14 research outputs found

    Iqg1p links spatial and secretion landmarks to polarity and cytokinesis

    Get PDF
    Cytokinesis requires the polarization of the actin cytoskeleton, the secretion machinery, and the correct positioning of the division axis. Budding yeast cells commit to their cytokinesis plane by choosing a bud site and polarizing their growth. Iqg1p (Cyk1p) was previously implicated in cytokinesis (Epp and Chant, 1997; Lippincott and Li, 1998; Osman and Cerione, 1998), as well as in the establishment of polarity and protein trafficking (Osman and Cerione, 1998). To better understand how Iqg1p influences these processes, we performed a two-hybrid screen and identified the spatial landmark Bud4p as a binding partner. Iqg1p can be coimmunoprecipitated with Bud4p, and Bud4p requires Iqg1p for its proper localization. Iqg1p also appears to specify axial bud-site selection and mediates the proper localization of the septin, Cdc12p, as well as binds and helps localize the secretion landmark, Sec3p. The double mutants iqg1Δsec3Δ and bud4Δsec3Δ display defects in polarity, budding pattern and cytokinesis, and electron microscopic studies reveal that these cells have aberrant septal deposition. Taken together, these findings suggest that Iqg1p recruits landmark proteins to form a targeting patch that coordinates axial budding with cytokinesis

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    IQGAP1 regulates cell proliferation through a novel CDC42-mTOR pathway

    No full text
    Cell proliferation requires close coordination of cell growth and division to ensure constant cell size through the division cycles. IQGAP1, an effector of CDC42 GTPase has been implicated in the modulation of cell architecture, regulation of exocytosis and in human cancers. The precise mechanism underlying these activities is unclear. Here, we show that IQGAP1 regulates cell proliferation, which requires phosphorylation of IQGAP1 and binding to CDC42. Expression of the C-terminal region of IQGAP1 enhanced cellular transformation and migration, but reduced the cell size, whereas expression of the N-terminus increased the cell size, but inhibited cell transformation and migration. The N-terminus of IQGAP1 interacts with mTOR, which is required for IQGAP1-mediated cell proliferation. These findings are consistent with a model where IQGAP1 serves as a phosphorylation-sensitive conformation switch to regulate the coupling of cell growth and division through a novel CDC42-mTOR pathway, dysregulation of which generates cellular transformation

    Helicobacter Pylori Variants with ABC-Type Tyrosine Phosphorylation Motif in Gastric Biopsies of Ghanaian Patients

    No full text
    Background. Helicobacter pylori pathogenicity and disease severity are determined by the tyrosine phosphorylation motifs of CagA protein. This study is aimed at detecting the presence of H. pylori and identifying the CagA tyrosine phosphorylation motifs in Ghanaian patients. Material and Methods. A total of 94 archival genomic DNA samples from gastric biopsies were used for the study, and H. pylori was detected by amplifying the 16S rRNA gene. The 3′-end variable region of the cagA gene was amplified, and the entire 3′-end was sequenced and translated into amino acids. Results. H. pylori was detected in 53.2% (50/94) of the samples, and all the detected bacteria harboured the cagA gene. Two variants of the bacteria were identified based on the size of the amplified cagA gene: 207 bp and 285 bp. The 207 bp and 285 bp variants accounted for 74% and 22%, respectively, and 4% showed both fragments. Translated amino acid sequence of the cagA gene showed EPIYA-A, EPIYA-B, and EPIYA-C (ABC type) motifs, indicating the Western variant. The CagA protein C-terminal showed insertion of amino acids in the sequence flanking the EPIYA-A motif at the N-terminal and a complete deletion of the EPIYA-CC and EPIYA-CCC motifs together with the flanking sequences. Conclusions. H. pylori identified were Western variant (ABC type) with unique amino acid insertions, suggesting unique variants in Ghanaian patients. Further investigation is however required to understand the role of the molecular diversity of the variant in gastric disease outcome

    The double trouble of metabolic diseases: the diabetes–cancer link

    No full text

    Head and neck cancer surgery during the COVID-19 pandemic: An international, multicenter, observational cohort study

    Get PDF
    Background: The aims of this study were to provide data on the safety of head and neck cancer surgery currently being undertaken during the coronavirus disease 2019 (COVID-19) pandemic. Methods: This international, observational cohort study comprised 1137 consecutive patients with head and neck cancer undergoing primary surgery with curative intent in 26 countries. Factors associated with severe pulmonary complications in COVID-19–positive patients and infections in the surgical team were determined by univariate analysis. Results: Among the 1137 patients, the commonest sites were the oral cavity (38%) and the thyroid (21%). For oropharynx and larynx tumors, nonsurgical therapy was favored in most cases. There was evidence of surgical de-escalation of neck management and reconstruction. Overall 30-day mortality was 1.2%. Twenty-nine patients (3%) tested positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 30 days of surgery; 13 of these patients (44.8%) developed severe respiratory complications, and 3.51 (10.3%) died. There were significant correlations with an advanced tumor stage and admission to critical care. Members of the surgical team tested positive within 30 days of surgery in 40 cases (3%). There were significant associations with operations in which the patients also tested positive for SARS-CoV-2 within 30 days, with a high community incidence of SARS-CoV-2, with screened patients, with oral tumor sites, and with tracheostomy. Conclusions: Head and neck cancer surgery in the COVID-19 era appears safe even when surgery is prolonged and complex. The overlap in COVID-19 between patients and members of the surgical team raises the suspicion of failures in cross-infection measures or the use of personal protective equipment. Lay Summary: Head and neck surgery is safe for patients during the coronavirus disease 2019 pandemic even when it is lengthy and complex. This is significant because concerns over patient safety raised in many guidelines appear not to be reflected by outcomes, even for those who have other serious illnesses or require complex reconstructions. Patients subjected to suboptimal or nonstandard treatments should be carefully followed up to optimize their cancer outcomes. The overlap between patients and surgeons testing positive for severe acute respiratory syndrome coronavirus 2 is notable and emphasizes the need for fastidious cross-infection controls and effective personal protective equipment
    corecore