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To date, the MrI-based individualized prediction of psy-
chosis has only been demonstrated in single-site studies. It 
remains unclear if MrI biomarkers generalize across dif-
ferent centers and Mr scanners and represent accurate sur-
rogates of the risk for developing this devastating illness. 
Therefore, we assessed whether a MrI-based prediction 
system identified patients with a later disease transition 
among 73 clinically defined high-risk persons recruited at 
two different early recognition centers. Prognostic per-
formance was measured using cross-validation, indepen-
dent test validation, and Kaplan-Meier survival analysis. 
Transition outcomes were correctly predicted in 80% of 
test cases (sensitivity: 76%, specificity: 85%, positive likeli-
hood ratio: 5.1). Thus, given a 54-month transition risk of 
45% across both centers, MrI-based predictors provided 
a 36%-increase of prognostic certainty. After stratifying 
individuals into low-, intermediate-, and high-risk groups 
using the predictor’s decision score, the high- vs low-risk 
groups had median psychosis-free survival times of 5 vs 
51 months and transition rates of 88% vs 8%. The predic-
tor’s decision function involved gray matter volume altera-
tions in prefrontal, perisylvian, and subcortical structures. 
Our results support the existence of a cross-center neu-
roanatomical signature of emerging psychosis enabling 
individualized risk staging across different high-risk pop-
ulations. Supplementary results revealed that (1) poten-
tially confounding between-site differences were effectively 
mitigated using statistical correction methods, and (2) the 
detection of the prodromal signature considerably depended 
on the available sample sizes. These observations pave the 
way for future multicenter studies, which may ultimately 
facilitate the neurobiological refinement of risk criteria 
and personalized preventive therapies based on individual-
ized risk profiling tools.

Key words: neuroanatomical biomarker/individualized 
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Introduction

Two decades of early recognition research revealed 
that patterns of subtle prodromal symptoms allow per-
sons with at-risk mental states (ARMS) for psychoses 
to be reliably identified using clinical high-risk criteria. 
Compared to the general population, these persons have 
a 100-fold higher risk for developing these devastating 
mental illnesses. However, relying solely on these symp-
toms leads to a correct 24-month disease prediction in 
only 29%1 of cases and a 10-year transition likelihood 
between 35%2 and 49%.3 Therefore, tailoring preven-
tive treatment to each individual’s risk while minimizing 
harmful medication effects requires these rates to be con-
siderably improved using valid and accessible prognostic 
markers.

An array of candidate biomarkers has been recently 
identified, suggesting that the ARMS is associated with 
alterations of neurocognitive performance4 and brain 
abnormalities at the neuroanatomical,5 functional,6–8 and 
chemical9,10 levels. Overall, these alterations seem to be 
similar to, but less severe than those in the established dis-
ease.11 More specifically, structural imaging studies com-
paring ARMS individuals with a subsequent full-blown 
illness (ARMS-T) to those without a later disease tran-
sition (ARMS-NT) showed reduced gray matter (GM) 
in prefrontal, temporal, cingulate, insular, and subcorti-
cal brain structures in the former vs the latter group.12 
However, most of these structural differences—albeit sig-
nificant at the group level—have so far failed to produce 
clinically viable markers of the psychosis prodrome.
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The gap between this research and its desired clinical 
application may originate from current study designs and 
univariate analysis methods: (1) vulnerability for reporting 
bias due to the small-sample problem inherent in mono-
centric high-risk research,13 (2) decomposition of com-
plex psychosis-related brain patterns into single voxels or 
clusters,14 and hence (3) severe limitations in tracing these 
patterns in individuals as these univariate projections are 
quantified in terms of group-level statistical significance. 
Unfortunately, significance is largely useless for guiding 
the diagnostic process because a biomarker’s applicability 
rather depends on its sensitivity and specificity, which mea-
sure its predictive performance at the single-subject level.15

In contrast, multivariate pattern recognition methods, 
such as support vector machines (SVM),16 have recently 
emerged as promising tools for the individualized diag-
nosis of various neuropsychiatric conditions17,18 based on 
their capacity to “learn” the innate interregional depen-
dencies of distributed brain pathologies from training 
data and generalize the learned discriminative rules to 
new, unseen patients.19 Thus, these methods may promote 
an objective way to increase prognostic certainty to levels 
required for individualized prevention, as shown by our 
previous work in two independent ARMS samples from 
Munich and Basel.20,21

Although these initial results support the utility of 
neuroimaging in predicting psychosis, tough replica-
tion and verification of these initial candidate markers 
is needed according to current biomarker development 
regulations.22 A crucial validation step within this trans-
lational process is the demonstration of individualized 
disease prediction based on a single neuroanatomical 
signature evidenced across independent ARMS cohorts. 
The identification of such a cross-center signature is chal-
lenged by the clinical, neurobiological, and MRI-related 
heterogeneity of current small-sample ARMS cohorts. 
Hence, our previous findings potentially resulted from an 
accidentally good separability of our single-center study 
populations.20,21

This study is to our knowledge the first and to date 
largest study on the MRI-based cross-center predic-
tion of psychosis. We hypothesized that the underly-
ing biomarker would consist of a pattern of prefrontal, 
temporal, and subcortical brain alterations enabling 
the classification of true vs false prodromal individuals 
across independent ARMS populations. Furthermore, 
we expected the “neuroanatomical risk” computed from 
an ARMS person’s loading on this signature to be closely 
related to their psychosis risk, as measured in terms of 
psychosis-free survival time.

Materials and Methods

Participants

We examined a pooled database of 73 ARMS 
individuals, who were previously enrolled into 

prospective, naturalistic studies conducted independently 
at the Early Recognition Services of the Department 
of Psychiatry and Psychotherapy (“Früherkennungs- 
und Therapiezentrum,” FETZ), Ludwig-Maximilian-
University, Munich, Germany, and the Department of 
Psychiatry (“Früherkennung von Psychosen,” FePsy), 
University of Basel, Switzerland. Detailed study descrip-
tions were given in earlier work.21,23 In summary, both 
sites employed clinical ultra-high-risk criteria closely cor-
responding to the well-established Personal Assessment 
and Crisis Evaluation (PACE) definitions.15–17 At the 
FETZ, cognitive-perceptual basic symptoms additionally 
defined psychosis risk:3 Hence, ARMS inclusion required 
(a) basic symptoms (FETZ), and/or (b) Attenuated 
Positive Symptoms (FETZ and FePsy), and/or (c) Brief  
Limited Intermittent Psychotic Symptoms (FETZ and 
FePsy) fulfilling specific time criteria, or (d) Decline in 
global functioning combined with risk-conferring traits 
as defined by each center’s intake criteria (Supplementary 
Methods). Additionally, prodromal symptoms were 
assessed with the Brief  Psychiatric Rating Scale (BPRS) 
and Scale for the Assessment of Negative Symptoms 
(SANS; Basel) and with the Positive and Negative 
Symptoms Scale (PANSS; Munich).

Exclusion criteria were age < 18  years, insufficient 
knowledge of German, IQ < 70, previously diagnosed 
psychotic disorders or transient psychotic episodes meet-
ing transition criteria (see below), a diagnosed brain 
disease or substance dependency (except for cannabis 
in FePsy), previous head traumas, neurological, serious 
medical or surgical illnesses, or lifetime diagnoses of psy-
chotic or borderline personality disorders as assessed by 
an experienced psychiatrist in detailed clinical interviews. 
Prior to study inclusion, only 4 out of 73 ARMS individ-
uals had received low doses of atypical antipsychotics for 
behavioral control by the referring psychiatrist or general 
practitioner (3 participants olanzapine, 1 risperidone), all 
for less than 3 weeks.

All subjects were regularly followed over 4 years and 
were offered supportive counseling and clinical manage-
ment. At both centers, transition criteria were monitored 
monthly in the first year and quarterly thereafter using 
BPRS/PANSS severity thresholds closely correspond-
ing to refs.24,25: hallucinations scores ≥4 on the respec-
tive BPRS or PANSS item; OR scores ≥5 on the unusual 
though content or suspiciousness (BPRS)/delusions 
(PANSS) item, or on the conceptual disorganization 
item of either scale. Symptoms had to occur daily and 
persist for >1 week to be deemed a transition to frank 
psychosis. Using these criteria, the ARMS group was 
subdivided into 40 nontransitions (ARMS-NT) and 
33 transitions (ARMS-T, transition rate: 45.2%; 95%-
CI: 33.5%–56.9%). The mean (median; SD) follow-up 
period in the ARMS-NT group was 4.3 years (4.4; 1.5). 
In both centers, a diagnosis of first-episode psycho-
sis was corroborated 1 year after transition using the 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu078/-/DC1
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Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition (DSM-IV) criteria in Munich and the 
OPCRIT (Operational Criteria Checklist for Psychotic 
and Affective Illness)26 in Basel. Diagnostic criteria for 
schizophrenia/schizoaffective disorder were met by 22/5 
transitions. OPRCRIT diagnoses were unavailable for 
6 ARMS-T subjects, which could not be contacted. To 
build the MRI predictor, we selected 33 ARMS-NT indi-
viduals to match the ARMS-T group with respect to 
age, gender, and education years (table  1). The data of 
the remaining 7 subjects were used to further validate the 
MRI predictor after training and cross-validation.

All aspects of the study were reviewed and approved by 
the local ethics committees of both universities. Written 
informed consent was obtained from each participant 
before study inclusion.

MRI Data Acquisition and Preprocessing

MRI data acquisition and preprocessing were described 
in previous work21,27,28 and are also detailed in the 
Supplementary Methods. All images were first carefully 
checked for MRI scanner artifacts and gross anatomi-
cal abnormalities by trained clinical neuroradiologists 
and then processed using the VBM8 toolbox (http://
dbm.neuro.uni-jena.de/vbm8/). This preprocessing pro-
duced modulated and normalized GM segments, which 
were smoothed with a 4 mm full-width-at-half-maximum 
Gaussian kernel prior to the subsequent analysis steps.

Multivariate Pattern Classification Analysis

We used our pattern recognition tool NeuroMiner to 
implement a fully automated machine learning pipe-
line, which (1) constructed sets of predictive neuroana-
tomical features from high-dimensional GM maps, and 
(2) learned decision rules from these features to predict 
psychosis at the single-subject level. To strictly separate 
the training process from the evaluation of the predic-
tor’s generalization capacity, the pipeline was completely 
embedded into a repeated, double cross-validation frame-
work29 (rdCV). As described previously,27 rdCV computes 
an unbiased estimate of the method’s expected diagnos-
tic accuracy on new cases, rather than merely fitting the 
current study population. Furthermore, rdCV produces 
predictor ensembles that optimally separate single indi-
viduals from different groups, while avoiding overfitting 
to the peculiarities of the training data.

More specifically, the following analysis steps were 
wrapped into a Leave-One-Per-Group-Out cross-valida-
tion cycle at the outer (CV2) and the inner (CV1) cycles of 
rdCV: each training sample’s GM tissue maps were ini-
tially corrected for center effects using partial correlation 
analysis and scaled voxel-wise to the range [0,1]. These 
maps entered a multivariate local linear learning algo-
rithm30 that weighted voxels according to the geometric 
distance (“margin”) they conjointly induced between 

the ARMS-NT and ARMS-T classes. The algorithm’s 
parameters were a priori set to σ  =  2 and λ  =  0.5 to 
extract sparse, nonredundant voxel sets from the data. To 
further reduce feature dimensionality, subsets of corre-
lated voxels within the extracted patterns were projected 
to uncorrelated principal components (PC) using Robust 
Principal Component Analysis.31 These PC features 
entered a linear ν-SVM algorithm (LIBSVM, (http://
www.csie.ntu.edu.tw/~cjlin/libsvm/) that determined the 
optimal between-group boundary by maximizing the 
margin between the neuroanatomically most similar 
subjects of opposite groups (the “support vectors”).32 
Optimal PC number and ν parameters were determined 
for each training sample within the inner rdCV cycle.

Finally, unseen CV1 and CV2 test subjects were pro-
cessed by successively applying all training parameters to 
the test data: adjustment for center effects (partial corre-
lations), voxel-wise scaling and weighting, dimensional-
ity reduction, and linear kernel projection. Within kernel 
space, the SVM classifier determined a test subject’s geo-
metric position relative to the learned decision boundary, 
resulting in a decision value and a group membership 
prediction. This analysis sequence was repeated for each 
CV1 training partition in a given CV2 training fold, thus 
generating an ensemble classifier which computed a CV2 
test subject’s group membership by averaging the deci-
sion scores of its SVM base learners (Supplementary 
Methods). Finally, for each subject, ensemble decisions 
were aggregated across those partitions, in which this 
subject had not been involved in the training process. 
Majority voting was used to determine the test subject’s 
class probability, and thus its final out-of-training (OOT) 
group membership. Moreover, we applied the trained pre-
diction system to the MRI data of the 7 ARMS-NT indi-
viduals, who were initially removed from the database. 
The predictive signature was visualized by computing 
the average voxel probability map across the entire rdCV 
structure as described in refs.20,27 (figure  1). Moreover, 
a parcellation analysis (table  3) measured the distribu-
tion of reliably predictive voxels across the 116 brain 
regions of the AAL template (Automated Anatomical 
Labeling).33,34

Two additional analyses were carried out using the 
same parameter setup as described above (Supplementary 
Results): In Supplementary Analysis 1 we quantified 
the strength of between-center effects comprising MRI 
and population-related differences, as well as the capac-
ity of our correction method to mitigate these effects. 
Supplementary Analysis 2 measured how an ARMS-T 
sample size reduction in two-, four-, and six-out experi-
ments affected OOT predictions and generalization to the 
independent test sample, extended by the left-out subjects.

Finally, a Kaplan-Meier survival analysis was performed 
in the entire ARMS population to assess the time dependency 
of transition with respect to neuroanatomical risk as defined 
by the subjects’ decision scores. Therefore, the cohort’s 

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu078/-/DC1
http://dbm.neuro.uni-jena.de/vbm8/
http://dbm.neuro.uni-jena.de/vbm8/
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decision values were split into 33%-quantiles that assigned 
subjects to “low,” “intermediate,” and “high-risk” levels. 
Median survival times, transition rates, and recruitment 

center compositions were compared between risk levels using 
median and chi-square tests. Pairwise differences between 
survival functions were evaluated using log-rank tests.

Fig. 1. Voxel probability map of reliable contributions to the ARMS-NT vs ARMS-T decision boundary. Voxels with a probability of 
>50% were overlaid on the single subject Montreal Neurological Institute template using the MRIcron software package (http://www.
sph.sc.edu/comd/rorden/mricron/). ARMS, at-risk mental states.

http://www.sph.sc.edu/comd/rorden/mricron/
http://www.sph.sc.edu/comd/rorden/mricron/
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results

Sociodemographic and Clinical Findings

No significant center effects were found between the Basel 
and Munich samples regarding transition rates (Basel: 
43.2%, Munich: 47.2%) and MRI-to-psychosis intervals 
(table  1). Furthermore no center × group effects were 
found for age, sex, handedness, educational level, verbal 
IQ, family history of psychosis in first-degree relatives. 
Within each center, ARMS-T and ARMS-NT groups did 
not differ in these parameters, as well as regarding pro-
dromal and depressive symptoms (table 1).

SVM Classification Analysis

In the pooled dataset (N = 66) the MRI predictor correctly 
classified ARMS-T and ARMS-NT individuals with an 

OOT accuracy of 80.3% (sensitivity  =  75.8% / specific-
ity = 84.8%, table 2). Only 1 of 7 independent ARMS-NT 
persons was wrongly labeled as ARMS-T (specific-
ity = 85.7%, false positive rate = 14.3%). Thus, the general-
ization performance in the entire database (N = 73) attained 
a balanced accuracy of 80.4% (75.8% / 85%). Given a 
pretest disease probability of 45.2%, the positive / nega-
tive likelihood ratios of 5.1 / 0.29 indicate that an ARMS 
person with a positive / negative MRI finding would have 
an posttest probability of 81% / 19% for developing psy-
chosis. The MRI predictor’s diagnostic odds ratio in the 
entire database measured 17.7. Finally, the Kaplan-Meier 
analysis (figure 2, table 3) detected a nonlinear accumula-
tion of risk in the upper 33%-quantile of the neuroana-
tomical decision scores. This risk accumulation consisted 
of a nonlinear survival time decrease and transition rate 
increase from the low- to the high-risk groups: high-risk 

Fig. 2. (Left) Comparison of Kaplan-Meier survival curves in ARMS individuals with a low, intermediate, and high neuroanatomical 
risk level. Vertical lines indicate censoring events, while steps represent transition events in the ARMS population over the follow-up 
period. (Right) Box plot analysis of psychosis-free survival times across these three neuroanatomical risk levels. ARMS, at-risk mental 
states.

Table 2. Prediction Performance

Dataset TP TN FP FN Sens [%] Spec [%] BAC [%] FPR [%] PPV [%] NPV [%] LR+ LR− DOR Pre Post

Pooled 25 28 5 8 75.8 84.8 80.3 15.2 83.3 77.8 5.00 0.29 17.3
Basel 11 13 3 5 68.8 81.3 75.0 18.8 78.6 72.2 3.67 0.38 9.5
Munich 14 15 2 3 82.4 88.2 85.3 11.8 87.5 83.3 7.00 0.20 35
Test 0 6 1 0 85.7 14.3 100.0
Overall 25 34 6 8 75.8 85.0 80.4 15.0 80.6 81.0 5.05 0.29 17.7 45.2 81.0

Note: The performance of the MRI prediction system was evaluated by means of sensitivity (Sens), specificity (Spec), balanced accuracy 
(BAC), false positive rate (FPR), positive / negative predictive value (PPV/NPV) as well as positive/negative likelihood and diagnostic 
odds ratio (LR+/LR−, DOR). These measures were calculated from the confusion matrix containing the number of true positives (TP), 
false negatives (FN), true negatives (TN), and false positives (FP). Furthermore, the posttest probability of developing psychosis (Post) 
after having a positive MRI testing was computed based on LR+ and the pretest probability (=transition rate).
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ARMS had a transition rate of 87.5% and a median transi-
tion time of 147 days, whereas the respective values in the 
low-risk/intermediate-risk groups were 8.3%/37.5% and 
1514 / 1456 days. Of the 8 (24.2%) misclassified ARMS-T 
subjects, 5 (63%)/3 (38%) were assigned to the intermedi-
ate-risk / low-risk groups. Risk groups did not significantly 
differ in their center composition (table 3).

The neuroanatomical decision function (figure  1) 
involved bilaterally reduced GM volume (−10%) in the 
prefrontal cortices of ARMS-T vs ARMS-NT subjects 
(table  4), covering the dorsomedial, ventromedial, and 
orbitofrontal areas and extending to the cingulate and 
right intra- and perisylvian structures (inferior fron-
tal gyrus, Rolandic operculum, insula, temporal pole). 
Further subcortical GM reductions were detected in the 
right basal ganglia (11.3%), the vermal lobule 10 and the 
cerebellar lobules 7b, 8, Crus 1 and 2 (table 4). In con-
trast, increased GM volume in ARMS-T was found in (1) 
most right-hemispheric perisylvian and temporal struc-
tures (supramarginal, inferior parietal, angular cortex), 
and (2) subcortical structures including the right palli-
dum, the vermal lobules 6–9 and the cerebellar lobules 4, 
5, 6, 9, and 10.

Discussion

This is, to the best of our knowledge, the first multicenter 
study aiming at identifying a single neuroanatomical sur-
rogate of the psychosis prodrome across two independent 
high-risk cohorts. Our study extends previous single-
center investigations20,21,27,35 by pooling two independents 
high-risk cohorts recruited using different clinical high-
risk criteria and examined by means of different MRI 
protocols. In summary, our main results suggest that the 
neuroanatomical signature of the prodrome may serve as 
an accurate biomarker to individually predict a high-risk 
person’s clinical outcome in the early course of psycho-
sis—in line with other neuropsychiatric conditions36–39 

and irrespective of between-site differences. Our supple-
mentary analyses indicate that these differences can be 
effectively attenuated using post hoc statistical correc-
tion methods (Supplementary Analysis 1). Furthermore, 
we observed that prediction performance considerably 
depended on the available sample size (Supplementary 
Analysis 2), suggesting that the predictor’s sensitivity and 
specificity will likely saturate in even larger training pop-
ulations, as currently recruited across different interna-
tional multicenter ARMS projects. Finally, we observed 
that this potential biomarker did not only predict a per-
son’s disease transition risk but also the time to transi-
tion. Both variables are of imminent importance for the 
staging of  individual risk40 and thus to the selection of 
optimal therapeutic interventions in the high-risk or pro-
dromal phases of psychotic disorders.41

Neuroanatomy of Prodromal Psychosis

The visual analysis of the neuroanatomical predic-
tor revealed GM volume reductions in ARMS-T vs 
ARMS-NT individuals covering prefrontal, cingulate, 
striatal, and cerebellar brain structures. Recent primate 
and large-scale human imaging studies suggest that these 
areas constitute prefronto-striato-cerebellar networks, 
which may subserve higher-order cognitive processes42,43 
and hence may underlie executive, reward-related, and 
mnemonic deficits in prodromal and established psycho-
sis.44–47 These findings overlap considerably with previous 
studies reporting GM volume reductions in the pre-
frontal, cingulate, perisylvian, and cerebellar cortices of 
genetic and clinical high-risk samples.48 Furthermore, our 
results are in keeping with a series of neuroimaging stud-
ies that detected functional alterations of these networks 
in the ARMS, consisting of pathological associations 
between elevated striatal dopamine function and prefron-
tal activation during working memory and verbal fluency 
tasks.10,48–50 These neurofunctional alterations seem to be 

Table 3. Results of Kaplan-Meier Survival Analysis for Neuroanatomical Low-, Intermediate- and High-Risk Groups

Variable Low Risk Intermediate Risk High Risk χ2 (P)

Psychosis-free survival time:  
median (95% CI; range) [mo]

50.5 (37.4–54.0; 75.3) 48.5 (26.9–49.7; 85.1) 4.9 (6.2–24.3; 75.6) 17.33 (<.001)

Transition rate (95% CI) [%] 8.3 (3.3–30.8) 37.5 (21.1–57.4) 87.5 (68.2–97.3) 29.04 (<.001)
Pairwise log-rank tests [χ2 (P)]
 Low risk — 5.38 (.020) 31.60 (<.001) —
 Intermediate risk 5.38 (0.020) — 12.96 (<.001) —
Center composition of risk  

groups [N (%)]
 Munich 10 (40.0) 12 (50) 14 (58.3%) 1.65 (.469)
 Basel 15 (60.0) 12 (50) 10 (41.7%)

Note: Medians of psychosis-free survival times/transition rates were compared using median/chi-square tests. Pairwise difference between 
survival curves were evaluated by means of log-rank test. Finally, possible center × risk group interactions were assessed using the chi-
square statistic. Italicized values indicate significant findings at an alpha level of 0.05.

http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu078/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu078/-/DC1
http://schizophreniabulletin.oxfordjournals.org/lookup/suppl/doi:10.1093/schbul/sbu078/-/DC1
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Table 4. ROI Parcellation Analysis of Neuroanatomical Signature

Hemisphere Left Medial Right

Structure KROI Diff SD KROI Diff SD KROI Diff SD KROI [%]

Frontal 13.1 −10.5 5.3 14.7 −8.9 5.9 5
 Frontal Inf Orb 8.8 −6.6 5.0 6.8 −9.7 4.3 10
 Frontal Med Orb 7.9 −9.1 3.6 28.3 −10.1 3.7 15
 Frontal Mid 10.1 −11.9 6.9 9.5 −6.7 10.4 20
 Frontal Mid Orb 15.7 −8.7 3.5 15.0 −7.0 2.6 25
 Frontal Sup 8.9 −18.8 11.8 8.1 −11.7 7.7 30
 Frontal Sup Medial 15.6 −11.5 7.3 10.0 −7.7 4.7
 Frontal Sup Orb 21.8 −8.1 2.8 23.0 −7.1 2.0
 Rectus 17.5 −7.5 2.0 22.0 −9.4 4.6
 Supp Motor Area 11.2 −11.9 5.1 9.4 −10.4 13.0
Temporal 6.2 5.2 9.1 8.5 5.6 7.8
 Fusiform 5.3 4.3 7.3
 Temporal Inf 5.5 4.0 10.2
 Temporal Mid 7.7 7.3 9.7 8.5 5.6 7.8
Intra- and Perisylvian 8.3 2.6 10.2 12.0 −7.2 6.8
 Angular 13.0 7.0 9.1 6.7 −3.1 18.2
 Frontal Inf Oper 10.5 0.8 15.1 8.1 −7.8 3.1
 Frontal Inf Tri 19.9 −13.1 5.8
 Heschl 15.2 −5.1 1.3
 Insula 10.1 −3.0 5.9 15.6 −5.5 3.0
 Parietal Inf 7.1 6.9 15.1
 Rolandic Oper 5.5 −2.7 7.0 13.1 −7.7 5.6
 SupraMarginal 5.0 11.0 3.2
 Temporal Pole Sup 6.6 −1.9 16.4 5.3 −8.3 10.7
Limbic 11.4 −6.3 5.8 7.6 −9.7 3.3
 Cingulum Ant 10.7 −8.5 4.2 10.2 −8.6 1.9
 Cingulum Mid 12.0 −4.2 7.5 7.6 −4.5 6.2
 Cingulum Post 5.1 −15.9 1.7
Parietal 7.4 −0.4 12.1 5.2 4.2 10.6
 Parietal Sup 8.4 5.7 16.3 5.3 3.9 14.8
 Postcentral 7.4 −9.8 11.0
 Precuneus 6.4 2.9 9.0 5.1 4.5 6.4
Occipital 6.6 1.8 13.2 10.9 −4.2 13.4
 Calcarine 11.5 −5.7 13.8
 Cuneus 8.2 −3.9 14.9
 Lingual 14.0 −7.7 13.3
 Occipital Inf 7.9 4.0 14.2 9.6 −4.4 9.7
 Occipital Sup 5.4 −0.4 12.2 11.2 0.5 15.4

associated with the course of the ARMS, including both 
remission51 and clinical deterioration.52,53

Interestingly, we also observed GM volume increments 
in ARMS-T vs ARMS-NT subjects, which showed a left 
temporal and inferior parietal distribution in line with 
findings reported by Borgwardt el al.54 Given well-estab-
lished progressive volume reductions in the temporo-pari-
etal cortices of first-episode patients,55 these intriguing 
relative GM volume increments in prodromal individuals 
have been interpreted in terms of a transient compensatory 
normalization of neural structure.28,54,56 In this regard, the 
parallelism of volume decreases in the prefronto-striato-
cerebellar network and relative volume increases in the left 
temporo-parietal cortex may point to a nonlinear disease 
process driving these complex neuroanatomical changes as 
the prodrome evolves into full-blown psychosis. Our work 
adds to this hypothesis by revealing that the predictive 

signature of the psychosis prodrome is homogeneously 
expressed at the single-subject level. Further longitudi-
nal MRI studies are needed to map the neuroanatomical 
disease course and hence to pinpoint the position of our 
cross-sectional “snapshot” along the psychosis trajectory.

Evidence-based Risk Stratification Using 
Neuroanatomical Biomarkers

Recent reviews on early intervention in the ARMS have 
suggested that preventive therapy may reduce transition 
rates and improve outcomes through a variety of therapeu-
tic strategies.57 These promising results may be mediated 
through a better neurobiological responsiveness in the ear-
liest phases of psychosis. In this regard, the accurate quan-
tification of risk for further disease progression is a central 
diagnostic requirement in order to implement stepped care 
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strategies in early intervention services.58 Stepped care 
naturally embraces the Hippocratic precept of primum nil 
nocere, which in the case of early intervention consists of 
avoiding harmful treatment, unnecessary distress, and stig-
matization due to false positive diagnostic labeling.41

In view of this precept, the established early recogni-
tion strategies identify persons at a 100-fold elevated risk 
of psychosis,1 but this still does not allow deciding who 
necessitates intensive preventive efforts or, alternatively, 
who does not require any treatment at all. Thus, neuro-
biological and neurocognitive markers4,6 in combination 
with clinical data59,60 may ultimately enable the reliable 
single-subject quantification of risk across different early 
recognition centers. In turn, this progress will increase the 
safety and broader availability of early intervention. Our 
findings support the clinical applicability of such neuro-
biological markers in that we (1) detected a homogeneous 
neuroanatomical signature of emerging psychosis across 
independent high-risk cohorts and despite differing MRI 
data acquisition protocols, and (2) observed for the first 
time a close link between the ARMS persons’ loadings on 
this MRI signature and their clinical risk level, as mea-
sured both in terms of transition likelihood and time to 
transition. Thus, given a baseline disease transition risk 
of 45% for an ARMS person over the next 4 years, a care-
giver would have a 36%/26% higher prognostic certainty 
if  this person receives a positive/negative MRI test result. 
Certainty would even further increase from 45% to 87% 
in a risk person having a MRI prediction score in the 

upper 33%-quantile. Hence, this prediction result would 
mark an imminent risk of disease transition, and as such 
a need for urgent preventive treatment. In contrast, for 
ARMS persons with an intermediate-to-low risk level a 
more conservative therapeutic approach would be indi-
cated, which includes less harmful interventions like 
cognitive behavioral therapy to improve functioning, 
affective comorbidity61 and prevent further deterioration, 
and regular reevaluations of the clinical and MRI status 
to monitor the development of risk markers over time. 
Importantly, for such evidence-based decision processes 
to operate in clinical reality, we will require an accu-
rate biomarker that generalizes well to newly identified 
ARMS individuals, as suggested by our rigorous valida-
tion framework. 

Challenges and Future Research Directions

Several challenges for future research efforts arise from our 
findings: First, the transition rate of 45% suggests a mod-
estly higher (~10%) transition risk in our pooled popula-
tion compared to other high-risk cohorts.1 This increased 
risk may be caused by different pathways to care as our 
early recognition services are more linked with classical 
psychiatric institutions, whereas youth mental health ser-
vices in Australia, the United States, or United Kingdom 
may enable persons to find professional help earlier and 
at lower thresholds. However, our ARMS cohort’s transi-
tion risk was measured over an average follow-up period 

Hemisphere Left Medial Right

Structure KROI Diff SD KROI Diff SD KROI Diff SD KROI [%]

Basal ganglia 9.2 1.8 8.3 21.4 −11.3 3.9
 Pallidum 9.1 8.4 11.0 18.8 −13.5 4.1
 Putamen 9.3 −4.8 5.6 24.0 −9.0 3.7
Cerebellum 10.8 −5.1 9.6 10.8 2.9 1.9 12.0 −2.3 7.2
 Cerebellum 10 11.8 18.4 18.1
 Cerebellum 3 6.7 −9.6 6.0
 Cerebellum 4 5 8.4 7.1 4.3
 Cerebellum 6 13.6 5.1 2.4 14.9 5.8 3.7
 Cerebellum 7b 6.8 −10.6 16.6 11.4 −14.1 3.9
 Cerebellum 8 12.4 −5.3 9.8 6.4 −8.0 11.0
 Cerebellum 9 8.7 10.6 7.7 8.9 8.4 5.0
 Cerebellum Crus1 16.4 −15.7 12.6 25.0 −12.8 5.5
 Cerebellum Crus2 7.1 −15.0 8.5 14.2 −16.0 7.6
 Vermis 10 6.3 −13.6 0.0
 Vermis 6 12.5 4.0 1.9
 Vermis 7 12.0 5.7 1.6
 Vermis 8 13.8 9.0 1.8
 Vermis 9 9.5 9.5 4.2

Note: Abbreviations: AAL, automated anatomical labeling; Ant, anterior; ARMS, at-risk mental states; Inf, inferior; Mid, middle; 
Orb, orbital; Oper, opercularis; Post, posterior; ROI, region of interest; Sup, superior; Supp, supplementary; Tri, triangularis. The table 
lists AAL-ROIs with >5% of their voxels having a probability >50% of reliably contributing to the average neuroanatomical decision 
boundary (see figure 1). Each ROI entry lists the percentage of suprathreshold voxels (KROI) and their mean (SD) volumetric difference 
(Diff) in ARMS-T vs ARMS-NT. Each entry was highlighted by a gray-scaled background, as defined by its KROI. 

Table 4. Continued
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of 4.4  years and thus overlaps with the risk range of 
other long-term investigations like the PACE-4002 (35%; 
95% CI: 29%–41%) or Cologne Early Recognition study 
(49%; 95% CI: 43%–57%).3 Nevertheless, the generaliza-
tion capacity of our candidate marker has to be further 
explored and validated in ARMS populations with a sub-
stantially lower risk of developing psychotic illness.

Second, the administration of the proposed MRI-based 
risk predictor requires the initial clinical exploration of a 
help-seeking person by specifically trained interviewers. 
This limits the broader availability of MRI-based risk 
prognostic tools across less specialized mental health ser-
vices. A  related issue in the present study is the use of 
checklists to assess the presence of prodromal symptoms 
(Supplementary Methods) followed by the application 
of BPRS/SANS and PANSS scales to evaluate symptom 
severity. As the initial clinical exploration represents an 
“upstream filter” to the MRI-based prognostic method, 
further prospective validation of our candidate marker 
is needed using current high-risk inventories. In this 
regard, the Schizophrenia Proneness Instrument,62 the 
Structured Interview for Psychosis-Risk Syndromes,63 
or the Comprehensive Assessment of At-Risk Mental 
States64 may provide more sensitive measures of prodro-
mal symptomatology than scales developed for patients 
with established illness, and hence they may influence the 
performance of the downstream MRI predictor.

Third, profound between-center effects were detected that 
not only originated from scanner differences, but potentially 
also from heterogeneous ARMS inclusion criteria and a 
trend toward shorter transition intervals in the Munich sam-
ple. However, these supplementary data also suggest that 
such center effects can be effectively attenuated—as done in 
the present analysis—thus enabling the data pooling needed 
to create generalizable markers for the psychosis prodrome.

Finally, although our pattern recognition findings are 
based on a considerably larger ARMS sample compared 
to previous single-center studies,20,21,27 it remains unclear 
whether these results will generalize to other ARMS cohorts 
examined using a wider variety of scanner variables (eg, 
different field strengths and MRI vendors). In this regard, 
our findings suggest that the performance of our candi-
date biomarker still lies on an ascending “learning curve,” 
with the saturation point of its specificity and sensitivity 
to be reached at larger sample sizes, as recently shown for 
schizophrenia and Alzheimer’s disease.65,66 The good cross-
center generalization capacity of MRI-based diagnostic 
tools demonstrated in these studies calls for the ultimate 
verification of our candidate marker in significantly larger 
samples, which will be provided by multicenter projects, like 
NAPLS 2,67 EU-GEI,68 PSYSCAN, and PRONIA (http://
pronia.eu) over the next years. As only such large-scale data 
facilitate the rigorous evaluation of the biomarkers’ out-
of-center generalization capacity, they will allow to finally 
benchmarking the feasibility of MRI-enhanced early rec-
ognition and intervention in the psychosis prodrome.

Supplementary Material

Supplementary material is available at http://schizophre-
niabulletin.oxfordjournals.org.
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