84 research outputs found

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Evaluation of an Immunochromatographic Test for Rapid and Reliable Serodiagnosis of Human Tularemia and Detection of Francisella tularensis-Specific Antibodies in Sera from Different Mammalian Species ▿

    No full text
    Tularemia is a highly contagious infectious zoonosis caused by the bacterial agent Francisella tularensis. Serology is still considered to be a cornerstone in tularemia diagnosis due to the low sensitivity of bacterial culture and the lack of standardization in PCR methodology for the direct identification of the pathogen. We developed a novel immunochromatographic test (ICT) to efficiently detect F. tularensis-specific antibodies in sera from humans and other mammalian species (nonhuman primate, pig, and rabbit). This new tool requires none or minimal laboratory equipment, and the results are obtained within 15 min. When compared to the method of microagglutination, which was shown to be more specific than the enzyme-linked immunosorbent assay, the ICT had a sensitivity of 98.3% (58 positive sera were tested) and a specificity of 96.5% (58 negative sera were tested) on human sera. On animal sera, the overall sensitivity was 100% (22 positive sera were tested) and specificity was also 100% (70 negative sera were tested). This rapid test preferentially detects IgG antibodies that may occur early in the course of human tularemia, but further evaluation with human sera is important to prove that the ICT can be a valuable field test to support a presumptive diagnosis of tularemia. The ICT can also be a useful tool to monitor successful vaccination with subunit vaccines or live vaccine strains containing lipopolysaccharide (e.g., LVS) and to detect seropositive individuals or animals in outbreak situations or in the context of epidemiologic surveillance programs in areas of endemicity as recently recommended by the World Health Organization
    corecore