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Abstract: Parasitic plants in the genus Striga, commonly known as witchweeds, cause major
crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An
understanding of Striga parasite biology, which could lead to agricultural solutions, has
been hampered by the lack of genome information. Here we report the draft genome
sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects
gene family contractions and expansions that are consistent with a three-phase model
of parasitic plant genome evolution. Striga seeds germinate in response to host-
derived strigolactones (SLs) and then develop a specialised penetration structure, the
haustorium, to invade the host root. A family of SL receptors has undergone a striking
expansion, suggesting a molecular basis for the evolution of broad host range among
Striga spp. We found that genes involved in lateral root development in non-parasitic
model species are coordinately induced during haustorium development in Striga,
suggesting a pathway that was partly co-opted during the evolution of the haustorium.
In addition, we found evidence for horizontal transfer of host genes as well as
retrotransposons, indicating gene flow to S. asiatica from hosts. Our results provide
valuable insights into the evolution of parasitism and a key resource for the future
development of Striga control strategies.
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Summary 70 

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop 71 

losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An 72 

understanding of Striga parasite biology, which could lead to agricultural solutions, has 73 

been hampered by the lack of genome information. Here we report the draft genome 74 

sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects 75 

gene family contractions and expansions that are consistent with a three-phase model of 76 

parasitic plant genome evolution. Striga seeds germinate in response to host-derived 77 

strigolactones (SLs) and then develop a specialised penetration structure, the haustorium, 78 

to invade the host root. A family of SL receptors has undergone a striking expansion, 79 

suggesting a molecular basis for the evolution of broad host range among Striga spp. We 80 

found that genes involved in lateral root development in non-parasitic model species are 81 

coordinately induced during haustorium development in Striga, suggesting a pathway that 82 

was partly co-opted during the evolution of the haustorium. In addition, we found 83 

evidence for horizontal transfer of host genes as well as retrotransposons, indicating gene 84 

flow to S. asiatica from hosts. Our results provide valuable insights into the evolution of 85 

parasitism and a key resource for the future development of Striga control strategies.  86 

 87 

Introduction 88 

Striga is a genus of parasitic plants in the Orobanchaceae family that includes major 89 

agricultural weeds. S. asiatica and S. hermonthica infect grain crops such as sorghum, 90 

millet, maize, upland rice, and sugarcane, causing $US billions of annual yield losses[1–91 

3]. Striga has evolved unique parasitic adaptations that make infestations extremely 92 

difficult to eradicate[3]. A single Striga plant produces more than 100,000 small (~200 93 

µm) seeds, which can be wind-dispersed for a long distance. The seeds can lie dormant 94 

for decades, surviving extreme conditions, until they perceive host-derived germination 95 

stimulants, such as strigolactones (SLs)[4,5]. Once germinated, Striga roots grow towards 96 

the host and detect compounds derived from the host cell wall, which induce the 97 

development of a specialised organ called the haustorium at the tip of the radicle[6,7]. 98 

The haustorium invades the host root, and connects its xylem with that of the host to 99 

mailto:ken.shirasu@riken.jp)
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assimilate water and nutrients. In addition, genetic materials from the hosts are also 100 

transferred into Striga, but the extent and the precise mechanism of horizontal gene 101 

transfer remain elusive[8–10].  102 

 103 

Results and Discussion 104 

 105 

The structure and evolution of the Striga genome 106 

The genome of the S. asiatica strain that invaded the United States in 1950s[2] was 107 

sequenced and assembled using a combination of Illumina-based whole-genome shotgun 108 

technology and Sanger-based BAC library end sequencing. The Kmer-based estimation 109 

of the S. asiatica genome size is approximately 600 megabase pairs (Mb), and 472 Mb of 110 

the genome was assembled with an N50 scaffold size >1.3 Mbp (contig N50 > 16.2 kbp 111 

and 393 x read coverage, Data S1A), in which a total of 34,577 genes was predicted (For 112 

detail, see Data S2A,B).  113 

Global gene family phylogenetic analysis and genome structure/synteny 114 

analysis with the closely related nonparasitic plant Mimulus (Erythranthe) guttatus 115 

(Figure 1) both indicate that the S. asiatica genome retains evidence of at least two whole 116 

genome duplication events (WGD, Figures 2A-D, Data S2C). We examined the 117 

divergence patterns of synonymous substitution rates (Ks) for Lamiales-wide duplicate 118 

genes identified by an integrated syntenic and phylogenomic analysis. Comparison of 119 

gene trees for 1,440 orthologous single-copy genes showed that the length for the branch 120 

leading to S. asiatica was longer than that leading to Mimulus suggesting that S. asiatica 121 

has experienced a more rapid molecular evolution than Mimulus (Figure 1). We identified 122 

two significant duplication components in S. asiatica at mean Ks ≈ 0.47 (younger) and 123 

1.22 (older) as well as one significant component for Mimulus at rescaled mean Ks ≈ 0.94 124 

(Figure 2B). The older Striga Ks peak and the single peak of the Mimulus Ks distribution 125 

represent a shared ancestral WGD event for Lamiales (Figure 2C). As expected the S. 126 

asiatica peak is shifted to the right (a higher Ks value) because of the accelerated rate of 127 

evolution for S. asiatica. The prominent younger peak in the Striga Ks distributions 128 

represents a duplication event that occurred after the divergence of lineages leading to S. 129 

asiatica and Mimulus.  130 

Parasitic plant evolution is thought to progress through three phases: Phase I, 131 

evolutionary gain of a haustorium; Phase II, loss of functions that are supplemented by a 132 
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host resource; and Phase III, specialisation of the parasitic relationship[11,12] (Figure 133 

2D). Shifts of gene expression (in scope and/or specificity) and changes in the global 134 

functional gene profile presumably accompany innovation during parasite evolution. 135 

Thus, we examined shifts of parasite gene expression and function by genome-scale 136 

comparative analyses to identify the signatures of each phase. Using the list of S. 137 

hermonthica “haustorium” orthogroups defined in Yang et al. 2015[13], with a parallel 138 

analysis that identifies genes with tissue-specific expression in Arabidopsis, we found 139 

that haustorial genes are significantly enriched for tissue-specific orthogroups in S. 140 

asiatica (Data S1B). Concordant with Yang et al. 2015[13], this pattern was strongest for 141 

pollen orthogroups. This suggests that haustorium innovation during Phase I may have 142 

involved co-option of genes with tissue-specific gene expression.  143 

Next, we identified functions associated with shifts in gene content by 144 

reconstructing each orthogroup (approximate gene family) in a common ancestor of 145 

Striga and Mimulus, as well as successively earlier common ancestors (Data S1C, Data 146 

S2C). Among the 10,248 orthogroups, approximately ~23% showed changes in gene 147 

numbers inferred for the Striga lineage (647 contractions, 1,742 expansions, 456 losses, 148 

and, 152 gains; Data S1D and E, Data S3). The relative age of genes in contracted 149 

orthogroups was significantly older (two-tailed Mann-Whitney U test, p-values < 2.2e-150 

16) than genes in expanded families (Figure 2D and Data S1E). In addition, the expanded 151 

gene families show higher non-synonymous/synonymous substation (Kn/Ks) ratios 152 

compared to the contracted gene families (Student’s t-test, p-value<4.7e-10, Figure S1), 153 

suggesting that the expanded gene families are under more relaxed selection pressure. 154 

The relatively younger expanded gene families, apparently gained largely as a result of 155 

the Striga WGD (Figures 3B, E), potentially provided a source of genes to encode 156 

specialised traits in the parasite.  157 

Significant (Benjamini corrected P<0.05) signatures of gene family 158 

contractions were detected in two photosynthesis-related KEGG pathways (Data S1F and 159 

G). Additionally, an analysis of Gene Ontology (GO) terms among contracted lineages 160 

showed several photosynthesis-related cellular compartment (CC) terms and biological 161 

process (BP) terms were significantly over-represented (Data S1H, Data S2C, Figure 2D). 162 

These contractions are consistent with Striga’s high reliance on host carbon[14,15]. 163 

Furthermore, significantly enriched GO BP terms associated with leaf anatomy and 164 

function were detected among contracted lineages, consistent with the anatomical and 165 
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functional reductions in Striga leaves. In addition to the well-documented gene losses in 166 

parasitic plant plastomes[12,16], these changes indicate a complementary reduction in 167 

reliance on photosynthesis-related gene function[17] representing Phase II.  168 

Perhaps the clearest support for Searcy’s Phase II are substantial contractions 169 

in gene families annotated with GO BP terms that relate to abiotic and biotic stimulus 170 

response including virtually all plant hormones (Data S2C, Data S1H and I, Figure 2D). 171 

This includes one in four significant GO BP terms that are seven times more numerous in 172 

contracted lineages than expanded ones. This pattern of loss points to an increasingly 173 

insensitive parasite sensing apparatus that is likely supplemented by the host. Concordant 174 

with this evolutionary signature, empirical evidence suggests that Striga lost abscisic acid 175 

sensitivity to regulate water loss machinery and maintains constitutively open stomata 176 

even under drought conditions[18,19] contributing to a net carbon loss in the host leaves 177 

[20]. 178 

The transition from Phase II to Phase III may in some cases be blurred from a 179 

functional standpoint because, for instance, the host plant could complement water stress 180 

response pathways, while decreasing water potential in the parasite could be adaptive[9]. 181 

Indeed, significantly enriched water relations terms can be found among both expanded 182 

and contracted lineages, yet orthogroup contractions dominate water relation signatures 183 

indicating that altered water relations may largely, but not exclusively, represent older 184 

Phase II losses. In GO CC profiles, contractions are biased towards structural and 185 

photosynthesis related genes families – consistent with Phase II complementation. 186 

However, the newer and expanded gene families are significantly biased towards 187 

endocytosis and intracellular transport, suggesting that Phase III innovations contribute 188 

to host resource acquisition processes. The expansions in cellular transport machinery 189 

may help explain how Striga obtains photosynthates derived host resources even though 190 

direct phloem connections are lacking[15,20].  191 

 192 

Host recognition – evolution of SL receptors 193 

As an obligate pathogen, Striga requires nutrients from a host within a few days after 194 

germination. One unique aspect of the specialised relationship with the host (Phase III) 195 

in the Striga parasitic lifestyle is the ability to germinate after sensing SLs, which indicate 196 

presence of a host[5]. In Arabidopsis, D14 and KAI2/D14L are ancient paralogues that 197 

encode receptors for SLs and the karrikins (smoke-derived compounds that stimulate 198 
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germination of many nonparasitic plants), respectively[21,22]. KAI2, which controls seed 199 

germination in Arabidopsis, has undergone higher than normal gene duplication in several 200 

parasite genomes in the Orobanchaceae[23–25]. A divergent subclade of KAI2 paralogues 201 

(KAI2d) has evolved SL perception, which facilitates host-detection in seeds. The super-202 

orthogroup that contains the KAI2 genes was expanded strikingly in S. asiatica (Data S1J, 203 

Data S2D). We found that the S. asiatica genome encodes 21 KAI2 paralogues, and that 204 

17 of these are in the KAI2d class (Figure 3A). Most of the KAI2d genes in S. asiatica are 205 

highly expressed in the seed as well as in seedling stages (Figure 3B). Two other 206 

paralogues, KAI2c1 and KAI2c2, cluster with highly conserved Arabidopsis (AtKAI2) and 207 

Mimulus proteins (MgKAI2c). The intermediate group contain two KAI2i paralogues, 208 

which are sister to the expanded KAI2d clade. Mimulus KAI2i (MgKAI2i) is branched 209 

from the ancestral node of the Striga KAI2d and KAI2i, suggesting that Striga KAI2d 210 

genes evolved out of the intermediate group. In addition, seven KAI2 pseudogenes are 211 

also found in the genome, providing further evidence for highly dynamic evolution of the 212 

KAI2 gene family (Figure 3C). KAI2 paralogues and pseudogenes are often found on the 213 

same scaffold (Figure 3C, D). All KAI2 genes retain a single intron at a conserved position. 214 

Tandem KAI2 paralogues typically share the same orientation, consistent with localised 215 

KAI2 duplication by unequal recombination. Interestingly, KAI2i, which is ancestral to 216 

KAI2d genes, is located next to Striga-specific KAI2d7 and KAI2d8 (Scaffold 62, Figure 217 

3C, D), suggesting that the Striga- specific KAI2d clade originally may have been derived 218 

by the tandem duplication of KAI2i. If different KAI2d paralogues have specificity for 219 

distinct types of SLs, then the rapid evolution of the KAI2d clade likely enabled Striga 220 

seeds to recognise a wide range of hosts[23–25]. We noted that the high level of 221 

expression of many KAI2d homologues have a high level of expression at the seedling 222 

stage, suggesting that the host-derived SL may influence other functions beyond 223 

germination. 224 

 225 

Development of the invading organ, the haustorium 226 

Immediately after germination, Striga grows towards the host and detects cell wall-227 

derived compounds[6]. This initiates a drastic developmental reprogramming, resulting 228 

in the formation of a haustorium that invades the host root (Figure 4A). To investigate 229 

gene expression dynamics during haustorium development, RNA-seq analysis was 230 

performed with the most devastating Striga species, S. hermonthica (Data S1K-M, Data 231 
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S2E). Principal component analysis (PCA) and self-organising map (SOM) clustering 232 

were used to classify the transcripts into twelve clusters, each with a distinct expression 233 

pattern specific to one or more developmental stages (Figures 4A, B). The GO enrichment 234 

analysis of these clusters (Benjamini and Hochberg corrected P < 0.05; Figure 3c, Data 235 

S1N) projected a similar sequence of molecular events during Striga parasitism. Clusters 236 

2, 3, and 6 showed expression patterns specific to the seed; transcripts in these clusters 237 

are enriched for GO terms related to post-embryonic development and to embryonic 238 

development towards the end of seed dormancy (Benjamini and Hochberg corrected P < 239 

0.05; Figure 4C). The seedling-specific cluster 12 showed enrichment in defence 240 

responses as well as in transcriptional regulatory activity (Benjamini and Hochberg 241 

corrected P < 0.05; Figure 4C). This suggests that the seedling has already started to 242 

change its transcriptional profile to enable parasitisation of host plants, i.e., the primary 243 

haustorium formation may be coupled with seed germination in S. hermonthica. Our 244 

SOM analysis allowed us to capture a subsequent peak of gene expression from seedling 245 

to 7 d, represented by clusters 9, 1, 5, 4, 8, 7, 11, 10, in that order (Figure 4C). The 246 

temporal expression patterns of several selected genes were confirmed by RT-qPCR upon 247 

host and nonhost interactions (Figure S2, Data S2E). While the early gene expression was 248 

induced by DMBQ treatments as well as host and nonhost interactions, the expression of 249 

middle- and late-stage genes was not seen in the interaction with nonhost Lotus japonicus 250 

(Figure 4D, Data S2E). Because S. hermonthica is able to penetrate tissues of nonhost 251 

Arabidopsis and L. japonicus, but not establish xylem connections with L. japonicus[26], 252 

the early genes are likely to be important for haustorium formation and host penetration, 253 

while the genes involved in the middle to late stages of haustorial development may 254 

associate with xylem connection formation and/or host materials acquisition. In situ 255 

hybridisation analysis highlights the tissue specific expression of such genes. An early-256 

stage gene, encoding the peroxidase, exclusively expressed at the intrusive cells that are 257 

aligned at host-parasite interface (Figures 4E, F), whereas various 7-d-specific genes are 258 

highly expressed in the hyaline body (Figures 4G-J), a specific parenchymatic tissue 259 

whose characteristics include dense cytoplasm, organelle-rich structure, and high 260 

metabolic activity[27]. The hyaline body is proposed to function as a sink for host 261 

materials, and the high expression of catabolic enzymes such as proteases within this 262 

tissue may contribute to such a function. The middle and late genes include the 263 

recruitment of catalytic activity-related genes (especially hydrolases) during host 264 
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penetration, transport-related genes during host nutrient acquisition, and signal 265 

transduction-related genes during resource allocation. In fact, among the identified 1,292 266 

CAZyme (Carbohydrate-active enzyme)-categorised genes[28], 252 are differentially 267 

expressed during invasion stages (Figure 5, Data S1O and P, Data S2E). Specifically, 268 

enzymes targeting primary cell wall components, such as those degrading pectin, are 269 

highly upregulated (Figures 5C, D). In addition, many proteases are upregulated at late 270 

stages of infection.  271 

Comparative studies of development in an evolutionary context have been 272 

routinely employed to understand developmental mechanisms and to deduce how the 273 

regulatory changes in gene expression contribute to morphological diversity[29]. Since 274 

our genome analysis indicated potential sub-functionalisation and/or co-option of existing 275 

genes from tissue-specific gene families (Phase I), we hypothesised that parasitic plants 276 

may have employed a pre-existing developmental program to produce the haustorium. 277 

One such program is lateral root formation, as this also creates new xylem connections in 278 

roots. Out of the known 18 lateral root development (LRD) genes in Arabidopsis[30], we 279 

identified respectively 18 and 17 LRD orthologues in the S. asiatica genome and the S. 280 

hermonthica transcriptome (Data S1Q, Data S2E). Among these genes, SLR/IAA14, 281 

ARF19, and LAX3 orthologues are specifically expressed during the early stage of 282 

haustorium development (Figure 6A, Figure S3). SLR/IAA14 and ARF19 function as a 283 

module to regulate the expression of the auxin influx carrier LAX3, which localises auxin 284 

accumulation during LRD[31] (Figure 6B). Thus, the SLR/IAA14-ARF19-LAX3 285 

component might be utilised to initiate auxin accumulation during Striga haustoria 286 

formation. We also detected another putative target of the SLR/IAA14-ARF19 module, the 287 

LBD18 orthologue, which is highly expressed in the early stage (Figure 6A). Arabidopsis 288 

LBD18 activates cell proliferation in the lateral root primordia[32]. Correspondingly, cell 289 

proliferation is highly active in haustoria[33], suggesting that the LBD18 orthologue 290 

might have a conserved function to coordinate the spatial pattern of cell proliferation 291 

during haustorium formation. In the later stages of haustoria formation, such as 3 d and 7 292 

d, we observed the upregulation of ARF5 and of ARF8 homologues (Figure 6A). ARF5 293 

follows SLR/IAA14-ARF19 expression to control lateral root organogenesis[34], whereas 294 

ARF8 activates lateral root meristem in response to nitrogen availability[35]. Therefore, 295 

these genes might be involved in the later stages of haustorium formation when host 296 

penetration occurs and vasculature connections are formed. Note that no up-regulation of 297 
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two other LRD related genes, ABERRANT LATERAL ROOT FORMATION 4 (ALF4) and 298 

ARABIDOPSIS CRINKLY 4 (ACR4), were detected in S. hermonthica haustoria, but, 299 

surprisingly, their orthologues (ALF4: LOC_Os08g19320; ACR4: LOC_Os03g43670) 300 

were upregulated in host plants 1 day after infection (Figure 6A). As ACR4 expression is 301 

dependent on SLR/IAA14-ARF19 to specify LRD cell identity in Arabidopsis[36] and 302 

ALF4 functions in maintaining the mitotically competent state of the pericycle cells in 303 

LRD[37], ACR4 and ALF4 might link the interaction between S. hermonthica and its host. 304 

Taken together, certain LRD genes in S. asiatica and S. hermonthica are activated during 305 

haustorium formation and, interestingly, the expression orders follow developmental 306 

timeframes similar to those during LRD in Arabidopsis (Figure 6B), suggesting that 307 

haustorium formation, which confers parasite function in parasitic plants, might be 308 

evolved partly through the recruitment of parasitic plant and host LRD programs.  309 

 310 

Horizontal Gene Transfer 311 

Genetic materials such as mRNAs are transferred from hosts to parasitic plants[38]. The 312 

transferred material may also be integrated into the germ line of the parasites[8,39]. To 313 

understand the extent of such horizontal gene transfer (HGT) events, the S. asiatica 314 

genome was compared with other dicot and monocot genomes to find Striga genes that 315 

clustered with monocot orthologues. We identified 34 potential HGT candidates in the S. 316 

asiatica genome (Figure 7, Data S1R, Data S2F). Two of the HGT candidate genes are 317 

aligned in tandem in an approximately 30 kbp region in the genome of S. asiatica. The 318 

orthologues of the two genes, including introns and untranslated regions, are also located 319 

in tandem in the genomes of two Poaceae, Panicum hallii, and Setaria italica, suggesting 320 

transfer of a large (~100 kb in P. hallii) genomic segment from host to parasite (Figures 321 

7A, B). Phylogenetic analyses showed that the two S. asiatica genes clustered only with 322 

Poaceae genes, supporting HGT from host to parasite (Figures 7C, D). Interestingly, a 323 

few other genomic regions contain multiple HGT genes in close proximity (Data S2F), 324 

although the syntenic regions are not found in the Poaceae genomes, possibly due to 325 

rearrangement of the host genome after the gene transfer. These data suggest that the 326 

inter-species transfer of large genomic fragments may have occurred multiple times.  327 

Because transposable elements were previously reported as HGT targets[10], 328 

we conducted phylogenetic analyses for all the reverse transcriptase (rt) domains in S. 329 

asiatica, and for representative rt sequences from both eudicots and monocots (Data S2F). 330 
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Our analyses included 35,690 from Copia and 54,973 from Gypsy elements in the 331 

publicly available plant genome sequences. Clusters containing both S. asiatica rt 332 

sequences and monocot sequences were analysed further. Three putative HGT events 333 

were identified. One of these, comprising ~80 total rt sequences, includes 29 S. asiatica 334 

rt in a cluster with 48 diverse Sorghum bicolor rt, suggesting a direct horizontal transfer 335 

from S. bicolor, a natural host of Striga (Figure 7E), and subsequent amplification of rt 336 

sequences in the Striga genome. Two other trees, in which S. asiatica rt sequences are 337 

found nested within an exclusively Poaceae clade, having their closest orthologues 338 

respectively in Oryza and Z. mays or in Oryza and S. bicolor, suggest additional transfers 339 

from Poaceae hosts to Striga (Figure S4). These results indicate that Striga acquired 340 

genetic materials from its hosts with higher frequency compared to the autotrophic 341 

angiosperms, which may have influenced the parasite’s evolution and adaption. 342 

  343 

Outlook 344 

Striga remains the greatest biological constraint to food production in its endemic areas 345 

in Africa, and thus its genomic and transcriptomic sequences are important tools for 346 

understanding its parasitic strategies and for developing efficient, knowledge-based 347 

management programs. In addition, the genome information provides a basis for 348 

understanding the origin of parasitism during the course of evolution. Similar to recently 349 

published stem parasites dodder (Cuscuta spp) genomes[39,40], Striga evolved rapidly 350 

compared to autotrophic species, acquired genes from their hosts via horizontal gene 351 

transfer, and recruited root developmental programs for haustorial formation. Both 352 

parasites have lost genes related to environmental sensing, leaf developmental processes, 353 

and photosynthesis, as predicted for the degratory phase of parasite evolution, but Striga 354 

frequently retains portions of reduced gene families, reflecting its status as a leafy 355 

hemiparasite that is photosynthetically competent while being highly dependent on host-356 

derived carbon. Detailed comparisons of nuclear genomes from fully heterotrophic 357 

Orobanchaceae, and other parasitic plants with different levels of host dependency will 358 

deliver further insights into the evolution of parasitism. 359 

 360 

 361 

Acknowledgements 362 
This work is partially supported by MEXT KAKENHI (No, 24228008, 15H05959, 17H06172 to 363 



 12 

K.S., No. 18H02464 and 18H04838 to Sa.Y., No. 15K18589 to Y.I., 17H06474 to Sh.Y., 364 
17H06473 to H.S., and 25891029 and 17K15142 to S.C.), JSPS Postdoctoral Fellowship (to 365 
J.M.M. and C.H.), JSPS Research Fellowship for Young Scientist (to T.W.), the RIKEN Special 366 
Postdoctoral Researchers Program (to Y.I., J.C.M. and T.S.), NSF Postdoctoral Research 367 
Fellowship (no. 1711545 to C.C.), Academy of Finland Project 266430 (to A.H.S.), NSF IOS-368 
1737153 and IOS-1740560 (to D.C.N.), NSF IOS-1238057 (to C.W.D. and M.P.T.), MEXT Cell 369 
Innovation program (to R.M. and Y.H. in CLST RIKEN) and NSERC (to S.L.). This study was 370 
supported by the Basic Science Research Program through the National Research Foundation of 371 
Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A04004014) to S.K., by 372 
a grant from the Agricultural Genome Center of the Next Generation Biogreen 21 Program of 373 
RDA (Project No. PJ013153) to D.C. and RIKEN president fund to K.S. HiSeq2000 sequencing 374 
was performed by Genome Network Analysis Support facility in RIKEN CLST. Computational 375 
analysis was partially performed using the super computer system of National Institute of 376 
Genetics, Research Organization of Information and Systems. Strigol and S. hermonthica seeds 377 
were kindly provided by Drs. K. Mori and A. G. E. Babikar, respectively. M.P.T. and Y.W. were 378 
supported in part by grants from the NSF (IOS-1238057 and IOS-1213059) and the Kirkhouse 379 
Trust. J.C.M.’s work was funded as part of the DOE Joint BioEnergy Institute supported by the 380 
U. S. Department of Energy (DE-AC02-05CH11231). 381 

 382 

Author Contributions 383 

K.S. conceived the project, designed the content, and organised the manuscript. M.T. 384 

provided plant materials. Sa.Y., T.S. and R.M. performed data generation and sequencing 385 

analysis. S.K., Y.-M.K., K.C., M.-S.K., Y.-H.L., and D.C. performed de novo genome 386 

assembly, E.W. and C.W.D performed genome scale annotation and duplication analysis. 387 

Sa.Y., T.S., Y.I., J.M.M., A.L., J.I., T.W., H.K., T.K., H.S., T.N., Y.S., Sh.Y., K.Y., Y.S.-S., 388 

C.E.C., D.N. S.L., P.M., C.H., J.C.M., and T.D. performed gene annotation and individual 389 

gene family analysis. Y.W. and M.P.T. analysed transcriptional factors. E.W., L.H., Z.Y., 390 

J.D. and C.W.D. performed comparative genome analysis, phases of parasite evolution, 391 

and whole genome duplication analysis. J.T., H.G., and A.H.S. performed TE annotation 392 

and searched for horizontally transferred TEs. S.C. performed in situ hybridisation. Y.I. 393 

and Sa.Y. analysed the transcriptome data. Sa.Y. Y.I., T.S., S.C., S.K., Y.-M.K., D.C., S.L., 394 

P.M.. C.W.D., M.P.T. A.H.S., and K.S. wrote the manuscript.    395 

 396 

Declaration of interests 397 

The authors declare no competing financial interests.  398 

 399 

Figure legends 400 

 401 

Figure 1. The maximum likelihood species tree 402 
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Phylogenetic tree of 26 representative plant species (Data S1C) was estimated from the 403 

concatenated data matrix for 1,440 single copy orthogroup genes obtained from BUSCO 404 

classification. Bootstrap values were 100% for each node. 405 

 406 

Figure 2. The Striga asiatica genome 407 

A. Syntenic scaffolds of Striga (blue), Mimulus (orange) and Vitis (grey). B. Ks plots of 408 

Striga and Mimulus genes. Orange and blue colours represent an older and a recent 409 

ploidy event, respectively. C. Schematic phylogenetic tree presenting whole-genome 410 

duplication events that occurred during the lineage evolution of Striga. Gamma is the 411 

genome triplication shared by core eudicots, Striga and Mimulus share a WGD (M+S), 412 

and Striga has experienced an independent WGD. D. Three-phase model of parasite 413 

evolution, showing gene categories with expression shifts, expanded and contracted in 414 

the Striga genome relative to a reconstructed ancestor of Striga and Mimulus. See Data 415 

S2 for details. E . Ks plots of expanded and contracted Striga genes. Age of contracted 416 

genes categorises significantly older than expanded genes categories. See also Figure 417 

S1. 418 

 419 

Figure 3.  The evolution of strigolactone (SL) receptor genes in S. asiatica 420 

A. Maximum-likelihood phylogeny of predicted amino acid sequences of KAI2/D14-421 

LIKE homologues in S. asiatica and S. hermonthica together with other non-parasitic 422 

species. The tree was generated based on the JTT-matrix based model. Bootstrap values 423 

above 50% are shown at the bases of branches. The scale shows inferred number of 424 

evolutionary changes per amino acid. Conserved, intermediate, and divergent clades are 425 

shown in blue, green, and red, respectively. B. Scaled expression levels of S. asiatica 426 

KAI2 genes at indicated stages. C. Local similarities detected between the genomic 427 

regions containing KAI2/D14-LIKE (blue for KAI2c, purple for KAI2i and orange for 428 

KAI2d), D14 (green), DLK2 (yellow) homologues and/or their pseudogenes (grey). 429 

Locally aligned genomic regions among scaffolds (blastZ score>15000) are connected 430 

with solid lines. Orange and yellow lines represent regions containing KAI2 or psuedo-431 

KAI2, and DLK2 homologues, respectively. Grey lines connect locally similar regions 432 
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outside KAI2/D14/DLK2 genes. Nucleotide numbers in the scaffold are written beside the 433 

scaffold. D. Schematic representation of tandemly duplicated KAI2 homologues in the 434 

genome. See Data S2 for details. 435 

   436 

Figure 4.  Transcriptional reprogramming in haustorium development 437 

A. Developmental stages used for the transcriptome analysis of S. hermonthica. Seeds, 438 

preconditioned seeds; seedlings, 48 h after 10 nM strigol [41] treatment; 1 d, whole S. 439 

hermonthica seedlings 1 day after rice infection; 3 d and 7 d, S. hermonthica haustoria 440 

attached to rice tissues at 3 and 7 days after rice infection. Scale bar, 100 µm. B. The 441 

expression profile of each transcript is represented in PCA space with SOM node 442 

memberships indicated by different colours. A total of twelve clusters showing expression 443 

patterns specific to one or more stages were defined. The percentage shown along the x- 444 

or y- axis represents the percentage of variance explained by each component. C. Heat 445 

map of normalised gene expression of each transcript separated by SOM clustering with 446 

selected enriched GO terms (P < 0.05). D. Expression heatmap of stage-specific S. 447 

hermonthica genes in interaction with host (O. sativa) and nonhosts (Arabidopsis, Lotus 448 

japonicus, and Phtheirospermum) interactions. E - J In situ hybridisation on haustorial 449 

sections of S. hermonthica at 1 day (E-F) and 7 days (G-J) after rice infection. The 450 

hybridised signal (blue) represents the localisation of the transcript of an early-expressing 451 

gene encoding peroxidase (E) and late-expressing genes encoding subtilase 1 (G), LRR 452 

kinase (H) or cytokinin oxidase/dehydrogenase (I). The sense probe of peroxidase (F) 453 

and subtilase1 (J) was used as a negative control. H: host plant, P: parasite. Scale bar, 454 

200 µm. See also Figure S2. 455 

 456 

Figure 5. CAZyme classification of the S. hermonthica transcriptome. 457 

A. Clustering and heatmap of the differentially expressed genes containing CAZyme 458 

motifs. B. Number of significantly upregulated contigs containing each class of CAZyme 459 

motifs. Contigs carrying AA and GH motifs are highly upregulated at 3 d and 7 d after 460 

host interaction. C, D. Expression patterns of CE8 family containing pectin methyl 461 

esterases (C) and GH28 family containing polygalacturonases (D).   462 

 463 

Figure 6. Expression patterns of genes involved in lateral root development 464 

A. Heat map of scaled gene expression of each transcript of the LRD-related genes in S. 465 
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hermonthica. B. Schematic models comparing the haustorium development in Striga and 466 

the lateral root developmental (LRD) program in Arabidopsis. Expressed 467 

genes/orthologues are represented at their expressional time points. Arrows are assumed 468 

by the identified interactions in the Arabidopsis LRD pathway. During the haustorium 469 

formation, the corresponding Striga LRD orthologues showed a similar sequential 470 

expression pattern as those found in the LRD development in Arabidopsis. See also Figure 471 

S3. 472 

 473 

Figure 7. Horizontal gene transfers between host and Striga 474 

A. Comparison of genomic regions between P. hallii, S. asiatica and S. italica. The 475 

regions that show high similarity (LastZ score >5000) are connected with sky-blue lines. 476 

Coding sequences are shown as dark-blue boxes and untranslated regions are shown as 477 

pink boxes. B. A dot plot comparing an approx. 60 kb region in S. asiatica scaffold555 478 

and either 100 kb region of P. hallii chromosome 3 (left) or 60 kb region of S. italica 479 

scaffold 3 (right) visualized by nucmer program in nummer[42] (default option). 480 

Similarity percentages are shown as rainbow colour scale. C. Phylogenetic tree of a 481 

hypothetical protein (555T52903) that previously was found as horizontally transferred 482 

gene in Striga hermonthica ESTs[8]. D. Phylogenetic tree of an Arginin-tRNA 483 

synthetase-like protein (555T52910). E. Phylogenetic trees of nucleotide sequences for 484 

reverse transcriptase in horizontally transferred retrotransposons from a host (Sorghum) 485 

to S. asiatica. The trees were unrooted and based on the maximum-likelihood method. 486 

Local support values are shown for branches. Striga genes are shown in red, and genes 487 

from grass species are shown in blue. HGT events are highlighted with yellow. See also 488 

Figure S4.489 
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STAR METHODS 1 

 2 

Lead Contact and Materials Availability 3 

Further information and requests for materials, resources and reagents, including 4 

mosquito lines, should be directed to and will be fulfilled by the Lead Contact, Ken 5 

Shirasu (ken.shirasu@riken.jp) 6 

 7 

Experimental Model and Subject Details 8 

Seeds of the S. asiatica US strain were originally obtained from the USDA Methods 9 

Development Center (Whiteville, N.C.) and the seeds from a single plant after six rounds 10 

of self-fertilization were used as starting materials. The seeds were surface sterilised with 11 

5% commercial bleach solution (containing final sodium hypochlorite concentration at 12 

approx. 0.3%) for 5 min and washed with excess amount of sterile water at least 5 times. 13 

The sterile seeds were preconditioned on GM media (full strength of MS salts, 0.01% 14 

Myo-inositol, 1% Sucrose, 0.5% Phytagel (Sigma)) for 10 days and the germination was 15 

induced by adding 10 nM strigol [41]. The germinated S. asiatica seedlings were 16 

transferred to new GM media and grown in vitro in a 26°C chamber at a long-day (16-h 17 

light/8-h dark) condition. For S. asiatica shoot propagation, the shoots were cut and 18 

transferred to new GM media every month. When S. asiatica shoots were transferred into 19 

the new GM media, multiple shoots were induced.  20 

S. asiatica and S. hermonthica infection to rice (Oryza sativa, c.v. Koshihikari) 21 

was performed in the rhizotron system as previously published[43]. S. hermonthica seed 22 

and seedling samples were collected after preconditioning on glass-fibre filter paper 23 

(Watman GF/A) for 10 days, and before and after 10 nM strigol treatment for 2 days, 24 

respectively. S. hermonthica samples for 1-day post infection were carefully removed 25 

from rice roots using forceps. For the 3- and 7-day post infection samples, haustorial parts 26 

(include host tissues) were carefully excised using razor blades. For the control, rice roots 27 

without S. hermonthica infection were also harvested at the same day as 7-d samples. All 28 

samples were collected in triplicates of independent experiments. S. asiatica haustorium 29 

samples were harvested by excising the infected parts with a razor blade together with 30 

rice roots. For shoot and root samples, the sterile S. asiatica seeds were germinated on 31 

MS media containing sucrose and grown in vitro for one month. 32 

 33 
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Method Details 34 

 35 

Whole genome shotgun sequencing, assembly and annotation of S. asiatica. The 36 

genomic DNA for Illumina library preparation was obtained from S. asiatica shoots 37 

derived from a single plant. The genomic DNA for BAC library was prepared from the 38 

siblings of the plant. The genomic DNA was extracted by using Phytopure DNA 39 

extraction kit (GE healthcare) according to manufacturer’s instructions. The Illumina 40 

paired-end (PE) and mate-pair (MP) libraries were prepared using the TruSeq DNA 41 

Sample Prep Kit (Illumina, San Diego, CA) and Mate-Pair Library Prep Kit (Illumina, 42 

San Diego, CA) from according to the manufacturer’s instructions. A bacterial artificial 43 

chromosome (BAC) library with an average length of 120 kbp was prepared with 44 

CopyControl pCC1BACTM vector by Amplicon Express Ltd (Washington, USA) and the 45 

BAC-end sequencing was performed in the Kazusa DNA Research Institute (Kisarazu, 46 

Japan). Whole genome shotgun (WGS) sequencing and BAC-end sequencing were done 47 

through Illumina HiSeq 2000 and Sanger ABI3730x1 platforms. Raw sequence data were 48 

filtered for bacterial genome contamination, PCR-duplicated reads and low quality reads 49 

were error-corrected. Paired-end Illumina reads were merged by FLASH to make longer 50 

single reads and the genome assembly and scaffolding were performed by Platanus[44] 51 

and by SSPACE[45]. The gene model predictions were performed using MAKER 52 

pipeline[46] using S. asiatica RNA sequencing described below. Details of read 53 

processing, assembly and annotation are described in Data S2A and B. 54 

RNA sequencing. Total RNA was extracted from shoots and roots using the RNAeasy 55 

Plant Kit (Qiagen). Illumina PE libraries were constructed using the TruSeq RNA Sample 56 

Prep Kit (Illumina) and sequenced by an Illumina HiSeq2000 for 101 cycles per run. The 57 

obtained S. asiatica RNA sequences were quality-filtered and then used for the gene 58 

annotation pipeline and validation of the assembly. S. hermonthica sequences were 59 

quality trimmed with the fastx toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) using the 60 

fastq_quality_trimmer with option –l 60 and –t 30 and assembled by CLC genomics 61 

workbench (ver. 5) after removing host gene contamination (for details, see Data S2E). 62 

The sequence reads were mapped on S. hermonthica de novo assembled contigs 63 

concatenated with rice cDNAs by bowtie2. The contigs that are mapped with rice control 64 

reads were excluded from the subsequent analysis to avoid contamination of rice 65 

sequences. The normalised FPKM values were calculated by RSEM program (for details, 66 
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see Data S2E). After selecting genes in the upper 75% and 50% quartile of coefficient of 67 

variation for the expression across samples, scaled expression values within tissues were 68 

used to cluster these genes for a multilevel 3 x 4 hexagonal self-organising map (SOM). 69 

The outcome of SOM clustering was visualised in PCA space where PC values were 70 

calculated based on gene expression across samples (R stats package, prcomp function). 71 

GO enrichment analysis of contigs detected in SOM was performed using the GOSeq 72 

Bioconductor package[47] with Benhamini and Hochberg multiple hypothesis testing 73 

correction.  74 

 75 

Genome comparative analysis. Maximum likelihood species tree for the 26 76 

representative plant genomes were estimated using a concatenated matrix of trimmed 77 

codon alignments for genes from 1,440 BUSCO single copy orthogroups with 78 

RAxML[48] (Figure 1). Protein coding genes from 26 plant genomes (Data S1C) 79 

including S. asiatica were classified into orthogroups using the Orthofinder version 80 

1.1.8 algorithm[49]. We further performed a second iteration of MCL[50] to connect 81 

distantly related orthogroups into superorthogroups as described in Wall et. al., 82 

2009[51]. Amino acid sequence alignments for each orthogroup were generated with 83 

PASTA [52] using a maximum of five iterative refinements. Corresponding DNA codon 84 

alignments were trimmed using the heuristic automated method implemented in trimAl 85 

version 1.4.rev8[53]. Approximately-maximum likelihood (ML) analyses were 86 

conducted using FastTree version 2.1.10 [54], searching for the best ML tree with the 87 

GTR and GAMMA models. The unrooted FastTree phylogenies were traversed and 88 

rooted with the most distant taxa the orthogroup using rooting functions implemented in 89 

ETE Toolkit, a python phylogenetic framework [55]. The trees were examined for gene 90 

duplications in Striga and Mimulus and the detected duplications were scored using a 91 

scoring strategy similar to that described by Jiao et al., 2011[56]. A synonymous 92 

mutation (Ks) value for each duplicated sequence pair was calculated using the ML 93 

method implemented in CODEML[57] with a minimum alignment length of 300 bp. 94 

Structural syntenic analyses were performed with the SynMap tool[58] of the CoGe 95 

comparative genomics platform[59]. The genomes of Mimulus and Vitis were compared 96 

to the genome of Striga with the chaining algorithm DAGChainer[60]with a maximum 97 

distance of 20 genes between gene matches, and a minimum of 5 genes to seed a 98 

syntenic region. Scaffolds and contigs of Striga were ordered and oriented based on 99 
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their syntenic path to both Mimulus and Vitis. Parsimony method in DupliPHY[61] was 100 

used for reconstruction of the presence and size of each gene family in the common 101 

ancestor of S. asiatica and of the closely related non-parasite Mimulus guttatus as well 102 

as of other successively earlier ancestors. The numbers of evolutionary events were 103 

estimated using gene counts in each orthogroup or superorthogroup at each node of the 104 

26-genome species tree. The tissue-specific orthogroups were defined using 105 

Arabidopsis microarray expression data[62]. These data are a curated summary of more 106 

than 5,000 microarray experiments conducted using the Agilent ATH1 GeneChip®. 107 

Further details are described in Supplementary Information Section 3. Comparison of 108 

the genomic regions containing KAI2 paralogues was performed by GEvo tool in CoGe. 109 

The 60 kb regions containing each KAI2, D14 or DLK2 paralogue were submitted to 110 

GEvo with blastZ threshold score 15000. The data is visualised with Circos plot 111 

(http://circos.ca). Duplication origins of these loci were predicted as described in 112 

Supplementary Information Section 3.3.1. 113 

RT-qPCR. Total RNAs were extracted as described above. cDNAs were synthesised 114 

using ReverTra Ace qPCR RT Kit (Toyobo, Japan) and quantitative PCRs were conducted 115 

using THUNDERBIRD SYBR qPCR kit (Toyobo, Japan) in Mx3000P qPCR system 116 

(Agilent Technologies). RT-qPCR was performed in three segments. Segment 1 consisted 117 

of 1 min at 95°C for one cycle, segment 2 consisted either of 15 s at 95°C and 30 s at 118 

60°C for 40 cycles, or 15 s at 95°C, 30 s at 55°C and 30 s at 72°C for 40 cycles and 119 

segment 3 consisted of 1 min at 95°C, 30 s at 55°C, and 30 s at 95°C for one cycle. The 120 

primer sequences used are listed in Data S1S.  121 

In situ hybridisation. Preparation of DIG labelled RNA probe was performed as 122 

described previously[63]. The probe fragments were amplified by PCR from the cDNA 123 

library of rice infected with S. hermonthica using the primers listed in Data S1S. Sense 124 

or antisense probes with the length of 600-900 bp were generated using the T7 or SP6 125 

polymerase (Roche) and DIG-UTP mix (Roche). The haustorial tissues attached with host 126 

rice were fixed in the freshly prepared PFA fixation buffer composed of 4% (w/v) 127 

paraformaldehyde in 1×PBS buffer (130 mM NaCl, 7 mM Na2HPO4, 3 mM NaH2PO4, 128 

pH 7.4 adjusted by NaOH). The samples were dehydrated by incubation in 1xPBS for 2.5 129 

h and the concentration of ethanol was gradually increased at 4°C (30% for 1 h, 50% for 130 

1h, 70% for overnight, 85% for 1h, 95% for overnight and 100% for 3 h). Samples were 131 

then permeabilised by incubation in gradually increasing concentrations of Histo-Clear 132 
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in ethanol at room temperature (Histo-Clear and ethanol mixture of 1:3 for 1 h, 1:1 for 133 

1h, 3:1 for 1 h and 100% of Histo Clear for 2 h) and in a 1:1 mixture of Histo-Clear and 134 

paraffin for 1 h at 60°C. Paraffin was changed 6 times before being embedded on wooden 135 

blocks. We followed the steps of in situ hybridisation as described previously[63] with 136 

minor modifications; a concentration of 10 µg/ml-1 of the probes was used and the use of 137 

levamisole in the detection solution was omitted. The images of in situ hybridised samples 138 

were taken using the light microscopy BX-51 (Olympus). 139 

Identification of horizontally transferred genes and retrotransposons. To analyse the 140 

S. asiatica genome for genes horizontally transferred from grass host species, the S. 141 

asiatica annotation was subjected to a BLASTp search with the threshold e-value 1e-10 142 

against a database of combined predicted proteins from the genome of 28 different plant 143 

species, including Striga host plants, rice, sorghum, foxtail millet, and maize. S. asiatica 144 

proteins having at least one hit to grass species in their top 20 hits were selected, and 145 

modified Alien Index (AI) values[64] were calculated with the following formula: 146 

Modified AI = log((Best E-value for dicots) + 1e-200) - log((Best E-value for grasses) + 147 

1e-200). Genes having modified AI >30 and genes that did not have a dicot hit were 148 

selected for further analysis. Using the RAxML program, maximum-likelihood 149 

phylogenetic trees were drawn of BLASTp-hit homolog genes from the 28-species 150 

database as well as from the non-redundant (nr) database. Manual investigation of the 151 

phylogenetic trees found 34 positive HGT candidate genes, which were assigned into 20 152 

orthogroups by orthoMCL analysis. A few of HGT candidates are near each other in the 153 

genome, and therefore the genomic regions were compared using CoGE with the GEvo 154 

function.  155 

For identification of horizontally transferred retrotransposons, superfamily Copia and 156 

Gypsy elements were retrieved, using LtrHarvest[65] and LtrDigest[66], from the genome 157 

sequences of S. asiatica and those of the monocots Sorghum bicolor, Zea mays, Oryza 158 

sativa ssp. japonica and ssp. indica, O. rufipogon, and O. glaberrima and the eudicots 159 

Glycine max, Solanum tuberosum, and Vitis vinifera. The rt sequences were clustered and 160 

the S. asiatica rt sequences that were found in clusters mixed with those of other genomes 161 

were treated further. These were characterised by exonerate-search[67] using known rt 162 

sequences from GypsyDB[68] and clustered by homology search against each 163 

other (BLASTn -evalue 1e-20) and subsequently by silix-software[69] (silix -i 0.60 -r 164 

0.70). The resulting clusters were aligned with the clustal-omega[70] and prank-ms[67] 165 
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multiple aligners and phylogenetic trees were constructed by FastTree (fasttree –nt –gtr 166 

–gamma)[54]. The details of HGT analysis are described in Data S2F. 167 

 168 

Quantification and Statistical Analysis 169 

Statistical analyses for GO enrichment was performed either chi square test or fisher’s 170 

exact test with Benjamini and Hochberg correction for multiple samples. Other statistical 171 

analyses were performed with two-tailed Mann-Whitney U test, Student’s t-test, or one-172 

way ANOVA combined with the post hoc Tukey-Kramer test as indicated in the text or 173 

figure legends. Error bars represent SEM.  174 

 175 

Data and Code Availability 176 

S. asiatica genome and transcriptome sequence data are deposited in DDBJ as accession 177 

number DRA007962 and DRA008308. The S. hermonthica RNA-seq data are available 178 

as accession numbers DRA008615 and DRA003608 in DDBJ. S. hermonthica and S. 179 

gesnerioides genome sequence raw reads are deposited in Genbank as accession number 180 

PRJNA551337 and PRJNA551339, respectively. S. asiatica genome assembly and 181 

annotation, S. hermonthica transcriptome assembly and annotation, and horizontally 182 

transferred retrotransposon sequences are available at Dryad data repository 183 

(http://datadryad.org/reource/doi:10.5061/dryad.53t3574). 184 

All bioinformatic analyses were performed with open-source or commercially available 185 

software. Perl, Python or R scripts were used for run each software according to software 186 

manuals. 187 

 188 

Supplemental Figures and data 189 

Figure S1. Kn/Ks ratios between Striga and Mimulus orthologues in expanded and 190 

contracted gene families. Related to Figure 2 191 

Figure S2. Stage-specific gene expression in S. hermonthica. Related to Figure 4 192 

Figure S3. Expression patterns of lateral root development gene orthologues in S. asiatica 193 

during host infection. Related to Figure 6 194 

Figure S4. Phylogenetic tree of RT domains of HGT candidate retrotransposons. Related 195 
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to Figure 7. 196 

Table S1. Primers used in this study. Related to STAR method. 197 

 198 

Data S1. Data summary tables. Related to Figure 1-7 and STAR method. 199 

Data S2. Supplemental information. Related to Figure 1-7 and STAR method. 200 

Data S3. Gene lists in each orthogroup in 26 plant species. Related to Figure 2 and STAR 201 

method. 202 
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Figure S1. Kn/Ks ratios between Striga and Mimulus orthologues in expanded and 

contracted gene families. Related to Figure 2. 

Ratios of non-synonimous and synonymous substitutions between S. asiatica and M. guttatus 

orthologous genes present in syntenic regions were calculated and plotted depending on their 

evolutional categories in S. asiatica genome. Expanded gene families show significantly higher 

Kn/Ks ratio compared to contracted gene families (Student’s t-test, p<0.00001).  

Supplemental Figures



 

Figure S2. Stage-specific gene expression in S. hermonthica. Related to Figure 4. 

RT-qPCR confirmation of stage-specific expression of selected genes. Relative expression values 

were normalised by expression of an internal control gene (CHYLOPHILIN). Each value was 

obtained as the mean of three biological replicates with SE. Statistically significant differences 

were tested by Tukey’s test and shown in different alphabetic characters (P<0.05).  
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Figure S3. Expression patterns of lateral root development gene orthologues in S. asiatica 

during host infection. Related to Figure 6.  

The relative expression levels of the LRD genes in S. asiatica were measured by RT-qPCR. 

Seedlings were sampled at 2 d after strigol treatment, and for 3 d and 7 d samples, the S. 

asiatica plants were harvested at 3 d and 7 d post infection of rice roots (cv. Koshihikari).  
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Figure S4. Phylogenetic tree of RT domains of HGT candidate retrotransposons. Related 

to Figure 7. 

A, B. Unrooted phylogenetic trees for two RT sequences from S. asiatica Copia nested to 

Poaceae sequences drawn by FastTree (v.2.1.10). Local support values are shown at each node, 

and were calculated by the Shimodaira-Hasegawa test on the three alternate topologies (NNIs). 

Clades involving the horizontal transfer events are highlighted with pink background.  

 

  



Table S1.  Primers used in this paper. Related to STAR method. 

 

 

Annotation/Contig ID Forward primer sequence Reverse primer sequence Gene annotation
Primers used for RT-qPCR in S. asiatica
SGA2.0.scaffold15G07404 TCAATTTGGCCGTGCAATG CATGGAAACTGAGGGTCATCT SaKAI2c1

SGA2.0.scaffold62G21329_1 GAGGTCATCAACACCGAAGG CCGGCCACCCAAAGAAT SaKAI2i1

SGA2.0.scaffold1G00812 CCTCACTCACTTGTCTGCAAT AATACCTCCGTCGGAACCT SaKAI2d1

SGA2.0.scaffold1G00810 AGTCACTCGTCTGCAATGTC GTGGGAAGTCCGTCGTG SaKAI2d2

SGA2.0.scaffold21G09436 GGTCACGATTCCTGTGATTCT AAAGGAGAATGGGCACCTAAA SaKAI2d3

SGA2.0.scaffold21G09439_1 GAGGTCACGGTTCCAATCAT CGAAGACTTGTCAAATCCTAATGG SaKAI2d4

SGA2.0.scaffold21G09439_2 CCCGTGATTCTCCGTCATATAAA AAGGAGAATGCGCACCTAAA SaKAI2d5

SGA2.0.scaffold69G23336 ATACATATCGGACCGACACCGGA TAGACGGTGCTAATTACTTTAGC SaKAI2d6

SGA2.0.scaffold62G21329_3 GTCGTATGATATCGGGCCTTGAC CACCTCCACCACAGACTTAC SaKAI2d7

SGA2.0.scaffold62G21329_4 CACTCCTCCGCCACATAAAT AGCGTTACCAAACAAGCTCTA SaKAI2d8

SGA2.0.scaffold12G06040 GTCAAGTCCTAATGGTGGGT TCCGATCATTCTTCGCCATATAA SaKAI2d9

SGA2.0.scaffold29G12288 ACGTGACAAGTTATGCTTTAGGA GTTATTGGCCGGTGCTAGTTA SaKAI2d10

SGA2.0.scaffold29G12289 AGCACCTCTTACTGTTACTCTTG GGGCTTGGTTTGATGTCATTAG SaKAI2d11

SGA2.0.scaffold166G38380 CTGCTTCCACACCGACTG GTTGGATCGGTTCATCGTCATA SaKAI2d12

SGA2.0.scaffold8G04626_1 CATCGCGGATCAGTGAAGAT TAACTACCACACACACACACTC SaKAI2d13

SGA2.0.scaffold8G04626_2 AAGACAGGACATCGAGGTTTAG CACACACATACACTCACACTTTC SaKAI2d14

SGA2.0.scaffold8G04621 GCCACATCAGACAAGACATCA CACACACACACACACTCTCTC SaKAI2d15

SGA2.0.scaffold29G12335 TCATAAACCCGGTGTTGCTC CTACAAGATGTCCTGGCGTATAG SaKAI2d16

SGA.2.0.scaffold11G05891 TTGGAGGCCTTGTGTACTATTT GGGAGAGATTCGGATAGTTTGG ARF5

SGA.2.0.scaffold229G43284 GGCTATCAGAACCCTCTGTATG CCAATGTCCAATGACCTACCA ARF8

SGA.2.0.scaffold79G25644 CTGCTGATTCCGACCCAAA TTGGCAGGTGGTTTCATAACC SLR/IAA14

SGA.2.0.scaffold37G14803 AGGCGATGTAATGAACGAGAA TCTCCAACTAACATCCAATCCC SLR/IAA14

SGA.2.0.scaffold1G00553 CGGAACGCGAAGGCTATAAA CGAGCCTCTCATGATCCTTAATC SHY2/IAA3

SGA.2.0.scaffold24G10485 AGGTTGCCAGTGGTTATTCC GTGATCCAACGGTCGAGTTTAT LAX3

SGA.2.0.scaffold126G33928 CATTGGGTTTGCCGTGTTC GCCTTGTCCTTCCCGTAAAT PIP2;1

SGA.2.0.scaffold95G28898 ATGCGGTGGTCACGATATG TGCTGGAGGGCAAAGATG LBD18

SGA.2.0.scaffold92G28259 CCATCGGAAGTTCAGCAGAT ACTTCCGAGATTAAGCCGTTATTA ARF5

SGA.2.0.scaffold162G37941 GGAAGAGGGAATGCAGCTT AGTACATAGGTTAAGACCCATCTTT ARF5

SGA.2.0.scaffold31G12681 AGTGAAGGCACCTGCATAAA ATGCTTGGAAAGTCCACTATGA ARF19

SGA.2.0.scaffold21G09611 ACTCCGCTCGTTAATATTCATG GGTTTGGGTAGTTCGGGATTT ARF19

SGA.2.0.scaffold318G48466 TGAGCTTGGATGGCGATTT GGAAGAAGAATAAGTTGGCATTGT ARF19

SGA.1.0.scaffold382G00010 GTAATGGGACTGGTGGAGAATC CCCTGCATTTGCCATTGATAATA SaCyclophilin (for S. asiatica  internal control)

SGA.2.0.scaffold119G32689 GTGGGAAGACTAAACCGCCT GATACACTCTCGCAGAGCCG SaRPS2(for S. asiatica  internal control)

Primers used for in situ hybridisation in S. hermonthica
Sh14Contig_26937 TACAGGGACCTCCTCCTCCT TTTTAGGAGGGCAACAATGC Subtilase1

Sh14Contig_34949 AAGCACGATCGACAGGAGGTT ACCAGTCGGGATGTGCACTT Subtilase2

Sh14Contig_33911 AATCCG GCTGTACCTTTCCT CTGGTCCGTGGAAGTCTGAT Aspartate protease

Sh14Contig_34186 TGTGCATACTGCCATGTCTG TGGTGTGGCTTATGTCCAGA LRR kinase

Sh14Contig_38072 ATTCCACGTGGGGACAATCC TTGACGGTGTGGACAGTCTG Cytokinin dehydrogenase

Sh14Contig_13271 AGACGGCTATCCCAAACCAA GCCGAAGAATTTCAACGCGA Peroxidase

Primers used for qRT-PCR in S. hermonthica
Sh14Contig_11117 CCCATCACCAAATCATTACTGC CGTATGCATGGCTTCTCAAAAT defensin-like protein

Sh14Contig_20216 TCCAGAGCTTGAATCTGGTGAA TCGGCAAACTGAAGAATTTACG LRR kinase

Sh14Contig_38072 ATGGCGAAGGTCTTGTTTGTTT AATTCCGTTTTTGGCCCTAAGT cytokinin dehydrogenase

Sh14Contig_10467 TTGAGATGGCTAGGGAAAGGAC TCCCCTAATAGCAAAGCAAAGC photoassimilate responsive protein Par1

Sh14Contig_18898 CAGTACGGAGCCTCCAAGTTCT CACCCCACATCATGACATCTTT aspartate protease

Sh14Contig_2037 ACTGGATTGGATCGGGTATGAC CATTGACAGCCCAGAAGAAGTG mammalian chitinase

Sh14Contig_12874 CCCCTTACCCTCATGTTATCCA TGTAGACGATTGCCTCCTTTGA Jasmonate-induced protein

Sh14Contig_32705 ACGGCCCAGCTATATTTTGAGA CTTGGTGGGATTTCCACTCTTC endo-beta xylanase c

Sh14Contig_13817 CATTGTCGTCCTCGTCATTGAT AGGTGGACAAGACGAAGAAAGG polyphenol oxidase

Sh14Contig_445 GGAAACTAGATCCGACCCGTTA CATAAACCCCACAACAGAACGA LEA protein

Sh14Contig_24206 GGATTCAGATCGACAAGATCCA GCCTAGATCGTCCTTGTTCTCG seed maturation protein

Sh14Contig_704 TGCACCTCTCAAGCTAGCCATA GAAAAACGAGCAAAAGCCACTT abi3-like

Sh14Contig_23759 GCTGGAGAGGAAAACCAAGAAA ATCAAGAACACCCGGCAATATC 120 kda pistil extensin-like protein

Sh14Contig_941 ATTTCTGGCTCGTGCATCTGTA TCGACAATCTTGAGGACGGATA WRKY transcription factor

Sh14Contig_1438 GAAATTTCGCACGAATTCCCTA GTTTTTCATGCTGCTACGGTTG MYC transcription factor

Sh14Contig_16850 CCTGCCCTCGATTTACTCACTG GCCACAGTAGTCATCGGTTGTG class iv chitinase

Sh14Contig_2322 GAAGTGGCCTCGTACATCAACC GTGAAGAGCGCGTAGTCCAAGT beta-glucanase

Sh14Contig_33911 ATTATTGTTGTGGCTGGCTGCT ATTCCACTCTCGGCAATTTTCA aspartate protease

Sh14Contig_13271 ATGGGTGCCGGGATTGTCTC CCGTGGGCAGTTGAAGGTCG proxidase precursor

Sh14Contig_17452 ACCGCGCGGACATTATCGTA GACGTACGGCCAGATCGTGA chitinase

Sh14Contig_78332 GGCCCTCTCGGCTTCATAGC CGAGAATAACGTTGGGGTGCCT no hit

Sh14Contig_17178 TGCGGTGGCCATAGAGTACG CCACTTTCCAAACGGAACCCC beta-expansin

Sh14Contig_16876 GCGCGACACAATTTGGTACCTGTT ATGTCCCGGCCTTATTTAGCGTCA blue copper protein

Sh14Contig_12472 TTACCATAACCGTCAAGCGCAAGC ACTCCGTCAGCTCCATACAAACCA unknown protein 

Sh14Contig_20216 GAAACGATGTTAACGCGTGCGGAA TGGCCCGAGCATATATCCAACGAA expansin b1

Sh14Contig_26937 GTGTCGATAAGCCCAACGAT CACCACAAGAAGCTGGGATT Subtilase1

Sh14Contig_29461 ACCAGGTTCCCTTTCTCCTG CATGCCTTTGCGGATTCTAT Subtilase3

Sh14Contig_34949 AGGAGACCAGCTGGCTATGA GCCGTCTCGTATTTCTCGTC Subtilase2

Sh_Cyclophylin_1 TCGCCGACGAGAACTTTGTGAAGA TCTTCGCGGTGCAGATGAAGAACT cyclophylin  (for rice interaction internal control)

Sh_Cyclophylin_2 GTCGTGATGGAGCTTTTCGC CCTTGTAGTGGAGGGGCTTG cyclophylin (for nonhost interaction internal control)
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A. S. asiatica genome sequencing, assembly, and repeat masking 

A.1 Plant materials and sequencing   

In the 1950s, S. asiatica was accidentally introduced into the US and its eradication program cost about 

$US250 million. We used the seeds of the S. asiatica US strain originally obtained from the field 

collections made in 1992 at the USDA Methods Development Center (Whiteville, N.C.). The Illumina 

pair-end (PE) libraries and the mate-pair (MP) libraries (3 kb and 10 kb) were prepared and sequenced. 

A bacterial artificial chromosome (BAC) library with an average length of 120 kbp was prepared by 

Amplicon Express ltd (Washington, USA). Both ends of total 27,648 BAC clones corresponding 4.6x 

physical coverage were sequenced by a Sanger sequencer (ABI 3730xl; in the Kazusa DNA Research 

Institute, Kisarazu, Japan) and 50,513 clean (QV 20<) sequence reads were obtained with average 

length 549 bp. A total of 216.4 Gb (366.8 X) of Striga genome sequences was generated using whole 

genome shotgun (WGS) sequencing by Illumina HiSeq2000 and BAC-end sequencing by a Sanger 

platform (Table A.1).  

 

   

Table A.1. Generated genome sequences of S. asiatica. 

Sequencing  
data 

Insert 
size 

Total  
length (Gb) 

Sequencing  
depth (X) 

Physical 
coverage  

(X) 

Average 
read 

length (bp) 

Illumina  
reads 

400 bp 126.7 214.7 171.1 251 

3 kbp 41.5 70.3 1,044.1 101 

9-10 kbp 64.0 108.5 5,371.3 101 

 Sanger 
BAC-end 120 kbp 0.03 0.1 4.6 549 

Total  232.2 392.9   

 

A.2. Raw data processing 

Assembly of a large genome is highly complicated and sophisticated due to extensive error correction 

and filtering of contaminated sequences demanding enormous computational resources[S1]. To remove 

nonessential sequences while retaining a proper amount of data for genome assembly, we performed 

data pre-processing analyses before assembly. Firstly, identical prokaryotic reads in the raw data (98% 

identity and 50% coverage) were detected and eliminated using the CLC NGS assembly cell (CLCBio, 
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Denmark) with publicly available bacterial genomes as reference. Secondly, duplicated reads by PCR 

amplification during data generation were removed by using the CLC NGS assembly cell. Low-quality 

regions were also removed using strict parameters (cut-off quality value as 25 and 70% coverage). 

Lastly, an error correction process was performed using Jellyfish[S2] and Quake[S3]. The K-mer 

distribution analysis indicates various information such as low frequencies, sequencing depth, degree 

of heterozygosity, and genome size[S4]. To examine low frequencies as error candidates, Illumina PE 

reads were used for 17-mer K-mer analysis using Jellyfish (Figure A.1). Compared to the K-mer charts 

from S. hermonthica and S. gesnerioides, the S. asiatica genome showed less heterozygosity and smaller 

estimated genome size (Figures A.2B, C, Table A.2). The low frequency reads were trimmed in PE, MP 

and BAC data using Quake. After filtering, a total of 84.6 Gb (143 X) Striga genome sequences were 

used for de novo assembly (Table A.3).  
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Figure A.1. The 17-mer distribution of S. asiatica, S. hermonthica and S. gesnerioides genomes. The 

frequencies of unique 17-mers were counted by the Jellyfish program. a. S. asiatica, b. S. hermonthica, 

c. S. gesnerioides. The 17 mers with low frequencies (less than 20 in S. asiatica (A) and less than 4 in 

S. hermonthica and S. gesnerioides (B, C)) were removed as they were considered as error sequences. 
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Table A.2. Generated genome sequence of S. hermonthica and S. gesnerioides. 
Species Sequencing  

data 
Insert 
size 

Read number 
(M reads) 

Total read 
length 
(Gbp) 

Average 
read 

length (bp) 

S. hermonthica Illumina 
HiSeq2000 

reads 

150 bp 183 18.4 101 

150 bp 180 18.2 101 

S. gesnerioides 
180 bp 321.6 32.5 101 

500 bp 191.3 19.3 101 
 
 
 
Table A.3. Statistics of pre-processed S. asiatica genome sequences. 

Insert 
Size #Library RawData

a Step1
b Step2

c Step3
d Step4

e Filtered 
Data

f 
400 bp 2 126.7 Gb 126.2 Gb 124.2 Gb 72.7 Gb 71.2 Gb 71.2 Gb 

3 kbp 1 41.5 Gb 41.2 Gb 17.9 Gb 15.4 Gb 8.56 Gb 8.56 Gb 

9-10 kbp 2 64.0 Gb 63.4 Gb 8.3 Gb 6.4 Gb 4.8 Gb 4.8 Gb 

BAC-end 1 0.03 Gb 0.03 Gb 0.03 Gb 0.03 Gb 0.02 Gb 0.02 Gb 

Total 7 232.2 Gb 230.1 Gb 150.4 Gb 94.5 Gb 84.6 Gb 84.6Gb 
(143 X) 

a 
Original raw data. b 
Raw data, which removed bacterial genome. c 
For each generation, amount of data after removing duplicated reads. d 
For step2, amount of data after trimming low quality. e 
For step3, remained data after error correction using quake. f 
Final raw data that used for genome assembly. 

 

  

A.3 Genome assembly, scaffolding and gap-closing  

Genome assembly is one of the major challenges in the plant community. Especially, the construction 

of a high quality genome is very difficult on account of repeat sequences, heterozygosity and ploidy in 

plant genomes[S5]. To overcome those problems and to de novo assemble a solid genome, we 

developed our in-house pipeline (Figure A.2). First, initial contigs were meticulously constructed to 

ensure a high-quality genome. To generate longer initial contigs, overlapped forward and backward 

reads of 400 bp PE library were merged to single reads by FLASH[S6]. These longer single reads and 

the remaining paired reads of 400 bp library contributed to an assembly of high quality initial contigs. 
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Owing to the optimisation of parameters such as a K-mer, various versions of initial contigs were 

generated by using different K-mer values and the best version was selected for scaffolding. Estimation 

of the actual insert length is another critical process because the insert distance of both the sides is an 

important factor for accurate scaffolding. Insert length calculations of PE, MP, and BAC-end libraries 

were fulfilled through reference-guided assembly for initial contigs and scaffolds (Table A.4). The insert 

length of the PE library was 459 bp and the insert distance of MP and BAC-end libraries were 

reasonably decided accordingly. Scaffolding processing was performed by Platanus[S7] and 

SSPACE[S8]. We first determined the K-mer value for scaffolding of the PE to BAC-end library (Table 

A.5), and found that the serial scaffolding processes generated longer scaffolds using optimised K-mer 

value. To extend the length of scaffolds, we used SSPACE, which fulfilled serial scaffolding with 

stringent parameters using MP and BAC sequences for the scaffolds generated by Platanus. Lastly, the 

remaining gaps were filled by Gapcloser 

(http://soap.genomics.org.cn/down/GapCloser_release_2011.tar.gz) and Platanus[S9] using reads of PE 

and MP libraries. As a consequence, a total of 471.6 Mb (80 % of 590 Mb) including 24.7 Mbp of gap 

sequences was assembled and the N50 values of the scaffolds and contigs were found to be 1.3 Mb and 

16.2 kbp, respectively (Table A.6). In particular, 90% of the assembled genome was covered by 406 

scaffolds. 

 

Figure A.2. Flow chart of S. asiatica genome assembly pipeline. 
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Table A.4. Estimation of insert length of PE, MP, and BAC-end libraries. 
 

Data EstimatedSize 
(bp) 

Mapped  
as Paired 

Range 
(99.9 %) 

Range 
(99.0 %) 

Range 
(95 %) 

400 bp 459.3 88.1% 126-611 224-599 368-570 

3 kbp 3,125 34.7% 637-4200 2436-4021 2598-3767 

9 kbp 9,031 6.7% 26-13501 379-12730 5253-12606 

10 kbp 10,030 15.34% 546-14473 1005-12916 7731-12715 

BAC-end 100,778 23.35% 292-149592 3124-147416 16180-140318 
 

 

Table A.5. Statistics of S. asiatica genome assembly. 

Step Software N50 (bp) Total 
Number 

Total 
Length 
(Mb) 

Initial contig Platanus 2,281 692,284 557.6 

Scaffold Platanus 1,183,906 20,051 468.1 

Final scaffold SSPACE 
/Gapcloser 
/platanus 

1,308,318 13,847 471.6 

Final contig 16,191 65,272 446.9 

  

Table A.6. Detailed statistics of S. asiatica genome assembly. 

 Scaffold Contig 

N10 3,881,260 bp (11th) 52,892 bp (613th) 

N20 2,669,643 bp (27th) 36,107 bp (1,650th) 

N30 2,266,381 bp (46th) 26,813 bp (3,100th) 

N40 1,838,224 bp (69th) 20,786 bp (4,998th) 

N50 1,308,318 bp (99th) 16,191 bp (7,436th) 

N60 1,014,510 bp (141th) 12,417 bp (10,595th) 

N70 741,222 bp (196th) 9,260 bp (14,766th) 

N80 498,068 bp (272th) 6,345 bp (20,574th) 

N90 222,000 bp (406th) 3,373 bp (30,028th) 

Max / Min 5,868,886 bp / 500 bp 196,100 bp / 201 bp 

Total length / number 471.6 Mb / 13,847 ea 446.8 Mb / 65,237 ea 
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A.4 Assessment of S. asiatica genome assembly 

Genome assembly validation is an essential process to assess genome assembly quality. To compare 

the BAC clone sequences with the de novo assembly, we sequenced paired-end libraries constructed 

from 9 BAC clones with Illumina HiSeq2000 sequencer at approximately 2,000 coverage (2.19 Gbp). 

The obtained short reads were assembled with Edena assembler[S10] and the gap regions were filled 

by Sanger sequencing. To confirm the sequence alignment between BAC contigs and scaffolds, we 

performed BLAST analysis for BAC contigs and scaffolds and BAC contigs were matched to the 

scaffolds based on a 98% identity (Table A.7). Although the S. asiatica genome assembly was identified 

by most of BAC contigs, some unclear or unconfirmed regions for BAC contigs were also present. To 

analyse the BLAST result in detail, we visualised each sequence alignment between the scaffolds and 

BAC contigs (Figure A.3). The results showed that the detected unmatched regions were caused by gap 

regions, resulting in exaggerated and ambiguous scaffolding. Consequently, despite several unclear 

results, our assembled S. asiatica genome was evaluated as a high quality genome by BLAST and 

visualisation using BAC contigs. 

Table A.7. Summary for assessment of S. asiatica genome assembly using BAC contigs, assembled 
transcripts and filtered raw sequences. 

Data set 
Number 
(Length) 
of data 

Average 
length  
of data 

Analysis 
method 

Identity 
(%) 

Coverage 

Matched >70 % >80 % >90 % 

BAC 
contigs 

209 
(0.87 Mb) 

4,168.5 
bp Calculating  

query 
(data) 

coverage 
using 

BLASTN 
 

95 202 (97%) 201 (96%) 198 (95%) 192 (92%) 

98 201 (96%) 198 (95%) 194 (93%) 187 (89%) 

99 194 (93%) 192 (92%) 187 (89%) 180 (86%) 

Assembled 
transcripts 

43,709 
(40.13Mb) 

918.09 
bp 

95 43,056 
(99%) 

42,308 
(97%) 

41,864 
(96%) 

40,576 
(93%) 

98 42,736 
(98%) 

41,793 
(96%) 

41,251 
(94%) 

39,722 
(91%) 

99 42,122(96%) 40,599(93%) 39,761(91%) 37,595(86%) 

Extended single 
reads 

84 M 
(31 Gb) 

374.3 
bp 

Calculating 
mapped 
reads as 
paired 

98 80 M 
(96.1%) - - - 

Filtered PE reads 159 M 
(84.6 Gb) 

204.3 
bp 98 139 M 

(87.9%) - - - 

 

  



 10  

   

 

Figure A.3. Representative validation result of S. asiatica genome assembly against 8 longest BAC 
contigs.  
The upper bars indicate BAC contigs and the lower bars mean scaffolds. In the upper bars, black and 
white represent matched and unmatched regions to the scaffold, respectively. In lower bars, red and 
blue indicate matched regions to forward and backward strand. Black represents gap sequences and 
grey represents unmatched regions of scaffold. 
 
 
Table A.8.  S. asiatica RNA sequencing reads 
Sample Insert size Number of 

library 
Total sequence 
read number 

Total length Read length 

Leaf 180 bp 1 135 M 13.6 Gbp 101 bp 

Root 180 bp 1 135 M 13.6 Gbp 101 bp 

Shoot 180 bp 1 99 M 5.0 Gbp 101 bp 

7 d Haustoria 180 bp 4 168 M 16.8 Gbp 101 bp 
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We performed additional validation of the assembled genome using de novo assembled 

transcriptome and the filtered raw sequences shown in Table A.8. The RNAs were extracted from S. 

asiatica shoots and roots that were axenically grown on MS media for 1 month and Illumina PE libraries 

were constructed using TruSeq RNA sample prep kit (Illumina) for an insert size of 180 bp. Total two 

libraries were sequenced by Illumina HiSeq2000 sequencer for 101 cycles per run (Table A.8). The 

RNA sequences were de novo assembled using CLC Assembly Cell (CLC bio, Aarhus, Denmark). This 

resulted in 43,709 contigs with average length of 918 bp. Through BLASTN analyses, 38,557 (88.2%) 

contigs were found in the assembled genome with cut-off values over 98% identity and 80% coverage 

(Table A.7). Furthermore, we confirmed that the 91.9% and 85.4% of filtered PE and total reads were 

mapped as paired in single scaffold(s) by reference-guided alignment using CLC Assembly Cell (CLC 

bio, Aarhus, Denmark). 

 

A.5 Annotation of transposable elements (TEs) 

Most of the DNA of large eukaryotic genomes is composed of repetitious sequences, primarily 

transposable elements (TEs). In large plant genomes, TEs can comprise 80% or more of the total 

genomic DNA, most of that derived from retrotransposons (Class I TEs). Repeat analysis was 

performed by RepeatModeler and RepeatMasker (http://www.repeatmasker.org) in the assembled S. 

asiatica genome. First, a repetitive element library was constructed by combining the results from 

Repet-pipeline (https://urgi.versailles.inra.fr/Tools/REPET), LTRharvest/LTRdigest from genometools 

(http://genometools.org/), our own pipeline, and a library of LTR retrotransposons. Then, RepeatMasker 

was used to mask TEs in the S. asiatica genome through classified repeat libraries.  

The total repetitive fraction comprises 48.8% of the genome assembly, with all TEs forming 

44.1% of the assembly and 90.3% of the repeats (Table A.9). Together, the retrotransposon sequences 

(83.7% of the repetitive DNA) constitute 40.9% of the genome assembly very similar to the 45.2% TEs 

and 39% retrotransposons of the Phaseolus vulgaris 473 Mb assembly[S11,S12], almost identical in 

size to the S. asiatica assembly here. By comparison, the retrotransposons form 21.4% in B. distachyon, 

26% in rice, and over 82% in barley. The DNA (Class II) transposons together form only 3.2% of the S. 

asiatica genome. Hence, Striga fits well into the overall picture for vascular plants, in which 

retrotransposons abundance explains much of genome size variation[S13]. 

The DNA transposons (DXX, codes according to Wicker et al.[S14], form only 3.2% of the 

genome assembly, with the MULE-MuDR (DTM) and hAT (DTA) families of terminal-inverted-repeat 

(DTX) elements being the mar ones identified. The Helitron (DHH) elements, which replicate by 

rolling-circle amplification[S15], are the second most abundant group of Class II retrotransposons 

behind the MULE-MuDRs, forming 3 Mbp from 3,330 copies. 
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The LTR retrotransposons[S14] form the overwhelming majority (85.5% by coverage, 84.6% 

by number) of all TEs, with LINE and SINE retrotransposons only as minor players (respectively 6.1% 

and 0.1% by coverage). Of the LINEs that can be further characterized, L1 comprises 28% of the LINEs 

and is the dominant superfamily of this order in S. asiatica, as in the case in many plants[16], although 

71% of the LINEs cannot be identified to the superfamily level. Among the LTR retrotransposons, 

superfamilies Gypsy and Copia respectively comprise 8.4% and 5.2% of the genome assembly, but the 

non-autonomous LARD[S17] and TRIM{Formatting Citation} retrotransposons appear relatively 

abundant in Striga, occupying respectively 6.3% and 1.3% of the genome space.  

Although members of both the Copia and Gypsy superfamilies display an average age of 1.1 

million years (MY) and few elements are older than 3 MY, their age profiles are very different (Figure 

A.4). Gypsy elements of 0.5 to 1.0 MY are relatively more common, with only eight elements (1.8% of 

all) aged 0.025 MY or younger present. By contrast, S. asiatica displays an abundance (30, 6.9% of all) 

of Copia elements younger than 0.025 MY and a broad but fairly even distribution of older elements. 

The data thus suggest a very recent burst of amplification among Copia elements and one at least 0.5 

MY ago in the Gypsy superfamily. A very recent Copia burst and an older (~2 MY) Gypsy one were 

likewise seen in the model monocot B. distachyon[S19], although in that species a broad decline in 

abundance over time was seen for Copia. As a result of the insertion of the 49 retrotransposons younger 

than 0.025 MY, 342 Kbp has been added to the genome (0.06% of its total size).  

Retrotransposons replicate by a life cycle in which a reverse-transcribed RNA integrates into 

the chromosome, thereby increasing the genome size[S20]. Two mechanisms counter growth in the 

genome size through retrotransposon integration. One is the homologous intra-strand LTR:LTR 

recombination, which removes the DNA intervening between the LTRs and leaves behind a solo LTR, 

and the other is a piecemeal loss through recurrent small deletions[S13,S21]. The 2180 full-length 

Gypsy and Copia of the S. asiatica genome comprise only 11% of the total LTR retrotransposon 

coverage, mirroring the extent of the element loss. Gypsy elements comprise 1.6-fold more of the 

genome than do Copia ones, but the ratio drops to 1.07 for full-length elements. This indicates that 

Gypsy elements have been differentially lost, consistent with their higher overall age and the more 

recent amplification of Copia elements. Therefore, LTR retrotransposons removal by recombination has 

played a major role in maintaining the compactness of the Striga genome. For the following gene 

prediction, the genome sequences that were masked by using only classified repeat sequences (except 

unknown TEs) were used to avoid the unexpected masking of some essential gene families. 
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Table A.9. Annotated repeat abundances in S. asiatica. The major represented classes, superfamilies, 
and subgroups of transposable elements as determined by automated annotation and classification, as 
well as other major repeat types, are presented. 
 

 
   

 

     % of 

genome 

assembly 

Sum 

(Mbp) 

% all 

TEs 

(bp) 

Number % all TEs 

(number) 

Number 

full-length 

% 

Full-length 

Average 

length (bp) 

All repeats   48.83 230.101       

Mobile Elements     44.10 207.809 100.00 250 653 100.00 14 206 5.67 n/a 

  Class I: Retroelement (RXX)   40.87 192.598  92.68 229 146 91.42 10 869 4.74 n/a 

    LTR Retrotransposon (RLX) 37.70 177.656 85.49 212 009 84.58 6 773 3.19 n/a 

      Gypsy (RLG) 8.41 39.621 19.07 31 075 12.40 1144 3.68 1350.7 

      Copia (RLC) 5.20 24.523 11.80 24 998 9.97 1 036 4.14 1018.8 

   LARDs (RLX) 6.31 29.730 14.31 45 608 18.20 1659 3.64 717.2 

   TRIMs (RLX) 1.28 6.041 2.91 8 512 3.40 704 8.27 723.9 

      unclassified LTR (RLX) 16.48 77.645 37.36 101 540 40.51 2 196 2.16 811.9 

    non-LTR Retrotransposon (RXX) 2.76 12.992 6.25 10 874 4.34 1304 11.99 n/a 

      LINE (RIX) 2.70 12.705 6.11 9 978 3.98 852 8.54 1347.9 

    L1 (RIL) 0.75 3.551 1.71 2 255 0.90 215 9.53 1623.5 

    RTE (RIT) 0.03 0.128 0.06 265 0.11 53 20.00 467.2 

    Unknown (RIX) 1.91 9.024 4.34 7 449 2.97 584 7.84 1297.1 

      SINE (RSX) 0.06 0.286 0.14 896 0.36 452 50.45 324.0 

  Class II: DNA Transposon (DXX) 3.23 15.211 7.32 21 507 8.58 3 337 15.52 737.4 

    DNA Transposon Superfamily (DTX) 2.48 11.678  5.62 17 609 7.03 3 124 17.74 688.4 

      MULE-MuDR (DTM) 0.82 3.862 1.86 3 840 1.53 661 17.21 1005.7 

      hAT (DTA) 0.41 1.920 0.92 5 303 2.12 1321 24.91 362.1 

   PIF-Harbinger (DTH) 0.19 0.873 0.42 1 075 0.43 202 18.79 792.1 

   CACTA (DTC) 0.13 0.589 0.28 1 327  0.53 288 21.70 464.5 

   Unclassified (DTX) 0.89 4.203 2.02 5 301 2.11 369 6.96 848.2 

  Maverick (DMM) 0.01 0.040 0.02 74 0.03 16 21.62 623.26 

    MITE (DXX) 0.41 1.950 0.94 6 263 2.50 2 792 44.58 325.9 

    Helitron (DHH)   0.64 3.012 1.45 3 330 1.33 141 4.23 954.77 

    unclassified DNA transposon (DXX) 0.10 0.480 0.23 494 0.20 56 11.34 1034.9 

  Class I/Class II ratio    12.66  10.65   0.31  

  Gypsy/Copia ratio      1.62  1.24  1.10 0.89  

Other  4.73 22.292 n/a 188 850 n/a    
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Figure A.4. Retroelement ages in the S. asiatica genome.  
The age distribution and abundance of intact superfamily Gypsy (blue bars) and Copia (turquoise), all 
(grey), and unclassified (nd) LTR retrotransposons grouped in age classes of 0.025 MY. 
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B. Gene annotation 

B.1 Assembly cleaning 

To exclude any extraneous DNA sequences in the S. asiatica nuclear genome assembly, we mapped 

reads from Illumina PE libraries back onto the assembly and computed the read depth of all scaffolds 

and contigs using CLC Assembly Cell. Additionally, the taxonomic and source attribution of 100 best-

matching sequences in the NCBI nt database to the S. asiatica scaffolds and contigs were determined 

using Megablast (e-value < 1e-10). In a plant genome assembly, high read depth contigs mainly belong 

to chloroplast genome (cpDNA), mitochondrial genome (mtDNA), and nuclear repeat sequences, and 

lower read depth contigs belong to the nuclear genome. We removed from the assembly scaffolds and 

contigs that had all their best-matching sequences in the nt database attributed to plant organelles and 

were also of high read depth (> 100x). Other likely plant cpDNA and mtDNA sequence in the assembly 

that did not meet these criteria were not removed from the assembly because it has been shown that 

chloroplast and mitochondrial DNA can be transferred into nuclear chromosomes of diverse eukaryotes 

including plants[22]. The remaining scaffolds and contigs that had their best-matching sequences in the 

nt database attributed to non-embryophytes were set aside as likely contaminants. In total, 200 out 

13,847 assembled sequences were determined to be contaminants and excluded from the genome 

assembly. 

B.2 Annotation-specific repeat masking library 

A custom annotation-specific repeat library (database) was created for masking the genome assembly 

to enable high-quality gene prediction and genome structural analysis. Novel genomes often have new 

classes of repeats that are not present in Repbase. Therefore, generic genome masking using 

Repbase[S23,S24] in conjunction with RepeatMasker (http://www.repeatmasker.org) prior to gene 

prediction and whole genome comparative alignment is not sufficient. It is essential to identify, annotate, 

and mask repeats including interspersed repeats, low-complexity regions, and transposable elements to 

avoid prediction of spurious gene models and confounding alignments by repeat-mediated 

artifacts[S25–S27]. We followed the protocol described by Campbell et al., 2013[S26] to create a S. 

asiatica-specific repeat library suitable for repeat masking prior to protein-coding gene annotation. 

Briefly, the genome assembly was first searched with structural approaches to collect consensus 

miniature inverted-repeat transposable elements (MITEs) and long terminal repeat retrotransposons 

(LTRs) using MITE-Hunter[S28] and LTRharvest/ LTRdigest[S29,S30] respectively. LTRs were 

filtered to remove false positives and elements with nested insertions. The genome was then masked 

using collected LTRs and MITEs and additional de novo repetitive sequences predicted by 

RepeatModeler (http://www.repeatmasker.org/RepeatModeler) from the unmasked regions of the 
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genome. All collected repeat sequences were searched against plant proteins from UniRef[S31] where 

elements with significant hits to genes were excluded from the repeat masking library. 

B.3 RNA sequencing and assembly   

Total RNAs were extracted from tissue samples (leaf, shoot, root, and haustoria) of S. asiatica according 

to the protocol described by Yoshida et al., 2010[S32]. RNA-Seq libraries were prepared using TruSeq 

RNA Sample Prep Kit (Illumina) for an insert size of 180 bp and sequenced using 101-bp paired-end 

sequencing on the Illumina HiSeq 2000 platform (Table A.8).  Raw reads were trimmed to remove 

low-quality bases as well as embedded adaptor sequences and filtered to discard short read fragments 

using Trimmomatic v0.33[S33]. FastQC v0.10.1 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used to assess the overall sequence 

quality before and after trimming. Cleaned reads from each tissue sample were de novo assembled using 

Trinity[S34] with the default parameters. The resulting transcriptome assemblies were post-processed 

with PlantTribes AssemblyPostProcessor (https://github.com/dePamphilis/PlantTribes) to select 

contigs with potential coding regions to use as evidence for gene annotation.  

B.4 Gene prediction, quality assessment, and functional assignment 

Gene models were predicted with the MAKER pipeline (release 2.31.8)[S35] using tissue-specific 

RNA-Seq assemblies of S. asiatica described above and RNA-Seq assemblies of plant parasite 

developmental stages described in Westwood et al. (2012)[S36] for related species of Orobanchaceae 

obtained from the Parasitic Plant Genome Project[S37] as transcript evidence. Further cross-species 

protein homology evidence was supplied by proteomes derived from the annotations for M. guttatus 

v2.0 as represented in Phytozome v11[38] and a set of canonical plant (embryophytes) proteins from 

UniProt/SwissProt release 2017_04[39]. Repetitive and low complexity regions of the genome 

assembly were masked with RepeatMasker in MAKER using the custom annotation repeat library 

developed for S. asiatica. Genes were predicted using SNAP[S40] and Augustus[S41] which were 

trained for S. asiatica using MAKER with bootstrap training to iteratively improve the performance of 

ab initio gene predictors[S26,42]. Gene models from each round of MAKER run were used to seed the 

next round of SNAP and Augustus training. Selected gene models for Augustus training were required 

to meet the following criteria: (1) must have greater than 75% evidence support, (2) the length of both 

5' and 3' UTRs must be at least 200 bp, (3) at least 80% of the splice sites must be confirmed with RNA-

Seq alignment evidence, (4) at least 80% of the exons must match both RNA-Seq and protein alignment 

evidence, (5) the length of the protein sequence produced by the predicted mRNAs must be 

approximately 450 amino acids, the average plant protein size[S43], and (6) the training set genes must 

be divergent enough (< 50% identity) and not overlap each other. 
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 Out of the 5,666 scaffolds and contigs (>= 1kb) used in the MAKER annotation, 1,553 were 

annotated with genes. The final S. asiatica post-processed gene annotation set consisted of the all gene 

models supported by annotation evidence, and gene models not supported by annotation evidence but 

encode Pfam domains. A total of 34, 575 coding protein were predicted, 91% of which have an 

annotation edit distance (AED) <0.5. AED is a quantitative measure of gene annotation quality based 

on annotation evidence with values ranging from 0 (perfect agreement) to 1 (no support)[44]. To 

evaluate the completeness of the S. 

asiatica genome, we examined the 

presence and completeness of 1,440 land 

plants (embryophytes) benchmarking 

universal single-copy orthologues 

(BUSCO)[S12] in S. asiatica compared 

to 25 other sequenced plant genomes in 

the orthogroup classification described 

below. Evaluation of S. asiatica BUSCO 

genes suggests 87.1% are complete 

genes, 4.0% are fragmented, and 8.9% 

are missing; these presence and 

completion rates are comparable to other 

taxa in the classification (Table B.1). 

Provisional functional descriptions for 

the gene models were assigned using the 

AHRD 

(https://github.com/groupschoof/AHRD), a pipeline for lexical analysis and selection of the best 

functional descriptor for gene products following BLASTP searches against UniProt/SwissProt, 

UniProt/TrEMBL, and TAIR10[S45] databases. Additionally, gene models were also annotated with 

protein family domains as detected by InterProScan[S46], and identified domains were directly 

translated into gene ontology terms.  

We obtained 34,577 protein coding gene predictions with similar intron-exon structures with o

ther plant species (Table B.2 and Figure B.1). 

 

 

Table B.1. The presence and completeness of universally 
conserved single copy land plants genes in Striga (BUSCO) 
genome compared to 25 other annotated representative plant 
genomes.  
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Table B.2 Metrics of the S. asiatica gene models.  
Protein 
coding 

Loci (no.) 

Total CDS 
length (bp) 

Avg CDS 
length (bp) 

Avg exon 
length (bp) 

Avg intron 
length (bp) 

Striga asiatica 34,577 38,151,497 1,103 206 632 
Mimulus gutattusa 28,140 33,563,049 1,193 240 390 
Capsicum annummb 34,914 35,254,530 1,009 286 541 
Solanum lycopersicumc 34,771 35,972,459 1,057 179 533 
Arabidopsis thalianad 27,206 24,861,465 1,212 265 164 
Oryza sativae 28,236 78,281,992 1,081 312 414 

aRepresentative CDS of Mimulus guttatus v2.0 (phytozome 10.0) were used. 
bPAG (Pepper Genome Annotation) 1.5 were used. 
cThe ITAG pre-2.3 pre-release data were used. 
dAll protein-coding transcripts were included, with the exception of TEs and pseudogenes. 
eAll protein-coding transcripts (MSU Release 6.3) were included, with the exception of TEs, 
pseudogenes, organellar insertions, and small genes. 
 

 

Figure B.1. Average exon numbers per gene. Average exon numbers of gene were calculated with 

representative CDS and were shown as box plot. (A. tha, Arabidopsis thaliana; C ann, Capsicum 

annuum; M. gut, Mimulus guttatus; O. sat, Oryza sativa; S. asi; Striga asiatica; S. lyc, Solanum 

lycopersicum) 



 19  

   

C. Genome comparative analysis 

C.1 Global gene family classification 

Complete sets of protein-coding genes from 26 plant genomes (Data S1C) were classified into gene 

lineages (i.e., orthogroups) using OrthoFinder version 1.1.8 algorithm[S47]. We selected taxa that 

represent all of the major land plant lineages for which genome sequence data were available, 

including ten rosids genomes (Arabidopsis thaliana, Carica papaya, Theobroma cacao, Eucalyptus 

grandis, Manihot esculenta, Populus trichocarpa, Prunus persica, Phaseolus vulgaris, Medicago 

truncatula, Vitis vinifera), one basal core-eudicot (Beta vulgaris), four asterids (Striga asiatica, 

Mimulus guttatus, Utricularia gibba, Solanum lycopersicum), two basal eudicots (Aquilegia coerulea, 

Nelumbo nucifera), five monocots (Oryza sativa, Sorghum bicolor, Elaeis guineensis, Musa 

acuminata, Spirodella polyrhiza), one basal angiosperm (Amborella trichopoda), one gymnosperm 

(Pinus taeda), one lycophyte (Selaginella moellendorffii), and one moss (Physcomitrella patens). A 

total of 18,110 orthogroups containing at least two genes were identified, 9,936 of which contain at 

least one gene from Striga (Data S3). Of the 34,575 annotated genes in Striga, 25,126 (72.7%) were 

classified in an orthogroup, and the remaining 9,449 (27.3%) genes are considered singletons, a 

clustering rate that is comparable to other taxa in the classification (Table C.1). Complete details for 

each orthogroup, including gene counts and functional annotations, are reported in Data S1S. We 

further performed a second iteration of MCL[S48] to connect distant, but potentially related 

orthogroups into larger hierarchical gene families (i.e., super-orthogroups) as described in Wall et. al., 

2009[S49]. We used 10 MCL stringencies with inflation values 1.2 to 5.0 to cluster gene families into 

super-orthogroups to broadly represent all traditionally defined gene families characterized by 

functional domains. An average of 3,491 super-orthogroups were circumscribed for 10 MCL 

stringencies, of which at least 65% contain Striga genes (Table C.2). 

  



 20  

   

Table C.1. Orthogroup classification summary for 663,272 validated annotated protein-coding genes 
in the 26 representative sequenced plant genomes.  

Species 

Number of 
Validated 

and Cleaned 
Annotated  

Genes 

Numbe
r of 

orthogr
oups 

Number of 
genes in 

orthogroups 

Percentage  
of genes in 
orthogroup

s 

Number 
of 

singleton 
genes 

Percentage of  
singleton genes 

Manihot esculenta 32,966 10,368 29,259 88.8 3,707 11.2 
Populus trichocarpa 41,207 10,633 36,029 87.4 5,178 12.6 
Phaseolus vulgaris 27,388 10,305 26,135 95.4 1,253 4.6 
Medicago truncatula 50,869 10,922 39,619 77.9 11,250 22.1 
Prunus persica 26,772 10,289 23,852 89.1 2,920 10.9 
Arabidopsis thaliana 27,369 9,782 24,523 89.6 2,846 10.4 
Carica papaya 27,528 10,221 21,978 79.8 5,550 20.2 
Theobroma cacao 29,171 10,387 24,802 85.0 4,369 15.0 
Eucalyptus grandis 36,288 9,958 31,195 86.0 5,093 14.0 
Vitis vinifera 26,315 9,827 21,791 82.8 4,524 17.2 
Striga asiatica 34,575 9,936 25,126 72.7 9,449 27.3 
Mimulus guttatus 28,079 10,173 26,131 93.1 1,948 6.9 
Utricularia gibba 27,206 9,102 21,220 78.0 5,986 22.0 
Solanum lycopersicum 34,476 10,422 28,586 82.9 5,890 17.1 
Beta vulgaris 27,911 10,026 21,794 78.1 6,117 21.9 
Aquilegia coerulea 29,869 10,310 25,255 84.6 4,614 15.4 
Nelumbo nucifera 26,643 9,795 23,775 89.2 2,868 10.8 
Sorghum bicolor 34,118 11,115 27,239 79.8 6,879 20.2 
Oryza sativa 41,411 11,216 29,734 71.8 11,677 28.2 
Musa acuminata 36,514 9,707 29,770 81.5 6,744 18.5 
Elaeis guineensis 29,667 10,054 26,638 89.8 3,029 10.2 
Spirodella polyrhiza 19,572 9,371 17,372 88.8 2,200 11.2 
Amborella trichopoda 26,802 10,003 19,588 73.1 7,214 26.9 
Pinus taeda 27,596 5,768 23,770 86.1 3,826 13.9 
Selaginella 
moellendorffii 22,251 7,907 17,057 76.7 5,194 23.3 
Physcomitrella patens 32,853 8,348 21,037 64.0 11,816 36.0 
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Table C.2. Summary table of MCL Super-Orthogroup classification using minimum BLASTP E-value 
between all pairs of orthogroups.  
 

MCL Stringency  
(inflation values) 

Number of Super-
Orthogroups 

Number of Super-
Orthogroups with 
Striga Genes 

Percentage of 
Super-
Orthogroups with 
Striga Genes 

1.2 1,610 535 33.23 
1.5 2,561 1,486 58.02 
1.8 3,006 1,931 64.24 
2.0 3,204 2,127 66.39 
2.5 3,547 2,457 69.27 
3.0 3,833 2,710 70.70 
3.5 4,044 2,885 71.34 
4.0 4,229 3,030 71.65 
4.5 4,367 3,121 71.47 
5.0 4,511 3,219 71.36 

AVERAGE 3,491 2,350 64.77 
 

C.2 Whole genome duplication history   

We integrated the results of three complementary approaches to diagnose the history of genome 

duplication in Striga and the closely related nonparasitic plant Mimulus. Sequence alignments and 

phylogenetic analyses were described in STAR Methods.   

C.2.1 Identification of Striga and Mimulus gene duplication events  

Trees of each orthogroup were examined for gene duplications (terminal or shared with other taxa) 

and the detected duplications were scored using a scoring strategy [S50]. We scored orthogroups that 

showed at least one shared Lamiales (Striga, Mimulus and Utricularia) gene duplication with support 

values of at least 0.500 (50%) for the Lamiales duplication node and for one of the two internal 

Lamiales branches (arbitrarily defined as the “right” or “left” branch). 

 Striga and Mimulus genes were classified with respect to their likely duplication origins 

(Table C.3) with MCScanX[S51], an algorithm for detection of gene synteny and collinearity. Using 

default parameters, we classified genes within a single genome as singletons, dispersed duplicates, 

proximal duplicates, tandem duplicates, and WGD/segmental duplicates. WGD/segmental duplicates 

were inferred by the anchor genes in collinear blocks, with blocks defined by a minimum of five 

anchor genes. A total of 889 and 1521 orthogroups preserved duplicate copies of Striga (supported by 

1,605 Striga anchor genes) and Mimulus (3,493 Mimulus anchor genes), respectively (Data S1T and 

S1U). We further identified 323 orthogroups (supported by 475 Striga and 608 Mimulus anchor genes) 

with Lamiales gene duplications that were supported with both Striga and Mimulus syntenic anchor 
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genes (Data S1V). 

Table C.3. A summary of Striga and Mimulus genes classified into their likely duplication origins. 

Species Singleton Dispersed Proximal Tandem 
WGD/ 

Segmental 
Striga asiatica 7,997 17,121 1,467 1,181 6,809 
Mimulus guttatus 4,248 11,295 1,730 3,366 7,440 

     

C.2.2 Duplicated gene divergence  

We sought evidence for genome duplications in Striga by examining the divergence patterns of 

synonymous substitution rates (Ks) for Lamiales duplicate genes identified by the integrated syntenic 

and phylogenomic analysis. The best reciprocal paralogous matches for both Striga and Mimulus were 

identified using all-against-all BLASTP searches of their respective Lamiales duplicate genes. To 

determine the variation in synonymous substitution rates between the Striga and Mimulus lineages, 

we estimated a RAxML[S52] maximum likelihood species tree for the 26 representative plant 

genomes using a concatenated matrix of trimmed codon alignments for genes from 1,440 BUSCO 

single copy orthogroups (Figure 1). We determined that the length for the branch leading to Striga 

was longer than that leading to Mimulus, indicating that the lineage including the parasite Striga had 

experienced more rapid molecular evolution than its non-parasitic sister taxon Mimulus. A follow-up 

inspection of conserved single copy gene trees and spot inspection of phylograms from larger gene 

families including those with WGD synteny orthologs showed that Striga genes were in fact 

consistently on branches somewhat longer than their Mimulus orthologs. These results suggest that 

this was a bona fide description of a tendency for Striga branches to have evolved faster than those of 

Mimulus. Therefore, we expect this accelerated rate of evolution for Striga to be reflected in the 

estimated significant duplication components in which the shared event(s) with Mimulus would the 

shifted to higher Ks values. The EMMIX software[S53] was used to fit a mixture model of multivariate 

normal components to Ks data sets following the procedure described in Jiao et al., 2011[50]. The 

frequency of gene pairs with Ks divergences in each interval size of 0.05 within the range of 0 to 2.0 

was plotted for Striga and Mimulus paralogs (Figure C.1). The Ks distributions identify two significant 

duplication components in Striga at mean Ks ≈ 0.47 and mean Ks ≈ 1.22, and one significant 

component for Mimulus at mean Ks ≈ 0.94. Inspection of representative gene trees indicated that the 

peak of the older component in Striga Ks distribution corresponds to the peak of the single component 

in the Mimulus Ks distribution. The larger Ks value for Striga compared to Mimulus suggests a higher 

rate of synonymous substitutions in Striga as previously described. Taken together, these analyses 

suggest that the prominent younger peak in the Striga Ks distributions represents a duplication event 
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in the Striga lineage that occurred after the divergence of lineages leading to Striga and Mimulus, and 

the older peak represents a duplication event in the common ancestral genome of the three Lamiales 

taxa (Striga, Mimulus, and Utricularia). 

 

 

Figure C.1. Ks distributions of Lamiales-wide duplicate gene pairs in Striga and Mimulus identified by 
the integrated syntenic and phylogenomic analysis (Data S1T, S1U and S1V). Coloured lines 
superimposed on Ks distributions represent significant duplication components identified by likelihood 
mixture model. Plots show “colour/mean/proportion” where colour is the component (curve) colour, 
mean is the mean divergence of gene pairs assigned to the identified component, and proportion is 
fraction of duplicate pairs assigned to the identified component. A. Pairwise Ks distribution for 1,605 
Striga genes from duplications within orthogroups, and on syntenic blocks anchored by Striga genes. 
Two statistically significant components: purple/0.47/0.80 and cyan/1.22/0.20. B. Pairwise Ks 
distributions for 3,493 Mimulus genes from duplications within orthogroups, and on syntenic blocks 
anchored by Mimulus genes. One statistically significant component: cyan/0.94/0.92. C. Pairwise Ks 
distribution for 475 Striga genes from duplications within orthogroups, and on syntenic blocks anchored 
by both Striga and Mimulus genes. Two statistically significant components: purple/0.45/0.88 and 
cyan/1.27/0.12. D. Pairwise Ks distributions for 608 Mimulus genes from duplications within 

A B

DC
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orthogroups, and on syntenic blocks anchored by both Striga and Mimulus genes. One statistically 
significant component: cyan/0.89/0.95. Negative exponential curves identified by maximum likelihood 
mixture model the in the Mimulus plots that represent the background distribution of paralogs due to 
normal gene births and deaths in a genome are not shown. 
 

C.2.4 Genome Structure and Synteny  

Structural syntenic analyses were performed with the SynMap tool of the CoGe comparative genomics 

platform[S54]. The genomes of Mimulus and Vitis were compared to the genome of Striga with the 

chaining algorithm DAGChainer[S55]. We specified a maximum distance of 20 genes between gene 

matches and required a minimum of five genes to seed a syntenic region. Scaffolds and contigs of 

Striga were ordered and oriented based on their syntenic path to both Mimulus and Vitis.  

The self-self dot plot of Striga syntenic blocks (FigureC.2A) shows evidence (on the diagonal 

axis) of extensive collinear blocks, distributed throughout the genome, indicating at least one round 

of ancient polyploidy. However, there are numerous syntenic signals off the diagonal, which suggest 

a second, older polyploidy event. The overlaid color scheme that corresponds to the synonymous 

mutation (Ks) age distribution histogram (Figure C.2B) as calculated by CODEML identifies that the 

majority of genes comprising syntenic regions are from one age distribution (purple) and numerous 

others (off-diagonal) are from an older age distribution (cyan). This pattern is also evident in the cross-

species dot plots of Striga-Mimulus (Figure C.3) and Striga-Vitis (Figure C.4) that show a relatively 

recent WGD (purple) superimposed on an older polyploidy event (cyan). Taken together, the structure 

and synteny results suggest that the Striga genome reflects two rounds of ancient polyploidy. The 

histogram of Striga Ks values derived from syntenic blocks shows a bimodal makeup in its Ks 

distribution with peaks around log10 transformed values of -0.3 (Ks ≈ 0.5, younger peak) and 0.09 (Ks 

≈ 1.2, older peak) indicated in purple and cyan respectively (Figure C.2B). The purple peak that 

represents the larger population of duplicate pairs is evidence that they are derived from a younger 

evolutionary event than the smaller population represented by the cyan peak.  

Previous studies have shown that the Mimulus lineage reflects only one WGD (that is most 

probably shared with Utricularia gibba) following their divergence from the Vitis lineage, which has 

not had any polyploidy event since the eudicot-wide paleohexaploidy event (also known as 

gamma)[S56,S57]. Therefore, there is a 1:2 mapping of orthologous syntenic regions between 

Mimulus and Vitis, as was reported by Ibarra-Laclette et al., 2013[S56]. The Striga-Mimulus and 

Striga-Vitis ortholog plots show many large purple syntenic regions superimposed on many smaller 

and older cyan syntenic regions highlighting two different age classes of syntenic blocks (Figures C.3 

and C.4). The younger syntenic blocks are orthologous blocks, while older paralogous blocks were 
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detected as well. The duplication peaks of Striga-Mimulus and Striga-Vitus orthologs are around log10 

transformed values of 0.04 (Ks ≈ 1.0) and 0.3 (Ks ≈ 2.0) respectively. 

 

Figure C.2. Syntenic analysis of Striga against itself showing evidence of at least two WGD events. A. 
Self-self syntenic dot plot where contigs are ordered and oriented by syntenic path assembly. Syntenic 
gene pairs colored by their Ks values show two age distributions. Purple syntenic paralogs are younger 
than cyan. B. Histogram of log10 transformed Ks values of syntenic gene pairs identified in (A) shows 
a bimodal distribution with the younger syntenic gene pairs in purple and older ones in cyan. Results 
can be regenerated: https://genomevolution.org/r/11ncl 

 

 

Figure C.3. Syntenic analysis of Striga and Mimulus. A. Syntenic dot plot of orthologous Striga (y-
axis) versus Mimulus (x-axis) with Striga contigs ordered and oriented based on their syntenic path to 

A B 

A B 
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Mimulus. Syntenic gene pairs colored by their Ks values could reflect a mixture of two age 
distributions. Purple syntenic orthologs are younger than cyan. B. Histogram of log10 transformed Ks 
values of syntenic gene pairs identified in (A). Results can be regenerated: 
https://genomevolution.org/r/11nki 

 

 

Figure C.4. Syntenic analysis Striga versus Vitis. A. Syntenic dot plot Striga (y-axis) versus Vitis (x-
axis) with Striga contigs ordered and oriented based on their syntenic path to Vitis. Syntenic gene pairs 
colored by their Ks values could reflect a mixture of two age distributions. Purple syntenic orthologs are 
younger than cyan.  B.  Histogram of log10 transformed Ks values of syntenic gene pairs identified in 
(A). Results can be regenerated: https://genomevolution.org/r/11nl5 

 

C.2.5 Microsynteny analysis  

High-resolution analysis of microsyntenic regions was performed using CoGe’s GEvo tool[S58], 

which permits comparison of multiple genomic regions. The whole genome syntenic ortholog dot plot 

(Figure C.3A) shows that most of the Striga genome is syntenic with at least one region of Mimulus. 

An example of one of several regions identified that showed 1x Mimulus to 2x Striga shows 

fractionated gene content, as expected following a polyploidy event (Figure C.5A)[S59]. An earlier 

WGD in the common ancestor of Mimulus and Striga would, therefore, create syntenic blocks 

comprised of 2x Mimulus regions and 4x Striga regions (Figure C.5B).  A close-up view of these 

regions (Figure C.5C) shows evidence of 4 Striga and 2 Mimulus collinear anchor genes that are 

present on the duplication node of the gene family tree in Figure 1. We further identified a Vitis region 

from the ortholog collinear block that is syntenic to the shared Striga and Mimulus regions shown in 

A B 
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Figure C.5. The regenerated microsynteny plot (Figures C.6 and C.7) shows this Vitis region syntenic 

to the two Mimulus and four Striga regions as is expected following their divergence after the core 

eudicot-wide paleohexaploidy event. Taken as a whole, all three sets of analyses indicate Striga-

specific WGD event and an earlier WGD event in the common ancestor of Striga and Mimulus.  

  
Figure C.5. Microsynteny analysis of two syntenic Striga regions and one Mimulus region A. Example 
microsynteny analysis of two syntenic Striga regions and one Mimulus region showing evidence of 
fractionated gene content. B. Syntenic regions in (A) with one additional region of Mimulus and two 
additional regions of Striga. C. Evidence of 4x Striga to 2x Mimulus collinear anchor genes present on 
the duplication node of a gene family tree (Figure 1). Cyan star represents duplication in a common 
ancestor of Mimulus and Striga, and purple star represent duplication in the Striga lineage. Results can 
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be regenerated following the links below: A. https://genomevolution.org/r/11obn, B. 
https://genomevolution.org/r/11obq, c. https://genomevolution.org/r/11q3g 
 

 
Figure C.6. Microsynteny among four Striga and two Mimulus syntenic regions A. Example of 
microsynteny among four Striga and two Mimulus syntenic regions shown in Figure C.5, and one Vitis 
region. B. Evidence of 4x Striga to 2x Mimulus to 1x Vitis collinear anchor genes present on the 
duplication node of a gene family tree (Figure 1). Cyan star represents duplication in common ancestor 
of Striga and Mimulus, and purple star represents duplication in the Striga lineage. Results can be 
regenerated following the links below: A. https://genomevolution.org/r/11ufe, B. 
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https://genomevolution.org/r/11ue2 
  

 

Figure C.7.  Example a subtree of RAxML ML gene family tree (orthogroup 460) shows the 
duplication of anchor genes located on homologous Striga, Mimulus, and Vitis syntenic blocks. Anchor 
genes present on the syntenic blocks are surrounded in red boxes. 

 

C.3 Ancestral gene family reconstruction 

Searcy[S60,S61] proposed that gains of parasitic ability, then losses of functions supplemented by the 

host, and finally gains of highly specialized traits would characterize the evolutionary transition to 

heterotrophy in parasitic angiosperms. Therefore, the relative timing of evolutionary events, and thus 

the age of affected gene families, should follow a predictable pattern. The supplementary functions 

should be more broadly shared with the parasite and host and therefore older, while newer, lineage-

specific functions should provide specialized adaptations to the parasite. 

We used the parsimony method in DupliPHY[S62] to reconstruct the presence and size of each 

gene family in the common ancestor of Striga asiatica and the closely related non-parasite Mimulus 

guttatus as well as other successively earlier common ancestors. We used a table with the number of 

genes observed in each orthogroup (approximate gene family) from the 26-genomes orthogroup 

circumscription (Data S1S), and the corresponding species tree inferred from hundreds of single copy 

genes (Figure 1) as input for DupliPhy. The gene family evolutionary dynamics estimated at each node 

of the 26-genome species tree is shown in Data S1W. Among 10,248 orthogroups with representative 
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asterid taxa, ~23% showed a significant change in gene numbers between Striga and its ancestral node 

shared with Mimulus. We estimated 647 contractions, 1,742 expansions, 456 losses, and, 153 gains 

(Data S1D). 

The relative age of genes in contracted orthogroups was significantly older (two-tailed Mann-

Whitney U test, p-values < 2.2e-16) than genes in expanded families (Figure 2D and Data S1E). In 

support of Searcy’s hypothesis, the older, contracted gene families include plant genes whose functions 

are more likely to align with vestigial parasite functions. The relatively younger expanded gene families, 

apparently gained largely as a result of the younger Striga WGD (Figure 2D and Data S1E), also support 

this hypothesis by providing a more recent source of genes to encode specialized traits in the parasite. 

C.4. Selective pressure on protein-coding genes in the Striga genome 

Selection pressure on each Striga protein sequence was estimated by calculating the ratios the rate of 

non-synonymous substitutions (Kn) to the rate of synonymous substitutions (Ks) between Striga and 

Mimulus orthologous genes present in syntenic genomic regions using CoGE Synmap function. Among 

10,055 orthologous pairs, 40 were detected as under positive selection (Kn/Ks > 1.0, Data S1X). These 

genes include transcriptional factors, hormone response genes, genes involved in ubiquitin-proteasome 

pathway and histone deacetylase, indicating positive selection in on genes encoding components of 

signal transduction pathways. These results are consistent to the findings in the genome analysis of 

Cuscuta australis, a stem parasite in the Convolvulaceae family; GO terms of “response to hormones”, 

“DNA methylation” and “regulation of transcription” are enriched in positively selected genes [S63], 

implying commonality between independently evolved parasitic species. Moreover, the average Kn/Ks 

ratio in evolutionary expanded gene families in the Striga genome is significantly higher than that in 

the contracted gene families (Student’s t-test, p< 5e-10, Figure S1), suggesting that expanded gene 

families are under more relaxed purifying selection pressure than contracted gene families. Such relaxed 

selection pressure together with gene duplication may lead to neofunctionalization of the duplicated 

genes and contribute acquisition of new phenotypes, such as parasitism. 

 

C.5. Evolutionary events related to parasitism 

C.5.1 Evaluation of Searcy hypothesis 

Important facets of the Searcy hypothesis are the function and also the source of genes leveraged by the 

parasite during the three phases of parasitic evolution[S64]. During Phase I, genetic innovation is 

required for the evolution of the haustorium either by the acquisition of new genetic material or by 
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modification of existing genetic material. Phase II is characterized by loss of genes whose encoded 

functions were made redundant by resources acquired from the host (e.g., the carbon and water– see 

below). Phase III predicts that obligate parasites would add genetic material associated with further 

adaptations to the parasitic lifestyle. Striga, an obligate parasite, should show evidence of all three 

phases of parasite evolution.  

To test these predictions, we created an annotation platform for estimating the function of Striga 

genes by comparison with established functions of orthogroup members. We leveraged these functional 

annotations as input for analysis of functional biases in specified genes sets relative to the remainder of 

the genome[S65]. This allowed us to estimate the function of each gene family and functional group 

that underwent significant changes during Striga evolution (Figure 2E, Data S1S).  

Presumably, specificity of gene expression is correlated with tissue- or organ-specific function; 

therefore, changes in gene number for tissue-specific orthogroups can be used as a proxy for changes 

in tissue function. Thus, we defined a set of tissue-specific orthogroups using microarray expression 

data[66]. These data are a curated summary of more than 5,000 microarray experiments conducted using 

the Agilent ATH1 GeneChip®. Updated ATH1 annotations from Gene Networks in Seed Development 

website (http://seedgenenetwork.net) were used to update the gene expression matrix with current probe 

annotations. We further screened for Arabidopsis genes with orthogroup assignments. Z-scores were 

calculated for each gene[S67], and a z-score cut-off of 2 was determined empirically to select gene sets 

for which >95% of the genes had a Z-score >2 in only one tissue category. Of the <5% that were not 

stage-specific, roughly half were represented in sub-stages, e.g., stamen and pollen. This score cutoff 

was also generally sufficient to generate lists with values amenable to the Chi-Square test (i.e., expected 

values >5 per cell). The Arabidopsis thaliana gene identifiers and orthogroups were extracted for tissue-

specific genes and were appended to the 26 plant genomes orthogroup classification to identify 

orthogroups with genes that have tissue-specific expression (Data S1D). The orthogroup lists were 

tested for proportionality against the background pattern of orthogroup evolution in Striga asiatica 

(Data S1Y). 

 

C.5.2. Haustorium innovation- Phase I 

Recently it was reported by Yang et al. 2015[S37] that gene families with preferential haustorium 

expression were derived from duplicated genes whose orthologs have preferential root or pollen gene 

expression in non-parasitic angiosperms. We classified Orobanchaceae (Striga hermonthica, 

Phelipanche aegyptiaca, and Tryphisaria versicolor) "haustorial" genes identified in that study into the 
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26-genome orthogroups and examined assignments to orthogroups with tissue-specific genes. 

Concordant with the results in Yang et al. (2015) we observed the recruitment of tissue-specific genes 

for haustorial development in parasitic plants. Haustorial genes were enriched for orthogroups with a 

tissue-specific expression pattern. Testa, hypocotyl, and root were identified as likely sources for 

haustorial genes, but most predominantly pollen (Data S1B). These results suggest that during Phase I, 

haustorium innovation is underpinned with neo-sub-functionalization of existing (and duplicated) genes 

from tissue-specific gene families. Curiously, most of the tissue-specific gene families (except seedling, 

leaf and embryo) were also enriched for contracted orthogroups (Data S1Y); this may represent Phase 

II – loss of parasite functions via host complementation. 

C.5.3 Functional complementation – Phase II 

Gene family contractions characterize patterns of gene family evolution in Striga asiatica, and 

conspicuously orthogroups with highly tissue-specific expression are enriched for contracted gene 

families (Data S1Y). We expected to see contractions in “root” specific Orthogroups since Striga 

completely lacks a proper root system[S68], yet these data suggest that the pattern of functional 

complementation by the host extends to other parasite functions beyond the more obvious changes like 

loss of a functional root system. Consistent with the relatively normal outward appearance of Striga 

leaves, leaf-specific orthogroups lacked strong evidence of evolutionary shifts. Evolutionary losses of 

leaf and root genes in the leafless and rootless holoparasites Monotropa (a mycoheterotroph) and 

Cuscuta have been reported[S63,S69,S70]. However, even the leafy green hemiparasite Striga is 

heavily dependent upon the host for carbon, and entirely heterotrophic as a seedling and during its 

extensive subterranean growth phase[S68,S71,S72]. Therefore, we should see evidence for losses of 

photosynthesis-related genes.  

  It has been shown that the plastid genomes of parasitic plants undergo wholesale gene loss, 

accelerated sequence evolution, and genome reduction, including the loss of photosynthesis genes in 

holoparasites[S64,S73]. These observations support Phase II of the Searcy hypothesis that vestigial 

parasite functions, like carbon assimilation, are supplemented by host photosynthesis, and through time 

are lost by parasitic plants due to the relaxed constraint of genes involved in the pathway. A recent 

study[74] defined a list of photosynthesis genes used to survey changes in the photosynthetic apparatus 

in three species of parasitic Orobanchaceae, including Striga hermonthica. Concordant with the 

findings in Wickett et al.[S74], we found that most gene families representing chlorophyll synthesis and 

photosynthesis pathways are present. However, some of these gene families encoding proteins involved 

in heme and protoporphyrin IX (in the chlorophyll biosynthesis pathway), as well as light harvesting, 

showed signatures of contraction (Data S1G). By contrast, the nuclear-encoded photosystem gene 
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families were intact compared to the ancestral state (shared with Mimulus, Data S1G).  

Additional Phase II signatures of gene loss in the genome of Striga asiatica include 

overrepresentation among contracted orthogroups of the KEGG pathways “photosynthesis-antenna 

proteins” (Benjamini P=0.0021) and “carbon fixation in photosynthetic organisms” (Benjamini 

P=0.0419) (Data S1F). Among contracted orthogroups, the GO Biological Process (BP) terms “protein-

chromophore linkage” (Benjamini P=6.6e-5), “carbon fixation” (Benjamini P=0.0015), and 

“photosynthesis, light harvesting in photosystem I” (Benjamini P=0.0023) were significantly enriched 

(Data S1H). A similar theme of photosynthesis-related losses is also observed in GO Cellular 

Compartment (CC) terms “plastoglobule” (Benjamini P=2.5e-5), “light-harvesting complex” 

(Benjamini P=0.0021), “photosystem 1” (Benjamini P=0.0256) and “thylakoid” (Benjamini P=0.0471) 

that were enriched among contracted orthogroups (Data S1H). These losses may explain the reduced 

photosynthetic efficiency of Striga[ S 68, S 71], even though Striga still maintains low levels of 

photosynthetic flux that result in carbon fixation[S68].  

Leaves of Striga have undifferentiated mesophyll[S75], a low number of plastids per cell[S76], 

low chlorophyll concentration[S77], an insensitive apparatus for regulating water loss[S78], and likely 

a negative net carbon gain in leaves[S75]. Consistent with these reductions in anatomy and function of 

Striga leaves GO BP terms “leaf development” (Benjamini P=7.5e-4), “regulation of stomatal 

movement” (Benjamini P=0.0298), “transpiration” (Benjamini P=0.0346), and “vasculature 

development” (Benjamini P=0.0339) are overrepresented among contracted orthogroups (Data S1H). 

This indicates that genes encoding elements of the transpirational apparatus of Striga asiatica are also 

under relaxed constraint. Indeed, the insensitive water loss apparatus[S78] and abnormally high 

nighttime foliar carbon emission due to constitutively open stomata[S75,S79] show that Striga has 

limited capability to regulate water loss. It has been shown that the closely related holoparasite 

Phelipanche expresses a full complement of chlorophyll synthesis genes, but not photosystem genes[S

74]. Additional roles for chlorophyll (and other tetrapyrroles), like retrograde plastid-nuclear 

signaling[S80] may explain conservation of these pathways in obligate parasites that have diminished 

photosynthetic capability. Together with our results, this suggests that the primary function of the Striga 

leaf is not carbon assimilation. 

 A clear and dominant signal in the ancestral gene family reconstruction is the contraction of 

cellular response machinery. ~28% of all overrepresented GO BP terms in contracted orthogroups, 

compared to ~4% in the expanded orthogroups, were “response” to abiotic or biotic stimuli including 

virtually all major plant hormones (Data S1H). Also included were numerous “signaling” terms that 

also implicate hormone response/action (Data S1H). Furthermore, the KEGG pathways “plant hormone 
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signal transduction” (Benjamini P=1.2e-10) and “plant-pathogen interaction” (Benjamini P=0.0169) 

were also enriched among contracted orthogroups. Consistent with Searcy’s prediction of 

complementation by the host plant of vestigial parasite functions, these data along with the reported 

insensitivity to water stress (thus implicating ABA [S78]) show that the parasite may have increased its 

reliance on the host to sense and respond to its environment. This shift would reduce the energetic 

burden to perceive and integrate environmental cues while at the same time promoting parasite wellness 

over a stressed host plant. The same applies to biotic stresses – parasites could leverage host responses 

and defense strategies to biotic stress without expending its own resources. This might even expand the 

parasite niche by leveraging locally adapted defense responses. These data reveal a wide pattern of loss 

of sensing and response systems that provides strong support to the Searcy hypothesis. 

Functions that are lost and complemented by the host during Phase II may also be targets for 

Phase III specialization of the parasite-host relationship. For instance, alteration in water movement 

functions may span evolutionary events in Phases II and III because the host plant could complement 

water stress response pathways while decreased water potential[S68], constitutive 

transpiration[S73,S81] and other alterations to the water relations apparatus such as host vessel element 

invasion by parasitic oscula[S82] could be adaptive. We can parse evolutionary shifts within a common 

process into the respective phases based on the timing of these events. For instance, the GO BP term 

“response to water” (Benjamini P=9.29e-4) is enriched in expanded orthogroups that have been shown 

to be significantly younger than contracted ones. This would suggest these expanded orthogroups 

represent Phase III signatures, even though orthogroup contractions dominate water relation signatures. 

C.5.4 Parasite adaptation – Phase III 

During the transition to obligate parasitism, it was suggested by Searcy[S60,S61] that parasitic plants 

would adapt to the parasitic lifestyle by accruing new genetic information. We have shown that the 

WGD in Striga asiatica is a source for gene family expansion. It is, therefore, possible that new and 

highly derived genes sourced from the Striga lineage-specific WGD encode genes that underpin highly 

adapted parasite traits, especially in the novel haustorium. The primary function of the haustorium is to 

connect the parasite to its host, and implicit in this function is the acquisition of host resources and 

regulation of host defenses. Heide-Jørgensen and Kuijt[S83,S84] observed that the haustorium of the 

closely related Triphysaria versicolor contained transfer-like cells. Because evidence of phloem 

continuity in Striga is lacking, we hypothesized that Phase III innovation may include cellular 

machinery such as endocytosis and vesicle mediated transport that would facilitate acquisition of host 

resources, perhaps in haustorial-interface transfer cells. It is clear that the high proportion of 

heterotrophic carbon, especially in unemerged Striga seedlings at virtually 100%, would require a 
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highly efficient means of obtaining host carbon[S72]. Our survey of functions in expanded orthogroups 

revealed that GO BP terms “vesicle-mediated transport” (Benjamini P=1.04e-6) and “Golgi vesicle 

budding” (Benjamini P=1.29e-4) were enriched. Furthermore, the GO CC terms “Golgi membrane” 

(Benjamini P=1.05e-15), “trans-Golgi network” (Benjamini P=4.99e-8), “endosome” (Benjamini 

P=4.90e-8), “cis-Golgi network” (Benjamini P=2.22e-4), “early endosome membrane” (Benjamini 

P=0.0054), “clathrin-coated vesicle membrane” (Benjamini P=0.0273), “trans-Golgi network 

membrane” (Benjamini P=0.0321), and “Golgi cisterna membrane” (Benjamini P=0.0437) and KEGG 

pathway “endocytosis” (Benjamini P=5.39e-4) were enriched among expanded orthogroups（Data S

1F and H）. This suggests that relatively young and significantly expanded orthogroups that encode 

inter- and intra-cellular transport genes may represent Phase III innovations related to host resource 

acquisition. 

 Host-induced gene silencing from host plants to Orobanchaceae parasites[S85,S86] provides 

a potential mechanism for parasite resistance involving RNA movement from host to parasite. Previous 

work has revealed massive mRNA transfer between parasite plant Cuscuta and host[S87]. However, the 

mechanism(s) of RNA transport in these systems remain unknown. Clues that RNA transfer may occur 

in Striga as well are found in enriched GO Molecular Function terms that are unique in expanded 

orthogroups that included “mRNA binding” (Bonferroni P=7.1e-16), “RNA binding” (Bonferroni 

P=2.3e-11), “nucleic acid binding” (Bonferroni P=4.4e-7), “poly(A) binding” (Bonferroni P=6.9e-4), 

and “single stranded RNA binding” (Bonferroni P=0.0015) (Data S1H). These orthogroups encode 

nucleic acid binding proteins that could be part of a mechanism for RNA transfer between parasitic 

plants and host plants, perhaps similar to phloem localized RNA binding proteins that likely facilitate 

mRNA translocation via phloem in plants[S88]. 

 

D. Analyses of selected gene families 

D.1 Plant hormone related genes 

D.1.1 Auxin 

Genes related to auxin biosynthesis, transport, receptor and signalling were manually assessed for their 

presence in the S. asiatica genome using BLAST programs from the annotated CDS sequences and the 

genome sequence. All known auxin-related genes are conserved in the S. asiatica genome (Data S1I). 

However, several gene families including major auxin responsible genes[S89], such as the small auxin 

up RNA (SAUR), GH3, and IAA, are assigned to contracted orthogroups (Data S1I), suggesting the 

auxin responses may have been simplified during parasitism evolution. Striga as an obligate parasite 
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has lost their root systems, although adventitious root-like structures emerge to form secondary 

haustoria. Contraction of auxin responsive genes may reflect loss of structures and physiologies that 

support an autotrophic plant life style. 

 

D.1.2 Cytokinin   

Genes involved in cytokinin biosynthesis, perception and signalling were manually assessed for their 

presence in the S. asiatica genome. We found that all tested genes are conserved (Data S1I). A number 

of cytokinin metabolism genes, which encode cytokinin oxidase/dehydrogenase (CKX), were highly 

expressed during infection. The expression of a CKX-encoding gene in the haustorium at 7-d after host 

interaction was confirmed by RT-qPCR and in situ hybridisation (Figure 4H) The hyaline body-specific 

expression of CKX suggests that cytokinin is degraded in this tissue. In Arabidopsis, expression of 

CKX gene is induced by cytokinin accumulation to remove the excess amount of cytokinin[S90]. Thus 

it is possible that the coordinated expression of IPT and CKX functions to control the cytokinin content 

in the haustorium. 

 

D.1.3 Abscisic acid (ABA) 

In contrast to non-parasitic plants, S. hermonthica stomata remain open in drought-stressed leaves and 

display reduced sensitivity to applied ABA[S91,S92]. This evolved response is most likely to maximize 

transfer of water and/or nutrients from the host even under dry conditions. Previous studies showed S. 

hermonthica synthesizes ABA, and consistent with this, all the genes involved in ABA synthesis and 

catabolism were identified in the S. asiatica genome[S93,S94](Data S1I). ABA transporters such as 

ABCGs and AITs were highly conserved in S. asiatica[S95], suggesting that ABA can be transported 

from vascular tissues into stomata in S. asiatica. 

All core ABA signaling components (PYR/PYL receptors, PP2Cs, SnRK2s) were also present. 

Although all three ABA receptor subfamilies (I, II and III) were represented in S. asiatica, there 

appeared to be a preponderance of subfamily I receptors, which are the most sensitive receptors to 

ABA[S96,S97]. The S. asiatica genome contains 9 class A PP2C-encoding genes. One of the PP2C 

genes contains mutations near a conserved tryptophan residue, as reported in PP2C1 gene in S. 

hermonthica, is likely acting as a dominant negative regulator for ABA signaling to keep high 

transpiration in Striga[S92](Figure D.1). In addition, although SnRK2-targeted ABF transcription factor 

sequences exist in the Striga genome, the alignment for ABI5 is very poor. ABI5 plays a key role in late 

seed maturation and germination and a potentially non-functional ABI5 in S. asiatica could lead to ABA 

insensitivity[S98].  



 37  

   

With respect to guard cell function, core ABA signaling outputs to a collection of ion channels[S99]. 

Sequences for KAT1 and KUP6 potassium channels were identified in S. asiatica, but only two SLAC 

family anion channels possessed complete domains. By contrast, Arabidopsis has five SLAC-like genes. 

A loss-of-function mutation in SLAC1 resulted in reduced stomatal closure in response to ABA[S100]. 

It is possible that the absence of three SLAC-like genes could contribute to insensitivity of Striga 

stomata to close in the presence of ABA. 

 

 

Figure D.1. Class A PP2C gene family in the S. asiatica genome. 
A. Maximum likelihood tree of amino acid sequences of ClassA PP2C genes from Arabidopsis, S. 
hermonthica and S. asiatica. AT1G67820 sequence was used as a root. Bootstrap values of 100 
replicates are indicated at each node. B. Amino acid alignment of Arabidopsis ABI genes, S. hemonthica 
PP2C1, and S. asiatica class A PP2C genes. Mutations that confer interruption of ABA signalling are 
shown by asterisks. Dominant negative PP2C protein in S. asiatica is highlighted by red letters. 
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D.1.4 Ethylene  

Besides SLs, ethylene is also able to induce Striga seed germination[S101]. In fact, ethylene gas was 

used for suicidal germination strategy in order to eradicate S. asiatica from North and South Carolina 

in USA[S102]. To understand ethylene responses in Striga spp., the number of genes involved in 

ethylene signaling and biosynthesis were investigated using reciprocal blast searches. The Arabidopsis 

genome has 5 ethylene receptor encoding genes, ETR1, ETR2, ERS1, ERS2 and EIN4 and the receptor-

mediated signal is transduced via CTR1 and EIN2 to the nuclear-localised EIN3/EILs transcriptional 

regulators. The EIN2 C-terminal end leads to the stabilisation of EIN3/EILs by degradation of F-BOX 

proteins, EBF1 and EBF2, that negatively regulate ethylene responses[S103]. The S. asiatica genome 

contains all ethylene signaling and biosynthesis genes, except ETP1 and ETP2 (Data S1I). The F-box 

proteins ETP1 and ETP2 negatively regulate EIN2 via the 26S proteasome-mediated degradation in 

Arabidopsis[S104]. However, the amino acid sequences of ETP homologues are not well conserved 

among species[S105]. Thus, it is less likely that the loss of ETP genes reflect the unique ethylene 

response in Striga spp. The key transcription factor EIN3/EIN3-like (EIL) family was in contracted 

orthogroups. On the other hand, the S. asiatica genome contains 5 orthologues of CTR gene, a key 

negative regulator of ethylene signaling, showing expansion by orthogroup analysis. This may suggest 

that some of physiological responses against ethylene were modified during Striga evolution. 

 

D.1.5 Jasmonic acid (JA) and salicylic acid (SA) 

JA and SA are two major defence-related plant hormones. We have examined the presence of JA and 

SA-related genes in the S. asiatica genome (Data S1I). Genes related to JA and SA biosynthesis as well 

as signalling genes are all conserved in the S. asiatica genome.  

  

D.2 Strigolactone (SL)-related genes 

D.2.1 SL biosynthesis genes 

SLs are well known as germination stimulants for Striga. It has been questioned whether Striga can 

produce active SLs by themselves. Mutants and enzyme analyses of various plant species identified key 

genes encoding SL biosynthesis pathway. SLs are derived from carotenoids. DWARF27 (D27)[S106], 

catalyses the isomerization of all-trans-ß-carotene to 9-cis-ß-carotene, which is sequentially cleaved by 

carotenoid cleavage dioxygenase7 (CCD7/MAX3) and carotenoid cleavage dioxygenase8 

(CCD8/MAX4)[S107,S108] to yield carlactone (CL), a common precursor of SLs[S109]. Carlactone is 
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further oxidized by cytochrome P450 enzyme (CYP711A1/MAX1) to produce bioactive SLs. The 

biosynthesis pathway from carotenoid to carlactone is supposed to be widely conserved among plants, 

while the later steps can be more diversified. Rice genome encodes five MAX1-homogolue genes and 

two of these proteins sequentially catalyse carlactone to 4-deoxyorobanchol and 4-deoxyorobanchol to 

orobanchol[S110], which has canonical SL structure with four rings. Arabidopsis genome encodes only 

one MAX1 protein that catalyses CL to calactonoic acid (CLA)[S111]. CLA is further methylated by 

unknown methyltransferase to produce methyl carlactonoate (MeCLA), and an oxidoreductase-like 

protein LATERAL BRANCHING OXIDOREDUCTASE (LBO) converts MeCLA into bioactive non-

canonical SLs in Arabidopsis[S112]. S. asiatica genome encode one each of SL-biosynthesis gene 

orthologues (Figure D.2).  Highly conserved amino acids among angiosperms, suggesting the ability 

of Striga to synthesise SLs, consistent with a previously published report[S113].   
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Figure D.2. SL biosynthesis genes in S. asiatica genome 
A. Canonical and noncanonical SL biosynthesis pathway and corresponding enzymes in each steps 
modified from Brewer et al. 2016[S112]. Tables show the number of genes encoding each enzyme in 
indicate species (Sa: Striga asiatica, At: Arabidopsis thaliana, Os: Oryza sativa, Mg: Mimulus guttatus). 
Asterisks indicate MAX1 homologues regulating steps found in rice [S110]. Non-canonical SL 
biosynthesis pathway mediated by LBO was found in Arabidopsis. B-F. Maximum likelihood tree of 
amino acid sequences of SL-biosynthesis genes from various plant species. B, D27 homologues, C, 
CCD7 (D17/MAX3) homologues, D, CCD8 (D10/MAX4) homologues, E, MAX1 homologues, F, LBO 
homologues. 
 

D.2.2 SL signalling genes 

Perception and signalling of SLs and karrikins are known to be regulated by an F-box protein (D3 in 

rice and MAX2 in Arabidopsis), α/β hydrolase (D14 and D14-LIKE in rice, AtD14 and KAI2 in 

Arabidopsis) and D14/KAI2 interacting repressor proteins known as D53 in rice[S114–S118]. Genes 

encoding homologues of these proteins were identified in S. asiatica genome. One copy of D3/MAX2 

homologue is found in S. asiatica genome and S. hermonthica transcriptome. Eleven genes and five 

contigs are assigned as D53 homologues in S. asiatica genome and S. hermonthica transcriptome, 

respectively (Figure D.3A). D53 is an SL signalling component that forms complexes with MAX2 and 

D14. SL induces degradation of D53 and promotes the SL signalling pathway resulting in the 

suppression of bud outgrowth. The Arabidopsis homologues of D53 belong to a family containing 8 

genes including SMAX1, the suppressor of MAX2[S119]. Mutation in SMAX1 restores the seed 

germination and the seedling morphogenesis phenotypes of max2, but it does not affect lateral root 

formation or axillary bud outgrowth[S119]. Recent analysis reported that SMAX1-LIKE genes SMXL6, 

SMXL7 and SMXL8 regulate SL-dependent axillary bud outgrowth in Arabidopsis, indicating that the 

SMAX1 and SMXL6,7,8 regulate karrikin and SL dependent phenotype respectively[120]. 

Phylogenetic analysis indicates that all the 4 genes in S. asiatica genome are clustered with and 

SMXL6,7,8, and 7 genes with SMAX1. The transcriptome assembly of S. hermonthica contains at least 

2 genes that cluster with SMAX1 and one gene in the D53 clade. Expression patterns of SMAX1 

homologues in S. hermonthica suggest that the MAX2 homologue and two SMAX1 homologues are 

expressed in seeds and seedling stages (Figure D.3A and B). The proteins encoded by these genes 

possibly interact with highly duplicated KAI2 homologues to ensure proper SL signalling, leading to 

Striga germination.  
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Figure D.3. SL signaling genes in Striga spp.  
A. Maximum-likelihood phylogenetic tree of D53 homologues in S. asiatica (red), S. hermonthica 
(blue), A. thaliana and O. sativa was drawn. Numbers indicate bootstrap values at each node. B. 
Expression patterns of MAX2, D14, DLK2 and D53 homologues in S. hermonthica. The relative 
expression levels calculated by RNAseq analysis are shown as scaled heatmap. 
 

D.2.3 Genomic distribution of KAI2 homologues in S. asiatica.  

KAI2 homologues were searched by BLAST analysis using Arabidopsis KAI2 (At4g37470) protein 

sequence as a query against the annotated data and the assembled genome. The incomplete or chimeric 

annotations were manually corrected. In total, 21 KAI2 homologues were found in the S. asiatica 

genome. In addition, we identified 7 KAI2 sequences that do not encode a full-length protein due to 

frameshifts, large insertion, or premature termination codons (Data S1J) and defined those as 

pseudogenes. We also found one D14 and two DLK2 homologues in the S. asiatica genome. In total, 

31 loci on 16 scaffolds contain D14/KAI2-related sequences. These 16 scaffolds were compared with 

each other and with the M. guttatus genome using the DAGChainer[S55] function in SynMap of 
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CoGE[54]  (http://www.genomevolution.org). With the default setting (-D 20, -A 5) of DAGChainer, 

a strong syntenic relationship was detected between the M. guttatus genomic region containing 

MgKAI2c and the S. asiatica regions containing KAI2c1 (Figure D.4). The regions containing the 

intermediate type KAI2i do not show syntenic relations between S. asiatica and M. guttatus. The S. 

asiatica genome contains two KAI2i genes, and the KAI2i_2 containing region (scaffold104) showed 

strong syntenic relationships with M. guttatus scaffold1. However, the KAI2i gene is missing in M. 

guttatus scaffold1, suggesting loss of KAI2i gene in M. guttatus or local acquirement of KAI2i in the S. 

asiatica genome (Figure D.5). The S. asiatica regions containing the KAI2d genes do not show syntenic 

relationship between each other, suggesting that the KAI2d genes are locally duplicated. Similarly, 

similarities among the KAI2d loci are not restricted only to protein-coding sequences but are extended 

to 5’ and 3’ regions and introns (Figure D.6). For example, KAI2d6 and KAI2d12 are aligned with 97.78% 

identity in 2,947 bp, which includes 431 bp upstream of the start codon, an 88 bp intron and 763 bp 

downstream of the stop codon, in addition to the open reading frame. Such high similarity may indicate 

that 5’, 3’ and intron sequences harbour conserved regulatory functions, or alternatively, that the gene 

duplications occurred relatively recently.  

 
Figure D.4. Syntenic relationships among four genomic regions containing M. guttatus KAI2c, S. 
asiatica KAI2c1 and KAI2c2, respectively. 
Genomic fragments of S. asiatica scaffold143 (20019-969482, containing KAI2c1) and S. asiatica 
scaffold15 (1596215-3032540, containing KAI2c2), M. guttatus scaffold8 (1786420-2787771, 
containing MgKAI2c1 and MgKAI2c2), M. guttatus scaffold12 (1214175-1498127, containing 
MgKAI2i) are compared with blastZ program in GEvo website. The regions showing similarities 
(score>3000) are connected with solid lines. Green and grey bars represent protein coding and intron 
sequences, respectively. Highly syntenic relationships are confirmed between M. guttatus scaffold8 and 
S. asiatica scaffold15. 
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Figure D.5. Syntenic relationship among genomic regions containing KAI2i in S, asiatica and 
scaffold 1 in M. guttatus. 
Genomic fragments of S. asiatica scaffold104 (287875-640765, containing KAI2i_2) and scaffold199 
(1354464-1606599, syntenic but not containing KAI2 related sequences) and syntenic M. guttatus 
region (Scffold1) are compared with blastZ program in GEvo website. The regions showing 
similarities (score>3000) are connected with solid lines. Green and red boxes represent protein-coding 
and KAI2 encoding sequences, respectively. 
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Figure D.6. Comparison of genomic regions of divergent KAI2d genes in the S. asiatica genome. 
Genomic regions containing 4 kbp up and downstream of 5 S. asiatica KAI2d genes are compared 
with each other with blastZ program in GEvo (score threshold 10000). High-scoring segment pairs 
(HSPs) are highlighted with various colors and connected with wedges.  
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E. S. hermonthica transcriptome 

E.1 RNA sequencing 

S. hermonthica seeds, seedlings and 1, 3 and 7 days after rice infection samples were harvested and 

subjected to RNA sequencing analysis. Illumina PE libraries were constructed for an insert size of 180 

bp and sequenced by Illumina HiSeq2000 sequencer. The read numbers are shown in Table E.1. The PE 

reads were quality trimmed and filtered, and the reads that have a PE structure after filtering were used 

for the assembly and mapping.  

 

Table E.1. Total sequence read number from each library of S. hermonthica RNAseq. Sequences 
mapped on rice sequences were shown in brackets. 

 
  Sequence read number (rice sequence number) 

Stages Library #1 Library #2 Library #3 
Seed 57,723,072  55,923,544  44,677,364  

Seedling 63,209,994  49,996,818  50,356,660  

1 d 12,053,490  71,482,012  64,136,650  
(2,054,386) (29,775,460) (15,680,526) 

3 d 22,427,084  58,984,488  61,172,636  
(3,806,778) (20,418,255) (18,056,724) 

7 d 58,477,954  66,170,692  62,925,914  
(8,866,956) (14,062,472) (8,022,996) 

Rice root (73,603,526) (50,425,126) (45,299,274) 
 

E.2 de novo assembly and annotation 

The filtered reads were mapped against rice (c.v. Nipponbare) cDNAs and genome (MSU Rice Genome 

Annotation Project ver. 7) using CLC Genomics Workbench (ver 5) with options of length 0.7 and 

similarity 0.98, and the sequences unmapped to both rice cDNA and genome were considered as S. 

hermonthica sequences (Table E.1). These unmapped sequences were de novo assembled in two rounds 

using CLC Genomics Workbench (ver. 5) (Figure E.1). In the first round, each library was assembled 

with the word size 24, and for the second round the resultant was assembled with the word size 64. The 

assembly was further assembled by CAP3[S123] program with option –o50 –p95 followed by clustering 

with CD-Hit-EST[S124] ver.4.5.4 (threshold 0.95). This procedure yielded 81,560 contigs. The 

assessment of the assembly quality is shown in Data S1K. The median contig length (N50) values is 

1.3 kb and is similar to the average insert length in the S. hermonthica full-length-enriched cDNA 

library[S32], suggesting a high quality of this cDNA assembly. Homologues for 81% of the Arabidopsis 

proteins were also covered in the assembly (tBLASTn threshold e value 1e-10), which is similar to the 
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S. hermonthica Sanger EST sequences[S32]. The assembly was annotated for gene ontology (GO) terms 

using Blast2GO[S125] software and the slim GO terms were assigned using map2slim script 

(http://search.cpan.org/~cmungall/go-perl/scripts/map2slim).  

 

E.4 Read mapping and calculation of expression values 

For sequence mapping, the S. hermonthica transcriptome assembly and rice cDNAs (MSU Rice 

Genome Annotation Project ver. 7) were concatenated and used for a reference sequence to be able to 

detect expression of both organisms. The filtered Illumina sequence reads were mapped on the 

concatenated sequences using bowtie2[S126] with the default setting. After this mapping step, read 

counts of S. hermonthica and rice were analysed separately. The S. hermonthica contigs having more 

than 10 counts of total mapped reads from sequences obtained from rice control samples were 

eliminated from the subsequent analysis to avoid the cross-mapping problem. The cDNAs with total 

mapped reads less than 40 were also removed as lowly expressed genes. After these filtering, 52,669 

contigs remained for calculation of expression values. The reads mapped to the S. hermonthica 

reference sequence were normalised with trimmed mean of M-value (TMM) method[S127] and 

normalised-FPKM (fragments per kilobase of exon per million fragments mapped) values were 

calculated using the RSEM program[S128] (Data S1L).  

81560 Contigs  

 seq by clc mapping 
Length=0.7, Similarity=0.98 

CAP3 -o 50 -p 0.95  

 

Seedling 3 d 7 d

CD-HIT-EST -c 0.95

Seed

assembly 1
word=24

1 d

assembly round 2
 word=64, no scaffolding

assembly 1
word=24

assembly 1
word=24

assembly 1
word=24

assembly 1
word=24

quality filtering fastq_quality_trimmer -l 60 -t 30  

Figure E.1.  S. hermonthica 
RNA-seq de novo assembly 
procedures. 
Each library was quality 
filtered by fastx toolkit and 
mapped on rice cDNA and 
genome sequences 
subsequently using CLC 
genomics workbench. Rice-
removed sequences were 
assembled using CLC 
genomics workbench de novo 
assembly function and the 
resultant sequences were 
assembled again with word 
size 64. After cap3 and CD-
HIT-EST clustering, the 
sequences shorter than 300 
bp were eliminated, 
resulting 81,560 contigs. 
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E.5 Gene clustering and detection of differentially expressed genes 

In order to investigate gene expression dynamics during parasite development of S. hermonthica, a 

principal component analysis (PCA) was performed using normalised FPKM values (Data S1L). The 

multiple dimensional scaling (MDS) plot shows that the three biological replicates of each stage 

samples do not a have big variation. In addition, the “seeds”, “seedling” and “1 d” samples, and “3 d” 

and “7 d” samples make distinct clusters, respectively, suggesting that the transcriptomic transitions 

occurs from seeds to seedlings, and 1 d to 3 d after infection (Figure E.2A). Principal component 1 

(PC1), representing a sequential gene expression pattern along parasite development, explained 32.0% 

of variation in our dataset (Figure E.2B). This suggests that a large part of expressed genes are regulated 

in a manner consistent with the development of the plant. PC2 explained 28.9% of variation in our 

dataset and represented the specific gene expression of “seedling” and “1 d” (Figure E.2B), which 

included shoot tissues whereas the other samples did not, reflecting the methodological effects of our 

sampling. Normalised FPKM values of S. hermonthica were used for a gene expression clustering 

method[S129]. After selecting genes in the upper 75% and 50% quartile of coefficient of variation for 

the expression across samples, scaled expression values within tissues were used to cluster these genes 

for a multilevel 3 x 4 hexagonal self-organising map (SOM)[S130]. One hundred training interactions 

were used during clustering, over which the alpha learning rate decreased from 0.0035 to 0.002. The 

final assignment of genes to winning units forms the basis of the gene clusters. The outcome of SOM 

clustering was visualised in PCA space where PC values were calculated based on gene expression 

across samples (R stats package, prcomp function). GO enrichment analysis of contigs detected in SOM 

was performed using the GOSeq Bioconductor package[S131](Data S1N).  
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Differentially expressed genes were detected by the DESeq package[S132] based on mapped read count 

data using scripts available in the Trinity software (r2012_10_05) with threshold fold change 4 times 

and p-value less than 0.001 (Data S1M). All vs all comparison resulted in 10,768 contigs were 

differentially regulated during S. hermonthica seed development and parasitism. MA plots visualise 

differentially expressed genes (Figure E.3). The most dynamic expression change occurs during 

germination, because comparison between pre-conditioned seeds and germinated seedlings show many 

significantly up and down-regulated genes, compared to those among other infection stages. During the 

infection processes hundreds of genes were differentially regulated. Compared to seedlings (which are 

before haustorium formation) the 1-d, 3-d and 7-d infection samples contain 375, 727 and 843 

upregulated genes and 91, 330 and 695 downregulated genes respectively. There were 111 common 

upregulated genes and 56 down-regulated genes across all infectious stages (Figure E.4). These numbers 

are lower than stage-specific genes; i.e. 7-d specifically up- and down-regulated genes are 459 and 405, 

respectively (Figure E.4). These results together with SOM mapping analysis (Figure 4), suggest the 

occurrence of dynamic changes of expressed gene sets occur during the stages of parasitism, which 

presumably reflects the developmental shift 

of the parasite from autotrophic to 

heterotrophic life cycles.   
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Figure E.3. Differential expression analysis of S. hermonthica RNA-seq. 

MAplot for comparison of the two indicted stages. M means log ratios and A indicates mean average 
scale. Red indicates contigs with more than 2 log2 fold changes with adjusted p value=<0.001 and blue 
dots indicate contigs with more than 2 log2 fold changes but p value>0.001. Grey dots indicate contigs 
with no expression changes. 
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Figure E.4. Differentially expressed genes during infection stages. 
Number of differentially expressed contigs compared to before infection (seedling) are shown as Venn 
diagrams. A, Upregulated genes. B, Downregulated genes. 

E.6 Stage-specific gene expression 

The RNA-seq analysis during S. hermonthica infection suggests that the status of the parasite 

dramatically changes during infection. Therefore, we aimed to identify marker genes expressed at the 

particular stages of Striga parasitism. To determine the stages of parasitism stages, the rates of xylem 

bridge formation between S. hermonthica and rice roots were analysed. Rice-parasitising S. 

hermonthica samples at 1, 3 and 7 days after host interaction were stained with Safranin-O following 

protocols previously published[S121] (Figure E.5). In addition, S. hermonthica samples were embedded 

in Technovit 7100 and were observed after cross sectioning and double staining with Safranin-O and 

Fastgreen[S121] (Figure E.5C-E). At 1 day after host interaction, S. hermonthica forms haustorium and 

invades rice roots, but no xylem differentiation between the host and the parasite was observed. This 

stage was defined as “early” stage. S. hermonthica starts forming a xylem bridge at 3 days after 

interaction. We often observed a construction of xylem bridge from both the host interaction site and 

from the parasite stele. However, only 5% of parasites were able to connect vasculatures at this time 

point (“middle” stage). At 7 days after infection, approx. 60% of parasites succeed to connect 

vasculatures and the development of hyaline body[S133] is evident in cross section. Therefore, we 

designated this stage as the “late” stage. To identify stage-specific gene markers, we have selected 30 

genes specifically expressed at infection stages and seed or seedlings, and performed RT-qPCR (Figure 

S2). To avoid cross amplification of host cDNAs, all primers were tested for “rice only” samples and 

no amplification was observed. We used constitutively expressing Cyclophilin encoding genes as an 

internal control. Each gene is expressed specifically at one or two stages, experimentally confirming 
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the RNA-seq data. These genes will subsequently be used as expression markers for assessing Striga 

parasitism.  

 
Figure E.5. Vascular connection and infection stages of S. hermonthica at 1, 3 and 7 days after host 
interaction. 
A. Xylem connection between S. hermonthica and host rice roots. Rice parasitising S. hermonthica were 
stained with Safranin-O at 1, 3 and 7 days after host interaction. At 3 d, xylems are elongated from the 
host interacting region and from parasite stele bidirectionally, but connection was not established. B. 
Rates of xylem bridge formation at 1, 3 and 7 days after rice interaction. The number of Striga seedling 
with complete xylem connection are counted after Safranin-O staining. n > 200 with more than 15 rice 
plants. C-E. The cross sections of S. hermonthica infected rice root stained by fast green and Safranin-
O at 1- (C), 3-(D) and 7-(E) day post infection. H, rice (cv. koshihikari); P, S. hermonthica; HB, hyaline 
body. Bar scale, 200 µm. 

 

E.7 Gene expression in nonhost interactions 

To further confirm that the expression of genes reflects the parasitism processes, we tested expression 

patterns of the above genes in nonhost interactions. We previously reported that L. japonicus is a 

nonhost for S. hermonthica and the infection stops at the cortical cell layers, and thus no vascular 

connection was observed in this interaction. On the other hand, Arabidopsis is also a nonhost but the 

vascular connection can be established in this interaction[S121] S. hermonthica was infected to L. 

japonicus and A. thaliana in a rhizotron chamber and 1-, 3- and 7-day samples were harvested. The S. 
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hermonthica seedlings treated with the haustorium-inducing chemical 2,6-dimethoxy-p-benzoquinone 

(DMBQ) (10 µM) for 2 days were also analysed. All the primers were tested to ensure that there was 

no amplification of L. japonicum or Arabidopsis root cDNAs. The early responsive genes were 

upregulated with DMBQ and with L. japonicum but genes that were induced after 3 days in rice 

interaction did not express in the interaction with L. japonicum (Figure 4D). In Arabidopsis interaction, 

the late marker genes were induced during similar times as in rice interactions, indicating that the 

expression of middle and late-stage genes are associated with stele penetration and haustorium 

development after vascular connection. 

 

E.8 Analyses of Carbohydrate-Active enzymes (CAZyme) 

Upon invasion into the host roots, the Striga haustorium must make its way through the root tissue until 

it can locate and join with the host xylems[S82]. Thus, it is likely that cell wall degrading/modifying 

enzymes are active in Striga invasion. To identify the cell wall-modifying enzymes from Striga spp., 

annotated proteins from the S. asiatica genome and the S. hermonthica transcriptome assembly were 

classified with carbohydrate-active enzyme (CAZy) database[S134] using dbCAN, a web-based 

annotation tool[S135]. In S. asiatica, 1223 predicted genes were assigned to at least one CAZyme 

classification with 1407 motifs including 350 glycoside hydrolases (GHs), 34 polysaccharide lyases 

(PLs), 486 glycosyltransferases (GTs), 222 carbohydrate esterases (CEs), 147 auxiliary activities (AAs), 

and 151 carbohydrate binding modules (CBMs) (Data S1Z). Using the same method, 1,533 and 1,609 

genes were assigned for at least one CAZyme classification in Arabidopsis and M. guttatus, respectively. 

Comparing each CAZyme class, none was found to be particularly over-represented in the S. asiatica 

genome (Data S1AA). Therefore, the acquisition of host invading function is probably not due to the 

duplication or acquisition of particular CAZymes. Next, proteins from the S. hermonthica transcriptome 

were classified with CAZyme motifs. In total 1,212 contigs were assigned at least one CAZyme motif 

and a total 1,292 of CAZyme motifs were found (Data S1O). Among them, 252 contigs were 

differentially regulated during the infection stages compared to the seedling stage. Clustering analysis 

showed that various CAZyme-encoding genes were expressed throughout the infection stages (Figure 

5A). CAZyme classification revealed that motifs assigned for AA and GH were upregulated at 3 and 7 

days after host interaction (Figure 5B, Figure E.6). The detailed numbers of significantly upregulated 

genes in each stage are listed in Data S1P. Plant cells form two types of cell walls, the primary and the 

secondary cell walls. In general, the primary cell walls are synthesised in growing cells and are 

composed dominantly of cellulose (15-40% dry weight), pectic polysaccharides (30-50%), and 

xyloglucans (20-30%)[S136]. In grass species, however, primary cell walls contain arabinoxylans and 
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mixed-linkage glucans[S136]. In contrast, the secondary cell walls are formed in growth-ceased mature 

cells and are laid down on the inside of the primary wall. The secondary wall is typically composed of 

cellulose (35%-45% dry weight in grasses, 45%-50% in dicots), xylans (35%-45% in grasses, 45%-50% 

in dicots) and lignin (35%-45% in grasses, 45%-50% in dicots), providing rigidity and strength to the 

plant cells[S137]. A third pectin-rich layer, called the middle lamella, is formed at cytokinesis, and it 

makes up the outer layer of the wall, cementing cells together[S138]. Among the GH families in S. 

hermonthica, 12 families (GH1, GH3, GH5, GH9, GH10, GH16, GH17, GH18, GH19, GH28, GH35 

and GH79) have at least 2 upregulated contigs during infection. The family containing the highest 

number of contigs is GH28 (Figure 5 and Figure E.6), a family encoding polygalacturonases that 

degrade pectin-derived polygalacturonan. Consistently, the carbohydrate esterase (CE) 8, which de-

methyl esterifies the pectin resulting in a polygalacturonase susceptible form, increases its expression 

preceding GH28 (Figure 5 and Figure E.6B).  

The top10 highly expressed contigs in each stage are from the auxiliary activities (AA) family. 

For example, AA2 and AA7 classes were highly expressed at 3 d and 7 d stages, respectively. The AA2 

class contains peroxidases, some of which function in lignin degradation[S139], but our phylogenetic 

analysis indicates that the highly expressed AA2 proteins are class III peroxidases (Figure E.7) that are 

involved in various biotic or abiotic stress responses and in developmental processes including 

lignification[S140].  
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Figure E.6. Expression patterns of upregulated CAZyme-encoding contigs. 
A. Top10 Highly expressed contigs classified into CAZyme class. The normalized FPKM values are 
shown. B. The charts showing expression patterns calculated from RNA-seq data. CE8, pectin 
methylesterase, GH28, polygalacturonase, GH35, b-galactosidase and GH79, b-glucuronidase, GH9, 
endo-1,3-b-glucanase, GH10, xylanase, AA2, peroxidase, and AA7, oligosaccharide oxidase family. 
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Figure E.7. Phylogenetic tree of AA2 family proteins. 
Phylogenetic tree of S. hermonthica AA2 family proteins. The AA2 family proteins are classified into 
two clades, class I and class III peroxidases. All upregulated S. hermonthica proteins belong to class 
III peroxidase. Upregulated contigs are highlighted with dots. 

 

E.9 Lateral root development genes 

Because of developmental and morphological similarities between haustorium of parasitic plants and 

lateral roots, we proposed a hypothesis that parasitic plants might have recruited a lateral root 

developmental program to form a haustorium. We determined S. hermonthica orthologues related to 

lateral root development in Arabidopsis from the literature[S141]. Out of the 24 lateral root 

developmental genes in Arabidopsis, we identified 17 orthologues in the S. hermonthica transcriptome, 

corresponding to 50 contigs (Data S1Q). The orthologous genes in S. asiatica genome were searched 

by InParanoid4.1[S142] and tBLASTn search and all genes were found. The expression of the 

orthologues of the lateral root related genes was confirmed by RT-qPCR in seedling, 3-d and 7-d post 

infection stages using SaRPS2 as an internal control (Figure S3). Similar to S. hermonthica RNA-seq 

results, the S. asiatica LRD genes were upregulated during host penetration stages.  

 

ClassIII peroxidase
ClassI peroxidase

Ascorbate peroxidase
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F. Horizontal gene transfer 

F.1 Horizontally-transferred genes 

For searching horizontally transferred genes in S. asiatica genome from grass host species, the S. 

asiatica annotation was subjected to BLASTp search with threshold e-value 1e-10 against a database 

of combined predicted proteins from the genome of 28 different plant species, including Striga host 

plants, rice, sorghum, foxtail millet and maize. The S. asiatica proteins that have at least one hit to grass 

species in their top 20 hits are selected, and modified Alien Index (AI) values[S143] were calculated as 

below formula. Modified AI = log((Best E-value for dicots) + 1e-200) - log((Best E-value for grasses) 

+ 1e-200). The genes that have modified AI>30 and genes that do not have dicot hit are selected for 

further analysis. Maximum-likelihood phylogenetic trees were drawn by RAxML program with blast 

hit homolog genes from 28-species database as well as non-redundant (nr) database. Manual 

investigation of phylogenetic trees found 34 positive HGT candidate genes, which can be assigned into 

20 orthogroups by orthoMCL analysis (Data S1R). These candidate genes are located in scaffolds with 

moderate coverage rates after mapping of the genome short reads, suggesting these genes are located in 

scaffold encoding nuclear genes (Data S1R). A few HGT candidates are closely located in the genome, 

and therefore the genomic regions were compared using CoGE with GEvo function. The gene 

scaffold555T52903, a homolog of the ShContig9483 gene which were previously reported as 

HGT[S144], and scaffold555T52910, homologue of Alanyl-tRNA synthetase (Figure 7) are located in 

30 kb region in the S. asiatica genome. The genomic region shows similarities to Panicum hallii 

chromosome 3, Setalia italica scaffold 3 and weak similarity to S. bicolor scaffold 3, suggesting that 

the conserved region among grass species were transferred into the parasite genome. The sequence 

similarities were observed in intron and untranslated regions, but not intergenic regions. It may suggest 

that transfer of gene-coding region or alternatively loss of conservation in intergenic region possibly 

due to selection pressures. Two other genomic regions are found to contain multiple HGT candidate 

genes (Figures F.1 and F.2). In addition, the genes similar to Pong transposon are frequently found as 

HGT genes, suggesting transposon transfer between host and parasites (Figure F.3).  
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Figure F.1. HGT of genomic region scaffold73  
A. Genomic comparison among S. asiatica scaffold 73, S. italica scaffold2 and 7, S. bicolor Chr2 and 
4 and P. hallii Chr2. Regions with similarity detected by BlastZ (score 10000<) are highlighted by 
colors. B. Phylogenetic trees of HGT genes in scaffold73. The nodes including HGT events are 
highlighted with yellow. 

A 

B 
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Figure F.2. Horizontal transfer of genomic region. 
A. Genomic comparison between S. asiatica scaffold115 and Z. mays Chr2. B. The phylogenetic tree 
of HGT genes on saffold115. 
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Figure F.3. HGT of a transposon family.  
Phylogenetic tree of transposons that are obtained from grass species, having similarity to Pong 
transposon. 
 

F.2 Horizontally transferred retrotransposons 

The LTR retrotransposons and their Gypsy and Copia superfamilies are ubiquitous in fungi, plants, and 

animals and therefore appear to predate their divergence ~1500 MYA[S145]. Given the effects of 

genetic isolation and the mutagenic nature of retrotransposon replication[S146–S148], cladistic analysis 

generally separates retrotransposon families along organismal species lines, consonant with the vertical 

passage of these elements from the last common ancestor. When inter-species trees of retrotransposons 

contain branches in a phylogenetically inconsistent position, the horizontal transfer of an ancestral 
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element from one phylogenetic branch to another is often posited. Horizontal transfers of plant 

retrotransposons have been suggested in several specific cases13, 135–138, but elsewhere the evidence has 

been equivocal[S153]. 

We carried out exhaustive alignments and phylogenetic analyses of reverse transcriptase (rt) 

domains, including 35,690 from Copia and 54,973 from Gypsy elements, retrieved from the genome 

sequences of S. asiatica and those of the monocots Sorghum bicolor, Zea mays, Oryza sativa ssp. 

japonica and ssp. indica, O. rufipogon, and O. glaberrima and the eudicots Glycine max, S. tuberosum, 

and Vitis vinifera. The rt sequences from the Copia and Gypsy superfamilies were analysed separately, 

producing 221 and 151 clusters respectively, of which 12 and 3 contained S. asiatica rt sequences mixed 

with those of other genomes. The rt domains of candidate elements were further characterised by 

exonerate-search[S154] using known rt sequences from GypsyDB[S155]. Resulting rt fragments were 

clustered by homology search against each other (BLASTn -evalue 1e-20) and subsequently clustered 

by silix-software142 (silix -i 0.60 -r 0.70). The resulting clusters were aligned with the clustal-omega143 

and prank-ms144 multiple aligners. Phylogenetic trees were constructed by FastTree (fasttree –nt –gtr –

gamma)[S156]. Ages of LTR retrotransposons containing both LTRs were made as previously[S157]; 

a clock of 1.3 x 10-8 changes nt-1 year-1 was used. 

As alternatives to horizontal transfer, incomplete sampling or spotty evolutionary retention of 

retrotransposon groups can be invoked[S153]; in both cases, ancient, conserved, and widespread 

lineages that passed vertically could appear to be phylogenetically disjunct single representatives. 

However, regarding sampling, rt sequences are fairly easy to identify and are well represented in plant 

genome assemblies. Given the high number of rt sequences sampled, clustered, and aligned, both spotty 

retention and unusually high conservation for the several cases of apparent horizontal transfer would be 

needed to discount the examples given. Interestingly, these and previously reported horizontal transfers 

all involve elements of the superfamily Copia (Figure 7E, Figure S4). One possible explanation is that 

extant Gypsy elements, as reported here for S. asiatica, are older than those of Copia; Gypsy transfers 

may therefore have been lost from the genome already. 
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