469 research outputs found
An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR)
The Amazon basin is likely to be increasingly affected by environmental changes: higher temperatures, changes in precipitation, CO2 fertilization and habitat fragmentation. To examine the important ecological and biogeochemical consequences of these changes, we are developing an international network, RAINFOR, which aims to monitor forest biomass and dynamics across Amazonia in a co-ordinated fashion in order to understand their relationship to soil and climate. The network will focus on sample plots established by independent researchers, some providing data extending back several decades. We will also conduct rapid transect studies of poorly monitored regions. Field expeditions analysed local soil and plant properties in the first phase (2001–2002). Initial results suggest that the network has the potential to reveal much information on the continental-scale relations between forest and environment. The network will also serve as a forum for discussion between researchers, with the aim of standardising sampling techniques and methodologies that will enable Amazonian forests to be monitored in a coherent manner in the coming decades
Quantitative cardiovascular magnetic resonance myocardial perfusion mapping to assess hyperaemic response to adenosine stress
AIMS: Assessment of hyperaemia during adenosine stress cardiovascular magnetic resonance (CMR) remains a clinical challenge with lack of a gold-standard non-invasive clinical marker to confirm hyperaemic response. This study aimed to validate maximum stress myocardial blood flow (SMBF) measured using quantitative perfusion mapping for assessment of hyperaemic response and compare this to current clinical markers of adenosine stress. METHODS AND RESULTS: Two hundred and eighteen subjects underwent adenosine stress CMR. A derivation cohort (22 volunteers) was used to identify a SMBF threshold value for hyperaemia. This was tested in a validation cohort (37 patients with suspected coronary artery disease) who underwent invasive coronary physiology assessment on the same day as CMR. A clinical cohort (159 patients) was used to compare SMBF to other physiological markers of hyperaemia [splenic switch-off (SSO), heart rate response (HRR), and blood pressure (BP) fall]. A minimum SMBF threshold of 1.43 mL/g/min was derived from volunteer scans. All patients in the coronary physiology cohort demonstrated regional maximum SMBF (SMBFmax) >1.43 mL/g/min and invasive evidence of hyperaemia. Of the clinical cohort, 93% had hyperaemia defined by perfusion mapping compared to 71% using SSO and 81% using HRR. There was no difference in SMBFmax in those with or without SSO (2.58 ± 0.89 vs. 2.54 ± 1.04 mL/g/min, P = 0.84) but those with HRR had significantly higher SMBFmax (2.66 1.86 mL/g/min, P 15 bpm was superior to SSO in predicting adequate increase in SMBF (AUC 0.87 vs. 0.62, P < 0.001). CONCLUSION: Adenosine-induced increase in myocardial blood flow is accurate for confirmation of hyperaemia during stress CMR studies and is superior to traditional, clinically used markers of adequate stress such as SSO and BP response
280 one-opposition near-Earth asteroids recovered by the EURONEAR with the <i>Isaac Newton</i> Telescope
Context. One-opposition near-Earth asteroids (NEAs) are growing in number, and they must be recovered to prevent loss and mismatch risk, and to improve their orbits, as they are likely to be too faint for detection in shallow surveys at future apparitions.
Aims. We aimed to recover more than half of the one-opposition NEAs recommended for observations by the Minor Planet Center (MPC) using the Isaac Newton Telescope (INT) in soft-override mode and some fractions of available D-nights. During about 130 h in total between 2013 and 2016, we targeted 368 NEAs, among which 56 potentially hazardous asteroids (PHAs), observing 437 INT Wide Field Camera (WFC) fields and recovering 280 NEAs (76% of all targets).
Methods. Engaging a core team of about ten students and amateurs, we used the THELI, Astrometrica, and the Find_Orb software to identify all moving objects using the blink and track-and-stack method for the faintest targets and plotting the positional uncertainty ellipse from NEODyS.
Results. Most targets and recovered objects had apparent magnitudes centered around V ~ 22.8 mag, with some becoming as faint as V ~ 24 mag. One hundred and three objects (representing 28% of all targets) were recovered by EURONEAR alone by Aug. 2017. Orbital arcs were prolonged typically from a few weeks to a few years; our oldest recoveries reach 16 years. The O−C residuals for our 1854 NEA astrometric positions show that most measurements cluster closely around the origin. In addition to the recovered NEAs, 22 000 positions of about 3500 known minor planets and another 10 000 observations of about 1500 unknown objects (mostly main-belt objects) were promptly reported to the MPC by our team. Four new NEAs were discovered serendipitously in the analyzed fields and were promptly secured with the INT and other telescopes, while two more NEAs were lost due to extremely fast motion and lack of rapid follow-up time. They increase the counting to nine NEAs discovered by the EURONEAR in 2014 and 2015.
Conclusions. Targeted projects to recover one-opposition NEAs are efficient in override access, especially using at least two-meter class and preferably larger field telescopes located in good sites, which appear even more efficient than the existing surveys
Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations
We present all-sky modelling of the high resolution Planck, IRAS, and WISE
infrared (IR) observations using the physical dust model presented by Draine
and Li in 2007 (DL). We study the performance and results of this model, and
discuss implications for future dust modelling. The present work extends the DL
dust modelling carried out on nearby galaxies using Herschel and Spitzer data
to Galactic dust emission. We employ the DL dust model to generate maps of the
dust mass surface density, the optical extinction Av, and the starlight
intensity parametrized by Umin. The DL model reproduces the observed spectral
energy distribution (SED) satisfactorily over most of the sky, with small
deviations in the inner Galactic disk and in low ecliptic latitude areas. We
compare the DL optical extinction Av for the diffuse interstellar medium with
optical estimates for 2 10^5 quasi-stellar objects (QSOs) observed in the Sloan
digital sky survey. The DL Av estimates are larger than those determined
towards QSOs by a factor of about 2, which depends on Umin. The DL fitting
parameter Umin, effectively determined by the wavelength where the SED peaks,
appears to trace variations in the far-IR opacity of the dust grains per unit
Av, and not only in the starlight intensity. To circumvent the model
deficiency, we propose an empirical renormalization of the DL Av estimate,
dependent of Umin, which compensates for the systematic differences found with
QSO observations. This renormalization also brings into agreement the DL Av
estimates with those derived for molecular clouds from the near-IR colours of
stars in the 2 micron all sky survey. The DL model and the QSOs data are used
to compress the spectral information in the Planck and IRAS observations for
the diffuse ISM to a family of 20 SEDs normalized per Av, parameterized by
Umin, which may be used to test and empirically calibrate dust models.Comment: Final version that has appeared in A&
Planck intermediate results. XLI. A map of lensing-induced B-modes
The secondary cosmic microwave background (CMB) -modes stem from the
post-decoupling distortion of the polarization -modes due to the
gravitational lensing effect of large-scale structures. These lensing-induced
-modes constitute both a valuable probe of the dark matter distribution and
an important contaminant for the extraction of the primary CMB -modes from
inflation. Planck provides accurate nearly all-sky measurements of both the
polarization -modes and the integrated mass distribution via the
reconstruction of the CMB lensing potential. By combining these two data
products, we have produced an all-sky template map of the lensing-induced
-modes using a real-space algorithm that minimizes the impact of sky masks.
The cross-correlation of this template with an observed (primordial and
secondary) -mode map can be used to measure the lensing -mode power
spectrum at multipoles up to . In particular, when cross-correlating with
the -mode contribution directly derived from the Planck polarization maps,
we obtain lensing-induced -mode power spectrum measurement at a significance
level of , which agrees with the theoretical expectation derived
from the Planck best-fit CDM model. This unique nearly all-sky
secondary -mode template, which includes the lensing-induced information
from intermediate to small () angular scales, is
delivered as part of the Planck 2015 public data release. It will be
particularly useful for experiments searching for primordial -modes, such as
BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of
the lensing-induced contribution to the measured total CMB -modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map
is part of the PR2-2015 Cosmology Products; available as Lensing Products in
the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and
described in the 'Explanatory Supplement'
https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma
Planck 2015 results. XXVII. The Second Planck Catalogue of Sunyaev-Zeldovich Sources
We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest all-sky catalogue of galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data-sets, and is the first SZ-selected cluster survey containing > confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the Y5R500 estimates are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires. the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical and X-ray data-sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under- luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples
Exploring cosmic origins with CORE: Gravitational lensing of the CMB
Lensing of the CMB is now a well-developed probe of large-scale clustering
over a broad range of redshifts. By exploiting the non-Gaussian imprints of
lensing in the polarization of the CMB, the CORE mission can produce a clean
map of the lensing deflections over nearly the full-sky. The number of high-S/N
modes in this map will exceed current CMB lensing maps by a factor of 40, and
the measurement will be sample-variance limited on all scales where linear
theory is valid. Here, we summarise this mission product and discuss the
science that it will enable. For example, the summed mass of neutrinos will be
determined to an accuracy of 17 meV combining CORE lensing and CMB two-point
information with contemporaneous BAO measurements, three times smaller than the
minimum total mass allowed by neutrino oscillations. In the search for B-mode
polarization from primordial gravitational waves with CORE, lens-induced
B-modes will dominate over instrument noise, limiting constraints on the
gravitational wave power spectrum amplitude. With lensing reconstructed by
CORE, one can "delens" the observed polarization internally, reducing the
lensing B-mode power by 60%. This improves to 70% by combining lensing and CIB
measurements from CORE, reducing the error on the gravitational wave amplitude
by 2.5 compared to no delensing (in the null hypothesis). Lensing measurements
from CORE will allow calibration of the halo masses of the 40000 galaxy
clusters that it will find, with constraints dominated by the clean
polarization-based estimators. CORE can accurately remove Galactic emission
from CMB maps with its 19 frequency channels. We present initial findings that
show that residual Galactic foreground contamination will not be a significant
source of bias for lensing power spectrum measurements with CORE. [abridged
Exploring Cosmic Origins with CORE: Cluster Science
We examine the cosmological constraints that can be achieved with a galaxycluster survey with the future CORE space mission. Using realistic simulationsof the millimeter sky, produced with the latest version of the Planck SkyModel, we characterize the CORE cluster catalogues as a function of the mainmission performance parameters. We pay particular attention to telescope size,key to improved angular resolution, and discuss the comparison and thecomplementarity of CORE with ambitious future ground-based CMB experiments thatcould be deployed in the next decade. A possible CORE mission concept with a150 cm diameter primary mirror can detect of the order of 50,000 clustersthrough the thermal Sunyaev-Zeldovich effect (SZE). The total yield increases(decreases) by 25% when increasing (decreasing) the mirror diameter by 30 cm.The 150 cm telescope configuration will detect the most massive clusters() at redshift over the whole sky, although theexact number above this redshift is tied to the uncertain evolution of thecluster SZE flux-mass relation; assuming self-similar evolution, CORE willdetect clusters at redshift . This changes to 800 (200) whenincreasing (decreasing) the mirror size by 30 cm. CORE will be able to measureindividual cluster halo masses through lensing of the cosmic microwavebackground anisotropies with a 1- sensitivity of , for a 120 cm aperture telescope, and for a 180 cmone. [abridged
Exploring Cosmic Origins with CORE: The Instrument
We describe a space-borne, multi-band, multi-beam polarimeter aiming at aprecise and accurate measurement of the polarization of the Cosmic MicrowaveBackground. The instrument is optimized to be compatible with the strict budgetrequirements of a medium-size space mission within the Cosmic Vision Programmeof the European Space Agency. The instrument has no moving parts, and usesarrays of diffraction-limited Kinetic Inductance Detectors to cover thefrequency range from 60 GHz to 600 GHz in 19 wide bands, in the focal plane ofa 1.2 m aperture telescope cooled at 40 K, allowing for an accurate extractionof the CMB signal from polarized foreground emission. The projected CMBpolarization survey sensitivity of this instrument, after foregrounds removal,is 1.7 {\mu}Karcmin. The design is robust enough to allow, if needed, adownscoped version of the instrument covering the 100 GHz to 600 GHz range witha 0.8 m aperture telescope cooled at 85 K, with a projected CMB polarizationsurvey sensitivity of 3.2 {\mu}Karcmin
- …