1,082 research outputs found

    Overview of the MEDLI Project

    Get PDF
    The Mars Science Laboratory Entry, Descent, and Landing Instrumentation (MEDLI) Project s objectives are to measure aerothermal environments, sub-surface heatshield material response, vehicle orientation, and atmospheric density for the atmospheric entry and descent phases of the Mars Science Laboratory (MSL) entry vehicle. The flight science objectives of MEDLI directly address the largest uncertainties in the ability to design and validate a robust Mars entry system, including aerothermal, aerodynamic and atmosphere models, and thermal protection system (TPS) design. The instrumentation suite will be installed in the heatshield of the MSL entry vehicle. The acquired data will support future Mars entry and aerocapture missions by providing measured atmospheric data to validate Mars atmosphere models and clarify the design margins for future Mars missions. MEDLI thermocouple and recession sensor data will significantly improve the understanding of aeroheating and TPS performance uncertainties for future missions. MEDLI pressure data will permit more accurate trajectory reconstruction, as well as separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic regimes. This paper provides an overview of the project including the instrumentation design, system architecture, and expected measurement response

    HAWC+ Far-infrared Observations of the Magnetic Field Geometry in M51 and NGC 891

    Get PDF
    Abstract: Stratospheric Observatory for Infrared Astronomy High-resolution Airborne Wideband Camera Plus polarimetry at 154 μm is reported for the face-on galaxy M51 and the edge-on galaxy NGC 891. For M51, the polarization vectors generally follow the spiral pattern defined by the molecular gas distribution, the far-infrared (FIR) intensity contours, and other tracers of star formation. The fractional polarization is much lower in the FIR-bright central regions than in the outer regions, and we rule out loss of grain alignment and variations in magnetic field strength as causes. When compared with existing synchrotron observations, which sample different regions with different weighting, we find the net position angles are strongly correlated, the fractional polarizations are moderately correlated, but the polarized intensities are uncorrelated. We argue that the low fractional polarization in the central regions must be due to significant numbers of highly turbulent segments across the beam and along lines of sight in the beam in the central 3 kpc of M51. For NGC 891, the FIR polarization vectors within an intensity contour of 1500 are oriented very close to the plane of the galaxy. The FIR polarimetry is probably sampling the magnetic field geometry in NGC 891 much deeper into the disk than is possible with NIR polarimetry and radio synchrotron measurements. In some locations in NGC 891, the FIR polarization is very low, suggesting we are preferentially viewing the magnetic field mostly along the line of sight, down the length of embedded spiral arms. There is tentative evidence for a vertical field in the polarized emission off the plane of the disk

    Alcohol Facilitates CD1d Loading, Subsequent Activation of NKT Cells, and Reduces the Incidence of Diabetes in NOD Mice

    Get PDF
    Background: Ethanol ('alcohol') is a partly hydrophobic detergent that may affect the accessibility of glycolipids thereby influencing immunological effects of these molecules. Methods: The study included cellular in vitro tests using α-galactosylceramide (αGalCer), and in vivo NOD mice experiments detecting diabetes incidence and performing behavioural and bacterial analyses. Results: Alcohol in concentrations from 0.6% to 2.5% increased IL-2 production from NKT cells stimulated with αGalCer by 60% (p<0.05). CD1d expressed on HeLa cells contained significantly increasing amounts of αGalCer with increasing concentrations of alcohol, suggesting that alcohol facilitated the passive loading of αGalCer to CD1d. NOD mice were found to tolerate 5% ethanol in their drinking water without signs of impairment in liver function. Giving this treatment, the diabetes incidence declined significantly. Higher numbers of CD3+CD49b+ NKT cells were found in spleen and liver of the alcohol treated compared to the control mice (p<0.05), whereas the amount of CD4+Foxp3+ regulator T cells did not differ. Increased concentrations of IFN-γ were detected in 24-hour blood samples of alcohol treated mice. Behavioural studies showed no change in attitude of the ethanol-consuming mice, and bacterial composition of caecum samples was not affected by alcohol, disqualifying these as protective mechanisms. Conclusion: Alcohol facilitates the uptake of glycolipids and the stimulation of NKT cells, which are known to counteract Type 1 diabetes development. We propose that this is the acting mechanism by which treatment with alcohol reduces the incidence of diabetes in NOD mice. This is corroborated by epidemiology showing beneficial effect of alcohol to reduce the severity of atherosclerosis and related diseases

    Trait Variation in Yeast Is Defined by Population History

    Get PDF
    A fundamental goal in biology is to achieve a mechanistic understanding of how and to what extent ecological variation imposes selection for distinct traits and favors the fixation of specific genetic variants. Key to such an understanding is the detailed mapping of the natural genomic and phenomic space and a bridging of the gap that separates these worlds. Here we chart a high-resolution map of natural trait variation in one of the most important genetic model organisms, the budding yeast Saccharomyces cerevisiae, and its closest wild relatives and trace the genetic basis and timing of major phenotype changing events in its recent history. We show that natural trait variation in S. cerevisiae exceeds that of its relatives, despite limited genetic variation, and follows the population history rather than the source environment. In particular, the West African population is phenotypically unique, with an extreme abundance of low-performance alleles, notably a premature translational termination signal in GAL3 that cause inability to utilize galactose. Our observations suggest that many S. cerevisiae traits may be the consequence of genetic drift rather than selection, in line with the assumption that natural yeast lineages are remnants of recent population bottlenecks. Disconcertingly, the universal type strain S288C was found to be highly atypical, highlighting the danger of extrapolating gene-trait connections obtained in mosaic, lab-domesticated lineages to the species as a whole. Overall, this study represents a step towards an in-depth understanding of the causal relationship between co-variation in ecology, selection pressure, natural traits, molecular mechanism, and alleles in a key model organism

    Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia

    Get PDF
    Waldenström macroglobulinemia (WM)/lymphoplasmacytic lymphoma (LPL) is a rare, chronic B-cell lymphoma with high heritability. We conduct a two-stage genome-wide association study of WM/LPL in 530 unrelated cases and 4362 controls of European ancestry and identify two high-risk loci associated with WM/LPL at 6p25.3 (rs116446171, near EXOC2 and IRF4; OR = 21.14, 95% CI: 14.40–31.03, P = 1.36 × 10 −54 ) and 14q32.13 (rs117410836, near TCL1; OR = 4.90, 95% CI: 3.45–6.96, P = 8.75 × 10 −19 ). Both risk alleles are observed at a low frequency among controls (~2–3%) and occur in excess in affected cases within families. In silico data suggest that rs116446171 may have functional importance, and in functional studies, we demonstrate increased reporter transcription and proliferation in cells transduced with the 6p25.3 risk allele. Although further studies are needed to fully elucidate underlying biological mechanisms, together these loci explain 4% of the familial risk and provide insights into genetic susceptibility to this malignancy. © 2018, The Author(s).Peer reviewe

    A genome-wide association study of marginal zone lymphoma shows association to the HLA region

    Get PDF
    Marginal zone lymphoma (MZL) is the third most common subtype of B-cell non-Hodgkin lymphoma. Here we perform a two-stage GWAS of 1,281 MZL cases and 7,127 controls of European ancestry and identify two independent loci near BTNL2 (rs9461741, P - 3.95 x 10(-15)) and HLA-B (rs2922994, P - 2.43 x 10(-9)) in the HLA region significantly associated with MZL risk. This is the first evidence that genetic variation in the major histocompatibility complex influences MZL susceptibility
    • …
    corecore