.g.,̃t → τb) or Rp-conserving three-body decay
modes(t̃ → τ ν̃τ b, τ̃ντ b) are also potential sources.

The tau leptons were identified from their hadronic
decay by requiring a collimated and low-multiplicity
hadronic jet. Charged current (CC) and neutral current
(NC) interactions, with gluon- and quark-induced
jets, are large potential backgrounds to this process.
Restrictive conditions applied to jets reduced such
backgrounds to a rate comparable to that of singleW±
production.

This Letter is organized as follows. Section 2
describes the ZEUS detector and the experimental
conditions. Section 3 introduces thee±p-interaction
processes that were considered in this analysis, and
their Monte Carlo simulation. The identification of
tau leptons, which is based on an independent study,
is introduced in Section 4. Section 5 presents the
selection requirements for events with isolated tau
leptons. The results of the analysis are discussed in
Section 6. Section 7 gives the conclusions.

2. Experimental conditions

The data used in this analysis were collected
with the ZEUS detector at HERA and correspond
to an integrated luminosity of 47.9 ± 0.9 (65.5 ±
1.5) pb−1 for e+p collisions taken during 1994–1997
(1999–2000) and 16.7 ± 0.3 pb−1 for e−p collisions
taken during 1998–1999. During 1994–1997 (1998–
2000), HERA operated with protons of energyEp =
820 GeV (920 GeV) and electrons of energyEe =
27.5 GeV, yielding a centre-of-mass energy of

√
s =

300 GeV (318 GeV).
The ZEUS detector is described in detail elsewhere

[7,8]. The main components used in this analysis were
the central tracking detector (CTD) [9], positioned in
a 1.43 T solenoidal magnetic field, and the uranium-
scintillator sampling calorimeter (CAL) [10].

Tracking information is provided by the CTD, in
which the momenta of tracks in the polar-angle50 re-

50 The ZEUS coordinate system is a right-handed Cartesian
system, with theZ axis pointing in the proton beam direction,
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gion 15◦ < θ < 164◦ are reconstructed. The CTD
consists of 72 cylindrical drift chamber layers, or-
ganised in nine superlayers. The relative transverse-
momentum resolution for full-length tracks can be
parameterised asσ(pT )/pT = 0.0058pT ⊕ 0.0065⊕
0.0014/pT , with pT in GeV.

The CAL covers 99.7% of the total solid angle. It is
divided into three parts with a corresponding division
in θ , as viewed from the nominal interaction point:
forward (FCAL, 2.6◦ < θ < 36.7◦), barrel (BCAL,
36.7◦ < θ < 129.1◦), and rear (RCAL, 129.1◦ < θ <

176.2◦). Each of the CAL parts is subdivided into
towers which in turn are segmented longitudinally
into one electromagnetic (EMC) and one (RCAL) or
two (FCAL, BCAL) hadronic (HAC) sections. The
smallest subdivision of the CAL is called a cell. Under
test-beam conditions, the CAL single-particle relative
energy resolution isσ(E)/E = 0.18/

√
E for electrons

andσ(E)/E = 0.35/
√
E for hadrons, withE in GeV.

In addition, the readout of the individual CAL cells
provides timing information, with a resolution better
than 1 ns for energy depositions larger than 4.5 GeV.

The luminosity was measured using the Bethe–
Heitler reactione±p → e±γp. The resulting small-
angle energetic photons were measured by the lu-
minosity monitor [11], a lead-scintillator calorimeter
placed in the HERA tunnel atZ = −107 m. A three-
level trigger was used to select events online [7,12].

3. Monte Carlo simulation

In the following, processes which may lead to the
event topology of interest, and their Monte Carlo (MC)
simulations, are described. All generated MC events
were passed through the GEANT 3.13-based [13]
ZEUS detector- and trigger-simulation programs [7].
They were reconstructed and analysed by the same
program chain as the data.

W± production:e±p → e±WX

The production of realW± bosons with subsequent

decayW± → τ± (−)
ντ is the only SM process with size-

referred to as the “forward direction”, and theX axis pointing left
towards the centre of HERA. The coordinate origin is at the nominal
interaction point.

able cross section leading to events with an isolated
tau lepton and missing transverse momentum. Single
W± production was simulated using the event gener-
ator EPVEC [14]. The hadronisation of the partonic
final state and the decays of the tau leptons were per-
formed by JETSET [15]. As a cross check, control
MC samples were used with the tau decays performed
by TAUOLA 2.6 [16]. Recent cross-section calcula-
tions includingO(α2αs) QCD corrections [17] and
using the CTEQ4M [18] (ACFGP [19]) proton (pho-
ton) parton density functions were used to reweight the
EPVEC samples. The total cross section forW± pro-
duction is 1.0 pb (1.2 pb) for ane±p centre-of-mass
energy of

√
s = 300 GeV (318 GeV). The contribution

of the CC processe±p →(−)
ντ W

±X is about 5% of that
from the neutral current process and was neglected [3].

Charged current deep inelastic scattering (CC DIS):

e±p →(−)
ντ X

Events from CC DIS interactions can mimic the
selected topology if a particle from the hadronic final
state is misidentified as an isolated tau lepton. The CC
DIS events were simulated using the event generator
DJANGO6 [20], an interface to the MC programs
HERACLES 4.5 [21] and LEPTO 6.5 [22]. Leading-
order QCD and electroweak radiative corrections were
included and higher-order QCD effects were simulated
via parton cascades using the colour-dipole model
(CDM) as implemented in ARIADNE [23] or matrix
elements and parton showers (MEPS) based on a
leading-logarithmic approximation as implemented
in LEPTO. The hadronisation of the partonic final
state was performed by JETSET. The CTEQ4D [18]
parameterisations for the parton density functions
(PDFs) in the proton were used.

Neutral current deep inelastic scattering (NC DIS):
e±p → e±X

The scattered electron or a jet from the hadronic
system in an NC DIS event can be misidentified as
an isolated tau lepton. This can lead to the selected
event topology, if combined with apparent missing
transverse momentum, which may arise from leptonic
decays of charm or bottom quarks, fluctuations in
the detector response or undetected particles due
to the limited geometric acceptance of the detector.
The NC DIS events were simulated in the same
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framework as the CC DIS events. The CTEQ5D [24]
parameterisations for the proton PDFs were used.

Photoproduction of jets:γp→X

Background from hard scattering photoproduction
processes can contribute to the selected event topology
if a particle from the hadronic final state is misidenti-
fied as a tau lepton and apparent missing transverse
momentum is present, arising from the sources de-
scribed above. Resolved and direct photoproduction
processes were simulated using PYTHIA 5.7 [25].

Lepton-pair production:e±p → e±l±l∓X,
l = e,µ, τ

Pair production of leptons via the Bethe–Heitler
process can lead to events with the selected topology,
if one of the leptons escapes detection or is misiden-
tified as a QCD jet and a mismeasurement causes
missing transverse momentum. Lepton-pair produc-
tion was simulated using the GRAPE dilepton genera-
tor [26], including both the elastic and inelastic com-
ponents at the proton vertex.

Single-top production in theories beyond the SM:
e±q → e±t → e±bW+

A significant number of single top quarks with sub-
sequent decays into ab quark and aW+ boson could
be produced if the top quarks were to be produced
via anomalous effective couplings, including FCNC
of the type tuV (u = up-type quark in the proton,
V = γ,Z0) [5]. An isolated tau lepton and a neutrino
from theW+ decay lead to the selected event topol-
ogy. The large mass of the top quark could result in
large transverse momenta of its decay products, which
through the subsequentb-quark decay would produce
a large hadronic transverse momentum in the detector.
In the current Letter, the anomalous production of sin-
gle top quarks was used as a template for processes in-
volving the production of heavy particles with tau lep-
tons in the decay chain. Single-top production through
FCNC processes ine±p collisions was simulated us-
ing the HEXF generator [27].

4. Tau identification

The search for tau leptons is based on their hadronic
decays. The narrow, “pencil-like”, shape and the low

charged-particle multiplicity of the tau jets were used
to distinguish them from quark- and gluon-induced
jets [28].

4.1. Jet observables

The longitudinally invariantkT cluster algorithm
[29] was used in the inclusive mode [30] to reconstruct
jets from the energy deposits in the CAL cells. The
jet search was performed in theη–φ plane of the
laboratory frame, whereηi andφi , the pseudorapidity
and azimuthal angle of each CAL cell, were calculated
using the primary event vertex as reconstructed in the
CTD. The axis of each jet was defined according to
the Snowmass convention [31], whereηjet (φjet) was
the transverse-energy-weighted mean pseudorapidity
(azimuth angle) of all the cells belonging to the jet.
The jet transverse energy,Ejet

T , was reconstructed
as the sum of the transverse energies of the cells
belonging to the jet and was corrected for detector
effects such as energy losses in the inactive material
in front of the CAL [32].

The internal jet structure is generally well described
by the MC simulations [33,34]. For this analysis, it
was characterised by six observables:

• The first moment of the radial extension of the jet

Rmean= 〈R〉 =
∑

i EiRi∑
i Ei

,

where the sum runs over the CAL cells associated
to the jet, Ei is the energy of the celli and

Ri is defined asRi =
√
"φ2

i +"η2
i , where"φi

("ηi) is the difference between the azimuthal
angle (pseudorapidity) of the calorimeter celli
and the jet axis;

• The second moment of the radial extension of the
jet

Rrms=
√∑

i Ei(〈R〉 −Ri)2∑
i Ei

;

• The first moment of the projection of the jet onto
its axis

Lmean= 〈L〉 =
∑

i Ei cosαi∑
i Ei

,

whereαi is the angle between the celli and the jet
axis;
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• The second moment of the projection of the jet
onto its axis

Lrms=
√∑

i Ei(〈L〉 − cosαi)2∑
i Ei

;

• The number of subjets(Nsubj) with a ycut of 5 ×
10−4.
The subjet multiplicity identifies the number of
localised energy depositions within a jet that can
be resolved using a resolution criterionycut. The
number of subjets was found by applying the same
algorithm as was initially used to find jets. An
exact definition can be found elsewhere [34–36];

• The invariant mass,Mjet, of the jet four-vector,
calculated from the cells associated to the jet. The
particles of the jet were assumed to be massless.

4.2. Control selection

The tau-identification procedure was determined
using event samples selected independently from those
used for the analysis. Monte Carlo events from single
W± production, where theW± decays to a tau lepton
and a neutrino and the tau lepton decays hadronically

(W± → τ± (−)
ντ , τ → hadrons), were used as signal.

The background simulation was based on an inclusive
sample of MC CC DIS events.

An inclusive CC DIS data sample was used to
monitor the quality of the simulation [37]. To obtain
this sample, large missing transverse momentum and
the existence of at least one jet withE jet

T > 5 GeV in
the polar-angle range 15◦ < θjet < 164◦ were required.
Electrons from badly reconstructed NC DIS events
with large apparent missing transverse momentum
were suppressed by rejecting jets that were back-to-
back with the hadronic system. Remaining electrons
were rejected based on the fraction of electromagnetic
energy and on the fraction of the jet energy carried
by the leading track pointing in the direction of the
jet [38].

Fig. 1 shows the comparison of the inclusive CC
DIS data sample and the MC CC events in each of
the six jet-shape observables. For each event, only the
jet with the largest value of the tau discriminant, as
defined below, enters. The agreement between the data
and the simulation is good. The expected signal from
tau decay is also shown. A difference in the shapes

between the tau jets and the quark- or gluon-induced
jets is evident for all six variables.

4.3. Tau discriminant

To separate the signal from the background, the six
jet-shape observables were combined in a discrimi-
nantD, given for any point,�x, in the phase space,
where

�x = (− log(Rmean),− log(Rrms),− log(1−Lmean),

− log(Lrms),Nsubj,Mjet
)
,

as:

D(�x)= ρsig(�x)
ρsig(�x)+ ρbg(�x) ,

where ρsig and ρbg are the density functions of
the signal and the background events, respectively.
The signal and background densities, sampled using
MC simulations, were calculated using a probability-
density-estimation method based on range searching
(PDE-RS) [39]. For any given jet with phase-space
coordinates�x, the signal and background densities
were evaluated from the number of corresponding
signal and background jets in a six-dimensional box
of fixed size centred around�x. Fig. 2 shows the
distribution of D for the MC-generated signal and
background events and for the data selection. For
each event, the jet with the largest value of the
discriminant enters. The data are well described by the
MC simulation for the inclusive CC selection. The tau
signal tends to have large discriminant values(D → 1)
and is clearly separated from the CC DIS background
at low discriminant values(D → 0).

The quality of the tau selection is characterised by
the efficiency of the signal selectionεsig, the rejection
of the background,R, and the separation power,S,
which are defined for a given cut on the discriminant,
Dcut, as follows:

εsig =Nsig,selected/Nsig,total,

R =Nbg,total/Nbg,selected,

S = √
R εsig.

In the equations above,Nsig,total andNbg,total are the
total number of signal and background events, respec-
tively, andNsig,selectedand Nbg,selectedare the num-
ber of signal and background events after applying a
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Fig. 1. Observables characterising the internal jet structure for an inclusive selection of CC DIS events (see text for definitions). Shown are the

data (dots), the simulation of CC DIS events (shaded histograms) and the simulation of the directW±-production signalW± →(−)
ντ τ

±, where
theτ decays hadronically (hatched histograms).



52 ZEUS Collaboration / Physics Letters B 583 (2004) 41–58

Fig. 2. Distribution of the tau discriminant,D, for an inclusive selection of CC DIS data events (dots), a simulation of CC DIS events (shaded

histograms) and the simulation of the directW±-production signalW± →(−)
ντ τ

±, where theτ decays hadronically (hatched histograms). In
each event, only the jet with the highest value of the discriminant enters. The histograms are normalised (a) to the total number of eventsN

and (b) to the luminosity of the data. In (b), the− log(1 − D) distribution is displayed to expand the region in which the tau lepton signal is
expected.

cut of D > Dcut, respectively. The cut onD was op-
timised for maximal separation power. The optimisa-
tion resulted in a value ofD > 0.95, for which a signal
efficiency εsig = 31 ± 0.2%, a background rejection
R = 179± 6 and a separation powerS = 4.1 ± 0.1
were obtained. The quoted uncertainties are the statis-
tical uncertainties due to the limited number of gener-
ated MC events. When restricting the selection to jets
with only one track, as is relevant for the search for
one-prong hadronic tau decays, the optimisation again
resulted in a value ofD > 0.95. In this case the sig-
nal efficiency wasεsig = 22± 0.2%, the background
rejection wasR = 637± 41 and the separation was
S = 5.5 ± 0.2. These results are independent of the
model chosen for the simulation of the QCD cascade
in the CC DIS simulation (CDM or MEPS).

4.4. Misidentification of QCD jets and electrons

Both the suppression of QCD jets and the probabil-
ity to misidentify electrons as tau jets were determined
from samples of simulated NC DIS events and a se-
lection of NC DIS data events [40], where an electron
is scattered back-to-back to a jet in the detector. The
main selection criteria wereQ2 > 400 GeV2, where
Q2 is the virtuality of the exchanged boson, a well re-
constructed electron and at least one jet in the accep-
tance of the detector.

To determine the rejection factor for QCD jets,
the electron-rejection cuts from the CC DIS control

selection described above were first applied to all jets
in the samples. For the surviving one-track jets, the
tau discriminant gives a further rejection factor of
R = 550. This result is in agreement with the results
from the CC DIS MC. No significant dependence of
the rejection on the transverse energy of the jets was
found. The results on the jet misidentification are the
same in the data and in the simulation.

To determine the electron rejection, events in the
NC DIS MC which had no well-identified electron
were also considered. The upper limit on the frac-
tion of NC DIS electrons that passed the tau selection
and the CC DIS control-selection cuts was 3× 10−6.
No difference between data and simulation was ob-
served.

5. Event selection

The event selection closely follows the previous
ZEUS search [4] for events with isolated leptons and
large missing transverse momentum. The selection is
based on the requirement of an isolated tau lepton,
decaying to one charged particle, together with large
missing transverse momentum. In a final selection
stage, events with large values of the hadronic trans-
verse momentum were isolated. Details of the analy-
sis can be found elsewhere [37]. In the following, only
the main selection criteria are described.



ZEUS Collaboration / Physics Letters B 583 (2004) 41–58 53

5.1. Preselection of isolated tau events

A preselection of tau-candidate events was made as
follows:

• Cuts on the CAL timing andZ coordinate (|Z|<
50 cm) of the event vertex along with algorithms
based on the pattern of tracks in the CTD were
used to reject events not originating frome±p
collisions;

• A large missing transverse momentum was re-
quired,pCAL

T > 20 GeV, wherepCAL
T was recon-

structed using the energy deposited in the CAL
cells, after corrections for non-uniformity and
dead material located in front of the CAL [41];

• The selected events had to contain at least one jet,
reconstructed as described in Section 4.1, with a
transverse energyEjet

T > 5 GeV within the range
of −1.0< η < 2.5;

• A track with transverse momentumptrack
T > 5

GeV, associated with the event vertex and point-
ing in the direction of a tau-candidate jet, was re-
quired. It had to pass through at least three ra-
dial superlayers of the CTD (corresponding to
θ � 0.3 rad) and to haveθ < 2 rad. The track
was required to be isolated with respect to all
other tracks and jets in the event:Dtrk > 0.5 and
Djet > 1.8, whereDtrk andDjet are the separa-
tion of the given track in the{η,φ}-plane from the
nearest neighbouring track and the nearest neigh-
bouring jet in the event, respectively;

• Isolated tracks that were identified as electrons
or muons51 were rejected. An additional electron
rejection was applied based on the fraction of
electromagnetic jet energy and on the fraction of
jet energy carried by the isolated track. Remaining
electron-type events with a topology characteristic
for NC DIS events were rejected by requiring
the acoplanarity,φtrk

acopl, to be greater than 8◦,

where φtrk
acopl is defined as the azimuthal angle

between the isolated track and the vector which
balances the hadronic system. The four-vector of
the hadronic system was calculated by subtracting

51 Electron candidates were identified using an algorithm that
combined CAL and CTD information [42]. The identification of
muons was based on the pattern of energy deposits in the CAL [37].

the four-vector of the tau-candidate jet from the
four-vector obtained from the energy deposited in
the CAL cells.

After this preselection, seven events remained, while
2.2+0.39

−0.58 are expected from SM background (18% of
the SM background came from singleW± boson
production). Table 1 summarises the event yields at
different selection stages. The quoted uncertainties
on the SM expectations are discussed in Section 5.3.
The discriminant distribution for these seven events is
shown in Fig. 3(a) as− log(1 −D), to emphasise the
high-discriminant region.

Three out of the seven events have a tau discrimi-
nantD > 0.95 and are therefore likely to come from
tau decay. After applying the cutD > 0.95, 0.40+0.12

−0.13
events are expected from SM background (43% from
singleW±-boson production). Fig. 3(b) shows the dis-
tribution of the transverse momentum of the hadronic
system,phad

T , after applying the cut atD > 0.95.
The online event selection required significant mis-

sing transverse momentum and a reconstructed vertex
consistent with ane±p interaction. The efficiency of
this online selection for the kinematic range of interest
was found to be 100% for simulated events.

5.2. Selection of events with high hadronic transverse
momentum

To design the final cut for events with highphad
T ,

the single-top MC was used as a template for the
production and decay of a heavy state. Following
the published analysis in the electron and muon
channels, an optimisation was performed, resulting
in a cut at phad

T > 25 GeV, which gave the best
separation between the single-top events and the SM
background. Two events remained in the data, while
0.20± 0.05 events are expected from the SM (49%
from single W±-boson production). With a higher
cut at phad

T > 40 GeV, one event remains in the
data, while 0.07± 0.02 events are expected from the
SM (71% from singleW±-boson production). Fig. 4
shows event displays of the two events with large
values ofphad

T . Selected event variables for the two
candidates are given in Table 2. Both events were
found at large acoplanarity. The transverse mass was
calculated from the tau-candidate jet and the missing



54 ZEUS Collaboration / Physics Letters B 583 (2004) 41–58

Table 1
Event yields for the data from 1994–2000, corresponding background expectations and efficiency times branching ratio for the single-top MC
at different selection stages in the search for isolated tau leptons. The percentage of single-W production included in the expectation is indicated
in parentheses. The statistical and systematic uncertainties in quadrature are also indicated

Selection stage Obs. SM exp.(W± contrib.) εs.top · BR (%)

Isolated tracks 7 2.18+0.39
−0.58 (18%) 0.68

DiscriminantD> 0.95 3 0.40+0.12
−0.13 (43%) 0.27

phad
T

> 25 GeV (final sel.) 2 0.20+0.05
−0.05 (49%) 0.27

phad
T

> 40 GeV 1 0.07+0.02
−0.02 (71%) 0.25

Fig. 3. Distribution of (a) the tau discriminant,− log(1 − D), for the tau preselection before applying the cutD > 0.95 and (b) the hadronic
transverse momentum,phad

T
, after applying the cutD > 0.95. The data (points) are compared to the SM expectations (shaded histogram).

The hatched histogram represents the contribution fromW± boson production in the SM. The dashed line represents the distribution of the
single-top MC, including all decay channels of theW± boson, normalised to an integral of one event.

transverse momentum as

MT =
√

2pjet
T pCAL

T (1− cos(δφjet)),

whereδφjet is the angular difference in the azimuthal
plane between the tau jet and the direction ofpCAL

T .
Both events were identified in thee+p data sample.

5.3. Systematic uncertainties

The errors on the background-expectation values
were obtained as the quadratic sum of the statistical
uncertainties of the generated MC events and each of
the following systematic uncertainties:

• Simulation of the QCD cascade. The use of MEPS
instead of CDM to estimate both the NC DIS and
CC DIS background gave a change of up to−20%
in the total background estimation;

• Track selection. A variation of the track-quality
requirements and the angular range of the track

selection resulted in changes of up to±15% in
the background estimation;

• W cross section. The uncertainty for the ex-
pectation from singleW±-boson production, af-
ter including higher-order QCD corrections by
reweighting the LO MC samples [17], was esti-
mated to be 15%;

• Tau-decay simulation. As a cross check, TAUOLA
was used instead of JETSET for the simulation of
the tau decays originating from singleW±-boson
production. The TAUOLA program takes into
account polarisation effects, whereas in JETSET
the tau leptons are always decayed isotropically
in their rest frame. The influence of the tau-decay
treatment on the jet-shape observables and on the
efficiency for the event selection was found to be
negligible;

• Tau-discriminant method. Both the CC DIS con-
trol selection and the tau-search analysis were
repeated with modified sets of jet-shape observ-
ables. In addition, the box size used to evaluate
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Fig. 4. Tau-candidate events frome+p interactions at
√
s = 318 GeV in the ZEUS detector. The energy deposition in the CAL is proportional

to the size and density of shading in the CAL cells. The Lego plot shows the CAL energy deposition projected in the{η,φ} plane. In thex–y
view, only the energy deposition in the barrel calorimeter is shown. The dashed arrow in thex–y view indicates the direction of the missing
transverse momentum in the calorimeter,pCAL

T
. Selected event variables for the two candidates are given in Table 2.
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Table 2
Selected event variables for the two tau-candidate events at highphad

T

Quantity Event 1 Event 2

Missing transverse momentumpCAL
T

37 GeV 39 GeV
Hadronic transverse momentumphad

T
48 GeV 38 GeV

Transverse momentum of the tau-candidate jetp
jet
T

21 GeV 41 GeV
Transverse momentum of the tau-candidate trackptrk

T
9 GeV 27 GeV

Charge sign of the tau-candidate track − +
Significance in numbers of standard deviations 5.7σ 3.8σ
Acoplanarity of the tau-candidate trackφtrk

acopl 45◦ 55◦
Transverse massMT 32 GeV 70 GeV
DiscriminantD 0.994 0.977

the signal and background densities was varied.
The dependence on these parameters was negligi-
ble;

• Calorimeter energy scale. The uncertainty of
±1% on the absolute energy scale of both the
electromagnetic and the hadronic parts of the CAL
resulted in changes of up to±4% in the SM
background estimation.

6. Discussion of results

Table 3 gives the result for the final selection in
the tau channel as well as the results of the previous
search in the electron and muon channel [4] for two
different values of the cut onphad

T . In the electron
(muon) channel, two (five) events were observed for
phad
T > 25 GeV, in good agreement with the SM

prediction. No event was observed in either channel
for phad

T > 40 GeV. In combination with a search in the
hadronic decay channel of theW± boson, where no
excess above the SM prediction was found, a limit on
the cross section for single-top production ofσ(ep →
etX,

√
s = 318 GeV) < 0.225 pb at 95% C.L. was

obtained [4]. For the tau channel, two events were
observed forphad

T > 25 GeV. Only hadronic tau decays
were considered and very restrictive selection cuts had
to be applied to suppress the large background from
electrons and quark- or gluon-induced jets. Therefore,
the selection efficiency for SMW± production is
much smaller in the tau channel than in the electron
and muon channels.

The Poisson probability to observe two or more
events when 0.20± 0.05 events are expected is 1.8%,
where the uncertainty on the SM prediction was taken

into account. The observed events would correspond
to a cross section for single-top production that is
much higher than the excluded cross section, if the SM
branching ratios for the top quark are assumed.

In addition, single-top production produces posi-
tively charged leptons, and single anti-top production
from protons is relatively suppressed by the parton
densities. Therefore, the observed events are unlikely
to be explained by the hypothesis of single-top pro-
duction.

Rp-violating SUSY models can explain enhanced
tau-production rates above the SM expectations. More-
over, if third-generation sleptons are lighter than slep-
tons of the first and second generation, a correspond-
ing enhancement for electrons and muons could be
strongly suppressed. In such models, the stop quark
can be directly produced at HERA via anRp-violating
Yukawa coupling and subsequently decay throughRp-
violating or gauge couplings. In particular, the three-
body gauge decaỹt → τ ν̃τ b, τ̃ ντ b with the subse-
quent decays̃τ → τ χ̃0, ν̃τ → ντ χ̃

0 would produce
a final state with the characteristics of the observed
events: a high-pT tau lepton at large acoplanarity an-
gle, missing transverse momentum and large hadronic
transverse momentum. However, in this case the tau
candidate has the same charge as the incoming lepton
beam, which is only the case for one of the two events
surviving the cuts.

7. Conclusion

A search for events containing isolated tau lep-
tons, large missing transverse momentum and large
hadronic transverse momentum, produced ine±p col-
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Table 3
Summary of the results of searches for events with isolated leptons, missing transverse momentum and largephad

T
. The number of observed

events is compared to the SM prediction. TheW± component is given in parentheses in percent. The statistical and systematic uncertainties
added in quadrature are also indicated. The results for the electron and the muon channel were obtained from a previous search [4]

ZEUS Electron Muon Tau
1994–2000e±p obs./exp. obs./exp. obs./exp.
L = 130.1 pb−1 (W± contribution) (W± contribution) (W± contribution)

phad
T

> 25 GeV 2/2.90+0.59
−0.32 (45%) 5/2.75+0.21

−0.21 (50%) 2/0.20+0.05
−0.05 (49%)

phad
T

> 40 GeV 0/0.94+0.11
−0.10 (61%) 0/0.95+0.14

−0.10 (61%) 1/0.07+0.02
−0.02 (71%)

lisions at HERA, has been performed using 130 pb−1

of integrated luminosity. Such a signature could be
produced within the framework of many theories be-
yond the Standard Model. The selection required iso-
lated tracks with associated pencil-like jets coming
from hadronic tau decays. A multi-observable dis-
crimination technique was used, exploiting the internal
jet structure to discriminate between hadronic tau de-
cays and quark- or gluon-induced jets. Three isolated
tau candidates were found, while 0.40+0.12

−0.13 were ex-
pected from Standard Model processes, mainly from
charged current deep inelastic scattering and single
W±-boson production. A more restrictive selection
was applied to isolate tau leptons in events with large
missing transverse momentum produced together with
a hadronic final state with high transverse momentum,
as expected from the decay of a heavy particle. Two
candidate events with a transverse momentum of the
hadronic systemphad

T > 25 GeV have been observed,
while 0.20±0.05 events were expected from Standard
Model processes. The Poisson probability to observe
two or more events, assuming only SM contribution,
is 1.8%, so a statistical fluctuation cannot be excluded.
When considered together with previously published
results in the electron and muon channels, the two
candidates are unlikely to originate from anomalous
single-top production or any other process where the
tau lepton is produced through the decay of aW± bo-
son.
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