56 research outputs found

    A genome triplication associated with early diversification of the core eudicots

    Get PDF
    Background: Although it is agreed that a major polyploidy event, gamma, occurred within the eudicots, the phylogenetic placement of the event remains unclear. Results: To determine when this polyploidization occurred relative to speciation events in angiosperm history, we employed a phylogenomic approach to investigate the timing of gene set duplications located on syntenic gamma blocks. We populated 769 putative gene families with large sets of homologs obtained from public transcriptomes of basal angiosperms, magnoliids, asterids, and more than 91.8 gigabases of new next-generation transcriptome sequences of non-grass monocots and basal eudicots. The overwhelming majority (95%) of well-resolved gamma duplications was placed before the separation of rosids and asterids and after the split of monocots and eudicots, providing strong evidence that the gamma polyploidy event occurred early in eudicot evolution. Further, the majority of gene duplications was placed after the divergence of the Ranunculales and core eudicots, indicating that the gamma appears to be restricted to core eudicots. Molecular dating estimates indicate that the duplication events were intensely concentrated around 117 million years ago. Conclusions: The rapid radiation of core eudicot lineages that gave rise to nearly 75% of angiosperm species appears to have occurred coincidentally or shortly following the gamma triplication event. Reconciliation of gene trees with a species phylogeny can elucidate the timing of major events in genome evolution, even when genome sequences are only available for a subset of species represented in the gene trees. Comprehensive transcriptome datasets are valuable complements to genome sequences for high-resolution phylogenomic analysis

    Parasitic Plants Striga and Phelipanche Dependent upon Exogenous Strigolactones for Germination Have Retained Genes for Strigolactone Biosynthesis

    Get PDF
    Abstract Strigolactones are plant hormones with multiple functions, including regulating various aspects of plant architecture such as shoot branching, facilitating the colonization of plant roots by arbuscular mycorrhizal fungi, and acting as seed germination stimulants for certain parasitic plants of the family Orobanchaceae. The obligate parasitic species Phelipanche aegyptiaca and Striga hermonthica require strigolactones for germination, while the facultative parasite Triphysaria versicolor does not. It has been hypothesized that P. aegyptiaca and S. hermonthica would have undergone evolutionary loss of strigolactone biosynthesis as a part of their mechanism to enable specific detection of exogenous strigolactones. We analyzed the transcriptomes of P. aegyptiaca, S. hermonthica and T. versicolor and identified genes known to act in strigolactone synthesis (D27, CCD7, CCD8, and MAX1), perception (MAX2 and D14) and transport (PDR12). These genes were then analyzed to assess likelihood of function. Transcripts of all strigolactone-related genes were found M. Das et al. 1152 in P. aegyptiaca and S. hermonthica, and evidence points to their encoding functional proteins. Gene open reading frames were consistent with homologs from Arabidopsis and other strigolactone-producing plants, and all genes were expressed in parasite tissues. In general, the genes related to strigolactone synthesis and perception appeared to be evolving under codon-based selective constraints in strigolactone-dependent species. Bioassays of S. hermonthica root extracts indicated the presence of strigolactone class stimulants on germination of P. aegyptiaca seeds. Taken together, these results indicate that Phelipanche aegyptiaca and S. hermonthica have retained functional genes involved in strigolactone biosynthesis, suggesting that the parasites use both endogenous and exogenous strigolactones and have mechanisms to differentiate the two

    Functional genomics of a generalist parasitic plant: Laser microdissection of host-parasite interface reveals host-specific patterns of parasite gene expression

    Get PDF
    Abstract Background Orobanchaceae is the only plant family with members representing the full range of parasitic lifestyles plus a free-living lineage sister to all parasitic lineages, Lindenbergia. A generalist member of this family, and an important parasitic plant model, Triphysaria versicolor regularly feeds upon a wide range of host plants. Here, we compare de novo assembled transcriptomes generated from laser micro-dissected tissues at the host-parasite interface to uncover details of the largely uncharacterized interaction between parasitic plants and their hosts. Results The interaction of Triphysaria with the distantly related hosts Zea mays and Medicago truncatula reveals dramatic host-specific gene expression patterns. Relative to above ground tissues, gene families are disproportionally represented at the interface including enrichment for transcription factors and genes of unknown function. Quantitative Real-Time PCR of a T. versicolor β-expansin shows strong differential (120x) upregulation in response to the monocot host Z. mays; a result that is concordant with our read count estimates. Pathogenesis-related proteins, other cell wall modifying enzymes, and orthologs of genes with unknown function (annotated as such in sequenced plant genomes) are among the parasite genes highly expressed by T. versicolor at the parasite-host interface. Conclusions Laser capture microdissection makes it possible to sample the small region of cells at the epicenter of parasite host interactions. The results of our analysis suggest that T. versicolor’s generalist strategy involves a reliance on overlapping but distinct gene sets, depending upon the host plant it is parasitizing. The massive upregulation of a T. versicolor β-expansin is suggestive of a mechanism for parasite success on grass hosts. In this preliminary study of the interface transcriptomes, we have shown that T. versicolor, and the Orobanchaceae in general, provide excellent opportunities for the characterization of plant genes with unknown functions

    Phylotranscriptomic analysis of the origin and early diversification of land plants

    Get PDF
    Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances inmolecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the datamatrix or to phylogeneticmethod, including supermatrix, supertree, and coalescent-based approaches, maximumlikelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated

    Genome Sequence of Striga asiatica Provides Insight into the Evolution of Plant Parasitism

    Get PDF
    Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution. Striga seeds germinate in response to host-derived strigolactones (SLs) and then develop a specialized penetration structure, the haustorium, to invade the host root. A family of SL receptors has undergone a striking expansion, suggesting a molecular basis for the evolution of broad host range among Striga spp. We found that genes involved in lateral root development in non-parasitic model species are coordinately induced during haustorium development in Striga, suggesting a pathway that was partly co-opted during the evolution of the haustorium. In addition, we found evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of parasitism and a key resource for the future development of Striga control strategies.Peer reviewe

    Article Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

    Get PDF
    Abstract The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative "parasitism genes." Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria

    May Measurement Month 2018: a pragmatic global screening campaign to raise awareness of blood pressure by the International Society of Hypertension

    Get PDF
    Aims Raised blood pressure (BP) is the biggest contributor to mortality and disease burden worldwide and fewer than half of those with hypertension are aware of it. May Measurement Month (MMM) is a global campaign set up in 2017, to raise awareness of high BP and as a pragmatic solution to a lack of formal screening worldwide. The 2018 campaign was expanded, aiming to include more participants and countries. Methods and results Eighty-nine countries participated in MMM 2018. Volunteers (≥18 years) were recruited through opportunistic sampling at a variety of screening sites. Each participant had three BP measurements and completed a questionnaire on demographic, lifestyle, and environmental factors. Hypertension was defined as a systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg, or taking antihypertensive medication. In total, 74.9% of screenees provided three BP readings. Multiple imputation using chained equations was used to impute missing readings. 1 504 963 individuals (mean age 45.3 years; 52.4% female) were screened. After multiple imputation, 502 079 (33.4%) individuals had hypertension, of whom 59.5% were aware of their diagnosis and 55.3% were taking antihypertensive medication. Of those on medication, 60.0% were controlled and of all hypertensives, 33.2% were controlled. We detected 224 285 individuals with untreated hypertension and 111 214 individuals with inadequately treated (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg) hypertension. Conclusion May Measurement Month expanded significantly compared with 2017, including more participants in more countries. The campaign identified over 335 000 adults with untreated or inadequately treated hypertension. In the absence of systematic screening programmes, MMM was effective at raising awareness at least among these individuals at risk
    corecore