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Abstract

This contribution presents a two-scale formulation devised to simulate failure in materials with het-
erogeneous micro-structure. The mechanical model accounts for the nucleation of cohesive cracks in the
micro-scale domain. The evolution and propagation of cohesive micro-cracks can induce material instability
at the macro-scale level. Then, a cohesive crack is nucleated in the macro-scale model which considers, in a
homogenized sense, the constitutive response of the intricate failure mode taking place at the smaller length
scale.

The two-scale semi-concurrent model is based on the concept of Representative Volume Element (RVE).
It is developed following an axiomatic variational structure. Two hypotheses are introduced in order to build
the foundations of the entire theory, namely: (i) a mechanism for transferring kinematical information from
macro-to-micro scale along with the concept of “Kinematical Admissibility”, and (ii) a Multiscale Variational
Principle of internal virtual power equivalence between the involved scales of analysis. The homogenization
formulae for the generalized stresses, as well as the equilibrium equations at the micro-scale, are consequences
of the variational statement of the problem.

The present multiscale technique is a generalization of a previous model proposed by the authors [1, 2]
and could be viewed as an application of a recent contribution [3]. The main novelty in this article lies on
the fact that failure modes in the micro-structure involve a set of multiple cohesive cracks, connected or
disconnected, with arbitrary orientation, conforming a complex tortuous failure path. Following the present
multiscale modeling approach, the tortuosity effect is introduced as a kinematical concept and has a direct
consequence in the homogenized mechanical response.

Numerical examples are presented showing the potentialities of the model to simulate complex and
realistic fracture problems in heterogeneous materials. In order to validate the multiscale technique in
a rigorous manner, comparisons with the so-called DNS (Direct Numerical Solution) approach are also
presented.
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1 Introduction

Many approaches to simulate fracture mechanics problems show an acceptable level of maturity in the scientific
community. Current methodologies could be grouped in two families:

(i) The cohesive surface approach to fracture, where the fracture process zone (FPZ) is condensed into a
cohesive interface with displacement jumps across it. A “discrete-type” constitutive law is prescribed to
characterize the evolution of the cohesive traction with respect to the displacement jump on the crack
faces, see [4, 5] and the references cited therein.

(ii) The continuum approach to fracture, where regularized “continuum-type” stress-strain theories are used
to characterize the response of the solid including the FPZ, which is idealized as narrow bands with intense
strain-localization and material softening [6–8].

Some attempts to link both methodologies have been proposed in the literature, see for example [9–12].
These two families of models can be grouped into a more comprehensive category, named the phenomenolog-

ical approach to failure mechanics. In this context, the “discrete” as well as the “continuum-type” constitutive
relations consider one single length scale of analysis (mono-scale analysis). Thus, degradation micro-mechanical
effects can only be regarded partially, either by introducing internal variables (see [13] and references cited
therein) or additional kinematical descriptors [14, 15]. In spite of its computational appeal, this class of method-
ologies has serious limitations. For arbitrary loading histories, it is not a trivial task to determine the format
or structure of macroscopic laws with the ability to capture complex failure phenomena taking place at smaller
length scales. Major challenges in the development of phenomenological models for material failure are: (i) the
characterization of material parameters and internal variable evolution laws, via well-defined experimental tests,
and (ii) the rigorous formulation of the mechanical model, within a thermodynamically consistent framework.

With the aim of circumventing the drawbacks of phenomenological approaches to material modeling in
general, and fracture mechanics modeling in particular, an alternative paradigm can be employed: the so-called
multiscale approach [16, 17]. This paradigm incorporates the heterogeneous micro-structure in the formulation
of the macroscopic constitutive model through the homogenization concept. The idea is intuitive and comes
from the early days of material modeling science [18–23]. The crucial assumption is to remove the constitutive
definition at the macroscopic level and defining it at a smaller length scale, where the behavior of each of
the material micro-constituents and their interactions are characterized. Then, by using averaging techniques,
an overall constitutive response is transferred to the larger scale. Following this concept, effective material
behaviors can be retrieved from the intricate interactions between geometry and constitutive behavior of all
micro-structural components occurring at the smaller scale.

Among the many different multiscale strategies available at present (see for example [19, 22, 24–29]), two-
scale semi-concurrent models based on the concept of Representative Volume Element (RVE) have reached an
acceptable degree of generality [30–38]. Such models link the macro-scale with a smaller length scale, the micro-
scale, where heterogeneities and their corresponding interaction laws are identifiable. The present contribution
follows this particular class of multiscale (two-scale, RVE-based) formulation.

Material failure is a phenomenon strongly dependent on the underlying material heterogeneity, since the evo-
lution of degradation mechanisms is influenced by micro-structural details, as for example the presence of voids,
inclusions, fibers, interfaces between aggregates, etc. Thus, the RVE-based multiscale paradigm adapts very
well to this kind of problem [39, 40]. However, material failure phenomenology introduces serious theoretical
issues in the development of RVE-based techniques, demanding a careful study. In fact, material degradation
observed at macro-scale is a consequence of strain localization processes along with loading/unloading mecha-
nisms taking place at different regions of the micro-scale. Classical multi-scale procedures, such as those cited
in the previous paragraph, postulate uniform distribution of macro-scale strains into the micro-scale domain
as well as standard homogenization rules for stresses, i.e. volumetric average extended over the entire RVE.
However, during the failure regime, these asumptions have a very debatable physical meaning. New definitions
and novel homogenization techniques need to be introduced when strain localization phenomena are present.

One additional key issue that must be clarified is the lack of objectivity of the homogenized response, with
respect to the RVE-size, when classical homogenization procedures are employed [1, 41, 42]. This is due to
the well-known size-effect phenomenon, inherent to structural failure mechanics [43]. Some recent contributions
have addressed this important theoretical limitation of the classical multiscale models, invoking unconventional
homogenization rules, see for example [1, 3, 42, 44–47].

Due to all difficulties exposed above, the use of RVE-based techniques to simulate material failure is relatively
new [47–53].
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1.1 Main features of the present multiscale model for fracture problems

The main goal of this article is to introduce a new two-scale semi-concurrent RVE-based constitutive model
accounting for the nucleation and propagation of cohesive cracks at the micro-scale which may induce crack
nucleation and propagation at the macro-scale level, from an initially continuum (unfractured) medium. Fol-
lowing conventional RVE-based approaches, the constitutive modelling at the macro-scale is not characterized
through explicit functions. Instead, they are determined as a result of a well-defined homogenization proce-
dures gathering information from the smaller length scale. These homogenization procedures, or scale-transition
equations, evaluate the macro-scale stress and traction by means of stresses and tractions observed at the micro-
scale. Then, the methodology only requires the explicit definitions of specific (phenomenological) constitutive
relations for every component identified at the micro-scale.

The discussion focuses around the theoretical foundations of the multiscale methodology, and scale-transition
equations, emphasizing the mechanism for transferring kinematical information between the macro and micro-
scales when material failure is involved. Kinematics is the cornerstone of the present approach. The minimum
number of hypotheses, needed to develop the entire multiscale theory, are stated and justified. In this sense,
two postulates define the multiscale formulation:

- (H1) The definition of the kinematics at the macro and micro-scales, along with the so-called Kinematical
Admissibility requirement [3] that both kinematics have to meet.

- (H2) A Principle of Multiscale Virtual Power [3]. It is an adapted (variational) version of the Hill-
Mandel principle of macro-homogeneity [21, 54], which includes the internal virtual power contribution
from cohesive cracks at both scales1.

Then, by enforcing the variational statement given by hypothesis (H2), the following consequences arise natu-
rally:

- (C1) The stress homogenization formula, for macro-scale points in the bulk (unfractured) material.

- (C2) The cohesive traction homogenization formula, for points on the macro-scale crack interface.

- (C3) The equilibrium problem at the micro-scale for both macro-mechanical regimes: fractured and un-
fractured.

This work generalizes the Failure-Oriented Multiscale Formulation (FOMF) proposed by the authors in
[1, 2, 55]. The FOMF was originally developed to obtain macro-scale cohesive constitutive laws from micro-
structures with straight strain-localization softening-bands of finite thickness, regularized through the smeared
crack approach. Novel ideas of the present contribution are:

- The FOMF is extended to the analysis of materials in which micro-scale failure mechanisms are modeled
by the nucleation and propagation of “cohesive micro-cracks”2. Since the kinematics at the micro-scale
differs from that reported in [1, 2, 55], the specific assumptions adopted in H1 and H2 must be consistently
reformulated. The issue of introducing multiple kinematical discontinuities at the micro-scale domain is
analyzed in detail. We show that the present model can be regarded as the limit case of strain-localization
bands at the RVE when the thickness of the strain-localization sub-domains approaches to zero. Another
important point is that cohesive constitutive laws characterized at the RVE level could be viewed as the
effective response of a FPZ existing in a yet smaller length scale. In this way, the present model can be
considered as an intermediate step towards a multiscale approach with more than two scales of analysis
to material failure.

- The second contribution aims to capture more general crack patterns and complex failure geometries at
the RVE. From a physical point of view, cracks at the micro-scale can display zig-zag-like trajectories.
They propagate towards weaker defects and tend to divert from rigid material inclusions. Thus, in real
applications, the crack path can be tortuous. The level of tortuosity at the micro-scale has a direct impact
at the macroscopic response [56]. As the crack path tortuosity increases, the effective dissipated energy
tends to increase (examples are presented in Section 5). The micro-crack tortuosity is introduced in the
present model during the insertion of macro-scale kinematics into the RVE-domain. Furthermore, since

1It is worth noting that statement H2 depends on H1, in the sense that H1 defines the kinematically admissible fields which
play a role in the variational problem established through H2, see Section 3.3 for more details.

2Both, cohesive cracks and finite thickness softening bands could be modeled in the RVE domain. However, in this paper, we
focus on modeling cohesive interfaces.
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the kinematical insertion operation plays an important role in the characterization of the homogenized
mechanical response (see [1–3, 55]), the tortuosity effect is automatically incorporated in the generalized
stresses at the macro-scale level.

In summary, the remarkable advantage of using RVE-based multiscale model to simulate material failure is
that simple interactions and failure mechanisms developed at the micro-scale level can be taken into account for
capturing complex overall constitutive relations at the macro-scale during the material failure regime. These
complex macro-scale models are not affordable with phenomenological mono-scale material failure models. On
the other hand, a disadvantage of RVE-based multiscale model in contrast to mono-scale material models is
that the computational cost is highly demanding. Then, the development of reduced order models to make the
computation affordable may be compulsory [52].

The remainder of this paper is organized as follows. Section 2 describes the macro-scale governing equations
for problems involving cohesive cracks. In Section 3, a variationally consistent procedure to develop the scale
bridging technique, from macro-to-micro scales, is discussed in detail. Such methodology is consistent with
the mechanical process of loading-unloading branches taking place at the macro-scale once a cohesive crack is
nucleated. Section 3 presents the key theoretical aspects of the paper. Numerical implementation issues are
briefly discussed in Section 4. The discrete model is assessed and validated through numerical simulations in
Section 5. Rigorous comparisons between the proposed multiscale model and Direct Numerical Simulations
(DNS) are presented. Conclusions are presented in Section 6. Two appendices are also included, which show
specific details of the proposed multiscale model and some auxiliary calculations.

2 Macro-scale model

The solid at the macro-scale is idealized as a continuum with an heterogeneous micro or meso-structure, where
macro-scale displacements, macro-scale strains and macro-scale stresses (u, ε,σ, respectively) characterize the
mechanical state of the body. A cohesive macro-crack is nucleated once a critical material state is reached.
Thus, new independent variables are required to properly describe the mechanical behavior of the medium: (i)
an additional kinematical descriptor, β, accounting for the displacement jump acting across the crack faces and
(ii) a cohesive traction, T , the dual power-conjugate quantity to the displacement jump.

In this section, the macro-scale governing equations for the cohesive crack model are introduced, covering
kinematics, equilibrium and the need for two constitutive relations (for the stresses and cohesive tractions). In
particular, whenever the constitutive responses are required, a transition procedure towards a smaller length
scale is proposed instead of using conventional phenomenological approaches based on macroscopic laws. The
transition scale mechanism is developed in Section 3.

With this idea in mind, it is assumed that every point in the macro-scale domain is associated with a
Representative Volume Element (RVE).

The RVE concept also applies for points located on a cohesive macro-crack, see Fig. 1. For these points, the
problem formulation involves a constitutive link between a surface domain at the macro-scale (the macro-crack)
and a volume domain at the micro-scale (the RVE). Therefore, a consistent scale transition technique dealing
with such dimensional heterogeneity between scales has to be developed.

The so-called scale separation requirement is assumed, in the sense that the RVE-characteristic length,
here denoted as `RV E , is much smaller than the characteristic length at the macro-scale ` (`RV E � `), see
Fig. 1. Moreover, the RVE-size must be large enough to ensure a statistically representative distribution of
heterogeneities.

2.1 General definitions and nomenclature

Let be given a solid identified, at the macro-scale, with an open/bounded domain Ω in the Euclidean space
Rnd, nd is the spatial dimension of the problem. The boundary of Ω is Γ, with outward normal unit vector ν.
Prescribed displacements, uD, are applied on ΓD ⊂ Γ, whereas predefined external tractions, te, are imposed
on ΓN ⊂ Γ (ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = ∅), see Fig. 1.

Points at the macro-scale are labeled by their coordinates, denoted “x”. A monotonically increasing pseudo-
time variable t ∈ [0, τ ] is used to account for the evolution of the nonlinear material response, where τ represents
the final stage of analysis.

4
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RVE for a Macro-Cohesive Crack

Macro-scale

(Heterogeneous medium)

RVE for a Macro-Continuum Point
(Heterogeneous medium)

Cohesive crack

Micro-scale

Failure
mechanism

Figure 1: Transition-scale idealization for points with different mechanical conditions at the macro-scale: pre-
critical (continuum) and post-critical (cracked) regime.

2.2 Kinematical description

Initially, the body is unfractured and the kinematics in Ω is continuous. However, during the loading history,
a macro-scale cohesive crack, denoted S, is nucleated at a specific time tN ∈ [0, τ ]3. A point belonging to S
is denoted xS , whereas a point belonging to the continuous part of the solid (Ω\S) is denoted xR, see Fig. 1.
Subscript (·)R means that the kinematics at xR is “regular”.

A proper criterion to determine the macro-crack nucleation time tN ∈ [0, τ ], at each point xR in the macro-
scale, is required. For example, as suggested in [1, 2, 55], the classical discontinuous bifurcation analysis applied
to the homogenized localization tensor, denoted by Q, can be used. The second orden tensor Q is defined as:

Q =
[
C(ε(t)) n

]
n (1)

where n is the unit vector normal to S and C(ε(t)) is the homogenized constitutive tangent tensor. A macro-
crack is nucleated at a point xR when the condition:

det(Q) = 0 (2)

is verified for the first time, tN , in the loading history. The solution to this problem furnishes the triad {tN ,n,γ},
where γ is the initial velocity jump direction (see [1] for additional details). Once a cohesive crack has been
nucleated, the point labeled xR is re-labeled xS and the corresponding normal vector n remains fixed in time.

For a solid exhibiting displacement jumps (strong discontinuities) across S, the total displacement vector,
u, can be described as follows [57]:

u =

Continuous︷︸︸︷
ū +

Discontinuous︷ ︸︸ ︷
M β , ∀x ∈ Ω, (3)

in terms of a continuous field, ū, and a discontinuous contribution, M β. In (3), β is a smooth vector field in
Ω, which is associated with the displacement discontinuity between the crack faces, while M is the unit jump
function. Both, β and M are related to S. The function M is defined as:

M = H − ϕ, (4)

3Actually, multiple cohesive cracks can be nucleated at the macro-scale. In order to simplify the forthcoming equations, we
assume the existence of a single cohesive macro-crack.

5



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

H =

{
0 ∀xR ∈ Ω−

1 ∀xR ∈ Ω+

, ϕ =

{
0 ∀xR ∈ Ω−\Ωϕ−
1 ∀xR ∈ Ω+\Ωϕ+

, (5)

where H is the Heaviside step function shifted to S (see (5)-left) and ϕ is a sufficiently smooth and arbitrary
function satisfying the two requirements shown in equation (5)-right. In (5), as well as in following expressions,
some geometrical definitions are required: (i) S divides Ω into two sub-domains Ω+ and Ω− according to the
n-direction (n points towards Ω+), see Fig. 2-(a), (ii) Ωϕ is an arbitrary small sub-domain of Ω including
S, with piecewise smooth boundary Γϕ, see Fig. 2-(b), (iii) S divides Ωϕ into two sub-domains Ωϕ+ and Ωϕ−
(n points towards Ωϕ+). From equations (4)-(5) it is noted that M and β have compact support, where their
support is Ωϕ.

(a) (b)

Figure 2: Macro-mechanical problem exhibiting a strong discontinuity through the cohesive crack S. Basic
nomenclature to describe the kinematics.

The strain in xR is:

εR = ∇sxu = ∇sxū+ M∇sxβ − β ⊗s ∇xϕ, ∀xR ∈ Ω\S, (6)

where ∇x(·) denotes the macro-scale gradient operator and the superscript (·)s identifies the symmetric com-
ponent of a tensor. Note that expression (6) contains only regular (bounded) terms and can be re-written as
the sum of two contributions:

εR = εū + εβ, (7)

associated respectively with the continuous displacement field, ū, and the jump discontinuity, β:

εū = ∇sxū, (8)

εβ = M∇sxβ − β ⊗s ∇xϕ. (9)

For points xS (at S), we introduce the notion of generalized strain εS characterized by the triad {εR,β,n}
and composed by two independent entities:

εS = (εR,β ⊗s n), (10)

where (β ⊗s n) is related to a strong discontinuity at S whose normal vector is n and the crack opening is β.
Next, we introduce the concept of kinematically admissible fields at the macro-scale. The total displacement

u, characterized by the pair (ū,β) (see equation (3)), is a kinematically admissible field if u ∈ U , where the
set U is defined as

U =

{
(ū,β) ; ū ∈H1(Ω) , β ∈H1(Ωϕ) and ū|ΓD = uD

}
. (11)

From (11), virtual displacement actions, û, are kinematically admissible if û ∈ V , with V the vector space
defined as

V =

{
(ˆ̄u, β̂) ; ˆ̄u ∈H1(Ω) , β̂ ∈H1(Ωϕ) and ˆ̄u|ΓD = 0

}
, (12)

where the superimposed hat, (̂·), is used to denote kinematically admissible virtual actions.
All expressions presented in this section are valid for any time t ∈ [0, τ ]. In particular, for t < tN we have

β ≡ 0 (and also β̂ ≡ 0) recovering a classical continuum kinematics.

6
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2.3 Variational equilibrium problem

The macro-scale mechanical equilibrium problem can be stated in a variational form as follows:

For any time t ∈ [0, τ ] and given prescribed values of external tractions te on ΓN , find the kinematically
admissible displacement fields (ū,β) ∈ U , such that the stress state σ and the cohesive traction T satisfy
the variational sentence:∫

Ω

σ · ε̂R dΩ +

∫
S
T · β̂ dS −

∫
ΓN

te · ˆ̄u dΓ = 0 , ∀ (ˆ̄u, β̂) ∈ V . (13)

Equation (13) is the Principle of Virtual Power (PVP) for solids exhibiting cohesive cracks. The product

T · β̂ represents the internal virtual power contribution (per unit area) introduced by cohesive interfaces. For
t < tN no cohesive tractions are included in the formulation.

2.4 Material response

In order to solve the variational problem (13), the macroscopic stress tensor σ, as well as the cohesive traction T ,
must be defined. For generic non-linear materials the corresponding constitutive functionals related to {σ,T }
can be symbolically expressed as follows:

σ=F (εtR) , ∀xR ∈Ω\S , ∀ t ∈ [0, τ ], (14)

T=T (εtR,β
t) , ∀ xS ∈S , ∀ t ∈ [tN , τ ], (15)

where (·)t denotes the history of the variable up to time t.
If the material and deformation processes under consideration are such that the complex interactions within

the micro-structure cannot be easily captured by phenomenological laws, the characterization of {F (·),T (·)}
is usually an open problem. In this context, a multiscale formulation can be used as a general methodology to
obtain the material behavior at the macro-scale, via homogenization of a micro-mechanical problem where all
the inhomogeneities and their interactions are modeled by means of more fundamental mechanical laws. In the
next section, a scale transition technique devised to provide the implicit form of {F (·),T (·)} is proposed which
completes the mechanical description of problem (13).

3 Multiscale formulation

The model considers two coupled scales of analysis. In what follows, a variational framework is taken, similar
to that presented in [3, 30, 32, 55, 58, 59], which considers the mechanical interaction between macro and
micro-scales for problems involving cohesive cracks at both levels of analysis.

This section describes the theoretical basis of this contribution. Special attention is focused on two topics:
(I) to establish the minimum hypotheses required for defining the entire multiscale theory and (II) to derive the
variational consequences of the model.

3.1 Preliminaries

Points at the micro-scale are denoted y. The domain Ωµ ⊂ Rnd, identifies the heterogeneous RVE. The
piecewise smooth boundary of Ωµ is denoted Γµ, while νµ is the (outward) unit vector normal to Γµ, see Fig.
3-(a). Subscript (·)µ refers to any entity of the micro-scale domain.

Here we assume that multiple cohesive micro-cracks can be nucleated in the RVE for modeling strain local-
ization phenomena and material degradation. Each crack is referred to as Siµ, with i = 1, . . . , nc, “nc” being the
total number of cohesive interfaces in the micro-scale. Micro-cracks can be either internal to the RVE-domain
or intersect the RVE-boundary, see Fig. 3-(a). A criterion to nucleate a micro-crack needs to be specified. For
example, we propose the detection of local material instabilities at each point y, due to the singularity of the
micro-scale localization tensor4 Qµ [60–62]. Following this criterion, a micro-crack is nucleated at a point y
when the condition:

4Here we are assuming that the underlying continuum constitutive relation that governs the bulk constitutive response before
the micro-crack nucleation is based on softening-based evolution laws, so that local material instabilities can be induced (see Section
3.7.1).
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Opening
cracks

Closing
cracks

(b) (c)(a)

Zoom

Figure 3: RVE with cohesive micro-cracks: (a) Internal crack and crack intersecting the RVE-boundary, (b)
Nomenclature to describe strong discontinuities at the RVE, (c) Set of opening and closing micro-scale cohesive
cracks at the nucleation time tN .

det(Qµ) = 0, with Qµ =
[
Cµ(εµ) nµ

]
nµ, (16)

is satisfied for the first time in the loading history, εµ being the strain tensor at the micro-scale. The solution
to this problem provides the triad {tiNµ,niµ,γiµ}, where tiNµ ∈ [0, τ ] is the crack nucleation time, niµ is the unit

normal vector and γiµ represents the initial jump rate; all related to the specific cohesive micro-crack Siµ.

Remark 3.1 The model can also deal with pre-existing traction-free or adhesive interfaces, see for example
[48, 50, 63]. In the present framework, adhesive interfaces are a particular class of cohesive cracks, equipped
with a specific constitutive law being nucleated from the beginning of the analysis (tiAµ = 0).

3.2 Kinematical assumptions in the scale transition (H1)

In this section we introduce the first hypothesis H1 of the proposed formulation. It is convenient to write the
kinematics in incremental form. Thus, the operator d(·) is used to denote incremental quantities.

3.2.1 Micro-scale kinematics

Following the ideas developed in [1–3, 55], the increment of the strain field at the micro-scale, dεµ, can be defined
in terms of: (i) the insertion of the relevant macro-scale kinematics ({dεū, dεβ, dβ}) into the micro-scale, by
means of a specific Insertion Operator I(·), and (ii) a fluctuation component,

dεµ = I(dεū, dεβ, dβ) + dε̃µ, ∀y ∈ Ωµ, (17)

Terms I(·) and dε̃µ in equation (17), are discussed in detail in the following. The notation (̃·) will be used to
refer to any fluctuation field at the micro-scale.

Fluctuation fields

Displacement discontinuities in the micro-scale domain are treated in an analogous way to that introduced in
Section 2.2. Hence, the (incremental) micro-scale displacement fluctuation, dũµ, can be defined as

dũµ =

Continuous︷︸︸︷
d˜̄uµ +

Discontinuous︷ ︸︸ ︷
nc∑
i=1

M i
µ dβ̃

i

µ, ∀y ∈ Ωµ, (18)

with d˜̄uµ the (incremental) regular part of the displacement fluctuation, M i
µ the unit jump function and dβ̃

i

µ

the (incremental) fluctuation of the opening crack displacement. Both, M i
µ and dβ̃

i

µ, are defined for each micro-
scale cohesive crack labeled “i”. In view of (18), consider that the set of independent kinematical descriptors

8
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(d˜̄uµ, dβ̃
i

µ) characterizes the micro-scale displacement fluctuation field dũµ. The mathematical expression for

MSiµ is identical to that discussed for the macro-scale kinematics, in terms of the functions H i
µ and ϕiµ:

M i
µ := H i

µ − ϕiµ, (19)

H i
µ =

{
0 ∀ y ∈ Ωiµ−
1 ∀ y ∈ Ωiµ+

, ϕiµ =

{
0 ∀ y ∈ Ωiµ−\Ω

ϕ i
µ−

1 ∀ y ∈ Ωiµ+\Ω
ϕ i
µ+

, (20)

where the geometrical interpretations for the domains Ωiµ, Ωiµ+, Ωiµ−, Ωϕ iµ , Ωϕ iµ+ and Ωϕ iµ− are depicted in Fig.

3-(b). Note that M i
µ has the compact support Ωϕ iµ .

The (incremental) micro-scale strain fluctuation term, dε̃µ, can be evaluated by applying the generalized
symmetric gradient operator to dũµ, yielding:

dε̃µ = dε̃µR +

nc∑
i=1

(dβ̃
i

µ ⊗s niµ) δiµ, ∀y ∈ Ωµ, (21)

with dε̃µR being the incremental regular (bounded) micro-scale strain fluctuation field defined as:

dε̃µR = ∇sy d˜̄uµ +

nc∑
i=1

[
M i

µ∇sy dβ̃
i

µ − dβ̃
i

µ ⊗s ∇yϕiµ
]
, ∀y ∈ Ωµ\(∪nci=1S

i
µ), (22)

where∇y(·) represents the micro-scale gradient operator and δiµ (with unit of [length]−1) is the Dirac distribution

shifted to Siµ. Note the similar structure shared by dε̃µR and its macro-scale counterpart εR, presented in (6).
For convenience, we shall explore the fact that the kinematical description of each micro-crack is equivalent

to the kinematics of a strain localization band whose thickness, `µ, tends to zero. Thus, the length parameter `iµ,
associated with each micro-crack “i”, is included in the expressions that follow. This is not a strictly required
assumption, but a convenient way to deal with micro-cracks5. Accordingly, expression (21) can be re-written as
the limit case of strain localization bands in sub-domains ΩSiµ (ΩSiµ includes Siµ) of thickness `iµ, when `iµ → 0

(see Appendix I-(a) for additional details on the limiting process from a continuous strain localization-based
kinematics to a discontinuous kinematics):

dε̃µ =

Regular term︷ ︸︸ ︷
dε̃µR +

Singular terms︷ ︸︸ ︷
nc∑
i=1

lim
`iµ→0

φiµ
dβ̃

i

µ ⊗s niµ
`iµ

, ∀y ∈ Ωµ, (23)

φiµ =

{
1 ∀ y ∈ ΩSiµ
0 otherwise,

(24)

with φiµ a collocation function related to the sub-domain ΩSiµ ⊂ Ωϕ iµ , defined for each Siµ. Roughly speaking,

ΩSiµ identifies each sub-domain where strain localization happens by the elements {Siµ, `iµ}, where Siµ is the

mean surface of ΩSiµ and `iµ is the thickness of the localization band (see Fig. 22-(a) in Appendix I-(a)).

The set of equations (18)-(24) completely defines the micro-scale kinematics related to fluctuation fields.

Insertion procedure, I(·)

By “insertion procedure” we mean the form in which macro-scale kinematical information is transferred into
the micro-scale domain. In the present context, it establishes how the incremental point-valued quanti-
ties {dεū, dεβ, dβ}, at x, are inserted into the RVE domain. We denote the (linear) insertion operator as
I(dεū, dεβ, dβ). The main degree of arbitrariness in postulating multiscale models of the present type lies in
the definition of the insertion mechanism.

Before defining the I(·)-operator, some important mechanical aspects need to be considered:

5For example, by considering cracks as strain localization bands of finite thickness, we can deal with finite localization bands
as well as cohesive cracks in the micro-scale domain, simultaneously, in an unified kinematical framework. The locally variable
parameter `iµ(y) defines the kinematical character of each point in the failure zone of the RVE: `iµ(y)→ 0 means a crack, `iµ(y) 6= 0
means a localization band. There are additional benefits in adopting this type of kinematical representation for micro-cracks, which
will be highlighted later.
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(a) At the macro-scale crack nucleation time (t = tN ), two sets of micro-cracks are distinguished in the
RVE-domain: “opening” (loading) and “closing” (unloading) micro-cracks (see Fig. 3-(c)).

The opening micro-crack set determines the evolving RVE failure mechanism at t = tN , which governs
(in an average sense) the evolution of the macro-scale cohesive crack. It is denoted SLµ and defined as

SLµ =
⋃nop
j=1 SLjµ (j = 1, . . . , nop), where “nop” is the total number of opening micro-cracks, at t = tN .

Thus, we are assuming that SLµ is a possible tortuous connected/disconnected piecewise poly-interface

composed of several interfaces, each representing an opening micro-crack SLjµ . A criterion to determine

SLµ at t = tN is explained in Appendix I-(b).

Alternatively, closing micro-cracks in the RVE are cohesive interfaces that have been nucleated during
the stable period of the material at the macro-scale, i.e. during the interval t ∈ [0, tN ]. However, due to
the loading-unloading effect triggered by the strain localization process at the RVE-domain, they close
onward. This concept will be further clarified when the methodology to determine SLµ is discussed in
Appendix I-(b).

From now on, superscript “L” is added to all entities related to the domain SLµ . Superscript “j” is used

to denote objects associated to a particular opening micro-crack SLjµ ⊂ SLµ , while the superscript “i” is
used to identify any micro-crack in the RVE (opening or closing).

(b) Expressions (9) and (10) for the macro-scale kinematical descriptors {εβ, εS}, to be inserted into the RVE,
have a mechanical meaning within a single-scale setting. They are built on the basis that the unit-jump
function, M , is univocally determined once the unit vector n is given at point xS ∈ S (see equations
(3) and (4)). Considering the RVE connected to the point xS , the failure crack path is intricate and
composed of several, not necessary aligned, micro-cracks. Thus, expressions (9) and (10) are no longer
entirely consistent with the kinematics of the RVE. It is expected that the macro-scale normal vector
n is related to some averaged quantity of the spatially variable unit normal vector field at the micro-
scale nLjµ , j = 1, . . . , nop (the set of vectors being normal to the opening micro-scale cohesive cracks at

t = tN ). However the averaging of unit vectors nLjµ with arbitrary orientations does not result in a unit
vector. This fact suggests that a proper scaling factor must be taken into account to make the macro-scale
terms containing the jump β (i.e. εβ and εS) compatible with the micro-scale kinematical description
showing a zig-zag crack path. A postulate in the present formulation is that this scaling factor, called
tortuosity index and denoted θ, is incorporated in the definition of the I(·)-operator, specifically in the
I(0, dεβ, dβ)-counterpart of the insertion operator.

Taking into account items (a) and (b) above, we are in a position to postulate the insertion procedure,
according to expression (17). The insertion operator, I(dεū, dεβ, dβ), is defined through the following rules:

• The increment of regular macro-scale strain, dεR = dεū + dεβ, given by equations (7), (9) and (10),
is uniformly inserted throughout the micro-scale domain Ωµ. This insertion mechanism is symbolically
expressed as I(dεū, dεβ,0).

• The increment of the macro-scale displacement jump dβ is only inserted where the generalized fluctuation
strain field (dε̃µ) localizes in the RVE-domain. In this case, throughout the domain SLµ of all opening
micro-cracks6. This insertion mechanism is symbolically expressed as I(0,0, dβ).

Accordingly (see Fig. 4), I(·) can be defined as:

IR(dεū, dεβ) := I(dεū,0,0) + I(0, dεβ,0) =

I(dεū,dεβ,0)︷ ︸︸ ︷
dεū + θ dεβ︸ ︷︷ ︸

Uniform insertion of dεR

, ∀ y ∈ Ωµ, for xR, (25)

IS(dεū, dεβ, dβ) :=

I(dεū,dεβ,0)︷ ︸︸ ︷
dεū + θ dεβ︸ ︷︷ ︸

Uniform insertion of dεR

+

I(0,0,dβ)︷ ︸︸ ︷
nop∑
j=1

[
lim
`Ljµ →0

φLjµ
θ dβ ⊗s nLjµ

`Ljµ

]
︸ ︷︷ ︸

Localized insertion of dβ

, ∀ y ∈ Ωµ, for xS , (26)

6Recall that SLµ is idealized as a sub-domain containing all strain localization bands ΩSiµ
whose thicknesses approach zero, at

the macro-scale nucleation time tN

10
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recalling that all objects of the type (·)Ljµ are associated with the opening micro-crack labeled Lj. In (25) and
(26), the notations IR(·) and IS(·) have been introduced to identify the insertion operators defined for points
xR and xS , respectively. From (25) and (26), it is clear that the localized insertion of dβ into the RVE (given
by I(0,0, dβ)), makes sense only for points xS located on the cohesive macro-crack.

Macro-scale

RVE

RVE

(Localized insertion)

(Uniform insertion)

(Uniform insertion)

Opening micro-cracks:

Closing micro-cracks
RVE

Compact
support of

(Uniform insertion)

Figure 4: Insertion procedure for points xR and xS .

Remark 3.2 All the I(·)-terms, i.e. I(dεū,0,0), I(0, dεβ,0) and I(0,0, dβ), are linear operators.

Recall that the θ-factor considered in the insertion of dεβ and dβ (see expressions (25) and (26)), takes into
account the possibly tortuous path of SLµ , in a homogenized sense. The tortuosity parameter θ is defined as
follows:

θ =
|SLµ |∣∣∣∣ nop∑

j=1

∫
SLjµ

nLjµ dSµ
∣∣∣∣
, |SLµ | =

nop∑
j=1

|SLjµ |, (27)

and represents an average weighing factor due to possibly misaligned normal unit vectors nLjµ along the path
of opening cohesive cracks at the micro-scale. This tortuosity parameter (which is the inverse of the scalar
index introduced by the authors in [3]) is related to the nucleation of the macro-scale kinematical descriptor
dβ. Thus, it has to be computed at the macro-scale nucleation time t = tN , looking for the failure zone in
the corresponding RVE. Appendix I-(c) justifies the tortuosity factor definition through a purely kinematical
condition fulfilled by the insertion operator I(·). Observe that in the particular case of uniformly oriented
opening micro-cracks (i.e. all the normal vectors nLjµ are co-linear), the tortuosity index results θ = 1. As the
failure path in the RVE becomes more tortuous, the θ-index increases, so we have θ ∈ [1,∞).

Collecting the expressions (25)-(26) and (23), the (incremental) micro-scale strain fluctuation field dεµ (see
(17)) yields:

dεµ =

IR(·)︷ ︸︸ ︷
dεū + θ dεβ +

dε̃µ︷ ︸︸ ︷
dε̃µR +

nc∑
i=1

[
lim
`iµ→0

φiµ
dβ̃

i

µ ⊗s niµ
`iµ

]
, ∀y, for xR, (28)

and

dεµ =

IS(·)︷ ︸︸ ︷
dεū + θ dεβ +

nop∑
j=1

[
lim
`Ljµ →0

φLjµ
θ dβ ⊗s nLjµ

`Ljµ

]
+

dε̃µR +

nc∑
i=1

[
lim
`iµ→0

φiµ
dβ̃

i

µ ⊗s niµ
`iµ

]
︸ ︷︷ ︸

dε̃µ

, ∀y, for xS . (29)
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In view of equation (29), the (incremental) micro-scale displacement jump, dβLjµ , of each opening micro-crack

SLjµ is given by:

dβLjµ = θ dβ + dβ̃
Lj

µ , j = 1, . . . , nop. (30)

The kinematical description at the RVE is fully defined by expressions (17)-(29).

3.2.2 Kinematical Admissibility requirement in the RVE

Additional “Kinematical Admissibility” requirements must be introduced in order to fully connect the kinematics
at macro and micro-scales. This is a key issue in multiscale modeling in general and constitutes, together with
the insertion operator definition, the main ingredients of the first hypothesis (H1).

Here we postulate that the increment of micro-scale strains dεµ, in the RVE related to xR, is a kinematically
admissible field with respect to the macro-scale quantities dεū and dεβ, if it satisfies the following constraint:∫

Ωµ

IR(dεū, dεβ) dΩµ =

∫
Ωµ

dεµ dΩµ. (31)

Further, we postulate that the incremental micro-scale strain dεµ, in the RVE related to xS , is a kinematically
admissible field with respect to the macro-scale quantities dεū, dεβ and dβ, if it satisfies both (31) and the
following additional constraint: ∫

ΩLµ

IS(dεū, dεβ, dβ) dΩµ =

∫
ΩLµ

dεµ dΩµ, (32)

where ΩLµ =
⋃nop
j=1 ΩSLjµ is the total strain localization domain in the RVE.

Expressions (31)-(32) imply that the micro-scale strain fluctuation field, dε̃µ, satisfies:

- zero integral value over the domain Ωµ, for an RVE linked to a regular point xR, and

- zero integral value over the domains Ωµ and ΩLµ , for an RVE linked to a singular point xS .

Thus, the constraints (31)-(32) ensure that the fluctuation field, dε̃µ, does not contribute to the macro-scale
kinematics, given by the descriptors {dεū, dεβ, dβ} valued at x.

Remark 3.3 The kinematical admissibility requirements, (31) and (32), have been written using the same
format as in previous contributions by the authors (see [1, 2]). This is a direct consequence of the adopted
kinematical representation for cracks at the micro-scale, considered as the limit case of strain localization bands.
Note that the singular terms related to displacement discontinuities in the RVE are included in the definition of
dεµ (see (28)-(29)).

From the definitions (25) and (28), equation (31) yields:

∫
Ωµ

dε̃µR +

nc∑
i=1

[
lim
`iµ→0

φiµ
dβ̃

i

µ ⊗s niµ
`iµ

]
dΩµ = 0, (33)

which, after mathematical manipulations (see details in Appendix II-(b)), reduces to:∫
Ωµ

∇sy d˜̄uµ dΩµ =

∫
Γµ

d˜̄uµ ⊗s νµ dΓµ = 0, (34)

Observe that the first admissibility requirement, given by expression (31) or (34), results in the standard
minimal kinematical constraint imposed on the (increment of) regular micro-scale displacement fluctuations at
the RVE-boundary Γµ, see [1, 3, 32, 55, 58] for more details on this standard issue. Thus, the term Standard
Boundary Condition (SBC) is used to denote it. Also note, in (34), that no constraints appear on the micro-scale

displacement fluctuation jump dβ̃
i

µ.
In turn, from (26) and (29), expression (32) can be re-written as:

12
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nop∑
j=1

∫
SLjµ

θ dβ ⊗s nLjµ dSµ =

nop∑
j=1

∫
SLjµ

(
θ dβ + dβ̃

Lj

µ

)
⊗s nLjµ dSµ, (35)

which simplifies to:

nop∑
j=1

∫
SLjµ

dβ̃
Lj

µ ⊗s nLjµ dSµ = 0. (36)

Equation (36) is an additional constraint on the (increment of) micro-scale displacement fluctuation jump
across SLµ , for an RVE linked to xS . The term Non-Standard Boundary Condition (NSBC) refers to the kine-
matical constraint given in (36). It does not involve the regular counterpart of the (incremental) displacement
fluctuation d˜̄uµ. Thus, (34) and (36) are uncoupled linear constraints.

In view of (34) and (36), we say that dũµ is kinematically admissible if dũµ ∈ Ũ R
µ for an RVE linked to a

point xR, or dũµ ∈ Ũ Sµ for an RVE linked to a point xS , where:

Ũ R
µ =

{
(d˜̄uµ, dβ̃

1

µ, . . . , dβ̃
nc
µ ) ; d˜̄uµ ∈H1(Ωµ) , dβ̃

i

µ ∈H
1(Ωϕ iµ ), i = 1, . . . , nc, such that∫

Γµ

d˜̄uµ ⊗s νµ dΓµ = 0

}
. (37)

and

Ũ Sµ =

{
(d˜̄uµ,dβ̃

1

µ, . . . , dβ̃
nc
µ ) ; d˜̄uµ ∈ H1(Ωµ) , dβ̃

i

µ ∈H
1(Ωϕ iµ ), i = 1, . . . , nc, such that∫

Γµ

d˜̄uµ ⊗s νµ dΓµ = 0 and

nop∑
j=1

∫
SLjµ

dβ̃
Lj

µ ⊗s nLjµ = 0

}
. (38)

At points xR, virtual actions of micro-scale displacement fluctuations, ûµ, are kinematically admissible if

ûµ ∈ V R
µ ≡ Ũ R

µ . Alternatively, at points xS , virtual actions are kinematically admissible if ûµ ∈ V Sµ ≡ Ũ Sµ .

Remark 3.4 Considering problems involving cohesive cracks at both scales of analysis, the vector spaces Ũ R
µ

(≡ V R
µ ) and Ũ Sµ (≡ V Sµ ), defined by (37) and (38) respectively, characterize the so-called multiscale model

with minimum kinematical constraints. More kinematically constrained multiscale sub-models can be derived by
taking sub-spaces of Ũ R

µ or Ũ Sµ . In Section 5, some examples of different multiscale sub-models are presented.

3.3 Principle of Multiscale Virtual Power (H2)

So far, only kinematical constraints have been considered in the macro-to-micro information transfer. Physical
consistency of the multiscale model is achieved by balancing, in addition, the internal virtual power at both
scales. For this purpose, an adapted version of the Hill-Mandel principle [21, 54] is introduced, which accounts
for cohesive cracks at the macro and micro-scales (the second fundamental hypothesis of our approach (H2)).
To achieve this objective, the notion of virtual kinematically admissible macro-scale generalized strain actions
to be considered in the macro-to-micro scale transfer (ε̂R and β̂), must be defined. These definitions depend on
the mechanical regime at the macro-scale. In this sense, we postulate that kinematically admissible macro-scale
virtual strains actions are:

β̂ ≡ 0 and ε̂R = ε̂ūwith ε̂ū arbitrary; ∀ xR (39)

β̂ arbitrary and ε̂R ≡ 0; ∀ xS (40)

Remark 3.5 In the following scale bridging variational equations, the macro-scale virtual strain actions, ε̂R
and β̂, are arbitrary point-valued quantities at x, i.e. ε̂R ∈ Rnd×ndsym and β̂ ∈ Rnd respectively (Rnd×ndsym is the
vector space of symmetric second-order tensors).
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3.3.1 Continuum material regime at macro-scale

From (28) and definition (39), the virtual kinematically admissible micro-scale strain field, ε̂µ, for an RVE
linked to a point xR is expressed as:

ε̂µ = ε̂ū + ε̂µR +

nc∑
i=1

[
lim
`iµ→0

φiµ
β̂
i

µ ⊗s niµ
`iµ

]
, ∀ y ∈ Ωµ. (41)

Then, for any point xR, the Principle of Multiscale Virtual Power ([3]), accounting for possible nucleation
of cohesive cracks only at the micro-scale, reads:

σ · ε̂ū =
1

|Ωµ|

∫
Ωµ

σµ · ε̂µ dΩµ, ∀ ε̂ū ∈ Rnd×ndsym , ∀ ε̂µ kinematically admissible, (42)

where σµ represents the micro-scale stress state, for which a constitutive law is required.
Considering (41) and (77) from Appendix I-(a), equation (42) can be re-written as:

σ · ε̂ū =
1

|Ωµ|

[ ∫
Ωµ

σµ · (ε̂ū + ε̂µR) dΩµ +

nc∑
i=1

∫
Siµ
T iµ · β̂

i

µ dSµ
]

∀ ε̂ū ∈ Rnd×ndsym , ∀ (ˆ̄uµ, β̂
1

µ, . . . , β̂
nc
µ ) ∈ V R

µ , (43)

with T iµ denoting the cohesive traction acting on the micro-crack Siµ, for which a constitutive law is required.

3.3.2 Cohesive material regime at macro-scale

In this case, from (29) and taking definition (40) into consideration, the virtual kinematically admissible micro-
scale strain field, ε̂µ, for an RVE linked to a point xS is expressed as:

ε̂µ =

nop∑
j=1

[
lim
`Ljµ →0

φLjµ
θ β̂ ⊗s nLjµ

`Ljµ

]
+ ε̂µR +

nc∑
i=1

[
lim
`iµ→0

φiµ
β̂
i

µ ⊗s niµ
`iµ

]
, ∀ y ∈ Ωµ. (44)

Then, for any point xS , the Principle of Multiscale Virtual Power ([3]), accounting for cohesive cracks at
both scales, reads:

T · β̂ =
1

|SLµ |

∫
Ωµ

σµ · ε̂µ dΩµ ; ∀ β̂ ∈ Rnd, ∀ ε̂µ kinematically admissible. (45)

Considering (44) and (77) from Appendix I-(a), equation (45) can be re-written as:

T · β̂ =
1

|SLµ |

[
θ

nop∑
j=1

∫
SLjµ

TLjµ · β̂ dSµ +

∫
Ωµ

σµ · ε̂µR dΩµ +

nc∑
i=1

∫
Siµ
T iµ · β̂

i

µ dSµ
]

∀ β̂ ∈ Rnd, ∀ (ˆ̄uµ, β̂
1

µ, . . . , β̂
nc
µ ) ∈ V Sµ , (46)

with TLjµ (analogously to T iµ) denoting the cohesive tractions acting on the opening micro-cracks SLjµ . Traction

vectors TLjµ are obtained from a pre-defined constitutive law.

Remark 3.6 No more hypotheses are introduced to complete the scale-transition model. The variational state-
ments (43) and (46) contain all the required information to derive the remaining equations of the theory, that
is, the homogenization rules for the macro-scale generalized stresses (the stress tensor and the cohesive traction)
and the equilibrium problem at the RVE.
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3.4 Stress homogenization for the continuum response (C1)

From (43), taking ˆ̄uµ ≡ 0, β̂µ ≡ 0 and arbitrary ε̂R = ε̂ū ∈ Rnd×ndsym , the homogenization formula for the
macro-scale stress tensor, at xR, is obtained (consequence C1 of the formulation):

σ =
1

|Ωµ|

∫
Ωµ

σµ dΩµ. (47)

Remark 3.7 For points located in the compact support of β (xR ∈ Ωϕ), the homogenization formula (47)
depends on the tortuosity index θ, see Fig. 4. Let us recall that θ is one of the variables defining the insertion
operator (25), used to build the strain field εµ at the micro-scale (refer to equation (28)). Thus, the micro-scale
stress field σµ, of an RVE linked to xR ∈ Ωϕ, depends on the θ-factor through εµ. The dependence of θ on σµ
is transferred to the homogenized stress, σ, when expression (47) is applied.

3.5 Traction homogenization on the cohesive interface (C2)

From (46), taking ˆ̄uµ ≡ 0, β̂µ ≡ 0 and arbitrary β̂ ∈ Rnd, the cohesive traction homogenization formula, for
xS , is derived (consequence C2 of the formulation):

T =
θ

|SLµ |

[ nop∑
j=1

∫
SLjµ

TLjµ dSµ
]

=
1

α

[ nop∑
j=1

∫
SLjµ

TLjµ dSµ
]
. (48)

From the definition of θ given by (27), the average factor α = |SLµ | θ−1, present on the rightmost part of
(48) yields:

α =
|SLµ |
θ

=

∣∣∣∣ nop∑
j=1

∫
SLjµ

nLjµ dSµ
∣∣∣∣, (49)

which can be geometrically interpreted as sketched in Fig. 5.

Fictitious domain
related with the measure

Real failure domain
related with the measure

Figure 5: Geometrical interpretation for the parameter α = |SLµ | θ−1, used as the averaging factor in the
cohesive traction homogenization formula (48).

Remark 3.8 The homogenized traction T depends explicitly on the tortuosity index θ through the leading
term in (48) and implicitly through each micro-scale cohesive traction, TLjµ , since the insertion operator IS
in equation (26) depends on θ. The implicit dependence can be explained following a similar constitutive-type
argument as in Remark 3.7.

Remark 3.9 Although the tortuosity parameter has been introduced as a kinematical concept, through the def-
inition of I(·), it has a fundamental effect on the homogenized responses for both macro-scale quantities σ and
T . The form in which the θ-factor influences the homogenization formulae (47)-(48) is not an a priori postulate
of the model, but a natural consequence of the variational statement of the problem. Throughout the numerical
simulations of Section 5, we show the importance of taking into account the tortuosity index properly, in order
to obtain the correct mechanical response in the post-critical regime.
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3.6 RVE equilibrium problem (C3)

First consider an RVE linked to a continuum point xR at the macro-scale. Taking ε̂R = ε̂ū ≡ 0 in equation
(43), the equilibrium problem in the micro-scale domain involving possible nucleation of cohesive micro-cracks
is derived (consequence C3 of the formulation). In a variational format it is stated as follows:

For any fixed time t and given the history of the regular macro-scale strains εtR, find (d˜̄uµ, dβ̃
1

µ, . . . , dβ̃
nc
µ ) ∈

Ũ R
µ such that:

∫
Ωµ

σµ · ε̂µR dΩµ +

nc∑
i=1

∫
Siµ
T iµ · β̂

i

µ dSµ = 0, ∀ (ˆ̄uµ, β̂
1

µ, . . . , β̂
nc
µ ) ∈ V R

µ . (50)

Consider now an RVE related to a point xS located at the cohesive macro-crack. Taking β̂ ≡ 0 in expression
(46), the micro-scale equilibrium problem in the presence of macro and micro-scale cohesive cracks is derived
(consequence C3 of the formulation). In variational form it is stated as:

For any fixed time t ∈ [tN , τ ] and given the history of the regular macro-scale strains εtR and the history

of the macro-scale displacement discontinuity βt, find (d˜̄uµ, dβ̃
1

µ, . . . , dβ̃
nc
µ ) ∈ Ũ Sµ such that:

∫
Ωµ

σµ · ε̂µR dΩµ +

nc∑
i=1

∫
Siµ
T iµ · β̂

i

µ dSµ = 0, ∀ (ˆ̄uµ, β̂
1

µ, . . . , β̂
nc
µ ) ∈ V Sµ . (51)

3.7 Micro-scale constitutive model

In order to solve the variational problems (50) and (51), constitutive relations at the micro-scale must be
prescribed for σµ and T iµ (i = 1, . . . , nc), as functions of the histories of micro-scale regular strain and crack
opening displacement. Symbolically, these response functionals (either phenomenological or obtained from an
additional transition scale technique) can be expressed as follow:

σµ=Fµ(εtµR,β
t
µ), ∀y ∈ Ωµ\(∪nci=1S

i
µ), (52)

T iµ=T i
µ (εtµR,β

t
µ), ∀y ∈ Siµ i = 1, . . . , nc. (53)

Typically, the stress tensor σµ is characterized by means of a conventional constitutive model which in-
clude, for example, regularized softening-based evolution laws with damage, plasticity or any other dissipative
mechanism.

On the other hand, the general setting adopted in the present paper to deal with strong discontinuity kine-
matics in the micro-scale (idealized as a limit case of strain localization bands), provides flexibility for choosing
the family of constitutive models which characterize the cohesive traction evolution. This is an advantage of
the proposed approach, in the sense that we can select one of the two well-known procedures, namely:

- The traditional cohesive model paradigm [4, 5], where the traction is univocally defined in terms of the
(history of the) displacement jump on the crack faces.

- The Continuum Strong Discontinuity Approach to fracture [9–12], where the cohesive response in the in-
terface discontinuity (i.e. the traction-separation law) is consistently derived from a regularized continuum
stress-strain relation, valid on a strain localization band, whenever the thickness of such band approaches
zero. This procedure allows to incorporate additional dependencies in the characterization of cohesive
tractions in the RVE, as for example the triaxiality effect, a phenomenon recognized as fundamental in
ductile failure analysis [64]. Obviously, this refined modeling capability is transferred to the homogenized
traction constitutive law, at the macro-scale.

3.7.1 Specific constitutive model adopted at the micro-scale

Equations (52)-(53) represent general expressions to model the material behavior at the micro-scale. In the
present work, degradation and failure mechanisms in the RVE-domain are accounted for by considering a
regularized elastic-damage model, which is defined through the equations given in Box 1. Damage is allowed
only under tensile stress states, a typical situation in quasi-brittle fracture simulations. The continuum damage
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model is regularized by introducing a characteristic length, `µ, in the definition of stress-like internal variable
evolution law. Observe that this regularization parameter (`µ) is the same used to construct the macro-to-micro
kinematical insertion operator IS(·), see equation (26).

Cohesive tractions at the micro-scale, T iµ, are described by projecting the same continuum damage model

onto the interface Siµ. In our formulation, this is achieved just by considering `µ → 0, in the set of equations
given in Box 1. More details about the formal derivation of cohesive models from regularized stress-strain
continuum models can be found in [65].

4 Computational implementation

The numerical implementation of the multiscale model at both scales of analysis is based on the finite element
method. Although the model assumes the existence of strong discontinuities at macro and micro-scales, and
therefore the modeling of interfaces is required, different techniques are used in each case.

The macro-scale model uses a finite element technology with embedded strong discontinuities and automatic
detection of the crack path. In Section 4.1, we present a brief summary of this approach.

An alternative methodology based on standard solid finite elements with high aspect ratios, mimicking
micro-scale cohesive interfaces is briefly summarized in Section 4.2. A discussion about the adequate choice of
the RVE boundary conditions and the numerical implementation is also addressed in that section.

The macro-scale numerical approach is able to handle strong discontinuities intersecting the mesh in arbitrary
directions. However, considering that it requires significant computational efforts, we prefer a less demanding
approach at the micro-scale, at the expense of giving up the ability to capture micro-cracks intersecting the
finite element mesh in arbitrary directions.

4.1 Finite element technique at the macro-scale

A finite element with embedded strong discontinuities which has been conceived for the automatic identification
of the geometrical positioning of the crack path, through a technique called “crack path field”, is adopted to
model the macro-scale. The numerical implementation of this method has been detailed elsewhere [66]. Hence,
only the main issues related to this type of element are addressed here.

First, the concept of crack path field is briefly described, which is useful to detect the geometrical position
of the discontinuity surface. Then, a finite element technique with embedded strong discontinuity, capable of
modeling evolving cracks, is briefly summarized. Additional details of the complete procedure can be seen in
the referenced work.

4.1.1 Crack path field technique

This procedure consists in evaluating the crack path-field κ(x) and its zero level set Π:

Π = {x | κ(x) = 0} (64)

Then, the set Π identifies the path of any evolving crack, see Fig 6, in the sense that:

S ⊂ Π (65)

The crack path field κ(x) is the directional derivative (along a vector orthogonal to the crack path), of an
internal variable, χ, projected onto a sufficiently smooth functional space. This variable χ must be subjected to
a localization effect such that it should display an unbounded growth in S, while remaining bounded and small
in the regular part of the body. Typically, χ could be the equivalent strain in damage models.

The correct detection of Π is a key issue to embed a cohesive interface S satisfactorily into the finite element.
The generalization of the crack path field technique to the present multiscale modeling context demands an

adequate definition of the field χ. It is defined by gathering information from the micro-scale, as follows:

χ(x) =
1

|Ωµ|

∫
Ωµ

rµ dΩµ (66)

where rµ is the strain-like internal variable of the damage model describing the constitutive relation at the
micro-scale level.
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Box 1: Regularized tensile damage model at the micro-scale.

Elastic stress-strain relation

σµ =
qµ

rµ
Ceµ εµ = [1− dµ(rµ)]

σµ︷ ︸︸ ︷
Ceµ εµ (54)

dµ(rµ) = 1−
qµ(rµ)

rµ
(55)

Damage criterion

G (εµ, rµ) =
√
σ+
µ · εµ − rµ ≤ 0 (56)

σ+
µ =

3∑
i=1

〈σµi〉 ei ⊗ ei (57)

Internal variable evolution laws with softening

ṙµ = γ, rµ|t=0 = rµ0 =
σµu√
Eµ

(58)

q̇µ = `µHµ(rµ) ṙµ, qµ ≥ 0, qµ|t=0 = qµ0 = rµ0 (59)

Hµ(rµ) = −
r2µ0

Gfµ
exp

[
−

rµ0

Gfµ
(rµ − rµ0)

]
(60)

Loading/Unloading complementary conditions

γ ≥ 0, G ≤ 0, γ G = 0 (61)

Tangent constitutive tensor

if γ = 0, Ctanµ = (1− dµ)Ceµ (62)

if γ > 0, Ctanµ = (1− dµ)Ceµ −
[
qµ −Hµ rµ

r3µ

]
σµ ⊗ σ+

µ (63)

Material parameters that characterize the model

σµu : Ultimate tensile stress

Eµ : Young’s modulus

νµ : Poisson ratio

Gfµ : Fracture energy

Nomenclature definitions

rµ : strain-like internal variable

qµ : stress-like internal variable

dµ : scalar damage variable

Ceµ : isotropic elastic constitutive tensor

σµ : effective stress state

σ+
µ : positive counterpart of effective stress state

σµi : effective principal stress “i”

ei : eingenvector related to σµi

〈·〉 : Macaulay brackets

γ : damage consistency parameter

`µ : regularization parameter (thickness of strain localization band)

Hµ : intrinsic softening modulus (exponential degradation)
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4.1.2 Finite element with embedded strong discontinuity

A mixed bilinear quadrilateral finite element technology with embedded strong discontinuities reported in [66]
is implemented. This method has been used for single-scale failure analysis. Its generalization to the multiscale
analysis is almost direct.

During the loading process, each quadrilateral finite element can switch between three different formulations,
or states, denoted 0, 1 and 2, in accordance with the following criterion:

(i) Initially, elements in state 0 are modeled as standard quadrilaterals with bi-linear regular displacements.

(ii) Once the bifurcation condition is detected (t = tN ) in the central point of the element, it switches
from state 0 to state 1. Elements in state 1 are also quadrilaterals with mixed interpolation: bi-linear
interpolation for the incremental regular displacements and constant interpolation for the incremental
regular strains. So, a quadrature rule with only one integration point is enough to evaluate consistently
the integrals arising in the mixed formulation.

(iii) After a small loading increment, at the pseudo-time tSD (with tSD > tN ), elements in state 1 switch to
state 2 and a strong discontinuity mode is embedded into the mixed quadrilateral finite element.

Fig. 6 provides additional details about the integration rule used in different states of the finite element
during the loading process.

Before switching from states 1 to 2, the position of the interface S(x) must be determined according to the
procedure given in Section 4.1.1. Placing the discontinuity surface S in the correct position avoids stress locking
in elements where strain localization is taking place.

Zero level set:
(crack-path-field)

PG2

PG3

PG4

PG1

State 1

EFEM
(Finite element with embedded

strong discontinuity)

State 0

State 2

Finite elements in state 1

Finite elements in state 2

Finite elements in state 0

Figure 6: Finite element technique at the macro-scale. Quadrature points according to the element state: (i)
elements in state 0 use the standard integration rule based on four Gauss points, (ii) elements in state 1 use
only one quadrature point (xeR) at the element center, (iii) elements with embedded strong discontinuities use
two quadrature points (xeR and xeS), both at the element center.

The finite element formulations for states 0 and 1 have been implemented following very standard procedures.
The numerical implementation of finite elements in state 2, with embedded strong discontinuities and in the
context of the present multiscale model, is briefly discussed here. More details on implementation will be
addressed in a forthcoming contribution [67].

Note that only elements in state 2 are intersected by cracks. In this case, by construction, the support of
εβ, see equation (9), is the element domain Ωe. It means that elements having states 0 or 1 are outside the
influence zone of any crack and the term dεβ in equation (25) is dεβ = 0. Therefore, the insertion operator
IR(dεū,0), in elements with states 0 or 1, distributes uniformly the macro-scale strain dεū into the RVE. So,
the multiscale model results identical to the conventional homogenization technique reported in the literature
(see for example [36]), in the sense that the increment of macro-scale strain dεū is uniformly distributed in the
RVE and the overall stress results in the standard volumetric average of the micro-scale stress field.
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4.2 Micro-scale finite element model

The mechanical modeling of the RVE, considering micro-scale cohesive surfaces, is implemented with degenerate
two-dimensional solid finite elements displaying very high aspect ratios. A similar technique has been reported in
[68], where it has been shown that elements with increasing aspect ratios tend to capture a strong discontinuity
kinematics [69]. Thus, this technique can be seen as an alternative procedure for modeling strong discontinuities
arising across cohesive surfaces.

Degenerate Constant Strain Triangles (CST) are inserted between all the element edges of a predefined finite
element mesh, as shown in Fig. 7. The geometrical distribution of degenerate CST elements is shown in gray,
and their aspect ratio increases with `iµ → 0.

Zoom

RVE
Interface
(degenerate) elements

Standard
finite elements

Figure 7: RVE finite element model with degenerate elements at all edges of standard finite elements. The
thickness of the degenerate elements, `µ, tends to zero.

These degenerate elements are endowed with a continuum damage, or plastic-like, constitutive relation with
strain softening (in the present contribution, the model presented in Box 1 has been adopted). The remaining
finite elements could be endowed with an elastic or inelastic constitutive relation with hardening (in the present
contribution, an isotropic elastic model has been adopted). Thus, evolving strain localization zones are restricted
to domains determined by the degenerate elements with pre-defined thickness of size `iµ → 0.

In Fig. 8, we sketch the insertion of kinematical information from macro-to-micro scales. Note that according
with the insertion operator IS(dεū, dεβ , dβ), see equation (26), the inserted macro-scale strain:

dεū + θ dεβ +

[
θ dβ ⊗s nLjµ

`
Lj
µ

]
, (67)

is distributed in all the j-th degenerate elements which belong to ΩLµ (zone showed in dark gray in Fig. 8). The
inserted macro-scale strain

dεū + θdεβ (68)

is distributed in the remaining finite elements of the RVE, including the closing micro-cracks represented by the
degenerated CST elements displayed in light gray in Fig. 8.

5 Numerical assessment of the multiscale model

5.1 Sensitivity analysis of the effective fracture energy with the tortuosity index

We assess the multiscale model for capturing the homogenized post-critical response. Specially, we evaluate the
sensitivity of the effective fracture energy (Gf ) and the total dissipated energy (D) at the macro-scale, in terms
of the crack path tortuosity at the RVE. This particular feature of the formulation is remarkably important to
understand the role played by the material micro-structure in failure problems. The numerical tests presented
in this section, although simple, have been conceived to demonstrate this.

20



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

RVE

Macro-scale finite element
(state 2)

Meso-scale finite element mesh
(solids and interface elements)

Figure 8: Insertion procedure of the kinematics related to a macro-scale integration point, xeS , into the RVE
modeled with degenerate finite elements between interfaces.

5.1.1 Problem description

A homogeneous strip is considered as the macro-scale domain, see Fig. 9. The strip is subjected to a monoton-
ically increasing vertical macro-scale displacement δ on the top edge, until the complete structural degradation
is reached. The problem is analyzed assuming plane strain conditions.

Four periodic micro-structures of simple geometries are used as RVEs, see Fig. 9. At the micro-structures,
pre-defined domains where cohesive cracks can be nucleated, are embedded into an elastic material matrix.
Once the micro-scale cohesive cracks are nucleated, they are governed by a cohesive relation which is induced
by a regularized continuum scalar damage model acting on a band of thickness `µ approaching 0 (see Section
3.7.1). The damage model degrades exponentially only under tensile states, therefore this behavior is inherited
for the discrete-type cohesive law. The properties for the elastic matrix are: Eµ = 3.0e4 [MPa] (Young modulus)
and νµ = 0.18 (Poisson’s ratio). The properties for the damage model are: σµu = 2.6 [MPa] (ultimate tensile
stress), Gfµ = 2.0e2 [N/m] (fracture energy), Eµ = 1.5e4 [MPa] and νµ = 0.18. The material characterization
is identical in the four RVEs considered.

The macro-scale homogenized responses are evaluated and compared according with two categories of micro-
structures:

Straight

Tortuous Tortuous

Micro-structure
Case (a)

45º 45º

Elastic

Elastic

Elastic

Cohesive
crack

Cohesive
crack

Elastic

250 [mm]

2
5
0
 [

m
m

]

Cohesive
crack

Cohesive
crack

Traction-free
crack

Traction-free
crack

25 [mm]

2
5
 [

m
m

]

Straight

Micro-structure
Case (b)

Macro-structure

Thickness: 100 [mm]

Figure 9: Strip subjected to uniaxial loading. Macro-scale mechanical model along with their corresponding
micro-structural description.
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Case (a): embodies two micro-structures. One with a horizontal straight cohesive crack and the other
with slanted cohesive cracks at ±45◦ (see Fig. 9-(left)). The length of the slanted crack path is 41%
longer than the length of the horizontal crack. Thus, the corresponding tortuosity indices are θ = 1 and
θ = 1.41, respectively.

Case (b): similar to the previous case, two micro-structures are compared (see Fig. 9-(right)). One with
two horizontal cohesive cracks (solid lines) intersecting a horizontal traction-free crack (dotted line). The
other with two slanted cohesive cracks at ±45◦ (solid lines) intersecting a horizontal traction-free crack
(dotted line). The total length of the slanted crack path is 27% longer than the length of the horizontal
cracks. The corresponding tortuosity indices are θ = 1 and θ = 1.27, respectively.

After detecting bifurcation at macro-scale (t = tN ), the multiscale model considers that the overall fracture
energy, in all cases, is represented by the nucleation of a unique and geometrically identical macro-crack, being
orthogonal to the principal stretch direction (see Fig. 9-(center)). However, as we show next, stable material
dissipation can take place at the macro-scale before the nucleation of the macro-crack, for t < tN .

5.1.2 Multiscale model vs. Direct Numerical Simulation

The total expended external energy, required to exhaust the structural load carrying capacity, is studied using
the proposed multiscale (MS) model. Results are compared with DNS (Direct Numerical Simulation) solutions
that are assumed as the reference accurate responses.

The MS finite element models are shown in Fig. 10. At the macro-scale, only one finite element with
embedded strong discontinuity (see Section 4.1.2) is used. Thus, the fracture process of the strip is highly
idealized. Even so, we show that MS formulation provides solutions which compare very well with the refined
DNS method. The RVE finite element meshes are also observed in Fig. 10, for each analyzed case. Periodic
boundary conditions are assumed for the external RVE boundary (SBC): points on the solid lines are paired with
points on the dotted lines. The vertex nodes are fixed (zero displacement fluctuations). This set of kinematical

restrictions is a particular case of the minimally constrained vector space Ũ
R

µ (and V R
µ ). Once the macro-crack

is nucleated, (incremental) displacement fluctuations at the RVE-domain are fixed to zero, a particular case of

Ũ
S
µ (and V Sµ).

MS model

One-finite element

Straight

Tortuous

Micro-scale
Case (a)

45º
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25
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2
5
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45º

Figure 10: Strip subjected to uniaxial loading. Discrete models for the MultiScale (MS) formulation: macro-
scale model (one finite element) and RVE finite element models for the four micro-structures (periodic boundary
conditions are considered between solids and dotted external boundaries). Units of length in millimeters.

The DNS finite element meshes are built by horizontal and vertical repetition of the discrete periodic cells
shown in Fig. 11 where only the tortuous cases are displayed. Identical material properties and distributions
as in the RVEs of the multiscale model are assumed.

Fig. 11 (center) depicts a comparative analysis of the damage levels observed in both, MS and DNS solutions,
at the bifurcation time (t = tN ). Even though the DNS solutions show a slight non-uniform damage distribution
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ZoomZoom

Figure 11: Strip under uniaxial loading. DNS finite elements models for the tortuous path cases. Comparative
analysis of the damage solutions given by DNS and MS models, at the macro-scale bifurcation time (t = tN ).

in bands at different heights and the MS model is macroscopically homogeneous (prior to bifurcation), the
solutions obtained with both models compare very well in terms of qualitative results. The slight non-uniformity
observed in the DNS responses is due to initial perturbations imposed to trigger the strain localization in the
central zone of the strip.

The external total force (P ) vs. vertical displacement (δ) curves are exhibited in Fig. 12, using both
techniques MS and DNS. Note that MS model provides very accurate results, if compared with the DNS
solutions, in terms of initial overall elasticity, non-linear stable dissipation, peak load detection and the complete
post-critical equilibrium branch. Therefore, the total dissipated energy, D , predicted by the MS and DNS models
(the areas under the P -δ curves), are in very close agreement in both cases (tortuous and straight cracks).

5.1.3 Discussion of results

First, let us focus on Case (a). The crack path tortuosity introduces two noteworthy effects: (i) an increase
of the peak load Pu, from about Pu = 6.8e4 [N] (for θ = 1) to Pu = 7.8e4 [N] (for θ = 1.41), as seen in Fig.
12-(a) and (ii) the existence of a stable (distributed) energy dissipation regime prior to macro-scale bifurcation
(t < tN ) in the tortuous case, see the non-linear P -δ response before reaching the limit load in insert of Fig.
12-(a). These results can be explained as follows. Although the stretching process is uniform at the macro-scale,
crack path tortuosity induces a non-uniform stress state at the micro-scale. Therefore damage evolves describing
non-uniform patterns (see Fig. 11). Low values of damage in the RVE are not enough to induce softening and
material bifurcation at the macro-scale. In fact, as shown Fig. 11, levels of damage greater than 0.97 are required
to achieve macro-scale bifurcation and, as a consequence, the nucleation of the macro-crack. The evolution of
this inelastic process at the micro-scale (from the onset of damage to damage near 0.97) is transferred to the
macro-scale as an irreversible mechanism of stable dissipation, which takes place along the whole volume of the
strip, increasing the effective ductility of the material. Observe that one part of what is defined as fracture energy
(per unit area) in the RVE, Gfµ, characterizing the micro-scale cohesive laws, develops during the (volumetric)
stable energy dissipation at the macro-scale. Then, the micro-scale energy released during the stable dissipation
regime at macro-scale level is not available to contribute to the effective macro-scale fracture energy Gf , i.e. the
fracture energy (per unit area) required to degrade the macro-scale cohesive crack. From the comparison with
the reference DNS solution, we conclude that the proposed multiscale model is able to deal with this complex
phenomenology involving non-trivial relationships between energy measures with dissimilar dimensionality. As
the stable dissipation process develops in the tortuous Case-(a), the total external load increases until it reaches
a peak, Pu, which is greater than the peak load obtained without crack tortuosity.

The overall fracture energy, Gf , is obtained through integration of the macro-scale traction vs. crack opening
response T -β. Considering Case-(a), we have: Gf = 0.20 [N/mm] (for θ = 1) and Gf = 0.196 [N/mm] (for
θ = 1.41), the last value represents the area below the blue curve Tx2

vs βx2
in Fig. 13-(b). In this example,

the effective fracture energy available to exhaust the macro-scale cohesive crack, linked to a tortuous path in
the RVE (θ = 1.41), is smaller than the value corresponding to the macro-crack related to aligned micro-cracks
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Figure 12: Strip under uniaxial loading. P vs. δ curves at the macro-scale, obtained using MS and DNS
approaches.

(θ = 1). However, the total expended external work to get complet degradation (D) for the micro-structure
with zig-zag cohesive cracks is 51% larger than that computed with the micro-structure having an horizontal
cohesive crack (see gray zone in Fig. 12-(a)). These results confirm that, even simulating horizontal macro-
cracks opening in Mode I, the structural response obtained with the MS model distinguishes between distinct
crack path tortuosities at the micro-scale, , in both cases.

Similar conclusions are obtained analyzing the plots in Fig. 12-(b) corresponding to Case-(b), where pre-
existing traction-free micro-cracks have been considered. Thus, we can conclude that the tortuosity index θ,
included in the MS formulation, has the correct mechanical effect on the homogenized responses.

In order to highlight the previous conclusion, additional results are shown in Fig. 13 and Fig. 14. We
compare the homogenized responses using slight variations of the proposed MS model (denoted MSA and MSB

models), applied to Case (a)-tortuous (θ = 1.41):

- The MSA-model solution fully removes the tortuosity parameter by setting θ = 1 in all the scale bridging
equations.

- The MSB-model solution corresponds to a multiscale methodology where the tortuosity index is only
considered in the definition of the IS(·)-operator, but it is not accounted for in the regular insertion
counterpart IR(·) (see (26) and (25), respectively). This method (MSB) neglects the influence of tortuosity
factor on the evaluation of the macro-scale stress tensor in regular points xR ∈ Ω\S, near the macro-crack.

Let us consider the macro-scale point x where at time t = tN a cohesive interface with the normal vector
n = [nx1

nx2
] = [0 1] is introduced (see Fig. 13). We analyze the continuity of the normal component of the

traction vector provided by the MS model, before and after the interface insertion (σx2x2
= σ · (n ⊗ n) for

t ≤ tN and Tx2 for t > tN ). Fig. 13-(a) depicts the homogenized constitutive response (σx2x2 vs. εx2x2) before
detecting macroscopic bifurcation (t < tN ) while Fig. 13-(b) shows the homogenized cohesive response (Tx2 vs.
βx2

) once the macro-crack is nucleated (t > tN ). Even in this simple numerical experiment, and according to
the different scale bridging equations (given by MS, MSA or MSB models), a very sensitive response with respect
to θ can be observed. The MSA-model shows a marked discontinuous behavior at tN , i.e. when the peak load
Pu is reached (see Fig. 13-(b)). Thus, using the MSA technique, the transition from a classical homogenization
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Figure 13: Strip under uniaxial loading (Case (a)-tortuous): (a) σx2 x2
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homogenized response before
detecting macro-scale bifurcation, (b) Tx2 vs. βx2 homogenized response after nucleation of macro-scale cohesive
crack. Solutions obtained using MS, MSA and MSB approaches.
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Figure 14: Strip under uniaxial loading (Case (a)-tortuous). P vs. δ curves at the macro-scale level. Solutions
obtained using MS, MSA and MSB approaches.
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scheme to a cohesive homogenization procedure is discontinuous. We argue that the discontinuous response
is due to a wrong kinematical information transfer, from macro-to-micro scale, which is not properly modeled
after the nucleation of the macro-crack. The macro-scale kinematical descriptor, dβ, is not correctly scaled
when it is inserted into the RVE-domain. A similar inconsistent response is also observed in the structural
load-displacement P -δ curve of Fig. 14. The MSB-model, which only accounts for a scaling of dβ (through θ)
during the kinematical transfer related to xS , eliminates the discontinuous response and furthermore provides
identical Tx2

-βx2
response as the MS-model (see Fig. 13-(b)). However the MSB-solution is still mechanically

inconsistent, since it does not provide the correct post-critical structural behavior (see Fig. 14), showing an
effective energy dissipation which is different from the DNS solutions (here DNS and MS give almost identical
responses). Thus, the importance of considering the tortuosity parameter in the insertion procedure for regular
points, located in the compact support of β (xR ∈ Ωϕ), is clear.

5.2 Multiscale analysis of a concrete-like material

5.2.1 Modeling of concrete failure

A concrete-like material is considered by modeling its meso-structure7. Concrete is a typical example of a non-
periodic and quasi-brittle heterogeneous material. At the meso-scale, two main phases can be recognized: the
cementitious matrix and the coarse aggregates. Failure generally initiates at the interface between matrix and
aggregates, and cracks propagate across the matrix. In general, for low-to-moderate strength concretes, trans-
aggregate fracture is never observed8. Then, from the material failure viewpoint, (low-to-moderate strength)
concrete can be modeled at meso-scale by incorporating three constituents: (i) the matrix-aggregate interface,
which is the weakest phase of the composite, (ii) the cementitious matrix which also can be subjected to cracking
and degradation and (iii) the aggregates which behave elastically with no degradation at all. Based on these
modeling assumptions, we develop a meso-scale model for concrete failure following very closely the approxima-
tions reported in Carol et al. [70] and Unger et al. [71].

Meso-structure generation

The representation of a plane strain state in concrete, at the meso-scale level, is idealized by selecting
different shapes/sizes of rigid particles, which correspond to a given type of coarse aggregate, and distributing
them randomly into the micro-cell. The particle shapes are randomly selected from a pre-defined set of irregular
polygons, typifying granitic-type coarse aggregate. The coordinates for each particle centroid are selected
randomly following a uniform probability distribution; the orientation angle for each aggregate is also random.
A exclusion zone around previously generated particles is considered. The total number of particles and their
sizes (between 3 [mm] and 5 [mm]) are computed such that a pre-assumed coarse aggregate volume fraction,
ωAgg, is reached. Following to [71], we have adopted ωAgg = Aggregate volume

Total RVE volume × 100 = 20.7%. The RVE size is
25.0 [mm] × 25.0 [mm], and the average aggregate size is 3.43 [mm], see Fig. 15.

According to the finite element technique adopted to simulate the RVE, as explained in Section 4.2, the
meso-scale finite element model is designed as shown in Fig. 15. Interface elements are inserted along the
matrix-aggregate interfaces, as well as along the interfaces of the matrix finite elements.

All the interface elements are subjected to material degradation. The constitutive model representing the
mechanical response of both interfaces, matrix-matrix and matrix-aggregate, is the regularized isotropic damage
model with exponential softening discussed in Section 3.7.1. Since the thickness of interface elements is very
small, the continuum damage model degenerates into a cohesive-type constitutive law which characterizes the
mechanical behavior of the cracks at the micro-scale level. Damage in the cementitious matrix is only allowed
through the embedded interface elements. Material parameters are presented in Table 1.

5.2.2 Strip subjected to uniaxial strains. Analysis of boundary condition effects on the RVE
failure mode capturing

A macro-scale strip is subjected to uniaxial stretching in different directions, while the associated micro-cells are
attached to a fixed reference frame {y1, y2} (see Fig. 16). Therefore, the principal macro-scale stress direction
for each test displays a different orientation with respect to the micro-scale fixed reference system. It is expected

7In the applications involving concrete-like materials, the term meso-structure or meso-scale identifies the smaller length scale
of the multi-scale model. Thus, the prefix “meso” should be considered as a synonym for the prefix “micro”, used in this work.

8Trans-aggregate fracturing can be observed in high strength concretes.
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Figure 15: Concrete meso-scale model (average size of the matrix finite elements: 1.30 [mm]). Detail of the
continuum and embedded interface finite elements.

Eµ [MPa] νµ σµu [MPa] Gµf [N/m]

Elastic cementitious matrix 1.85e4 0.18 — —
Elastic aggregate 3.70e4 0.18 — —
Matrix-matrix interface 1.85e4 0.18 2.60 140
Matrix-aggregate interface 1.85e4 0.18 1.30 70

Table 1: Material properties for the meso-structure depicted in Fig. 15, taken from [71].

that the failure path at the micro-scale level results (in an averaged sense) almost orthogonal to the homogenized
tensile stress direction (loading direction).

The dimensions of the macro-structure are 125.0 [mm] × 125.0 [mm] and the thickness is 100 [mm], see Fig.
16. Plane strain condition is assumed.

The objective of this numerical test is twofold:

- First, we assess the capability of the micro-scale finite element model to capture failure modes at different
directions relative to the RVE axis, depending on the macro-scale stretching orientation. In this context,
the selection of appropriate kinematical constraints, on the RVE boundaries, is a fundamental issue to be
considered. Very restrictive kinematical constraints can inhibit, or delay, the nucleation of micro-cracks
near the RVE boundaries, as well as the macro-scale bifurcation time, giving rise to a spurious effective
mechanical response.

- Second, we compare the homogenized load-displacement structural responses under changes in the macro-
scale stretching direction. Thus, we study if the adopted micro-cell design (RVE size, aggregate loca-
tion/distribution, etc.) retrieves an isotropic macro-scale response, during the pre-critical and post-critical
regimes, in terms of a uniaxial loading process.

Summarizing, we assess the ability of the prescribed boundary conditions at the RVE in capturing the
expected fracture pattern, the macroscopic bifurcation time, the homogenized peak load and the post-critical
response, according to changes in the principal direction of the overall stress. The macroscopic responses have
to be almost identical and independent of the stretching direction.

A schematic description of the tests is shown in Fig. 16-(top). The stretch direction forms an angle η
with the horizontal line. For each η, the same meso-structure is represented by the corresponding RVE, also
shown in the same figure. Boundary conditions on the RVE-boundaries (SBC) consider: (i) zero (incremental)
fluctuation displacements for the four corner nodes of the RVE plus (ii) the minimum kinematical constraint,
given by equation (34). Therefore, the adopted kinematical space for the SBC characterizes a multiscale sub-
model which is between the minimally constrained and the classical periodic sub-models. The specification of

27



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

zero fluctuation in the RVE-corners prevents possible flexible responses and physically unexpected deformation
modes, mainly near the bifurcation point at the macro-scale. Once the macro-scale cohesive crack S is nucleated,
(incremental) displacement fluctuations at the RVE-domain are fixed to zero, which represents a particular case
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Figure 16: Macro-scale strips with concrete-like meso-structure. Configuration of the rotating macro-structure
according with the angle η (top). Fixed RVE with their corresponding boundary conditions (middle); short
black lines show the degree of freedoms where the minimum kinematical constraints are imposed. Deformed
configuration of the RVE at the nucleation time tN , for each macro-scale stretching orientation (bottom).

At the macro-scale, three quadrilateral finite elements are considered (see Fig. 16-(top)). Only the central
macro-scale element can nucleate a cohesive crack, as explained in Section 4.1.2. The remaining two finite
elements behave elastically, with a constitutive tensor CH obtained after homogenization of the concrete-like
meso-structure during a purely elastic loading process. The stretching orientations are defined by the angles
η = 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ with the horizontal axis. The RVE-discrete model can be observed in
Fig. 15.

Fig. 16-(bottom) also displays the deformed configurations at t = tN (according to the displacement
fluctuation field) and the fracture patterns of the RVEs, for different cases. Opening cohesive micro-cracks are
shown in deep red (those within the interface domain SLµ ), while closing micro-scale cohesive cracks are shown
in light red. For all cases, the RVE deformed configurations display a rather clear tendency to nucleate cracks
which are orthogonal (in an averaged sense) to the macro-scale principal stress direction. Thus, we conclude that
the obtained meso-scale failure modes are mechanically consistent with the macro-scale stretching orientation.

Fig. 17-(a) compares several curves of macro-structural responses (P vs. δ), parameterized with the angle
η. We assume that solutions with η = 0◦ and η = 90◦ correspond to a similar test. Then, variability in the
structural results for both cases is explained by the fact that these cases correspond to two instances of the
same material, using different windows to represent the mesoscopic behavior.

Summarizing, the proposed multiscale model is able to capture complex failure modes at the RVE level (com-
prising multiple, tortuous and disconnected micro-cracks) whose homogenized mechanical response is almost
insensitive to the macro-scale stretching direction.

Evaluation of the minimum mesoscopic cell size satisfying the condition to be an RVE, as well as the
important question of the insensitivity of θ with finite element mesh size, will be presented elsewhere [67].

5.2.3 The L-Panel test

The objective of this test is to assess the ability of the multiscale failure model in simulating a more realistic
concrete fracture process observed in the L-shaped panel of Fig. 18-(a). This specimen has been tested and

28



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

x
 1

04

Vertical displacement δ [mm]

T
o

ta
l 

L
o

ad
 P

 [
N

]

η=0º
η=15º
η=30º
η=45º
η=60º
η=75º
η=90º

Figure 17: Macro-scale strip with a concrete-like meso-structure. Load vs. displacement curves for different
stretching orientations.

reported in [72]. The test setting and the geometry of the specimen are shown in Fig. 18. The thickness of the
L-panel is 100 [mm]. Plane strain state is assumed.

The meso-scale model is identical to that presented in Section 5.2.1. Material parameters and aggregate
volume fraction agree with those reported in [71].
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δ

Figure 18: L-Panel test: (a) Setup and geometry of the macro-scale specimen, (b) Size and Standard Boundary
Conditions (SBC) prescribed on the mesoscopic cells, (c) Finite element meshes for Cell 1 and Cell 2 (average
size of the matrix finite elements: 2.10 [mm]).

Four solutions based on MS and DNS simulations have been obtained to compare the specimen fracture
response and its sensitivity to the meso-structure design:

• Two MS simulations with different distribution of aggregates, are considered (see Fig. 18). In order to
analyze the dispersion of results due to the meso-structure design, two micro-cells with random distribution
and shape of aggregates are used in the simulations (Cell 1 and Cell 2). Their finite element models are
shown in Fig. 18-(c).

Fig. 18-(b) displays the micro-cell size and the Standard Boundary Conditions (SBC) that are prescribed
for the pre-bifurcation regime (t < tN ). The SBC are minimum kinematical constraints with the four
vertices fixed. The short black lines on the RVE-boundaries show the degree of freedoms where the
minimum kinematical constraints are imposed, (see [2] for additional details). Once a macro-crack is
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nucleated at a point xS (t > tN ), the RVE related to xS is subjected to zero incremental displacement

fluctuations (a particular sub-space of Ũ R
µ , see (38)).

Only the domain shown in gray in Fig. 18-(a), at the macro-scale, is simulated with a MS model. The
remaining part of the specimen is assumed to be linear elastic. In the elastic domain, the elasticity
tensor CH is the overall elastic one obtained by homogenization of the purely elastic response of the same
mesoscopic cells and SBC adopted for the analysis.

• Two DNS simulations are considered, see Fig. 19-(a). In these cases, the concrete is modeled with similar
details to those used at the meso-scale. Then, aggregates, matrix and interfaces are introduced in the
analysis with identical parameters to the corresponding MS models.

Two different meso-structure designs are adopted: Meso-structure 1 and Meso-structure 2, as shown in
Fig. 19-(a). Again, the DNS analyzes with both meso-structures give information about the dispersion of
numerical results obtained by different distribution of heterogeneities.

Matrix:
Elastic

Aggregate: Elastic

Matrix-matrix 
interface:
Damage

Matrix-aggregate
interface:
Damage

(a) (b)

DNS model

Meso-structure 1

Meso-structure 2

DNS vertical displacements

Figure 19: L-Panel test. DNS models: (a) Finite element mesh and details for Meso-structures 1 and 2 (average
size of the matrix finite elements: 1.05 [mm]), (b) Contour fill map of vertical displacements.

Fig. 20-(a) plots the structural response in terms of the P vs. δ curves. The four numerical solutions show
a slow dispersion and fit very well within the envelope of experimental results. Fig. 20-(b) compares the macro-
scale crack paths obtained using the finite element models, DNS and MS simulations, with the experimental
failure pattern (gray zone in Fig. 20-(b)). The macro-scale crack path for the DNS method (that related to
Meso-structure 1) can be obtained from Fig. 19-(b), by post-processing the predicted localization zone of the
vertical displacement field. In the case of MS models (Cell 1), the macro-scale crack path is a direct result of
the formulation.

Fig. 21 displays the results obtained with the MS model and Cell 1. The finite elements at the macro-scale
level with embedded cohesive cracks are colored in deep red. The blue line, intersecting those elements, is the
predicted zero level set π of the crack path-field technique. The normal vectors to the macro-crack are also
depicted. These vectors are the average of the normal vectors to the opening set of cohesive cracks in the
mesoscopic cell. In the same figure, a number of deformed configurations, in terms of the RVE fluctuation
displacement field, are shown. They correspond to different points along the propagating macro-scale cohesive
crack, at each nucleation time tN . Note that the failure modes at the meso-scale level are in good agreement
(in an average sense) with the macro-crack orientation.
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Figure 20: L-Panel test: (a) Load P vs vertical displacement δ curves, for MS, DNS and experiments. (b)
Comparative analysis between numerical solutions (MS and DNS) vs. experimental envelope of the macro-scale
crack paths.

Figure 21: L-Panel test. Macro-scale solution using the multiscale (MS) model and Cell 1 (average size of
the macro-scale finite elements in the crack propagation zone: 6.03 [mm]). Crack path, vector field normal to
the cohesive surface and some deformed meso-structures at different points xS along the macroscopic cohesive
crack. At the meso-scale, opening cohesive interfaces are shown in deep red, at t = tN . Interfaces which have
been opening during the loading process but they are closing at tN are shown in light red.
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6 Conclusion

A new multiscale model accounting for the nucleation of cohesive cracks at the micro and macro-scales has
been proposed. The method is based on the RVE-concept and follows a kinematical/variational setting. A
particular feature is the axiomatization of the methodology, defining hypotheses and derived consequences of
the formulation. Essential modeling phenomenologies have been incorporated invoking a minimum of additional
assumptions. Specifically we refer to the introduction of the micro-scale crack tortuosity effect, a relevant
mechanism to be considered in the context of failure modeling.

Novel aspects of the present multiscale methodology are:

- The definition of an insertion operator, I(·), which is appropriate for the challenging problem in question.
This operator distributes the macro-scale regular kinematics and the macro-scale discontinuous kinematics
in distinct ways within the RVE-domain, according with the phenomenology of localization taking place at
the micro-scale. Insertion mechanism can be arbitrarily postulated under the premise that this procedure
is linear and preserves the macro-scale kinematical quantity inserted at the micro-scale. In order to
satisfy the second condition for I(·), we incorporate the tortuosity parameter, θ, in the definition of the
insertion procedure. Therefore, in the present framework, the tortuosity-index is considered as a primary
kinematical concept.

- Another ingredient of the model is the so-called kinematically admissibility requirement which imposes
proper constraints to have full control over the involved fluctuation fields in the RVE. Kinematical admis-
sibility defines the mathematical structure (function vector spaces) required to describe the mechanical
coupling between both scales of analysis.

- The introduction of a specific variational Principle of Multiscale Virtual Power, an adapted version of the
Hill-Mandel principle, closes the theoretical formulation of the multiscale model. From this principle, the
equilibrium problem at the RVE level, as well as the corresponding homogenization formulae for stresses
and cohesive tractions, are obtained by straightforward variational arguments.

An important result of the present work is the role played by the tortuosity-index. It affects the constitutive
response of the macro-scale cohesive crack as well as the macro-scale stress tensor for points located near the
crack. The implicit dependence (non-linear in general) between the tortuosity parameter and the homogenized
mechanical responses is not an a priori postulate of the formulation, but a natural consequence of the variational
setting of the problem, along with the kinematically-based assumptions.

This result is useful to improve the predictive capabilities in mono-scale modeling of material failure, due
to crack propagation. Thus, in phenomenological models based on the cohesive crack method both constitutive
relations, the continuum stress-strain model and the discrete cohesive law, should be adapted through the
incorporation of an estimated measure of the tortuosity in the smaller length scales. From the ideas discussed
here, the form in which such adaptation can be done is simple and consists of two steps: (i) to modify the
kinematical quantities before invoking the phenomenological constitutive models, as suggested by the insertion
mechanism of the present multiscale model (that is the macro-scale kinematical descriptors dεβ and dβ must be
linearly affected by θ-index) and (ii) to affect (linearly) the cohesive traction, retrieved by the phenomenological
traction-separation law, by the tortuosity parameter, as shown in the cohesive traction homogenization formula
of the present multiscale model.

The multiscale modeling strategy has not only theoretical foundation but also it is numerically implemented
into a FE2 scheme. The resulting computational homogenization technique performs well when compared with
DNS solutions, both qualitatively and quantitatively. The load-displacement structural curves, obtained with
the multiscale technique, show accurate results in terms of overall initial elasticity, non-linear stable behavior,
peak load detection and post-critical dissipation, allowing a good estimation of the effective fracture energy at
the macro-scale. The failure modes at micro and macro-scales levels are fully consistent with the crack path
predicted by the DNS approach.

Finally we highlight the theoretical framework for the scale transition technique proposed in [1, 2, 55] and
generalized in the present work. This framework provides a methodology for modeling material failure within
a multiscale RVE-based setting, irrespective of the regularized constitutive method used at the micro-scale to
manipulate unstable materials featuring smeared cracks, cohesive cracks, etc.
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Appendix I: Additional issues of the multiscale model

This appendix describes specific aspects of the proposed multiscale formulation, which were not detailed in the
main body of the manuscript.

I-(a) Strong discontinuity kinematics as a limit case of strain localization bands

For simplicity, the following developments assume the existence of a unique cohesive crack at the micro-scale.
Thus, superscript “i” (related to each micro-crack in the RVE) as well as the summation-operator can be
removed. It is assumed that the (fluctuation) displacement discontinuity kinematics in a micro-crack can be
viewed as the limit case of a strain localization band with finite thickness `µ, when `µ → 0. Accordingly, the
(incremental fluctuation) strain field at the micro-scale, dε̃µ, is given by equation (23). To see this in detail, we
first write a continuous kinematical description with strain localization bands and then find the limit when the
band thickness tends to zero.

Consider the domain ΩSµ with mean surface Sµ and finite thickness `µ (see Fig. 22-(a)). In the same figure,
nµ is the unit vector normal to Sµ. The displacement fluctuation field, dũµ, with a strain localization band
across the domain ΩSµ can be expressed as:

dũµ = d˜̄uµ + M ∗
µ dβ̃µ, ∀y ∈ Ωµ, (69)

where d˜̄uµ is the regular fluctuation and (M ∗
µ dβ̃µ) is an additional continuous fluctuation displacement mode

related with the strain localization band. The function M ∗
µ , introduced in (69), has the following definition:

M ∗
µ := H ∗

µ − ϕ∗µ, (70)

H ∗
µ =


1 ∀ y ∈ Ω∗µ+
nµ·(y−y0)

`µ
∀ y ∈ ΩSµ

0 ∀ y ∈ Ω∗µ−

, ϕ∗µ =

{
0 ∀ y ∈ Ω∗µ−\Ω

ϕ ∗
µ−

1 ∀ y ∈ Ω∗µ+\Ω
ϕ ∗
µ+,

(71)

in terms of the ramp-function H ∗
µ (see (71)-left) and a continuous function ϕ∗µ which satisfies (71)-right. The

sets Ω∗µ+, Ω∗µ−, Ωϕ ∗µ+ and Ωϕ ∗µ+ have the geometrical interpretation given in Fig. 22-(a), where the (·)+ subscript
is related to the nµ-orientation. Point y0, in (71)-right, is an arbitrary point in the intersection ΩSµ ∩ Ω∗µ−.
Observe that Ωϕ ∗µ (= Ωϕ ∗µ+ ∪ Ωϕ ∗µ−) is an arbitrary small domain which includes the strain localization domain
ΩSµ .

With the previous definitions, the strain fluctuation dε̃µ, kinematically compatible with the field dũµ given
by (69), reads:

dε̃µ = ∇sy d˜̄uµ + M ∗
µ ∇sy dβ̃µ − dβ̃µ ⊗s ∇y ϕ∗µ + φµ

dβ̃µ ⊗s nµ
`µ

, (72)

where the collocation function φµ is identical to (24), that is:

φµ =

{
1 ∀ y ∈ ΩSµ
0 otherwise.

(73)

By taking the limit `µ → 0 in (72), we obtain:
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Figure 22: Basic nomenclature to describe a micro-scale kinematics with a strain localization band.

dε̃µ = ∇sy d˜̄uµ +

[
lim
`µ→0

M ∗
µ

]
∇sy dβ̃µ − dβ̃µ ⊗s

[
lim
`µ→0

∇y ϕ∗µ
]

+ lim
`µ→0

φµ
dβ̃µ ⊗s nµ

`µ
. (74)

Then, considering the definitions (19), (20) and (22), expression (74) can be re-written as:

dε̃µ = ∇sy d˜̄uµ + Mµ∇sy dβ̃µ − dβ̃µ ⊗s ∇y ϕµ + lim
`µ→0

φµ
dβ̃µ ⊗s nµ

`µ
= dε̃µR + lim

`µ→0
φµ

dβ̃µ ⊗s nµ
`µ

, (75)

which proves the equivalence between equations (21) and (23), used in the paper, since the Dirac delta function
can be viewed as:

δµ = lim
`µ→0

φµ
`µ

(76)

From a kinematical point of view, the strain-like term φµ dβ̃µ ⊗s nµ (`µ)−1, in (75), is compatible with

a displacement field displaying a strong discontinuity kinematics of magnitude dβ̃µ across Sµ (whose normal
vector is nµ) when `µ → 0, see Fig 22-(b).

We also stress the following identity:∫
Ωµ

lim
`µ→0

φµ
`µ

f(y) dΩµ =

∫
Sµ
f(y) dSµ (77)

for any smooth function f(y), which has been used throughout the paper.

I-(b) Procedure to determine the set of opening micro-cracks: SLµ
A critical point in the proposed multiscale formulation is the correct determination of the set of opening micro-
cracks, here referred to as SLµ , at the macro-scale nucleation time t = tN . Such interface sub-domain, SLµ ⊂ Ωµ,
must be properly captured for two main reasons:

(i) For t > tN , the insertion mechanism of the macro-scale jump increment (I(0,0, dβ)) into the micro-scale
domain is restricted, exclusively, to the set SLµ of opening micro-cracks (see equation (26)).

(ii) New constraints must be applied to the micro-scale incremental displacement jump fluctuations dβ̃µ,

related to the set SLµ (see expression (36)).

The procedure to determine SLµ is based on a purely kinematical criterion. Let us consider the mechanical
state of the RVE, at the macro-scale nucleation time t = tN . Recall that tN is determined according to the
singularity of the acoustic tensor [1, 2, 55]. The solution to this problem gives {tN ,n,γ}, where n is the unit
vector normal to the macro-scale cohesive crack and γ is the initial direction of the macro-scale displacement
discontinuity, dβ, at tN . Thus, at tN , the mechanical state of the RVE is compatible with the nucleation of a
macro-scale cohesive crack which has the instantaneous strain-like mode characterized by the tensor structure
(γ ⊗s n).

On the other hand, at tN , there are nc micro-scale cohesive interfaces Siµ (with i = 1, . . . , nc) which have

been nucleated in the RVE-domain up to time tN . The set of all nucleated micro-cracks is STµ = ∪nci=1Siµ.
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Then, the problem is to find the subset SLµ ⊂ STµ composed by all opening micro-cracks in the RVE at tN . We

define SLµ as the subset of micro-cracks which will continue active under the kinematical excitation given by the
strain-like term having the structure (γ ⊗s n). Mathematically, this criterion can be expressed as:

SLµ =
{
∪ Siµ, such that (dβ̃

i

µ ⊗s niµ) · (γ ⊗s n) > 0, i = 1, . . . , nc, for t = tN
}
. (78)

Each micro-crack Siµ, whose corresponding dβ̃
i

µ satisfies the positive-projection rule given in (78), is con-

sidered to be an opening micro-crack SLjµ (j = 1, . . . , nop). The total number of opening micro-cracks is nop.

Conversely, micro-cracks Siµ with dβ̃
i

µ such that do not satisfy the inequality in (78) form the set of closing

cracks (STµ \SLµ ).

I-(c) Derivation of the tortuosity factor expression

We derive the expression (27) adopted for the tortuosity factor θ, introduced in the definition of the insertion
operator I(·) (see equation (26)). The following argument is based on a purely kinematical constraint which
should be satified by the insertion operator. In this sense, it is postulated:

1

|SLµ |

∫
ΩLµ

I(0,0,dβ)︷ ︸︸ ︷[ nop∑
j=1

lim
`Ljµ →0

φLjµ
θ dβ ⊗s nLjµ (y)

`Ljµ

]
dΩµ = dβ ⊗s n, ∀ dβ, (79)

where ΩLµ =
⋃nop
j=1 ΩLjµ , is the entire strain localization sub-domain associated to SLµ . The left hand side of (79)

is the mean value of I(0,0, dβ). The right hand size of (79) represents the macro-scale kinematical descriptor
related to dβ, which has the structure given by dβ ⊗s n.

Equation (79) can be further manipulated, leading to:

1

|SLµ |

nop∑
j=1

∫
ΩLjµ

[
δLjµ θ dβ ⊗s nLjµ (y)

]
dΩµ = dβ ⊗s n, ∀ dβ,

1

|SLµ |

nop∑
j=1

∫
SLjµ

[
θ dβ ⊗s nLjµ (y)

]
dSµ = dβ ⊗s n, ∀ dβ,

1

|SLµ |
θ dβ ⊗s

nop∑
j=1

∫
SLjµ

nLjµ (y) dSµ = dβ ⊗s n, ∀ dβ,

θ

|SLµ |

nop∑
j=1

∫
SLjµ

nLjµ (y) dSµ = n. (80)

Since n (the normal vector to the macro-scale cohesive crack) is a unit vector, expression (80) gives the
criterion to compute the tortuosity factor θ, as follows:

θ =
|SLµ |∣∣∣∣ nop∑

j=1

∫
SLjµ

nLjµ (y) dSµ
∣∣∣∣
, θ ∈ [1,∞). (81)

Remark 7.1 Equation (79) is a kinematical constraint requiring that the insertion operator I(0,0, dβ) pre-
serves the macro-scale kinematics, i.e. the (β ⊗s n) term in this case. When the insertion operator has a
simple definition, as in conventional multiscale models without discontinuities, this property is trivially satisfied.
In more general modeling scenarios special care must be taken in the specification of I(·). Also note that the
Kinematical Admissibility Concept (see (31)-(33)), does not necessarily takes into account this issue, since it
only controls the RVE fluctuation fields.
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Appendix II: Auxiliary computations

This appendix provides the mathematical steps involved in deriving (34) from (33). For clarity, the following
description assume a single micro-scale cohesive crack (superscript “i” and summation-operator are removed
from the following equations). The present discussion distinguishes between the case of an internal crack or a
crack reaching the RVE-boundary (see Fig. 3-(a)).

II-(a) Internal micro-crack

From (33) the first admissibility requirement is expressed as:

0 =

∫
Ωµ

[
dε̃µR + lim

`µ→0
φµ

dβ̃µ ⊗s nµ
`µ

]
dΩµ =

∫
Ωµ

(
dε̃µR + δµ dβ̃µ ⊗s nµ

)
dΩµ, (82)

and taking (22) into account, expression (82) is re-written as follows:

0 =

∫
Ωµ

( dε̃µR︷ ︸︸ ︷
∇sy d˜̄uµ + Mµ∇sy dβ̃µ︸ ︷︷ ︸

T1

− dβ̃µ ⊗s ∇yϕµ︸ ︷︷ ︸
T2

+ δµ dβ̃µ ⊗s nµ︸ ︷︷ ︸
T3

)
dΩµ, (83)

where the terms T1, T2 and T3 can be further manipulated. Considering the nomenclature shown in Fig. 3-(b),
the term T1 can be expressed as:

T1 :

∫
Ωµ

Mµ∇sy dβ̃µ dΩµ =

∫
Ωϕµ+

∇sy dβ̃µ dΩµ −
∫

Ωϕµ

ϕµ ∇sy dβ̃µ dΩµ (84)

=

∫
Sµ+

dβ̃µ ⊗s nµ+ dSµ −
∫
Sµ
dβ̃µ ⊗s nµ dSµ −

∫
Ωϕµ

ϕµ ∇sy dβ̃µ dΩµ,

where the definition of the micro-scale unit jump function Mµ has been considered, together with a standard

tensorial identity and the fact that the crack is internal to the RVE-domain, i.e. dβ̃µ|ΓϕµI = dβ̃µ|ΓϕµII = 0 and

nµ+ is the outward unit vector normal to Sµ+.
The term T2 is expanded as follows:

−T2 : −
∫

Ωµ

dβ̃µ ⊗s ∇yϕµ dΩµ = −
∫

Ωϕµ

∇sy(ϕµ dβ̃µ) dΩµ +

∫
Ωϕµ

ϕµ ∇sy dβ̃µ dΩµ

= −
∫
Sµ+

dβ̃µ ⊗s nµ+ dSµ +

∫
Ωϕµ

ϕµ ∇sy dβ̃µ dΩµ, (85)

where standard tensor identities have been considered along with the definition of ϕµ, given by (20)-right, and
the internal crack concept.

The term T3 is evaluated from the properties of the Dirac delta function, yielding:

T3 :

∫
Ωµ

δµ dβ̃µ ⊗s nµ dΩµ =

∫
Sµ
dβ̃µ ⊗s nµ dSµ. (86)

From (84), (85) and (86), the integral expression (83) reduces to:

0 =

∫
Ωµ

∇sy d˜̄uµ dΩµ, (87)

proving the equivalence between (33) and (34). Note that, although in the micro-scale there are two independent
kinematical descriptors {d˜̄uµ,dβ̃µ}, expression (87) (and (34)) imposes kinematical constraints only over the
field d˜̄uµ.
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II-(b) Micro-crack reaching the RVE-boundary

Let us now consider the situation where a micro-crack intersects the RVE-boundary, as illustrated in Fig. 3-(a).
In this case, dβ̃µ|ΓϕµII 6= 0. Integrals of the type:∫

ΓϕµII

(dβ̃µ ⊗s nµII) dΓµ, (88)

do not vanish in the above derivations of the terms T1 and T2. In (88), nµ II is the outward unit vector normal
to Γϕµ II . Then, equivalence between (83) and (87) is no longer guaranteed. However let us recall that the
sub-domain Ωϕµ , introduced to define the kinematical description of strong discontinuities at the micro-scale
(see Section 3.2.1), has an arbitrarily small thickness in the orthogonal direction to the micro-crack Sµ. Thus
the measure of ΓϕµII (and also ΓϕµI) is also arbitrarily small. Since expression (88) has bounded integrand, this
integral can be neglected if compared with integrals on Sµ. Summarizing, equivalence between (83) and (87) is
established in an approximate sense.
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•  A  two‐scale  semi‐concurrent  formulation  for material  failure,  based  on  the  RVE  concept,  is 
addressed.  

•  Effective  cohesive  laws  are  derived  from  solutions  of micro‐scale  heterogeneous mechanical 
problems. 

• The model accounts for a strong coupling between micro and macro cohesive cracks. 

• Microscopic crack tortuosity is introduced as a kinematical concept having consequences on the 
homogenized responses. 

• Using  this  formulation, a  two‐scale model  for concrete  fracture problems has been developed 
and tested. 

• Model validation  is performed by comparing with solutions obtained through Direct Numerical 
Simulations. 


