15 research outputs found

    Detecting the Psychosis Prodrome Across High-Risk Populations Using Neuroanatomical Biomarkers

    Get PDF
    To date, the MRI-based individualized prediction of psychosis has only been demonstrated in single-site studies. It remains unclear if MRI biomarkers generalize across different centers and MR scanners and represent accurate surrogates of the risk for developing this devastating illness. Therefore, we assessed whether a MRI-based prediction system identified patients with a later disease transition among 73 clinically defined high-risk persons recruited at two different early recognition centers. Prognostic performance was measured using cross-validation, independent test validation, and Kaplan-Meier survival analysis. Transition outcomes were correctly predicted in 80% of test cases (sensitivity: 76%, specificity: 85%, positive likelihood ratio: 5.1). Thus, given a 54-month transition risk of 45% across both centers, MRI-based predictors provided a 36%-increase of prognostic certainty. After stratifying individuals into low-, intermediate-, and high-risk groups using the predictor's decision score, the high- vs low-risk groups had median psychosis-free survival times of 5 vs 51 months and transition rates of 88% vs 8%. The predictor's decision function involved gray matter volume alterations in prefrontal, perisylvian, and subcortical structures. Our results support the existence of a cross-center neuroanatomical signature of emerging psychosis enabling individualized risk staging across different high-risk populations. Supplementary results revealed that (1) potentially confounding between-site differences were effectively mitigated using statistical correction methods, and (2) the detection of the prodromal signature considerably depended on the available sample sizes. These observations pave the way for future multicenter studies, which may ultimately facilitate the neurobiological refinement of risk criteria and personalized preventive therapies based on individualized risk profiling tool

    Cognitive subtypes in recent onset psychosis: distinct neurobiological fingerprints?

    Get PDF
    In schizophrenia, neurocognitive subtypes can be distinguished based on cognitive performance and they are associated with neuroanatomical alterations. We investigated the existence of cognitive subtypes in shortly medicated recent onset psychosis patients, their underlying gray matter volume patterns and clinical characteristics. We used a K-means algorithm to cluster 108 psychosis patients from the multi-site EU PRONIA (Prognostic tools for early psychosis management) study based on cognitive performance and validated the solution independently (N = 53). Cognitive subgroups and healthy controls (HC; n = 195) were classified based on gray matter volume (GMV) using Support Vector Machine classification. A cognitively spared (N = 67) and impaired (N = 41) subgroup were revealed and partially independently validated (N-spared = 40, N-impaired = 13). Impaired patients showed significantly increased negative symptomatology (p(fdr) = 0.003), reduced cognitive performance (p(fdr) < 0.001) and general functioning (p(fdr) < 0.035) in comparison to spared patients. Neurocognitive deficits of the impaired subgroup persist in both discovery and validation sample across several domains, including verbal memory and processing speed. A GMV pattern (balanced accuracy = 60.1%, p = 0.01) separating impaired patients from HC revealed increases and decreases across several fronto-temporal-parietal brain areas, including basal ganglia and cerebellum. Cognitive and functional disturbances alongside brain morphological changes in the impaired subgroup are consistent with a neurodevelopmental origin of psychosis. Our findings emphasize the relevance of tailored intervention early in the course of psychosis for patients suffering from the likely stronger neurodevelopmental character of the disease

    Traces of trauma – a multivariate pattern analysis of childhood trauma, brain structure and clinical phenotypes

    Get PDF
    Background: Childhood trauma (CT) is a major yet elusive psychiatric risk factor, whose multidimensional conceptualization and heterogeneous effects on brain morphology might demand advanced mathematical modeling. Therefore, we present an unsupervised machine learning approach to characterize the clinical and neuroanatomical complexity of CT in a larger, transdiagnostic context. Methods: We used a multicenter European cohort of 1076 female and male individuals (discovery: n = 649; replication: n = 427) comprising young, minimally medicated patients with clinical high-risk states for psychosis; patients with recent-onset depression or psychosis; and healthy volunteers. We employed multivariate sparse partial least squares analysis to detect parsimonious associations between combinations of items from the Childhood Trauma Questionnaire and gray matter volume and tested their generalizability via nested cross-validation as well as via external validation. We investigated the associations of these CT signatures with state (functioning, depressivity, quality of life), trait (personality), and sociodemographic levels. Results: We discovered signatures of age-dependent sexual abuse and sex-dependent physical and sexual abuse, as well as emotional trauma, which projected onto gray matter volume patterns in prefronto-cerebellar, limbic, and sensory networks. These signatures were associated with predominantly impaired clinical state- and trait-level phenotypes, while pointing toward an interaction between sexual abuse, age, urbanicity, and education. We validated the clinical profiles for all three CT signatures in the replication sample. Conclusions: Our results suggest distinct multilayered associations between partially age- and sex-dependent patterns of CT, distributed neuroanatomical networks, and clinical profiles. Hence, our study highlights how machine learning approaches can shape future, more fine-grained CT research

    Sensory and Striatal areas integrate auditory and visual signals into behavioral benefits during motion discrimination

    No full text
    For effective interactions with our dynamic environment, it is critical for the brain to integrate motion information from the visual and auditory senses. Combining fMRI and psychophysics, this study investigated how the human brain integrates auditory and visual motion into benefits in motion discrimination. Subjects discriminated the motion direction of audiovisual stimuli that contained directional motion signal in the auditory, visual, audiovisual, or no modality at two levels of signal reliability. Therefore, this 2 × 2 × 2 factorial design manipulated: (1) auditory motion information (signal vs noise), (2) visual motion information (signal vs noise), and (3) reliability of motion signal (intact vs degraded). Behaviorally, subjects benefited significantly from audiovisual integration primarily for degraded auditory and visual motion signals while obtaining near ceiling performance for “unisensory” signals when these were reliable and intact. At the neural level, we show audiovisual motion integration bilaterally in the visual motion areas hMT+/V5+ and implicate the posterior superior temporal gyrus/planum temporale in auditory motion processing. Moreover, we show that the putamen integrates audiovisual signals into more accurate motion discrimination responses. Our results suggest audiovisual integration processes at both the sensory and response selection levels. In all of these regions, the operational profile of audiovisual integration followed the principle of inverse effectiveness, in which audiovisual response suppression for intact stimuli turns into response enhancements for degraded stimuli. This response profile parallels behavioral indices of audiovisual integration, in which subjects benefit significantly from audiovisual integration only for the degraded conditions

    Detecting the psychosis prodrome across high-risk populations using neuroanatomical biomarkers

    No full text
    To date, the MRI-based individualized prediction of psychosis has only been demonstrated in single-site studies. It remains unclear if MRI biomarkers generalize across different centers and MR scanners and represent accurate surrogates of the risk for developing this devastating illness. Therefore, we assessed whether a MRI-based prediction system identified patients with a later disease transition among 73 clinically defined high-risk persons recruited at two different early recognition centers. Prognostic performance was measured using cross-validation, independent test validation, and Kaplan-Meier survival analysis. Transition outcomes were correctly predicted in 80% of test cases (sensitivity: 76%, specificity: 85%, positive likelihood ratio: 5.1). Thus, given a 54-month transition risk of 45% across both centers, MRI-based predictors provided a 36%-increase of prognostic certainty. After stratifying individuals into low-, intermediate-, and high-risk groups using the predictor's decision score, the high- vs low-risk groups had median psychosis-free survival times of 5 vs 51 months and transition rates of 88% vs 8%. The predictor's decision function involved gray matter volume alterations in prefrontal, perisylvian, and subcortical structures. Our results support the existence of a cross-center neuroanatomical signature of emerging psychosis enabling individualized risk staging across different high-risk populations. Supplementary results revealed that (1) potentially confounding between-site differences were effectively mitigated using statistical correction methods, and (2) the detection of the prodromal signature considerably depended on the available sample sizes. These observations pave the way for future multicenter studies, which may ultimately facilitate the neurobiological refinement of risk criteria and personalized preventive therapies based on individualized risk profiling tools
    corecore