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ABSTRACT

The channel-flow model for the Greater Himalayan Sequence (GHS) of 
the Himalayan orogen involves a partially molten, rheologically weak, mid-
crustal layer “flowing” southward relative to the upper and lower crust 
during late Oligocene–Miocene. Flow was driven by topographic overburden, 
underthrusting, and focused erosion. We present new structural and ther-
mobarometric analyses from the GHS in the Annapurna-Dhaulagiri Hima-
laya, central Nepal; these data suggest that during exhumation, the GHS 
cooled, strengthened, and transformed from a weak “active channel” to a 
strong “channel plug” at greater depths than elsewhere in the Himalaya. 
After strengthening, continued convergence resulted in localized top-south-
west (top-SW) shortening on the South Tibetan detachment system (STDS). 
The GHS in the Annapurna-Dhaulagiri Himalaya displays several geological 
features that distinguish it from other Himalayan regions. These include re-
duced volumes of leucogranite and migmatite, no evidence for partial melt-
ing within the sillimanite stability field, reduced structural thickness, and late-
stage top-southwest shortening in the STDS. New and previously published 
structural and thermobarometric constraints suggest that the channel-flow 
model can be applied to mid-Eocene–early Miocene mid-crustal evolution of 
the GHS in the Annapurna-Dhaulagiri Himalaya. However, pressure-tempera-
ture-time (PTt) constraints indicate that following peak conditions, the GHS 
in this region did not undergo rapid isothermal exhumation and widespread 
sillima nite-grade decompression melting, as commonly recorded elsewhere 
in the Hima laya. Instead, lower-than-typical structural thickness and melt 
volumes suggest that the upper part of the GHS (Upper Greater Himalayan 
Sequence [UGHS]—the proposed channel) had a greater viscosity than in 
other Hima layan regions. We suggest that viscosity-limited, subdued chan-
nel flow prevented exhumation on an isothermal trajectory and forced the 
UGHS to exhume slowly. These findings are distinct from other regions in 

the Himalaya. As such, we describe the mid-crustal evolution of the GHS in 
the Annapurna- Dhaulagiri Himalaya as an atypical example of channel flow 
during the Himalayan orogeny.

1. INTRODUCTION

The kinematic and metamorphic evolution of the metamorphic core of the 
Himalayan orogen (Fig. 1), referred to as the Greater Himalayan Sequence 
(GHS), is the central focus of all models of Himalayan orogenesis (e.g.,  Grujic 
et al., 1996; Beaumont et al., 2001; Bollinger et al., 2006; Robinson et al., 2006; 
Searle et al., 2006; Kohn, 2008; Mukherjee, 2013b; He et al., 2014; Cottle et al., 
2015; Frassi, 2015; Montomoli et al., 2015). The channel-flow model for the 
Himalayan orogen proposes that the GHS represents a rheologically weak, 
partially molten, mid-crustal channel that flowed laterally southward, between 
the upper and lower bounding rigid crust. Flow was driven by lithostatic load-
ing by the Tibetan plateau, underthrusting of the Indian lower crust, and fo-
cused erosion at the orogenic front (Fig. 2) (Beaumont et al., 2001; Godin et al., 
2006a; Harris, 2007). Extrusion and exhumation of the channel were facilitated 
by coeval shearing along the top-to-the-south (top-S) Main Central thrust 
zone (MCTZ) and top-to-the-north (top-N) South Tibetan detachment system 
(STDS), which bound the GHS below and above, respectively (see reviews by 
Godin et al., 2006a; Grujic, 2006).

Many of the geological and geophysical constraints on which the chan-
nel-flow model is based (e.g., pressure-temperature [PT] conditions and 
crustal thicknesses) are derived from the Everest, Sikkim, and Bhutan regions 
(e.g., Grujic et al., 1996, 2002) of the central-eastern Himalaya (Fig. 1A). In these 
regions, the channel-flow model provides a robust explanation for the kine-
matic, dynamic, and temporal evolution of the GHS (e.g., Nelson et al., 1996; 
Beaumont et al., 2001; Searle and Szulc, 2005; Unsworth et al., 2005; Searle 
et al., 2006; Streule et al., 2010). However, the lithologic, structural, and meta-
morphic framework of the GHS varies along the ~2500 km length of the oro-
gen. It thus remains unclear the extent to which the channel-flow model can be 
applied along the whole orogen (Godin et al., 2006a; Harris, 2007).
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In this study, the applicability of the channel-flow model to the GHS in the 
Annapurna-Dhaulagiri Himalaya in central Nepal (Fig. 1) is tested through a 
synthesis of new structural and thermobarometric analyses of the metamor-
phic rocks, combined with previously published geochronometric and thermo-
barometric constraints. Field observations from the Modi Khola and Kali Gan-
daki valleys (Fig. 1B) reveal geological features of the GHS that are atypical 
when compared to other Himalayan regions along strike. These include re-
duced volumes of leucogranite and migmatite, an absence of evidence for par-
tial melting within the sillimanite stability field, reduced structural thickness, 
and late-stage top-SW shortening on the STDS following cessation of top-NE 

extensional shearing. The presence of such features has significant implica-
tions for the rheology of the GHS and raises the question of whether or not the 
GHS in this region was weak enough for mid-crustal flow.

1.2. Channel Flow during the Himalayan Orogeny

Channel flow describes the laminar flow of a viscous fluid between upper 
and lower rigid plates (Turcotte and Schubert, 2002). Flow can be driven by 
horizontal pressure gradients (Poiseuille flow) and/or motion of the channel 
walls (Couette flow). When a pressure gradient and channel-wall motion are 

Karakoram

LHASA BLOCK

INDIAN PLATE

Kohistan
Arc

Ladakh

KF

MKT

GB

KB

SB

M
Mg

C

Mn

T

GB
GB

GCT

GCT

KK

C - Changgo Culmination
GB - Gandese Batholith
GCT - Great Counter Thrust
KB - Kashmir Basin
KF - Karakoram Fault
KK - Kathmangu Klippe
M - Mugu Granite
MBT - Main Boundary Thrust
MCT - Main Central Thrust
MFT - Main Frontal Thrust
MKT - Main Karakoram Thrust
Mg - Mustang Granite
Mn - Manaslu Leucogranite
NHA - North Himalayan Antiform
SB - Sutlje Basin
STD - South Tibetan Detachment
T - Thakkhola Graben

MFT

MFT

MBT MCT

MCT

MBT

STD

STD

STD

NHA

MCT

GARHWAL

SUTLJE

LANGTANG
MANASLU

DOLPO

FIGURE 1B

ZANSKAR

BHUTAN
SIKKIM

EVEREST
MAKALU

200 km

34° N

75° E

75° E

80° E

80° E

85° E

85° E

90° E

90° E

28° N

28° N

Subhimalayan Zone (SZ) Gneissic/Granitic Domes

Cenozoic Basin Fill

Suture Zone

Trans-Himalayan batholith

Kohistan Arc

Lesser Himalayan Seqeunce (LHS)

Greater Himalayan Seqeunce (GHS)

Tethyan Himalayan Seqeunce (THS)

Crystalline Nappes

Himalayan Leucogranites

A

IN
D

E
P

TH
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applied in opposite directions, a hybrid flow may form (Grujic, 2006) in which 
a portion of the channel flows in the opposite direction to the moving channel 
wall (the “return flow” of Mancktelow, 1995).

In applying the channel-flow model to the Himalaya, it is proposed that the 
GHS is an exhumed portion of a mid-crustal channel (Beaumont et al., 2001; 
Godin et al., 2006a; Harris, 2007). After initial collision between India and Eur-
asia, crustal thickening and heating followed by widespread partial melting at 
mid-crustal levels resulted in the development of a weak, low-viscosity chan-
nel located between rigid upper and lower crust (Beaumont et al., 2001; Godin 
et al., 2006a). Upon weakening below a threshold viscosity, southward return 
flow of the mid-crustal channel initiated. This flow was driven by a hori zontal 
gradient in lithostatic pressure produced by the relative topographic ele va tions 

and crustal thicknesses of the Tibetan plateau and Indian continent, and from  
shear stresses due to the northward underthrusting of the lower  Indian con-
tinental crust (Beaumont et al., 2001, 2004; Grujic, 2006). Focused erosion 
aided exhumation of the channel to the orogenic front (Beaumont et al., 2001). 
 Relatively low viscosities were maintained during exhumation due to contin-
ued partial melting along an isothermal exhumation path (Harris and Massey, 
1994; Streule et al., 2010; Jamieson et al., 2011; Searle, 2013).

Application of the channel-flow model to the Himalayan orogen places 
a crucial dependence on widespread partial melting of the mid-crust for the 
required reduction in viscosity (Beaumont et al., 2001, 2004; Grujic, 2006; 
 Jamieson et al., 2011). Finite element thermomechanical models of channel 
flow simulate this strength drop by changing the rheology of ele ments within 
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the modeled crust from a stress- and temperature-dependent power-law 
rheol ogy based on experimentally derived flow laws (e.g., Blackhill Quartzite; 
Gleason and Tullis, 1995) to a “melt weakened” linear viscous rheology with 
a viscosity of 1019 Pa s once the temperature exceeds 700 °C (Beaumont et al., 
2001, 2004; see also experimental verification of assumed viscosities by Rutter 
et al., 2011). This imposed reduction in viscosity simulates the order of magni-
tude drop in rheological strength expected to occur during widespread partial 
melting of the crust (Rosenberg and Handy, 2005; Rosenberg et al., 2007). Ex-
perimental deformation of rocks shows that an increase in melt fraction from 
0.00 to 0.07 (i.e., 7%) is accompanied by a ~90% reduction in strength, referred 
to as the melt-connectivity transition (MCT, Rosenberg and Handy, 2005). 
An intermediate strength drop is also recorded between a melt fraction of 0.20 
and 0.50, which corresponds to the solid-liquid transition (SLT; Rosenberg and 
Handy, 2005). Consequently, determining the extent and duration of partial 
melting within the GHS is crucial for validating the channel-flow model for the 
Himalayan orogen.

The extent to which channel-flow models are representative of the whole 
of the Himalaya has also been questioned (Godin et al., 2006a; Harris, 2007). 
The original thermomechanical channel-flow model (Beaumont et al., 2001) 
was based on seismic reflection and magneto-telluric data from the INDEPTH 
transect (Nelson et al., 1996), conducted across the southern part of the Ti-
betan plateau to the north and east of Sikkim, India (Fig. 1). The channel 
was modeled as a homogeneous layer; whereas the GHS comprises a lower 
portion of greenschist-facies quartzites, marbles, and metapelitic rocks and 
an upper portion of amphibolite-facies pelitic, psammitic, and calc-silicate 
paragneisses and schists, orthogneiss, and migmatites. While lithologies in 
individual tectonostratigraphic units within the GHS are remarkably constant 
along the length of the Himalaya, the relative proportions of these lithologies 
do vary (Le Fort, 1975; Upreti, 1999; Yin, 2006) and are likely to have produced 
orogen- parallel variations in viscosity during mid-crustal evolution. Addition-
ally, thermomechanical channel-flow models suggest that a minimum channel 
thickness of 10–20 km is required for crustal flow to be an effective form of ex-

trusion, although this thickness may change slightly for different model reso-
lu tions (Beaumont et al., 2004; Jamieson et al., 2004, 2006). The thickness of 
the GHS varies along the length of the orogen, and it remains unclear whether 
sections with a structural thickness of <10 km are too thin to have pervasively 
deformed by channel flow (Beaumont et al., 2004; Godin et al., 2006a). In order 
to test applicability of the model to the whole orogen, it is crucial, therefore, to 
assess the validity of the channel-flow model in regions of the Himalaya that 
differ from those where the model is best suited.

1.3. The Annapurna-Dhaulagiri Himalaya

The Himalayan orogeny initiated at ca. 50 Ma during final closure of Neo-
tethys (Searle, 1986; Green et al., 2008; Najman et al., 2010) (Fig. 1A). Since this 
time, the Himalayan belt has been under a continuous state of convergence, 
resulting in uplift and erosion of the world’s highest mountain peaks (e.g., 
Searle et al., 2011; Avouac, 2015; Searle, 2015). In central Nepal, the Himalaya 
can be divided into four tectonic units separated by orogen-parallel faults and 
shear zones (Fig. 1B). From SW to NE, these units are the Subhimalayan Zone 
(SZ), the Lesser Himalayan Sequence (LHS), the Greater Himalayan Sequence 
(GHS), and the Tethyan Himalayan Sequence (THS) (Le Fort, 1975; see exten-
sive reviews by Dhital, 2015).

The central Himalaya in Western Region, Nepal, is dominated by the peaks 
of Annapurna I (8091 m) and Dhaulagiri (8167 m) (Fig. 1B). Access through the 
region is gained along the NE-SW–trending Modi Khola and Kali Gandaki val-
leys and the foothills between. The geology of the region was first described 
by Le Fort (1975), was subsequently mapped in detail (Colchen et al., 1981; 
Hodges et al., 1996; Godin, 2003; Martin et al., 2010; Searle, 2010; Parsons 
et al., 2016), and is the subject of numerous detailed structural, thermobaro-
metric, and geochronometric studies (Bouchez and Pêcher, 1981; Arita, 1983; 
Le Fort et al., 1986; Pêcher, 1989; Brown and Nazarchuk, 1993; Nazarchuk,  
1993; Kaneko, 1995; Hodges et al., 1996; Vannay and Hodges, 1996; Godin 
et al., 1999a, 1999b, 2001; Godin, 2003; Bollinger et al., 2004; Martin et al., 
2005; Paudel and Arita, 2006; Kellett and Godin, 2009; Larson and Godin, 
2009; Martin et al., 2010; Corrie and Kohn, 2011; Kohn and Corrie, 2011; Carosi 
et al., 2015; Iaccarino et al., 2015; Larson and Cottle, 2015; Martin et al., 2015).

2. TECTONOSTRATIGRAPHY AND STRUCTURAL FRAMEWORK

In the Annapurna-Dhaulagiri Himalaya (Plates 1 and 2), the GHS is bound 
below by the Main Central Thrust (MCT) and above by the South Tibetan de-
tachment (STD) and is divided here into the Lower GHS (LGHS), Upper GHS 
(UGHS), and South Tibetan detachment system (STDS). The LGHS and UGHS 
are separated by the Chomrong thrust (CT), while the UGHS and STDS are 
separated by the Annapurna detachment (AD) in the Kali Gandaki valley and 
the Deurali detachment (DD) in the Modi Khola valley. Internally, the UGHS is 
deformed by the Kalopani shear zone (KSZ) in the Kali Gandaki valley and the 
Modi Khola shear zone (MKSZ) in the Modi Khola valley (Hodges et al., 1996; 
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NS

Figure 2. Channel-flow model for the Himalayan orogen. Yellow—Tethyan Hi-
malayan Sequence (THS); pink—Greater Himalayan Sequence (GHS); blue—
Lesser Himalayan Sequence (LHS); light gray—Indian Upper crust; dark 
gray—Indian Lower Crust; MCT—Main Central thrust; STD—South Tibetan 
detachment. Thick black arrow shows northward motion of Indian Lower 
Crust. Gray arrows in GHS represent velocity relative to the down- going slab. 
Black arrows and ellipse show vertical shortening + horizontal stretching of 
GHS. Based on Godin et al. (2006a).
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Vannay and Hodges, 1996). These structural definitions are in accordance with 
those proposed by Searle et al. (2008) and used by Larson and Godin (2009) for 
the same region but differ from other studies in which the CT, MCT, and LGHS 
as defined here, are referred to as the MCT, Ramgarh thrust, and Lesser Hima-
layan rocks, respectively (Martin et al., 2005; Corrie and Kohn, 2011; Carosi 
et al., 2015; Iaccarino et al., 2015). Additionally, the CT and MCT as defined 
here have also been referred to as the MCT I and MCT II, respectively (Arita, 
1983; Searle and Godin, 2003), and the LGHS has also been referred to as the 
Main Central thrust zone (MCTZ) (Grasemann et al., 1999) and the Lesser Hima-
laya crystalline series (LHCS) (Caddick et al., 2007). The Tethyan Himalayan 
Sequence (THS) overlies the GHS and is bound below by the STD and above 
by the Indus-Yarlung suture zone (IYSZ), north of the study area. Detailed geo-
logical maps and cross sections through the region are displayed in Plates 1 
and 2 and Figures 3 and 4. Table 1 summarizes six fabric generations observed 
in the GHS and THS across the region. These definitions are based upon the 
foliation classification defined by Godin (2003) for deformation fabrics in the 
UGHS, STDS, and THS in the Kali Gandaki valley. The orientations of these 
fabrics are summarized in Table 1 and Figure 5. The full structural data set is 
included in Supplemental File 11.

2.1.1. Lower Greater Himalayan Sequence (LGHS)

The LGHS has a structural thickness of ~5700–6650 m. At its base, the 
MCT forms a 10–20-m-thick top-SW shear zone (Plates 1 and 2). The lower-
most portion of the LGHS comprises a unit of undifferentiated quartzites, 
pelites, and semipelites (Unit A; Plates 1 and 2), plus a laterally discontinuous 
layer of feldspathic orthogneiss (Plate 2—Ulleri augen gneiss; Le Fort, 1975). 
Above this, Unit B consists of quartzite and dolomitic marble (marble defined 
as >80% carbonate). Unit C, at the top of the LGHS, consists of interbedded 
dolomitic metacarbonates (metacarbonate defined as >50%–80% carbonate), 
metamarls, and metapelitic rocks.

Regional foliation in the LGHS (S3) dips NE, with NE-plunging mineral lin-
eations (L3) (Fig. 5), and transposes an earlier crenulation cleavage. Top-SW 
shear-sense indicators associated with S3 are frequently developed. A later 
E-W–striking subvertical crenulation cleavage (S4) and N-S–striking normal 
fault and fracture set (S5) are sometimes observed (Table 1).

2.1.2. LGHS Metamorphic Constraints (Previous Work)

An up-section increase in temperature in the LGHS from ~400 °C to ~500–
650 °C has been determined from Raman spectroscopy of carbonaceous 
 material (RSCM, Beyssac et al., 2004), quartz c-axis fabric opening angle ther-
mometry (Larson and Godin, 2009), and garnet-biotite and garnet-ilmenite 
thermometry (Le Fort et al., 1986; Kaneko, 1995; Vannay and Hodges, 1996; 
Martin et al., 2010; Corrie and Kohn, 2011). Garnet-plagioclase barometry from 
Unit C yields pressures of ~7–12 kbar (Le Fort et al., 1986; Vannay and Hodges, 
1996; Martin et al., 2010; Corrie and Kohn, 2011).

2.2.1. Upper Greater Himalayan Sequence (UGHS)

The amphibolite-facies UGHS has a structural thickness of ~6500–7150 m 
and is divided into Unit I, Unit II, and Unit III (Plates 1 and 2). At the base of the 
UGHS, the Chomrong thrust (CT) forms a 50–100-m-thick top-SW shear zone 
comprising quartz mylonites and metapelitic horizons with a well-defined S-C 
fabric (Fig. 6E).

The lowermost unit in the UGHS, Unit I, is 3300–3900 m thick and consists 
of kyanite-grade schists, gneisses, migmatites, and leucogranites. Migmatites 
typically concentrate into foliation-parallel bands ~10–50 m thick, while leuco-
somes and small leucogranite bodies (<1 m thick) are present throughout 
Unit I. Where present, migmatite comprises 10%–40% leucosome in the Modi 
Khola valley and 5%–20% leucosome in the Kali Gandaki valley. Bulk mineral 
assemblages are dominated by biotite, quartz, plagioclase ± garnet ± kyanite ± 
K-feldspar. Kyanite is first observed at ~400–450 m above the unit base. Garnet 
commonly contains inclusions of quartz, plagioclase, biotite, and rutile. In some 
cases, garnet cores contain ilmenite inclusions with rims containing rutile in-
clusions. Rutile inclusions are also observed within the largest kyanite crystals. 
Muscovite is sporadically observed, most commonly as a secondary mineral 
phase but is also identified as a primary phase at the very base of Unit I in the 
Kali Gandaki transect. Secondary paragonite is also found in samples from the 
lowermost Unit I within the Modi Khola transect. Sillimanite has not been ob-
served in Unit I during this study. Carosi et al. (2015) identified sillimanite as rare 
microscopic fibrolitic needles within fractures in kyanite, and at the rims of bio-
tite and muscovite in contact with garnet and at plagioclase grain boundaries.

Unit II is 2250–2500 m thick and dominated by calc-silicate gneisses that com-
prise variable proportions of quartz, calcite, clinopyroxene, plagioclase, K-feldspar, 
phlogopite, scapolite, clinozoisite, rutile, and titanite. Amphibole is also observed 
in some retrogressed samples. Subordinate kyanite paragneisses have the same 
mineral assemblages as in Unit I. Leucosomes within Unit II are rare and typically 
<10 cm thick and <50 cm long. Leucogranite sills are seen in the upper most layer 
of Unit II at the top of the UGHS in the Modi Khola valley (Plate 2).

Unit III is 700–1000 m thick and dominated by orthogneiss and leucogranite 
containing albite, K-feldspar, quartz, biotite, and muscovite. In this study, garnet 
was only observed in orthogneiss from the Modi Khola transect. Larson and 
Godin (2009) reported garnet in leucogranites from Unit III in the Kali Gandaki 
transect. Subordinate pods of calc-silicate gneisses containing plagioclase, bio-
tite, clinozoisite, amphibole, and quartz are observed at the top of Unit III in the 
Kali Gandaki valley. Previous studies have also reported subordinate pods of 
sillimanite-biotite-gneiss with kyanite-bearing leucosomes (Arita, 1983;  Godin 
et al., 2001; Larson and Godin, 2009). The top of Unit III is bound by the Anna-
purna detachment in the Kali Gandaki transect (Plate 1 and Fig. 3), and the 
 Deurali detachment in the Modi Khola transect (Plate 2 and Fig. 4).

Leucogranite bodies across the UGHS are no larger than tens of meters in 
thickness, and injection complexes are only observed in the Modi Khola tran-
sect and are less densely packed with dikes and sills than typically observed in 
other regions (e.g., Searle et al., 2003).
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1Supplemental File 1. Full structural data set. Please 
visit http:// dx .doi .org /10 .1130 /GES01246 .S1 or the 
full-text article on www .gsapubs .org to view Supple-
mental File 1.
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Regional foliation (S3) dips approximately NE, with mineral lineation 
trends ranging between NW and E (Fig. 5). A general parallelism observed 
between the orientation of the regional S3 foliation, C-planes of localized S-C 
fabrics (sensu Berthé et al., 1979), and the major bounding shear zones sug-
gests that S3 is a shear-related transpositional fabric, as observed in the LGHS 
and STDS (see below). Top-SW S3 shear indicators are observed throughout 
the UGHS (Figs. 6A, 6C, and 6D). The upper portion of the UGHS is deformed 

by the top-SW Kalopani shear zone (KSZ; Vannay and Hodges, 1996) and Modi 
Khola shear zone (MKSZ; Hodges et al., 1996) in the Kali Gandaki (Plate 1) and 
Modi Khola valleys, respectively. Subordinate S4 deformation structures asso-
ciated with deformation on the KSZ and MKSZ are observed locally across the 
UGHS, deforming the regional S3 foliation (Plate 1 and Fig. 6D). Late-stage, 
N-S–striking normal faults and fracture sets (S5) are observed in the Kali Gan-
daki transect (Fig. 5).
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2.2.2. UGHS Metamorphic and Geochronometric Constraints 
(Previous Work)

The UGHS in the Annapurna-Dhaulagiri Himalaya equilibrated within the 
kyanite stability field (Carosi et al., 2015). No evidence has been found for 
partial melting within the sillimanite stability field (Nazarchuk, 1993; Hodges 
et al., 1996; Larson and Godin, 2009). In the Modi Khola transect, peak meta-

morphic temperatures and pressures of 750–825 °C and 11–14 kbar are re-
corded ( garnet-biotite cation exchange [GARB] thermometry—Kaneko, 
1995; GARB and garnet-ilmenite cation exchange thermometry, garnet-
plagio clase-quartz-muscovite (GPMQ), and garnet-plagioclase-aluminosili-
cate-quartz (GASP)–phase equilibria barometry—Martin et al., 2010; GARB and 
Zr-in-titanite thermometry, GPMQ, GASP, and garnet-plagioclase-biotite-quartz 
(GPBQ)–phase equilibria barometry—Corrie and Kohn, 2011).

TABLE 1A. SUMMARY OF DEFORMATION FABRIC GENERATIONS IN THE ANNAPURNA-DHAULAGIRI HIMALAYA

Fabric 
generation LGHS UGHS STDS THS (from Godin, 2003)

S0 (bedding) n/a n/a n/a Deformed by km-scale F2 folds

S1 Microscopic fabric preserved in pelites. 
Deformed by S2 + S3.

n/a n/a Subparallel to bedding; deformed by km-scale 
F2 folds

F1 n/a n/a n/a S1 parallel isoclinal folding

S2 Microscopic fabric preserved in pelites. 
Crenulation cleavage deforms S1 foliation.

n/a n/a Crenulation cleavage axial planar to km-scale 
F2 folds, deforms S1 and S0

F2 n/a n/a n/a Overturned to upright km-scale folds with 
NW-SE–striking hinge planes

S3 NE-dipping, regional transpositional fabric, 
parallel to structural and lithological 
boundaries, related to top-SW shearing

NE-dipping, regional transpositional fabric, 
parallel to structural and lithological boundaries, 
related to top-SW and top-NE shearing

ENE- to E-dipping, regional transpositional 
fabric, parallel to structural and lithological 
boundaries, related to top-SW shearing

STDS parallel foliation. Present at base of THS, 
deforms S1 and S2

L3 NE-plunging regional mineral stretching lineation NE- to E-plunging regional mineral stretching 
lineation

E-plunging regional mineral stretching lineation n/a

F3 Localized folding related to top-SW shearing Localized folding related to top-SW shearing. 
Subparallel to S3

Localized folding related to top-ENE shearing Regional shear-related fold transposes S1 and 
S2 into parallelism with S3

S4 E-W–striking, subvertical crenulation cleavage 
in pelitic rocks deforms S3.

Subparallel to S3. Syn- to postmetamorphic 
top-SW shear fabric.

Subparallel to S3. Syn- to postmetamorphic 
top-SW shear fabric.

Subparallel to S3, always steeper, with 
associated thrust faults

F4 n/a n/a Localized folding related to top-SW shearing 
deforms S3 foliation and leucogranite bodies.

Kink folds deform S1, S2, S3

S5 N-S–striking normal faults and associated 
subvertical joint set

N-S–striking normal faults and associated 
subvertical joint set

N-S–striking normal faults and associated 
subvertical joint set

N-S–striking, subvertical cleavage. Normal faults 
and associated penetrative cleavage

Note: Based on classifications of Godin (2003). Abbreviations: LGHS—Lower Greater Himalayan Sequence; UGHS—Upper Greater Himalayan Sequence; STDS—South Tibetan detachment system; THS—Tethyan Himalayan 
Sequence; n/a—no data.

TABLE 1B. MEAN FABRIC ORIENTATIONS IN THE GREATER HIMALAYAN SEQUENCE

Fabric 
generation Transect MCT LGHS UGHS Unit I Unit II Unit III STDS

S3 Modi Khola S planes—058/57 NW; C planes—075/39 NW 119/25 NE 116/42 NE n/a n/a n/a 112/36 NE
S3 Kali Gandaki S planes—156/63 NE; C planes—147/24 NE 128/36 NE 118/38 NE 112/48 NE 109/35 NE 145/36 NE 157/29 E
L3 Modi Khola 31/030 19/028 29/097 n/a n/a n/a n/a
L3 Kali Gandaki n/a 41/028 n/a 41/022 29/000 29/078 16/087
S4 Kali Gandaki n/a n/a n/a n/a n/a n/a 151/41 E
F4 Kali Gandaki n/a n/a n/a n/a n/a n/a 129/28 NE
S5 Kali Gandaki n/a 178/70 W 192/83 W n/a n/a n/a 195/76 E

Note: Abbreviations: MCT—Main Central thrust; LGHS—Lower Greater Himalayan Sequence; STDS—South Tibetan detachment system; n/a—no data.
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GHS STRUCTURAL DATA

S4 mean foliation (Kali Gandaki)
S3 mean foliation (Kali Gandaki)

L3 mean lineation (Kali Gandaki)

L3 lineation (Kali Gandaki)   n = 19
F4 fold axes (Kali Gandaki)   n = 3

S3 poles to foliation (Kali Gandaki) n = 44
S3 poles to foliation (Modi Khola) n = 2
S4 poles to foliation (Kali Gandaki) n = 7

S5 poles to foliation (Kali Gandaki) n = 3

F4 poles to axial planes (Kali Gandaki)  n = 3

Poles to fault planes (Kali Gandaki) n = 4

N
C  STDS

S3 mean foliation  (Kali Gandaki)

S3 mean foliation  (Modi Khola)

L3 mean lineation (Modi Khola)

L3 mean lineation (Kali Gandaki)

L3 lineation (Kali Gandaki) n = 10

L3 lineation (Modi Khola) n = 16

Fold axes (Kali Gandaki)   n = 10

Poles to cren. cleavage (Kali Gandaki) n = 4

S3 pole to foliation (Kali Gandaki)  n = 44

S3 pole to foliation (Modi Khola)  n = 41

S5 pole to foliation (Kali Gandaki) n = 10

Poles to axial planes (Kali Gandaki)  n = 4

Poles to fault planes (Kali Gandaki)  n = 3

N
A  LGHS

S3 mean foliation - Unit III (Kali Gandaki)
S3 mean foliation - Unit II (Kali Gandaki)

S3 mean foliation - Unit I (Kali Gandaki)

L3 mean lineation - Unit III (Kali Gandaki)

L3 mean lineation - Unit II (Kali Gandaki)

L3 mean lineation - Unit I (Kali Gandaki)

L3 lineation - Unit I (Kali Gandaki)   n = 14

L3 lineation - Unit II (Kali Gandaki)   n = 13

L3 lineation - Unit III  (Kali Gandaki)  n = 13
L3 lineation - Undiff. (Modi Khola)   n = 4

S3 poles to foliation - Unit I (Kali Gandaki) n = 34

S3 poles to foliation - Unit II (Kali Gandaki) n = 21

S3 poles to foliation - Unit III (Kali Gandaki) n = 23

S3 poles to foliation - Undiff. (Modi Khola) n = 18
S5 poles to foliation (Kali Gandaki)  n = 34

N
B  UGHS

Figure 5. Structural data from the Greater Himalayan Sequence (GHS). All data plotted on lower hemisphere equal area projections; geographic north indicated. (A) Lower Greater Himalayan Sequence 
(LGHS); (B) Upper Greater Himalayan Sequence (UGHS); (C) South Tibetan detachment system (STDS). UGHS and STDS mean plane and lineation orientations derived from Kali Gandaki transect only. 
See Table 1B for summary of mean orientations. See Supplemental File 1 (footnote 1) for full structural data set.
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Plate 2. 1:100,000 geological map of the Modi Khola valley. Locations of field photographs (Fig. 6) and cross sections (Fig. 4) are given, along with locations of all samples 
collected during fieldwork. To view Plate 2 at full size, please visit http:// dx .doi .org /10 .1130 /GES01246 .S5 or the full-text article on www .gsapubs .org.
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Figure 6. Leucosome structures and shear-
sense indicators in the Upper Greater 
Himalayan Sequence (UGHS). See Plates 
1 and 2 for photo locations and Figure 3 
for relative structural positions of sample 
photomicrographs. (A) Folded leuco somes 
in Unit I migmatite from the Modi Khola 
transect. (B) Amorphous leucosome bodies 
in Unit I, Kali Gandaki transect. (C) Banded 
leucosomes in Unit I migmatites in the 
Kali Gandaki transect. Leucosomes record 
top-S shearing along S3 foliation-parallel 
shear planes. Deformation features suggest 
that deformation occurred during partial 
melting, prior to crystallization of leuco-
somes. (D) Banded leucosomes in Unit I 
migmatites in the Kali Gandaki transect. 
The S3 leucosome fabric is deformed by S4 
thrust-tip folds. (E) Sample P13/046–Unit I, 
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hanging wall of the Chomrong thrust. 
(F) Sample P12/059–Unit I, Kali Gandaki. 
Microstructures around garnet porphyro-
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sense. All micrographs viewed in XZ plane 
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A range of temperatures and pressures is recorded from the UGHS in the 
Kali Gandaki transect. Iaccarino et al. (2015) recorded peak temperatures and 
pressures of 710–720 °C and 10–11 kbar from garnet-muscovite-biotite- ilmenite 
multiphase equilibria thermobarometry and Zr-in-rutile thermometry. Le Fort 
et al. (1986) recorded temperatures and pressures of ~650–700 °C and 5–10 
kbar from GARB-GASP thermobarometry. Vannay and Hodges (1996) recorded 
temperatures and pressures of ~500–750 °C and 6–12 kbar from GARB and 
garnet-hornblende cation exchange thermometry and GASP, garnet-rutile-
alumino silicate-ilmenite-quartz, garnet-plagioclase-muscovite-biotite, and 
garnet-amphibole-plagioclase-quartz phase equilibria barometry. It is likely 
that the use of different thermobarometer calibrations and analytical meth-
ods to select appropriate element compositions has contributed to some of 
the differences in pressure and temperature estimates between these studies 
(e.g., Hodges and McKenna, 1987; Kohn and Spear, 2000; Kohn, 2014). Quartz 
c-axis fabric opening angle thermometry (Kruhl, 1998) from Unit I in the Kali 
Gandaki valley records a deformation temperature of 670 ± 50 °C (Larson and 
 Godin, 2009).

U-Pb zircon and monazite geochronology and titanite thermochronology in 
the Annapurna-Dhaulagiri Himalaya indicate prograde metamorphism of the 
UGHS at temperatures exceeding 700 °C, initiated at 48–43 Ma (Carosi et al., 
2015; Iaccarino et al., 2015; Larson and Cottle, 2015). Peak metamorphic tem-
peratures were attained between 35 and 30 Ma in Unit III and 28–20 Ma in Unit I 
and Unit II (Corrie and Kohn, 2011; Kohn and Corrie, 2011; Iaccarino et al., 2015). 
In Unit I in the Kali Gandaki valley, retrogression from peak conditions began 
as early as 28 Ma and reached 650–670 °C and 7–8 kbar between 25 and 18 Ma 
(Iaccarino et al., 2015). This equates to a vertical exhumation from ~30–33 km 
to ~21–24 km at a time-averaged rate of 0.6–4.3 mm yr–1. In the Modi Khola 
valley, Corrie and Kohn (2011) recorded retrogression of Unit I between 17 and 
22 Ma. During metamorphism, partial melting initiated as early as 41 Ma and 
continued to as late as 18.5 Ma (Nazarchuk, 1993; Hodges et al., 1996; Godin 
et al., 2001; Corrie and Kohn, 2011; Kohn and Corrie, 2011; Carosi et al., 2015; 
Larson and Cottle, 2015; Iaccarino et al., 2015).

Crystallization ages of undeformed leucogranite dikes suggest that motion 
on the CT occurred before 22–18.5 Ma (Nazarchuk, 1993; Hodges et al., 1996). 
Uniform 40Ar/39Ar muscovite cooling ages from across the UGHS suggest that 
the sequence was extruded and exhumed to the topographic surface as a co-
herent single block at ca. 16–12 Ma (Vannay and Hodges, 1996; Godin et al., 
2001; Martin et al., 2015).

2.3. South Tibetan Detachment System (STDS)

The STDS has a structural thickness of ~1700–2200 m and forms the upper-
most part of the GHS, consisting of metacarbonates, marble, and subordinate 
calc-silicate gneiss. Marbles and metacarbonates within the STDS are domi-
nated by calcite and contain variable proportions of quartz, plagioclase, and 
mica ± K-feldspar ± dolomite. Calc-silicate gneiss at the base of the STDS is 
composed of clinopyroxene, amphibole, clinozoisite, plagioclase, K-feldspar, 

quartz, biotite, and calcite ± rutile ± titanite. Leucogranite sills and dikes are 
found in the lower to middle portions of the STDS. At the base of the STDS, the 
top-down-E Annapurna detachment (Plate 1, AD—Kali Gandaki valley, Brown 
and Nazarchuk, 1993) and the top-down-NE Deurali detachment (Plate 2, DD—
Modi Khola valley, Hodges et al., 1996) form foliation-parallel, normal-sense 
mylonitic shear zones with deformed, foliation-parallel leucogranite sills 
(Fig. 7). At the top of the STDS, the STD forms a more discrete top-E to top-NE 
brittle-ductile normal-sense detachment between the GHS and THS (Plates 1 
and 2; Burg et al., 1984).

The S3 foliation dips to the ENE and NE in the Kali Gandaki and Modi Khola 
valleys, respectively (Fig. 5). The L3 stretching lineation plunges E and NE in 
the Kali Gandaki and Modi Khola valleys, respectively (Fig. 5). The S3-parallel 
transposed calcite veins are common across the STDS. In the Kali Gandaki 
valley, S3 foliation is locally deformed by S4 foliation (Plate 1 and Fig. 5C) 
and folds with S3-associated normal (top-E—F3) and S4-associated reverse 
(top-SW—F4) senses of vergence (Plate 1; Figs. 7 and 8) are observed. Leuco-
granite intrusions in the STDS in the Kali Gandaki valley are also deformed by 
F4 folding (Fig. 8). In addition, deformation microstructures from the STDS, in-
cluding rotated porphyroblasts and grain-shape–preferred orientations, record 
both top-E (S3) and top-SW shearing (S4) (Fig. 9). The youngest deformation 
in the STDS is defined by a set of N-S–striking, subvertical normal faults and 
fractures (S5).

U-Pb geochronology of deformed and undeformed leucogranites suggests 
that the DD was active at ca. 22.5 Ma (Hodges et al., 1996) and that motion on 
the AD had ceased by ca. 22 Ma (Godin et al., 2001). In the Modi Khola val-
ley, the STD was active after 18.5 Ma but may have initiated before this time 
(Hodges et al., 1996).

2.4. Tethyan Himalayan Sequence (THS) and Mid-Miocene 
to Recent Sedimentation

The THS is bound by the STD (Plates 1 and 2) to the south and the 
 Indus-Yarlung suture zone (IYSZ) to the north (Searle, 2010). The IYSZ is ex-
posed in southern Tibet, north of the study area. In the Annapurna-Dhaulagiri 
Himalaya, the THS comprises weakly metamorphosed (chlorite-grade or lower) 
 Cambro-Ordovician to Cretaceous limestones, dolostones, and marls belonging 
to the Annapurna, Sanctuary, Nilgiri, Sombre and Thini Chu, and Lake Tilicho 
formations (Plates 1 and 2). The full stratigraphic framework of the THS is de-
scribed in detail by Gradstein et al. (1992), Garzanti (1999), and Godin (2003).

The structure of the THS in the Kali Gandaki valley has been extensively 
studied by Godin (2003) and is summarized in Table 1. Within the upper Kali 
Gandaki valley, the Thakkhola graben has deformed the THS since mid-Mio-
cene times during E-W extension (Plate 1 and Fig. 3) and is responsible for the 
subvertical, N-S–striking S5 foliation recorded in the THS and GHS (Hurtado 
et al., 2001; Garzione et al., 2003; Godin, 2003). Basin fill within the  Thakkhola 
graben is mid-Miocene to Plio-Pleistocene in age (Garzione et al., 2003; 
Adhikari and Wagreich, 2011; Baltz, 2012).

http://geosphere.gsapubs.org
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3. NEW THERMOBAROMETRIC CONSTRAINTS FOR THE GHS 
IN THE KALI GANDAKI VALLEY

New estimates of peak metamorphic temperatures and pressures for the 
UGHS in the Kali Gandaki valley have been determined via GARB and Zr-in-
titanite thermometry and GASP barometry. All analyses were conducted using 
wavelength dispersive X-ray spectroscopy with a JEOL 8230 electron micro-
probe at the University of Leeds using Probe for EPMA (Probe Software, Inc.). 
A description of methods used during data acquisition and the analytical con-
ditions for both analyses are provided in Supplemental File 22. The microprobe 
analysis data sets are included in Supplemental File 33.

Three samples were selected for thermobarometry from Unit I of the UGHS 
in the Kali Gandaki transect (P12/055, P12/058, and P12/060; see Plate 1 for sample 

locations). All samples contain garnet, biotite, plagioclase, kyanite, and quartz. 
Sample P12/060 also contains muscovite. Peak temperature and pressure esti-
mates are based on major-element compositions of garnet, biotite, and plagio-
clase, calculated simultaneously using the “Thermobarometry With Estimation 
of EQUilibrium state” method (TWEEQU; Berman, 1991) with the winTWQ v2.32 
software (Berman, 2007). This multi-equilibrium approach uses a single inter-
nally consistent thermodynamic database (Berman and Aranovich, 1996) to find 
the point at which multiple phase reactions are at equilibrium (i.e., the intersec-
tion between multiple reaction curves in PT space) and provides more robust 
PT estimates than using individual calculations for pressure and temperature.

It is necessary to consider the effects of reequilibration and retrograde net 
transfer reactions on garnet, biotite, and plagioclase element compositions when 
calculating peak PT estimates (e.g., Frost and Chacko, 1989; Kohn and Spear, 2000).  

A Dhaulagiri (8167 m)

UGHS

STDS
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ANNAPURNA DETACHMENT (AD)

SOUTH TIBETAN
DETACHMENT (STD)
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VALLEY
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Figure 7. Annapurna detachment (AD) exposed on the Kali Gandaki transect. (A) Panoramic photograph of the AD, which is accessible at the mouth of the gorge highlighted by the small black box, 
where (B) and (C) are located. (B–C) Sheared and boudinaged calc-silicate gneiss and leucogranite from the AD, recording top-E normal-sense motion (S3). (D) Top-ENE normal-sense shearing (S3) 
recorded by a calc-mylonite from the AD, observed at a different location to (C). See Plate 1 for locations of photographs.
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Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An 
atypical example of channel flow during the Himalayan orogeny 

Parsons A.J., Lloyd, G.E., Law, R.D., Phillips, R.J., Searle, M.P., Walshaw, R.D. 

See main article for references and abbreviations 

1. Electron microprobe analyses  
2.1. GARB-GASP thermobarometry 

Garnet grains in samples P12/058 and P12/060 are 5-10 mm and 0.5-1 mm in diameter 
respectively and are euhedral to subhedral. Garnet grains in P12/055 are 0.5-5 mm in 
diameter and are anhedral, with the largest grains showing signs of resorption. Garnet rims 
and cores and biotite and plagioclase cores were analysed and line-traverses with 
~50-100 µm spacing between spot analyses were conducted on the largest grains. The 
largest biotite grains furthest away from garnet grains were selected for analysis to limit the 
effects of diffusion between garnet and biotite after metamorphism (Dasgupta et al., 2004). If 
present, biotite and plagioclase grains in the middle of biotite and plagioclase 
amalgamations, respectively, were preferentially chosen to further limit the effects of re-
equilibration (Dasgupta et al., 2004). Zoned plagioclase was generally avoided but when 
analysed, the most internal zone was selected. A 4% H2O content is assumed for biotite 
compositions (e.g. Fleet, 2003).  

SAMPLE Nb WT% Si WT% Zr WT% Ti WT% Al WT% Fe WT% Ca WT% K WT% F WT% O WT% TOTAL Core/Intermediate/Rim
P031_T3_1 0.1235 13.397 0.007 23.156 1.1041 0.256 19.652 0.0028 0.6067 39.395 97.7 C
P031_T3_3 0.1561 13.198 0.0088 22.461 1.4312 0.2537 19.699 0.0013 0.7697 39.038 97.016 R
P031_T6_1 0.0562 13.362 0.0042 22.707 1.3497 0.3595 19.52 0.0015 0.6547 39.23 97.246 C
P031_T8_3 0.1091 13.269 0.0056 22.869 1.2619 0.3364 19.698 0.0388 0.6073 39.25 97.445 R
P031_T10_2 0.1564 13.276 0.0138 23.24 1.1517 0.2446 19.548 0.0025 0.5792 39.334 97.545 C
P031_T12_1 0.0265 13.365 0.0036 22.846 1.1106 0.7186 19.603 -0.0037 0.6645 39.241 97.574 C
P031_T12_4 0.1359 13.236 0.0031 22.99 1.1433 0.4562 19.616 -0.0036 0.5502 39.2 97.328 R
P031_T13_1 0.1801 13.314 0.0108 23.03 1.2614 0.286 19.683 0.0027 0.4772 39.422 97.667 C
P031_T14_4 0.122 13.336 0.0007 22.625 1.4256 0.3788 19.506 -0.0012 0.734 39.256 97.383 Int
P031_T15_1 0.1611 13.375 0.0045 23.419 1.0829 0.1949 19.707 -0.0016 0.4594 39.565 97.967 C
P031_T15_2 0.1688 13.234 0.0793 23.427 0.8946 0.4346 19.664 -0.0148 0.4855 39.321 97.695 R

2Supplemental File 2. Description of methods used 
during data acquisition and analytical conditions for 
both major element analyses. Please visit http:// dx 
.doi .org /10 .1130 /GES01246 .S2 or the full-text article 
on www .gsapubs .org to view Supplemental File 2.

3Supplemental File 3. Microprobe analysis data sets. 
Please visit http:// dx .doi .org /10 .1130 /GES01246 .S3 
or the full-text article on www .gsapubs .org to view 
Supplemental File 3.

http://geosphere.gsapubs.org
http://dx.doi.org/10.1130/GES01246.S2
http://dx.doi.org/10.1130/GES01246.S2
http://www.gsapubs.org
http://dx.doi.org/10.1130/GES01246.S3
http://www.gsapubs.org
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Figure 8. Top-SW shortening in the South 
Tibetan detachment system (STDS) and 
Tethyan Himalayan Sequence (THS), Kali 
Gandaki transect. See Plate 1 for locations 
of photographs. (A–C) F4 folding and asso-
ciated top-S/SW shearing deform S3 folia-
tion in the STDS. F4 hinge planes (dashed 
lines) are subparallel to S4 foliation. 
(D) Folded and boudinaged leucogranite 
in the STDS recording top-S shearing. 
Boudins appear to be shortened parallel to 
the shear direction, suggesting that they 
formed prior to top-to-the-S shearing. 
(E) Top-to-the-S shearing of S3 foliation on 
the margin of a leucogranite intrusion in 
the STDS, suggesting that reverse-sense 
shearing occurred after leucogranite em-
placement. (F) F4 thrust-tip folding in the 
THS. S4-related compression has rotated 
preexisting calcite veins during top-S F4 
thrust and fold development.
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Figure 9. Microstructural shear-sense 
indicators in the South Tibetan detach-
ment system (STDS)–Kali Gandaki. See 
Plate 1 and Figure 4 for relative struc-
tural positions of samples. (A) Sample 
P13/026—Grain-shape–preferred orienta-
tion (SPO) long-axis alignment of calcite 
and dolomite records top-NW (normal) 
sense at the base of the STDS. (B) Sam-
ple P13/008—Grain SPO long-axis align-
ment of calcite, quartz, and mica matrix 
grains and biotite (BT) porphyroblasts 
records top-S (reverse) sense shear from 
top of the STDS. (C) P13/008—Grain SPO 
long-axis alignment of calcite records 
top-S ( reverse) sense shear from top of 
the STDS. (D) Sample P13/006—Grain-
shape elongation of calcite records top-S 
(reverse) sense shear from the footwall 
of the STD. (E) Sample P12/044—Grain 
SPO long-axis alignment of biotite (BT) 
porphyro blasts records top-ESE (normal) 
sense shear. Straight inclusion trails in 
biotite record a dextral rotation relative 
to the foliation. (F) Sample P13/008—Bou-
dinage of biotite porphyroblast. Quartz in-
fills gaps between boudins.
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Peak mineral compositions were determined using the methods outlined by 
Kohn et al. (1992), Dasgupta et al. (2004), and Corrie and Kohn (2011) (see Sup-
plemental File 2 [footnote 2] for method details). Samples P12/055, P12/058, 
and P12/060 produced peak temperature estimates of 747 ± 10 °C, 703 ± 13 °C, 
and 688 ± 19 °C, respectively (Table 2). These samples respectively yielded 
peak pressure estimates of 11.4 ± 0.9 kbar, 11.5 ± 1.3 kbar, and 11.3 ± 1.2 kbar.

Four samples of calc-silicate gneiss (P12/053; P12/054–Unit II; P13/032–Unit III; 
P13/031–STDS; see Plate 1 for sample locations) were selected for Zr-in-titanite 
thermometry (Table 3). All samples contained calcite, zircon, quartz, and rutile 
(see Table 3 for full mineral assemblage of each sample). Samples P13/031 and 
P13/032 were sampled from immediately above and below the AD, respectively 
(Plate 1). Temperatures were calculated using the Zr-in-titanite thermometer of 
Hayden et al. (2008) from average titanite Zr concentrations (ppm) in individual 
samples. The highest temperatures in P12/053 were calculated from rim concen-
tration of Zr and are assumed to reflect peak metamorphic conditions (Kohn and 
Corrie, 2011). Titanite rim and core temperatures from P13/031 and P13/032 were 
within error of each other and only titanite core temperatures were calculated for 
P12/054. These may reflect crystallization temperatures rather than peak meta-
morphic temperatures and thus provide a minimum bound for peak metamor-
phic conditions. For a pressure of 11 ± 1 kbar (based on GASP barometry from 
this study, plus Corrie and Kohn, 2011; Iaccarino et al., 2015), peak temperature 

estimates of 740 ± 35 °C, 772 ± 33 °C, 744 ± 38 °C, and 720 ± 48 °C are calculated 
for samples P12/053, P12/054, P13/032, and P13/031, respectively (Table 3).

Our GARB-GASP thermobarometry results are similar to the results of 
Iacca rino et al. (2015), who record peak temperatures and pressures of 710–
720 °C and 10–11 kbar from multi-equilibrium thermobarometry and Zr-in- 
rutile thermometry of a kyanite-migmatite in Unit I in the Kali Gandaki transect 
(Fig. 10A). Our Zr-in-titanite thermometry results from Unit II, Unit III, and the 
STDS are similar to previous temperature estimates from Unit II and Unit III 
in the Modi Khola valley (750–850 °C, Fig. 10B; Martin et al., 2010; Corrie and 
Kohn, 2011). Differences in results between this study and Le Fort et al. (1986) 
and Vannay and Hodges (1996) most likely derive from the use of different 
analytical procedures and thermobarometric calibrations to those used in 
this study. Vannay and Hodges (1996) analyzed the rims of garnet-biotite and 
 garnet-plagioclase grain pairs that were in contact with each other, in accor-
dance with the methods of Hodges and McKenna (1987) and Hodges et al. 
(1993). As stated by Vannay and Hodges (1996) and Hodges et al. (1993), the 
purpose of their employed analytical method was to determine the tempera-
ture and pressure at which these minerals equilibrated for the last time, and 
this is unlikely to yield PT estimates representative of peak conditions. Le Fort 
et al. (1986) also use different thermobarometers, and it is not clear what ana-
lytical  methods they used to select element compositions for PT calculations.

TABLE 2. REPRESENTATIVE MINERAL ANALYSES (wt%) FOR GARNET, BIOTITE, AND PLAGIOCLASE AND THERMOBAROMETRY RESULTS

Sample Mineralogy Mineral SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO BaO Na2O K2O F Total
Temperature

(°C)
Pressure

(kbar)

P12/055 Qtz + Bt + Grt + Plg + Ky + 
Msc (secondary) + Rt

Biotite 35.41 2.43 17.48 0.04 17.77 0.06 10.80 0.01 0.06 0.21 9.23 0.37 93.87 – –
Plagioclase 59.77 0.00 25.89 0.00 0.03 0.00 0.00 7.31 0.00 7.60 0.12 0.00 100.66 – –

Garnet 1 37.86 0.02 21.33 0.02 29.97 1.31 4.89 4.78 – 0.00 0.00 – 100.18 747 11.4
Sample average temperature + pressure: 747 ± 10 11.4 ± 0.9

Mineral SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO BaO Na2O K2O F Total

P12/058 Qtz + Bt + Grt + 
Plg (An% 0–30) + Ky + Rt

Biotite 36.00 2.58 17.81 0.05 16.69 0.06 11.45 0.04 0.12 0.37 8.68 0.20 94.04 – –
Plagioclase 65.11 0.01 20.91 0.01 0.00 0.00 0.00 1.78 0.02 10.98 0.10 0.00 98.90 – –

Garnet 1 38.10 0.00 21.46 0.01 32.62 1.32 6.09 0.95 – 0.02 0.00 – 100.58 707 11.7
Garnet 2 37.98 0.02 21.34 0.01 32.28 1.83 5.14 2.04 – 0.03 0.00 – 100.62 699 11.0
Garnet 3 38.00 0.00 21.63 0.00 32.84 1.15 6.04 1.01 – 0.03 0.00 – 100.70 703 11.8

Sample average temperature + pressure: 703 ± 13 11.5 ± 1.3

Mineral SiO2 TiO2 Al2O3 Cr2O3 FeO MnO MgO CaO BaO Na2O K2O F Total

P12/060 Qtz + Bt + Grt + 
Plg + Msc + Ilm

Biotite 36.16 2.08 17.60 0.04 17.04 0.06 11.56 0.04 0.29 0.25 8.45 0.00 93.56 – –
Plagioclase 62.49 0.00 22.57 0.00 0.01 0.00 0.00 3.73 0.03 9.79 0.10 0.00 98.72 – –

Garnet 1 37.98 0.00 21.46 0.03 31.55 1.50 5.20 2.80 – 0.02 0.00 – 100.54 698 11.7
Garnet 2 37.76 0.01 21.42 0.00 32.05 1.53 4.94 2.68 – 0.03 0.00 – 100.43 679 11.0
Garnet 3 37.83 0.00 21.45 0.00 32.21 1.54 4.95 2.68 – 0.00 0.00 – 100.64 678 11.0
Garnet 4 37.81 0.00 21.42 0.01 31.57 1.42 5.17 2.70 – 0.02 –0.04 – 100.09 695 11.5

Sample average temperature + pressure: 688 ± 19 11.3 ± 1.2

Note: Mineral compositions of each sample indicated. Oxygen units per mineral formula as follows: garnet = 24 O, biotite = 12 O, plagioclase = 8 O. Abbreviations for mineralogy: An—anorthite; Bt—biotite; Grt—garnet; Ilm—
ilmenite; Ky—kyanite; Msc—muscovite; Plg—plagioclase; Rt—rutile.
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4. ATYPICAL GEOLOGICAL FEATURES OF THE 
ANNAPURNA-DHAULAGIRI HIMALAYA AND THEIR 
KINEMATIC-DYNAMIC IMPLICATIONS

The GHS in the Annapurna-Dhaulagiri Himalaya differs from more typical 
GHS sections elsewhere (e.g., Everest-Makalu Himalaya and Sikkim Himalaya) 
upon which the channel-flow model was based, with atypically low volumes of 
leucogranite and migmatite, an absence of evidence for partial melting within 
the sillimanite stability field, a smaller structural thickness (<10 km), and evi-
dence for late-stage top-SW shortening on the STDS (Brown and Nazarchuk, 
1993; Nazarchuk, 1993; Hodges et al., 1996; Godin et al., 1999a; Godin, 2003; 
Larson and Godin, 2009; Parsons et al., 2016). Additionally, alternative models 
of underplating and thrust stacking or composite channel-flow–underplating 
models have been proposed for mid-crustal emplacement of the GHS in the 
Annapurna-Dhaulagiri Himalaya, following identification of several metamor-
phic discontinuities within the GHS (Martin et al., 2010; Corrie and Kohn, 2011; 
Montomoli et al., 2015; see review by Cottle et al., 2015). These atypical fea-
tures and their implications for applicability of the channel-flow model and 
kinematic evolution of the Annapurna-Dhaulagiri Himalaya are discussed 
and assessed below.

4.1. Reduced Volumes of Leucogranite and Migmatite and Absence of 
Evidence for Partial Melting within the Sillimanite Stability Field

A key feature in the structure of the GHS observed along the length of 
the Himalaya is a high concentration of leucogranite dikes, sills, and injec-
tion complexes throughout UGHS- and STDS-equivalent structural sections. 
These melt-bearing sections typically have maximum combined thicknesses 
of tens to thousands of meters and can account for >50% of the total volume 
of UGHS-equivalent sections (e.g., Garhwal—Scaillet et al., 1990; Langtang—
Inger and Harris, 1992; Bhutan—Grujic et al., 1996; Manaslu—Harrison et al., 
1999; Zanskar—Walker et al., 1999; Everest—Searle et al., 2003; Sikkim—Searle 
and Szulc, 2005; Makalu—Streule et al., 2010). Typically, most partial melts and 
leucogranites are the product of fluid-absent muscovite dehydration and, at 
higher temperatures and lower pressures, biotite dehydration. These reactions 
occurred during isothermal to near-isothermal exhumation of the UGHS from 
high-temperature–high-pressure (>700 °C, 8–14 kbar) to high-temperature–
low-pressure (>700 °C, 2–6 kbar) conditions (Fig. 11) (Harris and Massey, 1994; 
Guillot et al., 1999; Visonà and Lombardo, 2002; Searle et al., 2010; Streule 
et al., 2010). This exhumation corresponds to the Neohimalayan M2 metamor-
phic event that is reported from across the orogen within the sillimanite sta-
bility field between 22 and 15 Ma and is coincident with activity on the MCT 
and STD (Guillot et al., 1999; Searle et al., 2010). Importantly, if melt production 
continued during exhumation, the melt-weakened rheology (i.e., low viscosity) 
of the UGHS should have allowed crustal flow to continue to lower pressures 
during exhumation (Beaumont et al., 2004; Jamieson et al., 2004).

TABLE 3. TITANITE ZIRCON CONCENTRATIONS (PPM) 
AND THERMOMETRY RESULTS

Unit Mineralogy
Spot 

analysis
Rim or 
core

Zircon 
(ppm)

Temperature
(°C)

UGHS 
Unit II

Ca + Qtz + 
Plg + Ksp + 
Scp + Clz + 
Tt + Cpx + 
Phl + Rt

P053_T2_2 Rim 91.92 740
P053_T2_2 Rim 130.47 758
P053_T2_2 Rim 108.92 748
P053_T5_2 Rim 59.96 719
P053_T7_2 Rim 85.84 736
P053_T8_3 Rim 92.22 740
P053_T8_3 Rim 84.56 736
P053_T8_3 Rim 106.57 747
P053_T9_2 Rim 108.31 748
P053_T9_2 Rim 88.83 738
P053_T9_2 Rim 73.04 728
Sample average rim temperature (°C) 740 ± 35

Spot 
analysis

Rim or 
core

Zircon 
(ppm)

Temperature
(°C)

UGHS 
Unit II

Ca + Qtz + 
Plg + Ksp + 
Scp + Clz + 
Tt + Cpx + 
Msc + Rt

P054_T1_1 Core 183.92 776
P054_T1_1 Core 158.07 768
P054_T2_1 Core 176.08 774
P054_T2_1 Core 152.16 766
P054_T3_1 Core 200.81 781
P054_T3_1 Core 203.59 782
P054_T6_1 Core 165.41 771
P054_T8_1 Core 148.27 765
P054_T8_1 Core 164.6 770
P054_T9_1 Core 181.68 776
P054_T9_3 Core 181.95 776
P054_T10_1 Core 179.4 775
P054_T10_1 Core 196.67 780
P054_T16_1 Core 148.95 765
P054_T16_1 Core 128.42 757
Sample average core temperature (°C) 772 ± 33

Spot 
analysis

Rim or 
core

Zircon 
(ppm)

Temperature
(°C)

UGHS 
Unit III

Ca + Qtz + 
Plg + Ksp + 
Scp + Clz + 
Tt + Bt + Rt

P032_T7_1 Core 141.76 762
P032_T7_3 Rim 91.03 739
P032_T11_2 Rim 90.53 739
P032_T12_4 Core 132.75 759
P032_T13_1 Core 87.87 737
P032_T13_2 Core 96.69 742
P032_T13_3 Core 108.11 748
P032_T13_4 Rim 62.41 720
Sample average grain temperature (°C) 744 ± 38

Spot 
analysis

Rim or 
core

Zircon
(ppm)

Temperature
(°C)

STDS

Ca + Qtz + 
Plg + Ksp + 
Scp + Clz + 
Tt + Cpx + 

Amp + Grt + 
Rt

P031_T3_1 Core 69.58 726
P031_T3_3 Rim 87.71 737
P031_T6_1 Core 42.34 702
P031_T8_3 Rim 56.41 716
P031_T10_2 Core 137.62 761
P031_T12_1 Core 35.56 694
P031_T12_4 Rim 31.14 688
P031_T13_1 Core 108.28 748
P031_T15_1 Core 44.92 705
Sample average grain temperature (°C) 720 ± 48

Note: Abbreviations: Amp—amphibolite; Bt—biotite; Ca—calcium; Clz—clinozoisite; 
Cpx—clinopyroxene; Grt—garnet; Ksp—K-feldspar; Msc—muscovite; Plg—plagioclase; 
Rt—rutile; Scp—scapolite; Tt—titanite; STDS—South Tibetan detachment center; 
UGHS—Upper Greater Himalayan Sequence.
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Figure 10. Variation in estimated temperatures and pressures of metamorphism (mainly peak) and quartz deformation in the Greater Himalayan Sequence (GHS) with structural distance above the Main 
Central thrust (MCT). Locations of all data points plotted to scale at relative structural distance above the MCT. Lithotectonic units plotted to scale to the right of each profile. (A) Thermal profile for the 
GHS in the Kali Gandaki valley, with new thermometric constraints produced from this study (white markers) and previously published constraints (gray to black markers). (B) Thermal profile for the GHS 
in the Modi Khola valley, based on previously published data. (C) Pressure profile for the GHS in the Kali Gandaki valley, with new barometric constraints produced from this study (white markers) and 
previously published constraints (gray to black markers). (D) Pressure profile for the GHS in the Modi Khola valley, based on previously published data. See figure for data sources. Abbreviations as fol-
lows: Bt—biotite; GASP—garnet-aluminosilicate-silica-plagioclase; GMBP—garnet-muscovite-biotite-plagioclase; GQBP—garnet-quartz-biotite-plagioclase; GRAIL—garnet-rutile-aluminosilicate- ilmenite-
quartz; Grt—garnet; Ilm—ilmenite; RSCM—Raman spectroscopy of carbonaceous material.
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In the Annapurna-Dhaulagiri Himalaya, leucogranite bodies are no larger 
than tens of meters in thickness, and injection complexes are only observed in 
the Modi Khola transect and are less densely packed with dikes and sills than 
typically observed in other regions (Nazarchuk, 1993; Hodges et al., 1996; Lar-
son and Godin, 2009). Leucosome content within migmatites ranges between 
5% and 20% in the Kali Gandaki valley and 10%–40% in the Modi Khola valley, 
which is comparable to observations recorded elsewhere in the Himalaya that 
record ~10%–40% partial melting within the GHS (e.g., Inger and Harris, 1992; 
Harris et al., 2004; Larson et al., 2010). However, migmatite volume within the 
UGHS is comparatively low and accounts for <50% of the structural thickness 

of Unit I, confined to ≤50-m-thick horizons and is almost negligible in Unit II 
and Unit III. Elsewhere in the Himalaya, UGHS-equivalent migmatitic sections 
can be as much as 10 km thick (Searle, 2013).

Pressure-temperature-time (PTt) constraints from the lower portion of the 
UGHS in the Annapurna-Dhaulagiri Himalaya indicate that burial and heating 
at kyanite-grade conditions (Fig. 11) initiated at ca. 48–43 Ma (Carosi et al., 2015; 
Iaccarino et al., 2015; Larson and Cottle, 2015). Subsequently, partial melting 
initiated as early as 41 Ma (Carosi et al., 2015) and continued almost entirely 
within the kyanite stability field to as late as 18.5 Ma (Nazarchuk, 1993; Hodges 
et al., 1996; Godin et al., 2001; Martin et al., 2010; Cottle et al., 2011; Kohn and 
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Figure 11. Summary of pressure-tempera-
ture (PT) pathways for the Upper Greater 
Himalayan Sequence (UGHS) across 
the Himalayan orogen. Light- orange PT 
path—Sikkim 1 section, Harris et al., 2004; 
dark- orange PT path—Sikkim 2 section, 
Mottram et al., 2015; light-blue PT path—
Marsyandi section, Caddick, 2005;  magenta 
PT path—Makalu section, Streule et al., 
2010; light-green PT path—Far-Eastern 
Nepal section, Imayama et al., 2012; dark-
green PT path—Bhutan section, Daniel 
et al., 2003. Thick, semi-trans parent, purple 
PT path represents proposed PT pathway 
for the UGHS of the Annapurna-Dhaulagiri 
Himalaya based on petrologic observations 
and thermobarometric constraints from 
this study in addition to Le Fort et al., 1986; 
Pêcher, 1989; Hodges et al., 1996; Godin 
et al., 2001; Martin et al., 2010;  Corrie and 
Kohn, 2011; Kohn and  Corrie, 2011; Carosi 
et al., 2015; and Iaccarino et al., 2015. 
 Colored squares and ellipses show PT 
constraints from this study (garnet-biotite 
 cation exchange–garnet-aluminosilicate-
silica-plagio clase [GARB-GASP]—yellow 
box, Zr-in-titanite—orange box); Martin 
et al., 2010 and Corrie and Kohn, 2011 (dark 
green box); Kohn and Corrie, 2012 (light-
green box) and Iaccarino et al., 2015 (purple 
box—Zr-in-rutile; pink ellipses—pseudo-
section results).  Colored stars indicate 
timing of initiation of prograde metamor-
phism (red star), peak metamorphism in 
the Modi Khola section (orange star), peak 
metamorphism in the Kali Gandaki section 
(yellow star), and retrograde metamor-
phism in the Kali Gandaki section (green 
star). See text for geochronometry sources. 
Dashed gray lines (G1 and G2) show pres-
sure-temperature-time (PTt) particle paths 
from thermo mechanical channel-flow 
model HT1 (Jamieson et al., 2004). Reac-
tion curves derived from White et al. (2001) 
and Visonà and Lombardo (2002).
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Corrie, 2011; Carosi et al., 2015; Iaccarino et al., 2015; Larson and  Cottle, 2015). 
As such, it is possible that melt volumes within the UGHS were not always 
low. If lateral melt migration occurred during deformation, then melt volumes 
in the exposed UGHS may not directly correspond to the amount of partial 
melting, especially if melt migration out-paced melt production. However, melt 
migration observed in the GHS across the Himalaya is dominantly vertical (up- 
section) (e.g., Harris and Massey, 1994; Hodges et al., 1996). There is no direct 
evidence of lateral melt migration in the Annapurna-Dhaulagiri Himalaya, al-
though such phenomena are not ruled out.

It is acknowledged that the PTt evolution of different structural positions 
in the UGHS may vary (Jamieson et al., 2004; Cottle et al., 2015). However, 
available constraints suggest that the PTt evolution of the upper portion of 
the UGHS in the Annapurna-Dhaulagiri Himalaya (Fig. 10, Godin et al., 2001; 
Corrie and Kohn, 2011) may not be that different from the lower portion. In the 
upper portion of the UGHS, peak temperature metamorphism and associated 
in situ partial melting are recorded at 35–30 Ma (Godin et al., 2001; Corrie and 
Kohn, 2011). Leucogranite dikes with crystallization ages of 23–18.5 Ma are also 
identified from the STDS and upper UGHS (Hodges et al., 1996; Godin et al., 
2001). These ages may indicate that partial melting initiated earlier in the lower 
portion of the UGHS (41 Ma) than in the upper portion (35 Ma) and the STDS. 
Alternatively, they may imply that multiple phases of melting and crystalliza-
tion occurred between 41 and 18 Ma.

Field and petrological observations indicate that partial melting and leuco-
granite production occurred within the kyanite stability field (Hodges et al., 
1996; Godin et al., 2001; Corrie and Kohn, 2011; Carosi et al., 2015; Iaccarino 
et al., 2015; Larson and Cottle, 2015). Evidence for partial melting within the 
sillimanite stability field is absent, and leucosomes observed within the  upper 
portion of the UGHS contain kyanite, not sillimanite, and remain low in vol-
ume (Nazarchuk, 1993; Hodges et al., 1996; Godin et al., 2001; Corrie and Kohn, 
2011; Parsons et al., 2016). Where present, sillimanite is identified as a late-
stage overgrowth postdating partial melting under lower temperature retro-
grade conditions (Carosi et al., 2015; Iaccarino et al., 2015). Consequently, it is 
unlikely that the PTt path for the UGHS entered the sillimanite stability field 
at high temperatures and may have only resided there for a short  period of 
time during retrogression (Carosi et al., 2015; Iaccarino et al., 2015). The avail-
able PTt constraints (Figs. 10 and 11) suggest that exhumation of the UGHS 
in the Annapurna-Dhaulagiri Himalaya followed a much shallower PTt path 
(this study; Pêcher, 1989; Iaccarino et al., 2015) than recorded elsewhere in 
the Himalaya (Fig. 11). Isothermal decompression was not a characteristic 
feature of metamorphism in this region and explains the reduced volumes of 
sillimanite-bearing metapelitic rocks and the absence of partial melting in the 
sillimanite stability field in the Annapurna-Dhaulagiri Himalaya. Isothermal de-
compression requires rapid exhumation that out-paces rates of cooling so that 
high temperatures are maintained through to lower pressures (Whitney et al., 
2004). Consequently, a less steep exhumation path (i.e., non-isothermal) sug-
gests that the UGHS in the Annapurna-Dhaulagiri Himalaya either exhumed 
slower or cooled faster relative to equivalent UGHS sections with isothermal 

exhumation paths. Given the lack of potential explanations for faster cooling, 
we propose that the shallow gradient exhumation path of the UGHS is indica-
tive of slower exhumation.

The shallow gradient of the PTt exhumation path also suggests that 
 fluid-absent muscovite dehydration may have only occurred during the initial 
phase of exhumation, while biotite dehydration could not occur at any stage 
during exhumation, which may have contributed further to the apparently low 
volumes of melt produced during exhumation. Lateral melt migration out- 
pacing melt production would also account for the low melt volumes.

4.2. Viscosity of the UGHS during Peak Metamorphism

Widespread partial melting is the proposed mechanism for the viscosity 
reduction needed to initiate and sustain mid-crustal channel flow during the 
Hima layan orogeny (Beaumont et al., 2001, 2004; Grujic, 2006; Rosenberg 
et al., 2007; Jamieson et al., 2011). While the volume of migmatite and leuco-
granite in the Annapurna-Dhaulagiri Himalaya is lower than elsewhere in the 
Himalaya, metamorphic and geochronometric constraints suggest that tem-
peratures and melt volumes may still have been high enough for mid-crustal 
flow during peak conditions prior to the onset of exhumation.

At a given temperature (T ) and flow stress (σ), the visco-plastic creep of 
geological materials is defined (e.g., Passchier and Trouw, 2005) by a flow law 
of the form:

 ε = Aσnexp(−Q /RT ), (1)

where strain rate, ε, is controlled by a pre-exponential constant A (MPa–n s–1), 
the power-law stress exponent, n, activation energy, Q (kJ mol–1), and gas 
constant, R. Table 4A lists the experimentally derived flow law parameters 
for Blackhill quartzite (wet, 0.15 wt% H2O) with small amounts (1%–2%) of 
melt (Gleason and Tullis, 1995), Heavitree quartzite (dry) (Jaoul et al., 1984), 
Westerly granite (dry) (Hansen and Carter, 1983), and Maryland diabase (dry) 
( Caristan, 1982). Additionally, a modified flow law for experimentally deformed 
partially molten synthetic granite (Table 4B) is given by Rutter et al. (2006):

 ε = A exp(BΦm)exp(−Q /RT )σn, (2)

where F is the melt fraction, ranging from 0 (0% melt) to 1 (100% melt), and B 
and m are material constants. Together, we use these flow laws as proxies for 
the rheologies of quartzite and quartzofeldspathic gneiss (Blackhill quartzite, 
Heavitree quartzite, and Westerly granite flow laws), calc-silicate gneiss (Mary-
land diabase flow law), and migmatite (partially molten synthetic granite flow 
law), which respectively represent ~35%–70%, ~30%–40%, and <35% volume 
of the UGHS in the Annapurna-Dhaulagiri Himalaya. It is noted that none of the 
flow laws presented account for rocks with high percentage volumes of mica. 
The development of interlocking crystal textures during high-temperature 
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 dynamic recrystallization typically strengthens a rock. Increased mica con-
tent can hinder these recrystallization processes and may result in a weaker 
rheology (e.g., Passchier and Trouw, 2005). However, most rocks from the 
UGHS form interlocking frameworks of quartz and feldspar grains that control 
strength and rheological behavior (e.g., Handy, 1990).

The equation,

 = σµ /ε,  (3)

allows the flow laws (Equations 1 and 2) to be used to estimate the viscos-
ity, µ, of the UGHS during peak metamorphism (Table 4). Temperature (T = 
750 °C) is determined from peak metamorphic constraints from the UGHS in 
both the Kali Gandaki and Modi Khola valleys. A flow stress (σ) of 10 MPa is as-
sumed, based on values calculated using the quartz recrystallized piezometer 
for UGHS-equivalent rocks in NW India (Law et al., 2013). Viscosity calculations 
are also made for an assumed flow stress of 2 MPa, to account for reduced 
flow stresses predicted in the center of a channel flow (Grujic, 2006). Obser-
vations from migmatitic sections in the UGHS of the Annapurna-Dhaulagiri 
Himalaya typically record melt fractions (F) of ~0.1–0.3 (i.e., 10%–30%).

For a flow stress of ~10 MPa, most of the flow laws yield viscosities ( Table 4) 
that are equal to or lower than the “melt-weakened” viscosity (1019 Pa s) re-

quired to numerically simulate mid-crustal channel flow (Beaumont et al., 
2001). However, at lower flow stresses (σ = 2 MPa) that may be more repre-
senta tive of conditions toward the center of the channel (Grujic et al., 1996; 
Grujic, 2006; Law et al., 2013), all melt-free flow laws except for Blackhill 
quartzite yield a viscosity of 1020 Pa s (Table 4). Additionally, Fourier transform 
infrared spectroscopy of quartzites from UGHS-equivalent strata in the Sutlje 
valley of NW India records remarkably low volumes of water (Kronen berg 
et al., 2014) and suggests that the Heavitree (dry) quartzite flow law should be  
favored over the Blackhill (wet) quartzite flow law. The flow law for a partially 
molten synthetic granite, which we use as a proxy for migmatite rheology, 
yields very low viscosities even at low flow stresses. However, migmatites ac-
count for <35% of the UGHS structural thickness and are present in relatively 
thin bands (<50 m thick). As such, while this flow law clearly demonstrates 
the rheological weakening effect caused by partial melting, it is not represen-
tative of the bulk volume of the UGHS. Instead, the rheology of the UGHS is 
more likely to have been controlled by the major load-bearing lithologies that 
account for >65% of its structural thickness (i.e., quartzofeldspathic and calc-
sili cate gneisses). Viscosity estimates for these lithologies toward the center 
of the channel are on the order of 1020 Pa s, which is an order of magnitude 
greater than the “melt-weakened” viscosity (1019 Pa s) simulated by model 
HT1 of Beaumont et al. (2004).

TABLE 4A. FLOW-LAW–DERIVED STRAIN RATE (ε) AND VISCOSITY (µ) ESTIMATES AT FLOW STRESSES (σ) OF 10 MPa AND 2 MPa

A
(MPa–n s–1)

Q
(kJ mol–1) n

σ
(MPa)

ε
(s–1)

µ
(Pa s) Source

Blackhill quartzite with melt (0.15 wt% H2O) 1.80 × 10–08 137 ± 34 4 ± 0.9 10 1.8 × 10–11 5.5 × 1017 Gleason and 
Tullis, 19952 2.9 × 10–14 6.9 × 1019

Heavitree quartzite (vacuum dried) 3.44 × 10–06 184 ± 6 2.8 ± 0.2 10 8.8 × 10–13 1.1 × 1019 Jaoul et al., 
19842 9.7 ×10–15 2.1 × 1020

Westerly granite (dry) 2.00 × 10–06 186.5 3.3 10 1.2 × 10–12 8.3 × 1018 Hansen and 
Carter, 19832 5.9 × 10–15 4.7 × 1020

Maryland diabase (dry) 6.31 × 10–02 276 ± 14 3.05 ± 0.15 10 5.8 × 10–13 1.7 × 1019 Caristan, 1982
2 4.3 × 10–15 4.7 × 1020

Note: Flow-law parameters for selected geological materials are presented. A—pre-exponent constant, Q—activation energy, n—power-law exponent (see text for citations).

TABLE 4B. STRAIN RATE (ε) AND VISCOSITY (µ) DERIVED FROM A MODIFIED FLOW LAW FOR PARTIALLY MOLTEN SYNTHETIC GRANITE

A
(MPa–n s–1)

Q
(kJ mol–1) n m B φ

σ
(MPa)

ε
(s–1)

µ
(Pa s)

Partially molten synthetic granite
Rutter et al., 2006

4.07 × 10–02 230 ± 66 1.8 3 192 0.1 10 1.8 × 10–11 5.5 × 1017

2 1.0 × 10–12 2.0 × 1018

0.2 10 7.0 × 10–11 1.4 × 1017

2 3.9 × 10–12 5.2 × 1017

0.3 10 2.7 × 10–09 3.7 × 1015

2 1.5 × 10–10 1.4 × 1016

Abbreviations: A—pre-exponent constant, B and m—post-exponent constants, Q—activation energy, n—power-law exponent, φ—melt fraction (from Rutter et al., 2006).

http://geosphere.gsapubs.org


Research Paper

23Parsons et al. | Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central NepalGEOSPHERE | Volume 12 | Number 3

An additional constraint on flow conditions for the UGHS during its mid-
crustal evolution is structural (i.e., channel) thickness (Beaumont et al., 2004; 
Jamieson et al., 2004; Mukherjee, 2013a). A reduction in channel thickness in-
creases the effective viscosity of the channel material and results in a reduction 
of the threshold viscosity below which return flow in a hybrid channel flow 
may occur (Turcotte and Schubert, 2002; Grujic, 2006). The numerically mod-
eled thickness required for a southward-directed return flow to develop in the 
HT1 model is ~10–20 km (Beaumont et al., 2004; Jamieson et al., 2004). In most 
regions, UGHS-equivalent strata match or exceed this thickness (e.g., 10–15 
km—Bhutan, Manaslu, Garhwal [Grujic et al., 2002; Searle and Godin, 2003; 
Webb et al., 2011]; 20 km—Langtang, Sikkim [Inger and Harris, 1992; Searle and 
Szulc, 2005]; 30 km—Everest-Makalu [Searle et al., 2003; Jessup et al., 2006; 
Streule et al., 2010]). However, the UGHS of the Annapurna-Dhaulagiri Hima-
laya has a structural thickness of only ~7 km and consequently, it is necessary 
to consider whether this reduced thickness would hinder or even prevent the 
development of a hybrid channel flow with a southward-directed return flow 
component (Godin et al., 2006a).

Rearranging equation 6-17 of Turcotte and Schubert (2002) allows the 
relationship between channel viscosity (µ) and channel thickness (h) to be 
explored,

 µ = − 1
12

h2

um − (u0 /2)
dp /dx






















 











 
 

.  (4)

The average channel velocity (um) of the down-going channel wall (u0) and 
horizontal pressure gradient (dp/dx, where dp is the difference in channel pres-
sure over the horizontal channel distance, dx) must also be known, and a linear 
viscous rheology is assumed (Turcotte and Schubert, 2002). Suitable param-
eters may be derived from the return-flow portion of four particle pathways 
(G1–G4, Table 5) taken from thermomechanical channel-flow model HT1 of 
Beaumont et al. (2004) and Jamieson et al. (2004; their figure 4). Over a 24 m.y. 
period of southward-directed channel flow with a convergence rate of 50 mm 
yr–1, the particle pathways from model HT1 have a time-averaged velocity of 
0.017–0.018 m yr–1 and undergo a 1.75–8.75 kbar reduction in pressure over a 

horizontal distance of 416–430 km (Table 5). In order to maintain this velocity 
over this distance and pressure decrease, a modeled channel flow of 7 km 
thickness requires an estimated viscosity of 7.1 × 1018 to 3.7 × 1019 Pa s (Table 5). 
Larger viscosities would produce slower flow velocities, resulting in a more 
“sluggish” channel flow than that simulated by model HT1.

Assuming deformation was isochoric, transport-perpendicular shorten-
ing estimates of 25%–32% from the GHS in the Kali Gandaki valley (Larson 
and Godin, 2009) suggest that the UGHS may have had an initial thickness of 
9.3–10.3 km. Larson and Godin (2009) state that their shortening estimates are 
likely to be underestimates. Larger shortening estimates of 35%–50% reported 
elsewhere in the Himalaya would indicate an initial thickness of up to 14 km 
(Larson et al., 2010; Law et al., 2013). If volume loss occurred during channel 
flow due to the lateral migration of magma, then the initial channel thickness 
may have been even greater. Using the HT1 channel-flow parameters defined 
above, the estimated viscosity of a larger channel thickness of 9–14 km must 
not exceed 1.25 × 1019 Pa s to 1.48 × 1020 Pa s in order to replicate the channel 
flow simulated by model HT1 (Table 5).

Assuming the chosen flow laws provide representative rheologies, much 
of the UGHS in the Annapurna-Dhaulagiri Himalaya, which consists of melt-
free and probably dry quartzites and para-, ortho- and calc-silicate gneisses, 
was probably too viscous for channel flow to occur at modeled rates simu-
lated by model HT1, if confined to a 7-km-wide channel with no change in 
channel thickness during flow. In order to maintain a constant channel thick-
ness during channel flow, volume addition must occur to counteract trans-
port-parallel shortening (e.g., Grasemann et al., 2006). Volume addition due to 
the migration and culmination of large leucogranite bodies and injection com-
plexes is evident in UGHS-equivalent sections elsewhere along the Himalaya 
(e.g., Harrison et al., 1999; Grasemann et al., 2006; Searle et al., 2010; Searle, 
2013). However, the absence of large leucogranite bodies and injection com-
plexes in the Annapurna-Dhaulagiri Himalaya suggests that volume addition 
during channel flow of the UGHS in this region was negligible. Consequently, 
shortening estimates suggest that the UGHS may have been 9–14 km thick at 
the initial onset of channel flow. The possibility of volume loss due to lateral 
melt migration during channel flow implies that these are minimum initial 
thickness estimates.

TABLE 5. THRESHOLD VISCOSITY FOR FLOW, µ, FOR HYBRID CHANNEL FLOWS OF VARIABLE CHANNEL THICKNESSES, h, DETERMINED FROM EQUATION 4

Particle 
path

Velocity
(m yr–1)

Distance
(km)

Time
(t, m.y.)

Pressure
(P0, kbar)

Pressure
(P1 kbar)

∆Pressure
(kbar)

Threshold viscosity for flow, µ (Pa s) for channel thickness, h

h = 7 km h = 9.3 km h = 10.3 km h = 14 km

G1 0.018 430 24 13 4.25 8.75 3.70 × 1019 6.58 × 1019 8.00 × 1019 1.48 × 1020

G2 0.018 422 24 8 3.75 4.25 1.75 × 1019 3.12 × 1019 3.79 × 1019 7.01 × 1019

G3 0.017 420 24 6 3.75 2.25 9.19 × 1018 1.63 × 1019 1.99 × 1019 3.68 × 1019

G4 0.017 416 24 4 2.25 1.75 7.07 × 1018 1.26 × 1019 1.53 × 1019 2.83 × 1019

Note: Channel-flow parameters derived from return flow portion of channel-flow particle pathways G1–G4, from thermomechanical channel-flow model HT1 (Jamieson et al., 
2004). Threshold viscosities are maximum viscosities capable of replicating channel flow simulated by model HT1. See text for discussion.

http://geosphere.gsapubs.org


Research Paper

24Parsons et al. | Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central NepalGEOSPHERE | Volume 12 | Number 3

At these larger initial thicknesses, many of the flow-law–derived viscosity 
estimates are of the same order of magnitude or lower than that required to 
produce flow velocities simulated by channel-flow model HT1 (Table 5). As 
such, these data suggest that prior to vertical shortening, the UGHS in the 
Annapurna-Dhaulagiri Himalaya was at least weak enough for mid-crustal 
channel flow to initiate. However, without the addition of new material during 
flow, as suggested by the absence of large culminations of leucogranite, the 
subsequent decrease in channel thickness due to vertical shortening resulted 
in a gradual increase in effective viscosity, which decelerated channel flow 
to slower rates than those predicted by both the thermomechanical models 
(Beaumont et al., 2001; Jamieson et al., 2004) and elsewhere in the Himalaya 
where melt content and structural thickness are typically higher. Being limited 
by a greater-than-typical viscosity, channel flow in the Annapurna-Dhaulagiri 
Himalaya may have been too viscous to facilitate isothermal exhumation. 
These calculations highlight the importance of volume addition during channel 
flow as a means of maintaining low viscosities.

4.3. Top-SW Shortening on the STDS

The STDS forms a top-NE shear zone at the top of the GHS that can be 
traced almost continuously along the entire orogen (Burg et al., 1984; Burchfiel 
et al., 1992). Recent estimates of top-NE dip-slip motion on the STDS range 
from 190 km in western Nepal (Borja et al., 2013) to 100–200 km in eastern 
Nepal (Searle et al., 2003, 2006; Law et al., 2011). Within the Kali Gandaki val-
ley, field structural observations from the STDS indicate late-stage, top-SW 
(reverse) shortening that deforms earlier top-NE (normal) shear-related fabrics 
and leucogranites (Fig. 8). These structures are localized and probably reflect 
only minor amounts of shortening. Microstructures also indicate a top-SW 
shear sense in some samples from the STDS (Fig. 9). This late-stage shorten-
ing has been reported by other authors (Brown and Nazarchuk, 1993; Hodges 
et al., 1996; Godin et al., 1999a; Godin, 2003; Larson and Godin, 2009; Parsons 
et al., 2016) and correlated with D4 deformation in the THS, and with syn- to 
postpeak metamorphism in the UGHS along the KSZ in the Kali Gandaki valley 
(Vannay and Hodges, 1996; Godin et al., 1999a; Godin, 2003) and the MKSZ in 
the Modi Khola valley (Hodges et al., 1996).

Many authors favor the explanation that the STDS is a fixed hanging-wall 
stretching fault and/or shear zone (sensu Means, 1989) that formed in response 
to the rheological contrast between the hot, weak southward-flowing UGHS 
(footwall) and the cold, strong stationary THS (hanging wall) (Searle et al., 2003; 
Williams et al., 2006; Searle, 2010; Law et al., 2011; Kellett and Grujic, 2012). 
Such a situation reflects the development of a superstructure (i.e., THS)-infra-
structure (i.e., UGHS) association (e.g., Williams et al., 2006; Jamieson and 
Beaumont, 2013) and implies that the STDS is inherently linked to the rheology 
of the Himalayan orogen. This is the only explanation for formation of the STDS 
that has been replicated by thermomechanical models of Himalayan orogene-
sis (Beaumont et al., 2001, 2004). Other tectonic models for the Himalayan 
orogeny have failed to produce a mechanically working explanation for for-

mation of the STDS (e.g., Jamieson and Beaumont, 2013). This point is echoed 
by thermo mechanical channel-flow models simulated without a significant 
rheol ogy contrast between mid- and upper-crustal levels, which were unable to 
produce an STDS-equivalent structure (Model 3, Beaumont et al., 2004). These 
findings imply that the STDS formed in response to the rheo logi cal weakening 
of the Hima layan-Tibetan mid-crust (UGHS), which caused the upper (THS) and 
middle (UGHS) crust to mechanically decouple, allowing southward return flow 
of the UGHS and northward underthrusting of the Indian lower crust, relative 
to the overlying stationary THS (e.g., Kellett and Grujic, 2012). Subsequently, 
above a threshold viscosity, rheological strengthening of the UGHS led to the 
cessation of channel-flow and mechanical recoupling of crustal units. Thus 
it follows that late-stage top-SW shortening in the STDS may correspond to 
northward underthrusting of the Indian lower crust, following the cessation of 
channel-flow and mechanical recoupling of the THS and GHS.

Godin et al. (2001) postulate that an 40Ar/39Ar muscovite age of ca. 18 Ma 
from the lowermost THS records the growth and crystallization of muscovite 
during D4 deformation. Within the UGHS and STDS, D4 deformation struc-
tures (Figs. 6 and 8) indicate that the UGHS was still hot and weak enough to 
deform via pervasive ductile shearing during this deformation phase. As such, 
the timing of top-SW shortening associated with D4 deformation in the STDS, 
UGHS, and THS is bracketed between the latest age of D3 top-N shearing on 
the STDS (22–18.5 Ma; Hodges et al., 1996; Godin et al., 2001) and wholesale 
exhumation of the UGHS above the muscovite closure temperature for Ar 
loss (16–13 Ma; Godin et al., 2001; Vannay and Grasemann, 2001; Martin et al., 
2015). This is contemporaneous with retrograde metamorphic conditions of 
650–670 °C and 7–8 kbar within Unit I at 25–18 Ma (Iaccarino et al., 2015).

Here we suggest that top-SW shortening in the STDS and associated D4 
deformation in the UGHS and THS occurred in response to an increase in 
viscosity of the UGHS due to cooling during exhumation and its subsequent 
transformation from an “active channel” (weak) to a “channel plug” (strong) 
(also referred to as a paleochannel; Beaumont et al., 2004; Godin et al., 2006a; 
Grujic, 2006). Continued northward underthrusting of the Indian lower crust 
after this viscosity increase resulted in minor amounts of shortening between 
the THS and GHS. This was synchronous with top-SW shearing on the KSZ 
and MKSZ sometime after 22–18.5 Ma and before 16–13 Ma, possibly at 18 Ma 
(Hodges et al., 1996; Godin et al., 2001; Vannay and Grasemann, 2001; Martin 
et al., 2015). This scenario is comparable to the regional-scale buckling of the 
THS and GHS reported from the Manaslu Himalaya in central Nepal (Fig. 1B) 
that occurred in response to the “locking-up” (i.e., cessation) of mid-crustal 
flow of the GHS and subsequent recoupling of the GHS and THS during con-
tinued top-S convergence (Godin et al., 2006b).

4.4. Metamorphic Discontinuities in the Context of Channel Flow

In the Modi Khola valley, metamorphic discontinuities at the base of the 
UGHS have been interpreted by some authors as faults (the Sinuwa and 
 Bhanuwa faults) between discrete thrust slices (Martin et al., 2010; Corrie and 
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Kohn, 2011). Claims that these discontinuities refute the occurrence of channel 
flow (Martin et al., 2010; Corrie and Kohn, 2011) can be reconciled if faulting oc-
curred after the cessation of mid-crustal flow (e.g., Cottle et al., 2015). However, 
there are no field- or micro-structural observations to support the interpreta-
tion of these metamorphic discontinuities as faults. Nor is there evidence for 
significant annealing and static recrystallization that might have overprinted 
and obscured such structures.

Alternatively, metamorphic discontinuities can be explained by consid-
eration of the relative velocity profile of a channel flow (Mancktelow, 1995; 
Grujic, 2006). Southward-directed channel flow during the Himalayan orogeny 
requires a viscosity reduction at mid-crustal levels, so that the overburden- 
induced, southward lateral pressure gradient (Poiseuille flow) can over-
come the northward crustal flow produced by drag of the lower Indian crust 
( Couette flow) (Mancktelow, 1995; Turcotte and Schubert, 2002; Grujic, 2006). 
The resulting velocity profile resembles that of a “hybrid flow” (Grujic, 2006) 
composed of an upper portion of southward-exhuming, pressure-gradient–
driven “return flow” and a lower portion of northward-burying flow (Fig. 12) 
( Mancktelow, 1995; Grujic, 2006). Within the northward-burying flow, the mag-
nitude of northward velocity increases toward the base of the UGHS. Conse-
quently, across a vertical transect through the channel, particles at the base 
of the northward-burying section have younger ages of prograde metamor-
phism and partial melting than particles at the top of the northward-burying 
section (Fig. 12). Pressure-temperature-time discontinuities could also develop 
if flow within the channel was discontinuous, due to localized variations in 
viscosity that would not necessarily be identifiable in the field. On this basis, 
combined with the absence of field structural evidence to support the presence 
of the inferred Sinuwa and Bhanuwa faults, it is argued that the aforemen-
tioned meta morphic discontinuities at the base of the UGHS in the Annapurna-
Dhaula giri Himalaya do not represent discrete faults and thrust slices. The pro-
posed meta morphic discontinuities can be produced during pervasive ductile 
deformation (e.g., Mottram et al., 2014) and are entirely compatible with the 
channel- flow model.

5. IMPLICATIONS FOR THE CHANNEL-FLOW MODEL IN 
THE ANNAPURNA-DHAULAGIRI HIMALAYA

Geochronometric and thermobarometric constraints presented in this 
study and others indicate that the UGHS in this region underwent a pro-
longed phase of partial melting and kyanite-grade metamorphism between 
41 and 18.5 Ma (Nazarchuk, 1993; Kaneko, 1995; Hodges et al., 1996; Godin 
et al., 2001; Martin et al., 2010; Corrie and Kohn, 2011; Kohn and Corrie, 2011; 
Carosi et al., 2015; Iaccarino et al., 2015; Larson and Cottle, 2015). During this 
time, coeval top-SW and top-NE motion occurred on the CT and AD/DD, re-
spectively (Nazarchuk, 1993; Hodges et al., 1996; Godin et al., 2001). Both 
coaxial and non-coaxial, synmigmatitic, transpositional deformations (early 
fabrics transposed into S3 fabrics) are observed across the UGHS. The trans-

positional nature of D3 deformation between the STDS and THS indicates 
that the STDS formed as a stretching fault (Means, 1989) and replicates the 
detachment zone within the superstructure-infrastructure association (e.g., 
Williams et al., 2006; Jamieson and Beaumont, 2013). The apparent rheologi-
cal contrast between upper and middle crustal units is likely to be responsi-
ble for formation of the STDS between the hot, partially molten, horizontally 
stretched UGHS (infrastructure) and cold, low-grade, horizontally shortened 
THS (superstructure) (Williams et al., 2006; Kellett and Godin, 2009; Searle, 
2010; Kellett and  Grujic, 2012).

Based on the features outlined above, the channel-flow model provides 
a favorable explanation for mid-crustal evolution of the UGHS in the Anna-
purna-Dhaulagiri Himalaya, despite its lower-than-typical structural thickness 
and leucogranite content. However, our findings indicate that the UGHS in 
the Annapurna-Dhaulagiri Himalaya was more viscous than elsewhere in the 
Himalaya. Consequently, channel flow in this region was likely to have been 
more limited (i.e., slower), perhaps with a shorter duration of activity than 
in other parts of the Himalaya with greater UGHS structural thicknesses and 
larger melt volumes.

The pervasive and transpositional nature of ductile deformation within the 
UGHS, which indicates horizontal stretching and vertical shortening, is not 
compatible with models of thrust stacking and duplex development, which 
require localization of deformation on discrete thrust planes between compe-
tent thrust slices (e.g., Robinson et al., 2006). Likewise, coeval reverse- and 
normal-sense motion below and above the UGHS, respectively, is yet to be 
explained with a mechanically working model of any process other than chan-
nel flow (e.g., Jamieson and Beaumont, 2013). However, in limiting the rate 
and/or duration of channel flow, we question whether tectonic processes in the 
UGHS may reflect a combination of both channel flow and discrete thrusting, 
particularly when the rheological contrast between different lithologies with 
different volumes of leucogranite and migmatite is considered. We postulate 
that in such a situation, pervasive deformation characteristic of channel flow 
could occur across the whole UGHS, but at different rates in different litholo-
gies. The contacts between different lithologies would represent rheological 
discontinuities, and in such a situation, it is envisaged that discrete shear zones 
could form at these boundaries either during or after channel flow. Constrain-
ing the PTt evolution of each lithological unit in the UGHS would help further 
investigation of these concepts (e.g., Cottle et al., 2015). Similar models are 
presented by Cottle et al. (2015) and Jamieson and Beaumont (2013) who pro-
pose that channel-flow processes can evolve into thrust stacking processes 
due to changes in rheology during extrusion and exhumation.

The shallow-inclined PTt exhumation path (Fig. 11) indicates that the UGHS 
exhumed at a slower rate (non-isothermal) than typically recorded elsewhere 
in the Himalaya (isothermal) and than predicted by particle paths G1 and 
G2 from channel-flow model HT1 (Jamieson et al., 2004). Slow exhumation 
of the UGHS is explained by the viscosity-limited subdued nature of chan-
nel flow in the Annapurna-Dhaulagiri Himalaya. Our viscosity calculations 
demonstrate the control of channel thickness and partial melting on viscosity.  
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Importantly, without the production of large amounts of leucogranite (i.e., 
volume addition), as recorded elsewhere in the Himalaya, vertical shortening 
during deformation will reduce channel thickness over time and gradually de-
crease the threshold (i.e., maximum) viscosity at which channel flow can be 
sustained. Without the greater structural thickness and melt volumes typically 
recorded elsewhere in the Himalaya, the viscosity of the UGHS in the Anna-
purna-Dhaulagiri Himalaya was probably too high to facilitate rapid isothermal 
exhumation. Instead, channel flow gradually “seized up” and ground to a halt 

at significant depth (7–8 kbar). This allowed the UGHS to cool, strengthen, and 
transform from a weak “active channel” to strong “channel plug” at greater 
depths than in other UGHS-equivalent sections elsewhere in the Himalaya, 
resulting in slower exhumation.

Correlation between: (1) the timing of retrograde conditions of 650–670 °C 
and 7–8 kbar at 25–18 Ma and a quartz deformation temperature of 670 ± 50 °C 
in Unit I; (2) the youngest timing of deformation on the CT and AD/DD at 22–
18.5 Ma; and (3) the minimum timing of D4 top-SW shortening in the STDS and 
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Figure 12. Relative particle motions in 
a hybrid channel flow. (A) Schematic 
relative velocity profile (purple line) for 
a hybrid channel flow with a stress- 
dependent, power-law rheology (based on 
equations 6–14 and 7–124, after Turcotte 
and Schubert, 2002). Upper channel wall 
is stationary; lower channel wall moves 
northward (right). Flow is driven by lower 
channel wall motion and lateral pressure 
gradient within the channel. Velocity pro-
file drawn relative to stationary upper 
channel wall. Adjacent particles (colored 
dots) in an exhumed channel section are 
derived from different crustal positions 
due to differences in individual particle 
pathways. Blue particles have north-
ward-moving burial pathways. Yellow 
particles have southward-moving exhu-
mation pathways. (B and C) Relative parti-
cle positions after –5 and –10 units of time. 
Variations in relative velocity can result 
in metamorphic discontinuities between 
exhuming and burying particles. Within 
the burial section, timing of initial partial 
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on the KSZ and MKSZ in the UGHS at 18 Ma suggests that this transformation 
from a weak “active channel” to strong “channel plug” occurred at 22–18 Ma 
(Nazarchuk, 1993; Hodges et al., 1996; Godin et al., 2001; Larson and Godin, 
2009; Iaccarino et al., 2015). We postulate that these conditions correspond to 
the threshold viscosity for channel flow of the UGHS in the Annapurna-Dhaula-
giri Himalaya and record a change in rheology from a pervasively deform-
ing and/or flowing channel (“active channel”) to a coherent block (“channel 
plug”). Elsewhere along the Himalaya, similar retrograde temperatures re-
corded in UGHS-equivalent sections were not reached until pressures of 2–6 
kbar (Fig. 11). This occurred sometime after 16 Ma in central and eastern Nepal 
(Searle et al., 2003; Streule et al., 2010; Imayama et al., 2012) and at 14–11 Ma 
in Bhutan (Daniel et al., 2003; Harris et al., 2004), following exhumation and 
partial melting well within the sillimanite stability field. Field observations and 
thermo barometric constraints suggest that following cessation of channel flow 
in the UGHS, pervasive top-S shearing in the LGHS facilitated the progressive 
exhumation of the UGHS as a rigid block toward the topographic surface from 
~650 °C equivalent depth. This hypothesis is comparable to models proposed 
by Mottram et al. (2014, 2015) for LGHS-equivalent strata in Bhutan.

6. CONCLUSIONS

Field observations from the Annapurna-Dhaulagiri Himalaya highlight sev-
eral geological features across the GHS that are distinct from other Himalayan 
regions. These include low volumes of leucogranite and migmatite, an ab-
sence of evidence for partial melting in the sillimanite stability field, a reduced 
structural thickness, and late-stage top-SW shortening in the STDS. These fea-
tures are not readily compatible with proposed models for the evolution of 
the Himalayan orogen, and their implications for the rheological behavior of the 
GHS in this region must therefore be considered.

Field structural observations, combined with new and previously pub-
lished thermobarometric and geochronometric constraints indicate that the 
mid-crustal evolution of the UGHS in the Annapurna-Dhaulagiri Himalaya is 
more favorably explained by the channel-flow model than models based on 
thrust-stacking mechanisms. However, consideration of the rheological prop-
erties of the UGHS with a specific focus on the effects of melt volume and chan-
nel thickness suggests that channel flow was more limited and subdued (i.e., 
slower) in the Annapurna-Dhaulagiri Himalaya than in other regions where 
melt volume and structural thickness were larger. Flow-law–derived viscosity 
estimates of ~1020 Pa s for the bulk volume of the UGHS also imply that channel 
flow was slower and more limited than that simulated by thermomechanical 
channel-flow model HT1 of Beaumont et al. (2004). Furthermore, viscosity cal-
culations demonstrate that without addition of material during channel flow 
(i.e., leucogranite generation), vertical shortening led to a gradual decrease in 
the threshold viscosity for flow within the UGHS.

The PTt exhumation path of the UGHS in the Annapurna-Dhaulagiri Hima-
laya has a shallower gradient (i.e., slower) than in other parts of the Himalaya 

where UGHS-equivalent sequences exhumed along isothermal to near-iso-
thermal (i.e., rapid) trajectories. Additionally, the UGHS PTt exhumation path 
from the Annapurna-Dhaulagiri Himalaya is much shallower than modeled 
isothermal PTt paths determined from channel-flow model HT1. Our find-
ings suggest that in the Annapurna-Dhaulagiri Himalaya, viscosity-limited, 
subdued channel flow of the UGHS was not weak enough to facilitate rapid, 
isothermal exhumation due to its lower-than-average structural thickness and 
melt volumes. Slower exhumation along a more shallow-inclined PTt path 
prevented extensive fluid-absent decompression melting within the sillimanite 
stability field, which compounded the rheological effects of low melt volumes 
during exhumation even further. Consequently, vertical shortening of ~25%–
50% without the addition of large melt volumes led to a gradual deceleration 
of channel flow as the threshold viscosity for flow decreased. Eventually, the 
effective viscosity of the UGHS exceeded the threshold viscosity for flow, at 
which point mid-crustal channel flow could no longer be sustained.

The initiation of D4 deformation associated with top-SW shortening in the 
STDS and top-SW motion along the KSZ and MKSZ at ca. 18 Ma is believed 
to reflect the transformation of the UGHS from a weak “active channel” to a 
strong “channel plug.” Pressure-temperature-time constraints suggest that in 
the Annapurna-Dhaulagiri Himalaya this transformation, and thus the thresh-
old viscosity for channel flow, occurred at 650–670 °C and 7–8 kbar. Conse-
quently, the UGHS in this region exhumed slowly, cooling and strengthening 
2–7 m.y. earlier and at 1–6 kbar greater pressure (~3–18 km deeper) than else-
where in the central and eastern Himalaya.

These findings are distinct from other regions in the Himalaya, and, as 
such, we consider the mid-crustal evolution of the GHS in the Anna purna-
Dhaulagiri Himalaya to be an atypical example of channel flow during the 
Hima layan orogeny.
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