55 research outputs found
AQP1 Is Not Only a Water Channel: It Contributes to Cell Migration through Lin7/Beta-Catenin
Background: AQP1 belongs to aquaporins family, water-specific, membrane-channel proteins expressed in diverse tissues. Recent papers showed that during angiogenesis, AQP1 is expressed preferentially by microvessels, favoring angiogenesis via the increase of permeability In particular, in AQP1 null mice, endothelial cell migration is impaired without altering their proliferation or adhesion. Therefore, AQP1 has been proposed as a novel promoter of tumor angiogenesis. Methods/Findings: Using targeted silencing of AQP1 gene expression, an impairment in the organization of F-actin and a reduced migration capacity was demonstrated in human endothelial and melanoma cell lines. Interestingly, we showed, for the first time, that AQP1 co-immunoprecipitated with Lin-7. Lin7-GFP experiments confirmed co-immunoprecipitation. In addition, the knock down of AQP1 decreased the level of expression of Lin-7 and b-catenin and the inhibition of proteasome contrasted partially such a decrease. Conclusions/Significance: All together, our findings show that AQP1 plays a role inside the cells through Lin-7/b-catenin interaction. Such a role of AQP1 is the same in human melanoma and endothelial cells, suggesting that AQP1 plays a global physiological role. A model is presented
Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE)
Neutrino telescopes will open, in the next years, new opportunities in
observational high energy astrophysics. For these experiments, atmospheric
muons from primary cosmic ray interactions in the atmosphere play an important
role, because they provide the most abundant source of events for calibration
and test. On the other side, they represent the major background source.
In this paper a fast Monte Carlo generator (called MUPAGE) of bundles of
atmospheric muons for underwater/ice neutrino telescopes is presented. MUPAGE
is based on parametric formulas [APP25(2006)1] obtained from a full Monte Carlo
simulation of cosmic ray showers generating muons in bundle, which are
propagated down to 5 km w.e. It produces the event kinematics on the surface of
a user-defined virtual cylinder, surrounding the detector. The multiplicity of
the muons in the bundle, the muon spatial distribution and energy spectrum are
simulated according to a specific model of primary cosmic ray flux, with
constraints from measurements of the muon flux with underground experiments. As
an example of the application, the result of the generation of events on a
cylindrical surface of 3 km^2 at a depth of 2450 m of water is presented.Comment: 20 pages, 4 figure
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
The NEMO Collaboration installed and operated an underwater detector
including prototypes of the critical elements of a possible underwater km3
neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box.
The detector was developed to test some of the main systems of the km3
detector, including the data transmission, the power distribution, the timing
calibration and the acoustic positioning systems as well as to verify the
capabilities of a single tridimensional detection structure to reconstruct muon
tracks. We present results of the analysis of the data collected with the NEMO
Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through
the acoustic position system. Signals detected with PMTs are used to
reconstruct the tracks of atmospheric muons. The angular distribution of
atmospheric muons was measured and results compared with Monte Carlo
simulations.Comment: Astrop. Phys., accepte
Performance of the First ANTARES Detector Line
In this paper we report on the data recorded with the first Antares detector
line. The line was deployed on the 14th of February 2006 and was connected to
the readout two weeks later. Environmental data for one and a half years of
running are shown. Measurements of atmospheric muons from data taken from
selected runs during the first six months of operation are presented.
Performance figures in terms of time residuals and angular resolution are
given. Finally the angular distribution of atmospheric muons is presented and
from this the depth profile of the muon intensity is derived.Comment: 14 pages, 9 figure
Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea
An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site
of the ANTARES neutrino telescope near Toulon, France, thus providing a unique
opportunity to compare high-resolution acoustic and optical observations
between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward
vertical currents of magnitudes up to 0.03 m s-1 in late winter and early
spring 2006. In the same period, observations were made of enhanced levels of
acoustic reflection, interpreted as suspended particles including zooplankton,
by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These
observations coincided with high light levels detected by the telescope,
interpreted as increased bioluminescence. During winter 2006 deep dense-water
formation occurred in the Ligurian subbasin, thus providing a possible
explanation for these observations. However, the 10-20 days quasi-periodic
episodes of high levels of acoustic reflection, light and large vertical
currents continuing into the summer are not direct evidence of this process. It
is hypothesized that the main process allowing for suspended material to be
moved vertically later in the year is local advection, linked with topographic
boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure
Time calibration of the ANTARES neutrino telescope
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of similar to 1 ns. The methods developed to attain this level of precision are described
Search for a diffuse flux of high-energy with the ANTARES neutrino telescope
A search for a diffuse flux of astrophysical muon neutrinos, using data
collected by the ANTARES neutrino telescope is presented. A
sr sky was monitored for a total of 334 days of equivalent live time. The
searched signal corresponds to an excess of events, produced by astrophysical
sources, over the expected atmospheric neutrino background. The observed number
of events is found compatible with the background expectation. Assuming an
flux spectrum, a 90% c.l. upper limit on the diffuse flux of
E^2\Phi_{90%} = 5.3 \times 10^{-8} \ \mathrm{GeV\ cm^{-2}\ s^{-1}\ sr^{-1}}
in the energy range 20 TeV - 2.5 PeV is obtained. Other signal models with
different energy spectra are also tested and some rejected.Comment: 14 pages, 6 figure
Performance of the front-end electronics of the ANTARES neutrino telescope
ANTARES is a high-energy neutrino telescope installed in the Mediterranean
Sea at a depth of 2475 m. It consists of a three-dimensional array of optical
modules, each containing a large photomultiplier tube. A total of 2700
front-end ASICs named Analogue Ring Samplers (ARS) process the phototube
signals, measure their arrival time, amplitude and shape as well as perform
monitoring and calibration tasks. The ARS chip processes the analogue signals
from the optical modules and converts information into digital data. All the
information is transmitted to shore through further multiplexing electronics
and an optical link. This paper describes the performance of the ARS chip;
results from the functionality and characterization tests in the laboratory are
summarized and the long-term performance in the apparatus is illustrated.Comment: 20 pages, 22 figures, published in Nuclear Instruments and Methods
- …