86 research outputs found
Stimulation of the innate immune system of carp: role of Toll-like receptors
Toll-like receptors (TLRs), named after the Toll gene identified in fruit flies, are a family of evolutionary conserved proteins that play a key role in the innate immune system. TLRs are found inside or on the surface of immune cells of virtually all-living animals and recognize integral parts of microbes. Thereby, they are excellent candidate receptors for controlled stimulation of the innate immune system of, for example, fish in aquaculture. β-glucans are microbial compounds routinely added to fish feed for their health-promoting effects. They regulate innate immunity by stimulating fish cells to produce more oxygen and nitrogen radicals but are not recognized by TLRs.Instead, TLRs of cyprinid fish (zebrafish, carp) are stimulated by viral and/or parasitic infection. Although immunostimulation by β-glucans occurs via yet undefined receptors certainly, addition of integral but harmless parts of microbes to fish feed may help controlfish diseases in aquaculture.</p
Time and concentration dependency of MacroGard® induced apoptosis
In previous studies an effect of β-glucan on apoptosis in fish was noted and in this investigation we determine the time and concentration dependency of this effect. Primary cell cultures of pronephric carp cells were incubated for 6, 24, 48 h with various concentrations ranging from 0 to 1000 μg/ml of MacroGard® β-glucan. Apoptosis was monitored via acridine orange staining. Results indicate a clear effect of time and concentration on the induction of apoptosis in vitro, with only concentration ≥500 μg/ml causing significantly higher percentages of apoptotic cells. Apoptosis was detected after 6 h. This concentration dependent effect has to be considered when studying apoptosis in relation to immunostimulation
Dietary b-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota
Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, β-glucan (MacroGard®) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast β-1,3/1,6-glucan in form of MacroGard® at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, microbiota analysis, trypsin activity and size measurements. Along with the feeding of β-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard® fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by β-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-α and il-1β was observed. We conclude that the administration of MacroGard® induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot
Modulation of Innate and Adaptive Immune Responses by Arabinoxylans
This is the peer reviewed version of the following article: Fadel, A., Plunkett, A., Li, W., & Ashworth, J. J. (2017). Modulation of Innate and Adaptive Immune Responses by Arabinoxylans. Journal of Food Biochemistry, 42(2), e12473. http://doi.org/10.1111/jfbc.12473, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/jfbc.12473/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingHumans are exposed to harmful pathogens and a wide range of noxious substances every day.The immune system reacts to, and destroys, these pathogens and harmful substances. The immunesystem is composed of innate and adaptive immunity, which liaise to protect the host and maintainhealth. Foods, especially cereals, have been reported to modulate the immune response.Arabinoxylans are nonstarch polysaccharides that have been shown to possess immune-modulatory activities. This review article discusses the fundamentals of the immune system andprovides an overview of the immunomodulatory potential of arabinoxylans in conjunction withtheir structural characteristics and proposed similarities with lipopolysaccharide
Ligand specificities of Toll-like receptors in fish: indicatiaons from infection studies
Toll like receptors (TLRs) are present in many different fish families from several different orders, including cyprinid, salmonid, perciform, pleuronectiform and gadiform representatives, with at least some conserved properties among these species. However, low conservation of the leucine-rich repeat ectodomain hinders predictions of ligand specificities of fish TLRs based on sequence information only. We review the presence of a TLR genes, and changes in their gene expression profiles as result of infection, in the context of different fish orders and fish families. The application of RT-qPCR and availability of increasing numbers of fish genomes has led to numerous gene expression studies, including studies on TLR gene expression, providing the most complete dataset to date. Induced changes of gene expression may provide (in)direct evidence for the involvement of a particular TLR in the reaction to a pathogen. Especially when findings are consistent across different studies on the same fish species or consistent across different fish species, up-regulation of TLR gene expression could be a first indication of functional relevance. We discuss TLR1, TLR2, TLR4, TLR5 and TLR9 as presumed sensors of bacterial ligands and discuss as presumed sensors of viral ligands TLR3 and TLR22, TLR7 and TLR8. More functional studies are needed before conclusions on ligands specific to (groups of) fish TLRs can be drawn, certainly true for studies on non-mammalian TLRs. Future studies on the conservation of function of accessory molecules, in conjunction with TLR molecules, may bring new insight into the function of fish TLRs
Een man met een abnormale delle in zijn bovenbeen
A 29 year old man presented with muscle weakness and an abnormal dimple near his hamstrings after a complicated anterior cruciate ligament reconstruction of his right knee. MRI demonstrated atrophy of the semitendinosus muscle. He received physiotherapy after which he functionally recovered.</p
Een man met een abnormale delle in zijn bovenbeen
A 29 year old man presented with muscle weakness and an abnormal dimple near his hamstrings after a complicated anterior cruciate ligament reconstruction of his right knee. MRI demonstrated atrophy of the semitendinosus muscle. He received physiotherapy after which he functionally recovered.</p
Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL)
The biosynthesis and activation of Toll-like receptors (TLRs) requires accessory proteins. In mammals, a number of accessory proteins have been characterized, that can be classified based on their function as ligand-recognition and delivery cofactors, chaperones and trafficking proteins. We identified the homologs in teleost fish genomes of mammalian accessory molecules and show their expression in transcriptome data sets. Further, we annotate in detail TLR4 interactor with leucine-rich repeats (tril) in zebrafish (Danio rerio) and in common carp (Cyprinus carpio). In mammals, TRIL is a functional component of the TLR4 complex and is important for TLR3 signaling, and is mainly expressed in the brain. In fish, the Tril molecule has many conserved features of mouse and human TRIL, containing 13 leucine-rich repeat domains, a fibronectin and a transmembrane domain. Zebrafish tril could not be detected in the latest assembly of the zebrafish genome (Zv9) and required manual annotation based on genome and transcriptome shotgun sequencing data sets. Carp tril was found in two copies in the draft genome. Both copies of carp tril are constitutively expressed in several organs, with the highest gene expression in muscle, skin and brain. In carp, the tril gene is expressed at high levels in endothelial cells and thrombocytes. We discuss the implication of the presence of most, but not all, accessory molecules for the biosynthesis and activation of tlr molecules in fish
- …