888 research outputs found
High-resolution numerical modelling of flow-vegetation interactions
In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler–Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer
Laboratory study on the effects of hydro kinetic turbines on hydrodynamics and sediment dynamics
© 2018 The Authors The need for hydrokinetic turbine wake characterisation and their environmental impact has led to a number of studies. However, a small number of them have taken into account mobile sediment bed effects. The aim of the present work is to study the impact of the presence of a horizontal-axis three-bladed turbine with the flow and a mobile sediment bed. We use a series of laboratory experiments with a scaled modelled turbine installed in a flume with a mobile sandy bed at the bottom. Acoustic instruments were used to monitor flow, suspended sediment and bed behaviour. Results show a velocity decrease of about 50% throughout the water column and no flow recovery after a distance of 15 rotor diameters. Clearly visible ripples in the absence of the model turbine were replaced by horseshoe-shaped scour pit in the near wake region, and a depositional heap in the far wake. Suspended sediment differences were recorded in the streamwise direction with a possible effect of the wake as far as 15 rotor diameters. These results imply potentially important effects on the efficiency of turbine arrays, if the flow were to be lower than expected, on turbine foundations and modify coastal sediment transport
Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny
The channel-flow model for the Greater Himalayan Sequence (GHS) of the Himalayan orogen involves a partially molten, rheologically weak, mid-crustal layer “flowing” southward relative to the upper and lower crust during late Oligocene–Miocene. Flow was driven by topographic overburden, underthrusting, and focused erosion. We present new structural and thermobarometric analyses from the GHS in the Annapurna-Dhaulagiri Himalaya, central Nepal; these data suggest that during exhumation, the GHS cooled, strengthened, and transformed from a weak “active channel” to a strong “channel plug” at greater depths than elsewhere in the Himalaya. After strengthening, continued convergence resulted in localized top-southwest (top-SW) shortening on the South Tibetan detachment system (STDS). The GHS in the Annapurna-Dhaulagiri Himalaya displays several geological features that distinguish it from other Himalayan regions. These include reduced volumes of leucogranite and migmatite, no evidence for partial melting within the sillimanite stability field, reduced structural thickness, and late-stage top-southwest shortening in the STDS. New and previously published structural and thermobarometric constraints suggest that the channel-flow model can be applied to mid-Eocene–early Miocene mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya. However, pressure-temperature-time (PTt) constraints indicate that following peak conditions, the GHS in this region did not undergo rapid isothermal exhumation and widespread sillimanite-grade decompression melting, as commonly recorded elsewhere in the Himalaya. Instead, lower-than-typical structural thickness and melt volumes suggest that the upper part of the GHS (Upper Greater Himalayan Sequence [UGHS]—the proposed channel) had a greater viscosity than in other Himalayan regions. We suggest that viscosity-limited, subdued channel flow prevented exhumation on an isothermal trajectory and forced the UGHS to exhume slowly. These findings are distinct from other regions in the Himalaya. As such, we describe the mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya as an atypical example of channel flow during the Himalayan orogeny
Virtual embedded librarianship for information literacy teaching.
This paper, reports on the planning and preliminary results of an action research project undertaken for the redesign of an online distance learning information literacy (IL) module on the basis of virtual 'embedded librarianship'. The research project, which followed an action research design, brought together the IL module coordinator and an Academic Liaison Librarian, working at different institutions to collaboratively redesign the assessment and teaching of the module. Data were collected via a qualitative analysis of students' work and a series of open-ended questions addressed to students on the value of the approach followed. Students reacted positively to the embedded librarianship design and engaged constructively in situated learning. Challenges included time-zones differences, the contribution level of students and lack of confidence. The paper puts emphasis on educating future information professionals as embedded information literacy partners, promoting the development of transferable skills and a collaborative/sharing online working ethos
Recommended from our members
Escape from Vela X
While the Vela pulsar and its associated nebula are often considered as the archetype of a system powered by a {approx} 10{sup 4} year old isolated neutron star, many features of the spectral energy distribution of this pulsar wind nebula are both puzzling and unusual. Here we develop a model that for the first time relates the main structures in the system, the extended radio nebula (ERN) and the X-ray cocoon through continuous injection of particles with a fixed spectral shape. We argue that diffusive escape of particles from the ERN can explain the steep Fermi-LAT spectrum. In this scenario Vela X should produce a distinct feature in the locally-measured cosmic ray electron spectrum at very high energies. This prediction can be tested in the future using the Cherenkov Telescope Array (CTA). If particles are indeed released early in the evolution of PWNe and can avoid severe adiabatic losses, PWN provide a natural explanation for the rising positron fraction in the local CR spectrum
Glycan-based near-infrared fluorescent (NIRF) imaging of gastrointestinal tumors: a preclinical proof-of-conceptIn vivostudy
Purpose Aberrantly expressed glycans in cancer are of particular interest for tumor targeting. This proof-of-conceptin vivostudy aims to validate the use of aberrant Lewis glycans as target for antibody-based, real-time imaging of gastrointestinal cancers. Procedures Immunohistochemical (IHC) staining with monoclonal antibody FG88.2, targeting Lewis(a/c/x), was performed on gastrointestinal tumors and their healthy counterparts. Then, FG88.2 and its chimeric human/mouse variant CH88.2 were conjugated with near-infrared fluorescent (NIRF) IRDye 800CW for real-time imaging. Specific binding was evaluatedin vitroon human gastrointestinal cancer cell lines with cell-based plate assays, flow cytometry, and immune-fluorescence microscopy. Subsequently, mice bearing human colon and pancreatic subcutaneous tumors were imagedin vivoafter intravenous administration of 1 nmol (150 mu g) CH88.2-800CW with the clinical Artemis NIRF imaging system using the Pearl Trilogy small animal imager as reference. One week post-injection of the tracer, tumors and organs were resected and tracer uptake was analyzedex vivo. Results IHC analysis showed strong FG88.2 staining on colonic, gastric, and pancreatic tumors, while staining on their normal tissue counterparts was limited. Next, human cancer cell lines HT-29 (colon) and BxPC-3 and PANC-1 (both pancreatic) were identified as respectively high, moderate, and low Lewis(a/c/x)-expressing. Using the clinical NIRF camera system for tumor-bearing mice, a mean tumor-to-background ratio (TBR) of 2.2 +/- 0.3 (Pearl: 3.1 +/- 0.8) was observed in the HT-29 tumors and a TBR of 1.8 +/- 0.3 (Pearl: 1.9 +/- 0.5) was achieved in the moderate expression BxPC-3 model. In both models, tumors could be adequately localized and delineated by NIRF for up to 1 week.Ex vivoanalysis confirmed full tumor penetration of the tracer and low fluorescence signals in other organs. Conclusions Using a novel chimeric Lewis(a/c/x)-targeting tracer in combination with a clinical NIRF imager, we demonstrate the potential of targeting Lewis glycans for fluorescence-guided surgery of gastrointestinal tumors.Surgical oncolog
Current- and Wave-Generated Bedforms on Mixed Sand–Clay Intertidal Flats: A New Bedform Phase Diagram and Implications for Bed Roughness and Preservation Potential
The effect of bedforms on frictional roughness felt by the overlying flow is crucial to the regional modelling of estuaries and coastal seas. Bedforms are also a key marker of palaeoenvironments. Experiments have shown that even modest biotic and abiotic cohesion in sand inhibits bedform formation, modifies bedform size, and slows bedform development, but this has rarely been tested in nature. The present study used a comprehensive dataset recorded over a complete spring–neap cycle on an intertidal flat to investigate bedform dynamics controlled by a wide range of wave and current conditions, including the effects of wave–current angle and bed cohesion. A detailed picture of different bedform types and their relationship to the flow, be they equilibrium, non-equilibrium, or relict, was produced, and captured in a phase diagram that integrates wave-dominated, current-dominated, and combined wave–current bedforms. This bedform phase diagram incorporates a substantially wider range of flow conditions than previous phase diagrams, including bedforms related to near-orthogonal wave–current angles, such as ladderback ripples. Comparison with laboratory-derived bedform phase diagrams indicates that washed-out ripples, lunate interference ripples and upper-stage plane beds replace the subaqueous dune field; such bedform distributions may be a key characteristic of intertidal flats. The field data also provide a means of predicting the dimensions of these bedforms, which can be transferred to other areas and grain sizes. We show that an equation for the prediction of equilibrium bedform size is sufficient to predict the roughness, even though the bedforms are highly variable in character and only in equilibrium with the flow for approximately half the time. Whilst the effect of cohesive clay is limited under more active spring conditions, clay does play a role in reducing the bedform dimensions under more quiescent neap conditions. We also investigated which combinations of waves, currents, and bed clay contents in the intertidal zone have the highest potential for bedform preservation in the geological record. This shows that combined wave–current bedforms have the lowest preservation potential and equilibrium current ripples have the highest preservation potential, even in the presence of moderate and storm waves. Hence, the absence of wave ripples and combined-flow bedforms and their primary stratification in sedimentary successions cannot be taken as evidence that waves were absent at the time of deposition
Efeito do uso do traje de neoprene sobre variáveis técnicas, fisiológicas e perceptivas de nadadores
Ao contrário do que ocorre em provas de piscina, competições em águas abertas estão sujeitas as condições ambientais, sendo uma delas as baixas temperaturas. Em determinadas circunstâncias é permitido o uso de roupas especiais para evitar hipotermia. O objetivo do estudo foi verificar os efeitos do uso da roupa de neoprene em um grupo composto por triatletas e nadadores, comparado ao uso de vestimentas convencionais (sunga) sobre variáveis cinemáticas e psicofisiológicas do nado. Participaram 20 homens (12 triatletas e oito nadadores) de idade 22,0 ± 6,6 anos com desempenhos que correspondem a 75 ± 7,7% do melhor tempo brasileiro na prova de 400 m. Os atletas realizaram duas repetições máximas e duas submáximas de 400 m em nado "crawl", com e sem o uso da roupa de neoprene. Foram comparadas a velocidade média (VM), comprimento de braçada (CB), frequência de braçada (FB), índice de nado (IN), percepção subjetiva de esforço (PSE), frequência cardíaca (FC), e concentração de lactato sanguíneo (LAC). Um conjunto de ANOVAs com medidas repetidas do tipo "two-way" foi aplicado. Quando diferenças foram encontradas o teste de Tukey foi empregado. Com o traje de neoprene, em máxima intensidade, o tempo para nadar a distância foi 6,4% menor, com manutenção da FB e aumento da CB, as variáveis psicofisiológicas não diferiram estatisticamente. Em esforço submáximo, o uso do traje de neoprene resultou em menor FB, maior CB, maior IN e em menores valores de FC, LAC e PSE (p In open water swimming competitions, athletes are prone to environmental conditions and are frequently exposed to low temperatures, in contrast to what occurs in indoor competitions. In some circumstances the use of special swimming suits is allowed to avoid hypothermia. The aim of this study was to verify the effects of the use of a neoprene swimming suit in comparison to a conventional swimming suit on a number of cinematic and psychophysiological variables. Twenty athletes experienced in swimming competitions (12 triathletes and 8 swimmers; 22.0± 6.6 yearsold), whose the performance was 75 ± 7.7% of the National record. Athletes performed two maximal and two submaximal 400m crawl simulated competition with a whole body neoprene swimming suit and with a conventional swimming suit. Mean speed (VM) stroke length (CB), stroke frequency (FB), swimming index (IN), rate of perceived effort (PSE), heart rate, and blood lactate concentration (LAC) were compared between conditions. The time to perform maximal trials with the use of the neoprene swimming suit was 6.4% shorter than when wearing the traditional swimming suit. FB and the psychophysiological variables remained unchanged, while CB increased in response to the use of the neoprene swimming suit. The use of the neoprene swimming suit in submaximal trials provided smaller FB, FC, LAC and PSE and larger CB and IN in comparison to the use of the traditional swimming suit. The results indicated that the neoprene swimming suit increases performance in biomechanical, physiological and perceptive aspects. The VM increase in maximal efforts does not depend exclusively on changes in FB and CB. Possibly, increments of the parameters related to the swimming may have improved the mechanical efficiency of the movement, which may have provided a movement economy that resulted in a better performance
Search for Higgs bosons decaying to tautau pairs in ppbar collisions at sqrt(s) = 1.96 TeV
We present a search for the production of neutral Higgs bosons decaying into
tautau pairs in ppbar collisions at a center-of-mass energy of 1.96 TeV. The
data, corresponding to an integrated luminosity of 5.4 fb-1, were collected by
the D0 experiment at the Fermilab Tevatron Collider. We set upper limits at the
95% C.L. on the product of production cross section and branching ratio for a
scalar resonance decaying into tautau pairs, and we then interpret these limits
as limits on the production of Higgs bosons in the minimal supersymmetric
standard model (MSSM) and as constraints in the MSSM parameter space.Comment: 7 pages, 5 figures, submitted to PL
- …