99 research outputs found

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Measurement of the CP-Violating Asymmetry Amplitude sin2β\beta

    Get PDF
    We present results on time-dependent CP-violating asymmetries in neutral B decays to several CP eigenstates. The measurements use a data sample of about 88 million Y(4S) --> B Bbar decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We study events in which one neutral B meson is fully reconstructed in a final state containing a charmonium meson and the other B meson is determined to be either a B0 or B0bar from its decay products. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2beta, is derived from the decay-time distributions in such events. We measure sin2beta = 0.741 +/- 0.067 (stat) +/- 0.033 (syst) and |lambda| = 0.948 +/- 0.051 (stat) +/- 0.017 (syst). The magnitude of lambda is consistent with unity, in agreement with the Standard Model expectation of no direct CP violation in these modes

    Measurement of the electron energy spectrum and its moments in inclusive B -> Xe nu decays

    Get PDF
    We report a measurement of the inclusive electron energy spectrum for semileptonic decays of B mesons in a data sample of 52 million Y(4S)-->B(B) over bar decays collected with the BABAR detector at the PEP-II asymmetric-energy B-meson factory at SLAC. We determine the branching fraction, first, second, and third moments of the spectrum for lower cutoffs on the electron energy between 0.6 and 1.5 GeV. We measure the partial branching fraction to be B(B-->Xenu,E-e>0.6 GeV)=[10.36+/-0.06(stat.)+/-0.23(sys.)]%

    The Physics of the B Factories

    Get PDF

    Penguin Mediated B Decays at BABAR

    No full text
    We report on preliminary results of searches for penguin mediated B decays based on 20.7 fb^{-1} of data collected at the Y(4S) peak with the BABAR detector at PEP-II. The following branching fractions have been measured: BR(B+ --> phi K+) = (7.7^{+1.6}_{-1.4} +- 0.8)*10^{-6}, BR(B0 --> phi K0) = (8.1^{+3.1}_{-2.5} +- 0.8)*10^{-6}, BR(B+ --> phi K*+) = (9.7^{+4.2}_{-3.4} +- 1.7)*10^{-6}, BR(B0 --> phi K*0) = (8.7^{+2.5}_{-2.1} +- 1.1)*10^{-6}, BR(B+--> omega pi+) = (6.6^{+2.1}_{-1.8} +- 0.7)*10^{-6}, BR(B --> eta K^*0) = (19.8^{+6.5}_{-5.6} +-1.7)*10^{-6}, where the first error is statistical and the second systematic. For several other modes we report upper limits on their branching fractions; for example for the following flavor-changing neutral current decays, BR(B--> K l+ l-) 0.6*10^{-6}, BR(B--> K* l+ l-) 2.5*10^{-6}, at 90% Confidence Level (C.L.)

    The BaBar detector: Upgrades, operation and performance

    Get PDF
    Contains fulltext : 121729.pdf (preprint version ) (Open Access

    First measurement of the double inclusive B / anti-B hadron energy distribution in e+ e- annihilations, and of angle dependent moments of the B and anti-B energies

    Get PDF
    We have made the first measurement of the double-inclusive B/Bbar energy distribution in e+e- annihilations, using a sample of 400,000 hadronic Z0 decay events recorded in the SLD experiment at SLAC between 1996 and 1998. The small and stable SLC beam spot and the CCD-based vertex detector were used to reconstruct B/Bbar decay vertices with high efficiency and purity, and to provide measurements of the kinematic quantities used to calculate the B energies in this novel technique. We measured the B/Bbar energies with good efficiency and resolution over the full kinematic range. We measured moments of the scaled energies of the B and Bbar hadrons vs. the opening angle between them. By comparing these results with perturbative QCD predictions we tested the ansatz of factorisation in heavy-quark production. A recent next-to-leading order calculation reproduces the data.Comment: 17 pages, 6 figures; submitted to Physics Letters

    Factorial and cumulant moments in e+ e- ---> hadrons at the Z0 resonance

    No full text
    We present the first experimental study of the ratio of cumulant to factorial moments of the charged-particle multiplicity distribution in high-energy particle interactions, using hadronic Z0^0 decays collected by the SLD experiment at SLAC. We find that this ratio, as a function of the moment-rank qq, decreases sharply to a negative minimum at q=5q=5, which is followed by quasi-oscillations. These features are insensitive to experimental systematic effects and are in qualitative agreement with expectations from next-to-next-to-leading-order perturbative QCD.Comment: 13 pages, latex file, uuencoded eps figure
    corecore