778 research outputs found

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+μ+νW^+ \rightarrow \mu^+\nu and WμνW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurements of observables sensitive to colour reconnection in ¯ events with the ATLAS detector at √ = 13 TeV

    Get PDF
    A measurement of observables sensitive to effects of colour reconnection in top-quark pair-production events is presented using 139 fb−1 of 13 TeV proton–proton collision data collected by the ATLAS detector at the LHC. Events are selected by requiring exactly one isolated electron and one isolated muon with opposite charge and two or three jets, where exactly two jets are required to be b-tagged. For the selected events, measurements are presented for the charged-particle multiplicity, the scalar sum of the transverse momenta of the charged particles, and the same scalar sum in bins of charged-particle multiplicity. These observables are unfolded to the stable-particle level, thereby correcting for migration effects due to finite detector resolution, acceptance and efficiency effects. The particle-level measurements are compared with different colour reconnection models in Monte Carlo generators. These measurements disfavour some of the colour reconnection models and provide inputs to future optimisation of the parameters in Monte Carlo generators

    Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at √s=13 TeV

    Get PDF
    Constraints on the Higgs boson self-coupling are set by combining double-Higgs boson analyses in the bb̅bb̅, bb̅τ+τ− and bb̅γγ decay channels with single-Higgs boson analyses targeting the γγ, ZZ∗, WW∗, τ+τ− and bb̅ decay channels. The data used in these analyses were recorded by the ATLAS detector at the LHC in proton–proton collisions at √s = 13 TeV and correspond to an integrated luminosity of 126–139 fb−1. The combination of the double-Higgs analyses sets an upper limit of μHH <2.4 at 95% confidence level on the double-Higgs production cross-section normalised to its Standard Model prediction. Combining the single-Higgs and double-Higgs analyses, with the assumption that new physics affects only the Higgs boson self-coupling (λHHH ), values outside the interval −0.4 < κλ = (λHHH /λSMHHH) < 6.3 are excluded at 95% confidence level. The combined single-Higgs and double-Higgs analyses provide results with fewer assumptions, by adding in the fit more coupling modifiers introduced to account for the Higgs boson interactions with the other Standard Model particles. In this relaxed scenario, the constraint becomes −1.4 < κλ < 6.1 at 95% CL

    ATLAS flavour-tagging algorithms for the LHC Run 2 pp collision dataset

    Get PDF
    The flavour-tagging algorithms developed by the ATLAS Collaboration and used to analyse its dataset of √s = 13 TeV pp collisions from Run 2 of the Large Hadron Collider are presented. These new tagging algorithms are based on recurrent and deep neural networks, and their performance is evaluated in simulated collision events. These developments yield considerable improvements over previous jet-flavour identification strategies. At the 77% b-jet identification efficiency operating point, light-jet (charm-jet) rejection factors of 170 (5) are achieved in a sample of simulated Standard Model tt¯ events; similarly, at a c-jet identification efficiency of 30%, a light-jet (b-jet) rejection factor of 70 (9) is obtained

    Measurement of the total and differential cross-sections of t t ¯ W production in pp collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Measurements of inclusive and differential production cross-sections of a top-quark-top-antiquark pair in association with a W boson (tt¯W) are presented. They are performed by targeting final states with two same-sign or three isolated leptons (electrons or muons) and are based on s = 13 TeV proton-proton collision data with an integrated luminosity of 140 fb−1, recorded from 2015 to 2018 with the ATLAS detector at the Large Hadron Collider. The inclusive tt¯W production cross-section is measured to be 880 ± 80 fb, compared to a reference theoretical prediction of 745 ± 50 (scale) ± 13 (2-loop approx.) ± 19 (PDF, αs) fb. Differential cross-section measurements characterise this process in detail for the first time. Several particle-level observables are compared with a variety of theoretical predictions, which generally agree well with the normalised differential cross-section results. Additionally, the relative charge asymmetry of tt¯W+ and tt¯W− is measured inclusively to be ACrel = 0.33 ± 0.05, in very good agreement with the theoretical prediction of 0.322 ± 0.003 (scale) ± 0.007 (PDF), as well as differentially

    Test of CP-invariance of the Higgs boson in vector-boson fusion production and in its decay into four leptons

    Get PDF
    A search for CP violation in the decay kinematics and vector-boson fusion production of the Higgs boson is performed in the H → ZZ* → 4ℓ (ℓ = e, μ) decay channel. The results are based on proton-proton collision data produced at the LHC at a centre-of-mass energy of 13 TeV and recorded by the ATLAS detector from 2015 to 2018, corresponding to an integrated luminosity of 139 fb−1. Matrix element-based optimal observables are used to constrain CP-odd couplings beyond the Standard Model in the framework of Standard Model effective field theory expressed in the Warsaw and Higgs bases. Differential fiducial cross-section measurements of the optimal observables are also performed, and a new fiducial cross-section measurement for vector-boson-fusion production is provided. All measurements are in agreement with the Standard Model prediction of a CP-even Higgs boson

    Search for pair production of squarks or gluinos decaying via sleptons or weak bosons in final states with two same-sign or three leptons with the ATLAS detector

    Get PDF
    A search for pair production of squarks or gluinos decaying via sleptons or weak bosons is reported. The search targets a final state with exactly two leptons with same-sign electric charge or at least three leptons without any charge requirement. The analysed data set corresponds to an integrated luminosity of 139 fb−1 of proton-proton collisions collected at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Multiple signal regions are defined, targeting several SUSY simplified models yielding the desired final states. A single control region is used to constrain the normalisation of the WZ + jets background. No significant excess of events over the Standard Model expectation is observed. The results are interpreted in the context of several supersymmetric models featuring R-parity conservation or R-parity violation, yielding exclusion limits surpassing those from previous searches. In models considering gluino (squark) pair production, gluino (squark) masses up to 2.2 (1.7) TeV are excluded at 95% confidence level

    A precise measurement of the Z -boson double-differential transverse momentum and rapidity distributions in the full phase space of the decay leptons with the ATLAS experiment at s = 8 TeV

    Get PDF
    This paper presents for the first time a precise measurement of the production properties of the Z boson in the full phase space of the decay leptons. This is in contrast to the many previous precise unfolded measurements performed in the fiducial phase space of the decay leptons. The measurement is obtained from proton–proton collision data collected by the ATLAS experiment in 2012 at s=8 TeV at the LHC and corresponding to an integrated luminosity of 20.2 fb-1. The results, based on a total of 15.3 million Z-boson decays to electron and muon pairs, extend and improve a previous measurement of the full set of angular coefficients describing Z-boson decay. The double-differential cross-section distributions in Z-boson transverse momentum pT and rapidity y are measured in the pole region, defined as 8

    The ATLAS experiment at the CERN Large Hadron Collider: a description of the detector configuration for Run 3

    Get PDF
    The ATLAS detector is installed in its experimental cavern at Point 1 of the CERN Large Hadron Collider. During Run 2 of the LHC, a luminosity of ℒ = 2 × 1034 cm-2 s-1 was routinely achieved at the start of fills, twice the design luminosity. For Run 3, accelerator improvements, notably luminosity levelling, allow sustained running at an instantaneous luminosity of ℒ = 2 × 1034 cm-2 s-1, with an average of up to 60 interactions per bunch crossing. The ATLAS detector has been upgraded to recover Run 1 single-lepton trigger thresholds while operating comfortably under Run 3 sustained pileup conditions. A fourth pixel layer 3.3 cm from the beam axis was added before Run 2 to improve vertex reconstruction and b-tagging performance. New Liquid Argon Calorimeter digital trigger electronics, with corresponding upgrades to the Trigger and Data Acquisition system, take advantage of a factor of 10 finer granularity to improve triggering on electrons, photons, taus, and hadronic signatures through increased pileup rejection. The inner muon endcap wheels were replaced by New Small Wheels with Micromegas and small-strip Thin Gap Chamber detectors, providing both precision tracking and Level-1 Muon trigger functionality. Trigger coverage of the inner barrel muon layer near one endcap region was augmented with modules integrating new thin-gap resistive plate chambers and smaller-diameter drift-tube chambers. Tile Calorimeter scintillation counters were added to improve electron energy resolution and background rejection. Upgrades to Minimum Bias Trigger Scintillators and Forward Detectors improve luminosity monitoring and enable total proton-proton cross section, diffractive physics, and heavy ion measurements. These upgrades are all compatible with operation in the much harsher environment anticipated after the High-Luminosity upgrade of the LHC and are the first steps towards preparing ATLAS for the High-Luminosity upgrade of the LHC. This paper describes the Run 3 configuration of the ATLAS detector

    Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    Abstract: A measurement of jet substructure observables is presented using data collected in 2016 by the ATLAS experiment at the LHC with proton-proton collisions at s = 13 TeV. Large-radius jets groomed with the trimming and soft-drop algorithms are studied. Dedicated event selections are used to study jets produced by light quarks or gluons, and hadronically decaying top quarks and W bosons. The observables measured are sensitive to substructure, and therefore are typically used for tagging large-radius jets from boosted massive particles. These include the energy correlation functions and the N-subjettiness variables. The number of subjets and the Les Houches angularity are also considered. The distributions of the substructure variables, corrected for detector effects, are compared to the predictions of various Monte Carlo event generators. They are also compared between the large-radius jets originating from light quarks or gluons, and hadronically decaying top quarks and W bosons
    corecore