181 research outputs found

    Variation in the distribution and properties of Circumpolar Deep Water in the eastern Amundsen Sea, on seasonal timescales, using seal‐borne tags

    Get PDF
    In the Amundsen Sea, warm saline Circumpolar Deep Water (CDW) crosses the continental shelf toward the vulnerable West Antarctic ice shelves, contributing to their basal melting. Due to lack of observations, little is known about the spatial and temporal variability of CDW, particularly seasonally. A new dataset of 6704 seal‐tag temperature and salinity profiles in the easternmost trough between February and December 2014 reveals a CDW layer on average 49 db thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen at moorings in the western trough. This layer contains more heat in winter, but on the 27.76 kg/m3 density surface CDW is 0.32° C warmer in summer than winter, across the northeastern Amundsen sea, which may indicate wintertime shoaling offshelf changes CDW properties onshelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, likely by gyre circulation

    Stability of the thermohaline circulation examined with a one-dimensional fluid loop

    Get PDF
    The Stommel box model elegantly demonstrates that the oceanic response to mixed boundary conditions, combining a temperature relaxation with a fixed salt flux forcing, is nonlinear owing to the so-called salt advection feedback. This nonlinearity produces a parameter range of bi-stability associated with hysteresis effects characterised by a fast thermally-driven mode and a slow salinity-driven mode. Here we investigate whether a similar dynamical behaviour can be found in the thermohaline loop model, a one-dimensional analogue of the box model. A semi-analytical method to compute possible steady states of the loop model is presented, followed by a linear stability analysis carried out for a large range of loop configurations. While the salt advection feedback is found as in the box model, a major difference is obtained for the fast mode: an oscillatory instability is observed near the turning point of the fast mode branch, such that the range of bi-stability is systematically reduced, or even removed, in some cases. The oscillatory instability originates from a salinity anomaly that grows exponentially as it turns around the loop, a situation that may occur only when the salinity torque is directed against the loop flow. Factors such as mixing intensity, the relative strength of thermal and haline forcings, the nonlinearity of the equation of state or the loop geometry can strongly affect the stability properties of the loop

    ManneqKit Cards:A Kinesthetic Empathic Design Tool Communicating Depression Experiences

    Get PDF
    While depression is a mood disorder with significant societal impact, the experiences of people living with depression are yet not easy to access. HCI’s tenet to understand users, particularly addressed by the empathic design approach, has prioritized verbal communication of such experiences. We introduce ManneqKit, a kinesthetic empathic design tool consisting of 15 cards with bodily postures and vignettes leveraging the nonverbal aspects of depression experiences. We report ManneqKit’s co-design with 10 therapists, its piloting with 4 therapists and 10 non-therapists, and evaluation through design workshops with 9 interaction designers. Findings indicate cards’ ability to elicit non-therapists’ increased empathy, and richer emotional depictions when compared to text-based description of depression symptoms. We discuss the value of these findings for interaction design in supporting richer understanding of vulnerable users experiencing depression, for more sensitive conceptual designs in the ideation stage, and more nuanced ethical values underpinning the overall design process

    Control of serine integrase recombination directionality by fusion with the directionality factor

    Get PDF
    Bacteriophage serine integrases are extensively used in biotechnology and synthetic biology for assembly and rearrangement of DNA sequences. Serine integrases promote recombination between two different DNA sites, attP and attB, to form recombinant attL and attR sites. The ‘reverse’ reaction requires another phage-encoded protein called the recombination directionality factor (RDF) in addition to integrase; RDF activates attL × attR recombination and inhibits attP × attB recombination. We show here that serine integrases can be fused to their cognate RDFs to create single proteins that catalyse efficient attL × attR recombination in vivo and in vitro, whereas attP × attB recombination efficiency is reduced. We provide evidence that activation of attL × attR recombination involves intra-subunit contacts between the integrase and RDF moieties of the fusion protein. Minor changes in the length and sequence of the integrase–RDF linker peptide did not affect fusion protein recombination activity. The efficiency and single-protein convenience of integrase–RDF fusion proteins make them potentially very advantageous for biotechnology/synthetic biology applications. Here, we demonstrate efficient gene cassette replacement in a synthetic metabolic pathway gene array as a proof of principle

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    The Earth BioGenome Project 2020: Starting the clock.

    Get PDF
    • 

    corecore