365 research outputs found

    Avoiding methane emission rate underestimates when using the divergence method

    Full text link
    Methane is a powerful greenhouse gas, and a primary target for mitigating climate change in the short-term future due to its relatively short atmospheric lifetime and greater ability to trap heat in Earth's atmosphere compared to carbon dioxide. Top-down observations of atmospheric methane are possible via drone and aircraft surveys as well as satellites such as the TROPOspheric Monitoring Instrument (TROPOMI). Recent work has begun to apply the divergence method to produce regional methane emission rate estimates. Here we show that when the divergence method is applied to spatially incomplete observations of methane, it can result in negatively biased time-averaged regional emission rates. We show that this effect can be counteracted by adopting a procedure in which daily advective fluxes of methane are time-averaged before the divergence method is applied. Using such a procedure with TROPOMI methane observations, we calculate yearly Permian emission rates of 3.1, 2.4 and 2.7 million tonnes per year for the years 2019 through 2021. We also show that highly-resolved plumes of methane can have negatively biased estimated emission rates by the divergence method due to the presence of turbulent diffusion in the plume, but this is unlikely to affect regional methane emission budgets constructed from TROPOMI observations of methane. The results from this work are expected to provide useful guidance for future implementations of the divergence method for emission rate estimation from satellite data -- be it for methane or other gaseous species in the atmosphere.Comment: 19 pages, 10 figures, submitted to Environmental Research Letter

    Cooperative excitation and many-body interactions in a cold Rydberg gas

    Full text link
    The dipole blockade of Rydberg excitations is a hallmark of the strong interactions between atoms in these high-lying quantum states. One of the consequences of the dipole blockade is the suppression of fluctuations in the counting statistics of Rydberg excitations, of which some evidence has been found in previous experiments. Here we present experimental results on the dynamics and the counting statistics of Rydberg excitations of ultra-cold Rubidium atoms both on and off resonance, which exhibit sub- and super-Poissonian counting statistics, respectively. We compare our results with numerical simulations using a novel theoretical model based on Dicke states of Rydberg atoms including dipole-dipole interactions, finding good agreement between experiment and theory.Comment: accepted for publication in PRL; 10 pages, 4 figures (including Supplemental Material

    Can Neutron Star Mergers Alone Explain the r-process Enrichment of the Milky Way?

    Get PDF
    © 2023. The Author(s). Published by the American Astronomical Society. This is an open access article under the terms of the Creative Commons Attribution License, https://creativecommons.org/licenses/by/4.0/Comparing Galactic chemical evolution models to the observed elemental abundances in the Milky Way, we show that neutron star mergers can be a leading r-process site only if at low metallicities such mergers have very short delay times and significant ejecta masses that are facilitated by the masses of the compact objects. Namely, black hole–neutron star mergers, depending on the black hole spins, can play an important role in the early chemical enrichment of the Milky Way. We also show that none of the binary population synthesis models used in this Letter, i.e., COMPAS, StarTrack, Brussels, ComBinE, and BPASS, can currently reproduce the elemental abundance observations. The predictions are problematic not only for neutron star mergers, but also for Type Ia supernovae, which may point to shortcomings in binary evolution models.Peer reviewe

    Simulated Annealing for Topological Solitons

    Get PDF
    The search for solutions of field theories allowing for topological solitons requires that we find the field configuration with the lowest energy in a given sector of topological charge. The standard approach is based on the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We describe in detail the implementation of the simulated annealing algorithm, present our results and get independent confirmation of the studies which have used standard minimization techniques.Comment: 31 pages, LaTeX, better quality pics at http://www.phy.umist.ac.uk/~weidig/Simulated_Annealing/, updated for publicatio

    Multiscale formulation for material failure accounting for cohesive cracks at the macro and micro scales

    Get PDF
    This contribution presents a two-scale formulation devised to simulate failure in materials with het- erogeneous micro-structure. The mechanical model accounts for the activation of cohesive cracks in the micro-scale domain. The evolution/propagation of cohesive micro-cracks can induce material instability at the macro-scale level. Then, a cohesive crack is activated in the macro-scale model which considers, in a homogenized sense, the constitutive response of the intricate failure mode taking place in the smaller length scale.The two-scale model is based on the concept of Representative Volume Element (RVE). It is designed following an axiomatic variational structure. Two hypotheses are introduced in order to build the foundations of the entire two-scale theory, namely: (i) a mechanism for transferring kinematical information from macro- to-micro scale along with the concept of “Kinematical Admissibility”, relating both primal descriptions, and (ii) a Multiscale Variational Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences of the variational statement of the problem.The present multiscale technique is a generalization of a previous model proposed by the authors and could be viewed as an application of a general framework recently proposed by the authors. The main novelty in this article lies on the fact that failure modes in the micro-structure now involve a set of multiple cohesive cracks, connected or disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Tortuosity is a topic of decisive importance in the modelling of material degradation due to crack propagation. Following the present multiscale modelling approach, the tortuosity effect is introduced in order to satisfy the “Kinematical Admissibility” concept, when the macro-scale kinematics is transferred into the micro-scale domain. There- fore, it has a direct consequence in the homogenized mechanical response, in the sense that the proposed scale transition method (including the tortuosity effect) retrieves the correct post-critical response.Coupled (macro-micro) numerical examples are presented showing the potentialities of the model to sim- ulate complex and realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also presented

    Sialadenosis in Patients with Advanced Liver Disease

    Get PDF
    Sialadenosis (sialosis) has been associated most often with alcoholic liver disease and alcoholic cirrhosis, but a number of nutritional deficiencies, diabetes, and bulimia have also been reported to result in sialadenosis. The aim of this study was to determine the prevalence of sialadenosis in patients with advanced liver disease. Patients in the study group consisted of 300 candidates for liver transplantation. Types of liver disease in subjects with clinical evidence of sialadenosis were compared with diagnoses in cases who had no manifestations of sialadenosis. The data were analyzed for significant association. Sialadenosis was found in 28 of the 300 subjects (9.3%). Among these 28 cases, 11 (39.3%) had alcoholic cirrhosis. The remaining 17 (60.7%) had eight other types of liver disease. There was no significant association between sialadenosis and alcoholic cirrhosis (P = 0.389). These findings suggest that both alcoholic and non-alcoholic cirrhosis may lead to the development of sialadenosis. Advanced liver disease is accompanied by multiple nutritional deficiencies which may be exacerbated by alcohol. Similar metabolic abnormalities may occur in patients with diabetes or bulimia. Malnutrition has been associated with autonomic neuropathy, the pathogenic mechanism that has been proposed for sialadenosis

    Stellar Intensity Interferometry: Prospects for sub-milliarcsecond optical imaging

    Full text link
    Using kilometric arrays of air Cherenkov telescopes, intensity interferometry may increase the spatial resolution in optical astronomy by an order of magnitude, enabling images of rapidly rotating stars with structures in their circumstellar disks and winds, or mapping out patterns of nonradial pulsations across stellar surfaces. Intensity interferometry (pioneered by Hanbury Brown and Twiss) connects telescopes only electronically, and is practically insensitive to atmospheric turbulence and optical imperfections, permitting observations over long baselines and through large airmasses, also at short optical wavelengths. The required large telescopes with very fast detectors are becoming available as arrays of air Cherenkov telescopes, distributed over a few square km. Digital signal handling enables very many baselines to be synthesized, while stars are tracked with electronic time delays, thus synthesizing an optical interferometer in software. Simulated observations indicate limiting magnitudes around m(v)=8, reaching resolutions ~30 microarcsec in the violet. The signal-to-noise ratio favors high-temperature sources and emission-line structures, and is independent of the optical passband, be it a single spectral line or the broad spectral continuum. Intensity interferometry provides the modulus (but not phase) of any spatial frequency component of the source image; for this reason image reconstruction requires phase retrieval techniques, feasible if sufficient coverage of the interferometric (u,v)-plane is available. Experiments are in progress; test telescopes have been erected, and trials in connecting large Cherenkov telescopes have been carried out. This paper reviews this interferometric method in view of the new possibilities offered by arrays of air Cherenkov telescopes, and outlines observational programs that should become realistic already in the rather near future.Comment: New Astronomy Reviews, in press; 101 pages, 11 figures, 185 reference

    Salivary Proteins Associated with Periodontitis in Patients with Type 2 Diabetes Mellitus

    Get PDF
    The objective of this study was to investigate the salivary proteins that are associated with periodontitis in patients with Type 2 diabetes mellitus (T2DM). Volunteers for the study were patients from the Diabetic Unit, University of Malaya Medical Centre, whose periodontal status was determined. The diabetic volunteers were divided into two groups, i.e., patients with periodontitis and those who were periodontally healthy. Saliva samples were collected and treated with 10% TCA/acetone/20 mM DTT to precipitate the proteins, which were then separated using two-dimensional polyacrylamide gel electrophoresis. Gel images were scanned using the GS-800TM Calibrated Densitometer. The protein spots were analyzed and expressed in percentage volumes. The percentage volume of each protein spot was subjected to Mann-Whitney statistical analysis using SPSS software and false discovery rate correction. When the expression of the salivary proteins was compared between the T2DM patients with periodontitis with those who were periodontally healthy, seven proteins, including polymeric immunoglobulin receptor, plastin-2, actin related protein 3, leukocyte elastase inhibitor, carbonic anhydrases 6, immunoglobulin J and interleukin-1 receptor antagonist, were found to be differentially expressed (p < 0.01304). This implies that the proteins may have the potential to be used as biomarkers for the prediction of T2DM patients who may be prone to periodontitis

    A three-scale domain decomposition method for the 3D analysis of debonding in laminates

    Full text link
    The prediction of the quasi-static response of industrial laminate structures requires to use fine descriptions of the material, especially when debonding is involved. Even when modeled at the mesoscale, the computation of these structures results in very large numerical problems. In this paper, the exact mesoscale solution is sought using parallel iterative solvers. The LaTIn-based mixed domain decomposition method makes it very easy to handle the complex description of the structure; moreover the provided multiscale features enable us to deal with numerical difficulties at their natural scale; we present the various enhancements we developed to ensure the scalability of the method. An extension of the method designed to handle instabilities is also presented

    Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project

    Get PDF
    The Numerical INJection Analysis (NINJA) project is a collaborative effort between members of the numerical relativity and gravitational-wave data analysis communities. The purpose of NINJA is to study the sensitivity of existing gravitational-wave search algorithms using numerically generated waveforms and to foster closer collaboration between the numerical relativity and data analysis communities. We describe the results of the first NINJA analysis which focused on gravitational waveforms from binary black hole coalescence. Ten numerical relativity groups contributed numerical data which were used to generate a set of gravitational-wave signals. These signals were injected into a simulated data set, designed to mimic the response of the Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this data using search and parameter-estimation pipelines. Matched filter algorithms, un-modelled-burst searches and Bayesian parameter-estimation and model-selection algorithms were applied to the data. We report the efficiency of these search methods in detecting the numerical waveforms and measuring their parameters. We describe preliminary comparisons between the different search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
    corecore