578 research outputs found

    Convective cores in galactic cooling flows

    Get PDF
    We use hydrodynamic simulations with adaptive grid refinement to study the dependence of hot gas flows in X-ray luminous giant elliptical galaxies on the efficiency of heat supply to the gas. We consider a number of potential heating mechanisms including Type Ia supernovae and sporadic nuclear activity of a central supermassive black hole. As a starting point for this research we use an equilibrium hydrostatic recycling model (Kritsuk 1996). We show that a compact cooling inflow develops, if the heating is slightly insufficient to counterbalance radiative cooling of the hot gas in the central few kiloparsecs. An excessive heating in the centre, instead, drives a convectively unstable outflow. We model the onset of the instability and a quasi-steady convective regime in the core of the galaxy in two-dimensions assuming axial symmetry. Provided the power of net energy supply in the core is not too high, the convection remains subsonic. The convective pattern is dominated by buoyancy driven large-scale mushroom-like structures. Unlike in the case of a cooling inflow, the X-ray surface brightness of an (on average) isentropic convective core does not display a sharp maximum at the centre. A hybrid model, which combines a subsonic peripheral cooling inflow with an inner convective core, appears to be stable. We also discuss observational implications of these results.Comment: 14 pages, LaTeX requires mn.sty, 12 postscript figures including 3 colour figures, MNRAS accepted; mpeg movies available from http://www.mpa-garching.mpg.de/Hydro/CoolHyd/coolhyd.htm

    Abundance ratios in the hot ISM of elliptical galaxies

    Full text link
    To constrain the recipes put forth to solve the theoretical Fe discrepancy in the hot interstellar medium of elliptical galaxies and at the same time explain the [alpha/Fe] ratios. In order to do so we use the latest theoretical nucleosynthetic yields, we incorporate the dust, we explore differing SNIa progenitor scenarios by means of a self-consistent chemical evolution model which reproduces the properties of the stellar populations in elliptical galaxies. Models with Fe-only dust and/or a lower effective SNIa rate achieve a better agreement with the observed Fe abundance. However, a suitable modification to the SNIa yield with respect to the standard W7 model is needed to fully match the abundance ratio pattern. The 2D explosion model C-DDT by Maeda et al. (2010) is a promising candidate for reproducing the [Fe/H] and the [alpha/Fe] ratios. (A&A format)Comment: 11 pages, 4 figures, to appear on A&

    Recent X-ray Observations and the Evolution of Hot Gas in Elliptical Galaxies: Evidence for Circumgalactic Gas

    Get PDF
    X-ray emitting gaseous halos, such as that in elliptical galaxies like NGC 4472, cannot have been produced solely from gas expelled from galactic stars. In traditional models for the evolution of hot interstellar gas (cooling flows) in ellipticals, the galaxies are assumed to have been cleared of gas by SNII-driven winds at some early time then gas is subsequently replenished by mass loss from an evolving population of old stars. To test this, we accurately determine the stellar and dark halo mass of NGC 4472 using hydrostatic equilibrium, then solve the standard time-dependent cooling flow equations to recover the observed hot gas temperature and density distributions when evolved to the present time. This procedure fails: the computed gas density gradient is too steep, the total gas mass is too low, and the gas temperatures are much too low. All variants on this basic procedure also fail: increasing the SNIa rate, using the mass dropout assumption, arbitrarily adjusting uncertain coefficients, etc. However, agreement is achieved if the galaxy is supplied with additional, spatially-extended hot gas early in its evolution. This old ``circumgalactic'' gas can be retained to the present time and may be related to cosmological ``secondary infall''.Comment: 15 pages in two-column AASTEX LaTeX including 1 table and 8 figures; abstract corrected in replacement; accepted by Astrophysical Journa

    Cold gas in the Intra Cluster Medium: implications for flow dynamics and powering optical nebulae

    Full text link
    We show that the mechanical energy injection rate generated as the intra-cluster medium (ICM) flows around cold clouds may be sufficient to power the optical and near infra-red emission of nebulae observed in the central regions of a sample of seven galaxy clusters. The energy injection rate is extremely sensitive to the velocity difference between the ICM and cold clouds, which may help to explain why optical and infra-red luminosity is often larger than expected in systems containing AGNs. We also find that mass recycling is likely to be important for the dynamics of the ICM. This effect will be strongest in the central regions of clusters where there is more than enough cold gas for its evaporation to contribute significantly to the density of the hot phase.Comment: 8 pages, 2 figures, accepted for publication in MNRA

    X-ray Properties of Young Early Type Galaxies: II. Abundance Ratio in the Hot ISM

    Full text link
    Using Chandra X-ray observations of young, post-merger elliptical galaxies, we present X-ray characteristics of age-related observational results, by comparing with typical old elliptical galaxies in terms of metal abundances in the hot interstellar matter (ISM). While the absolute element abundances may be uncertain because of unknown systematic errors and partly because of the smaller amount of hot gas in young ellipticals, the relative abundance ratios (e.g., the alpha-element to Fe ratio, most importantly Si/Fe ratio) can be relatively well constrained. We find that in two young elliptical galaxies (NGC 720 and NGC 3923) the Si to Fe abundance ratio is super-solar (at a 99% significance level), in contrast to typical old elliptical galaxies where the Si to Fe abundance ratio is close to solar. Also the O/Mg ratio is close to solar in the two young elliptical galaxies, as opposed to the sub-solar O/Mg ratio reported in old elliptical galaxies. Both features appear to be less significant outside the effective radius (roughly 30" for the galaxies under study), consistent with the observations that confine to the centermost regions the signatures of recent star formation in elliptical galaxies. Observed differences between young and old elliptical galaxies can be explained by the additional contribution from SNe II ejecta in the former. In young elliptical galaxies, the later star formation associated with recent mergers would have a dual effect, resulting both in galaxy scale winds - and therefore smaller observed amounts of hot ISM - because of the additional SNII heating, and in different metal abundances, because of the additional SNII yields.Comment: 21 pages, 4 color figures, ApJ in press, minor revisions for referee's comments, a new figure adde

    Photoelectrochemical characterization of electrodeposited ZnO thin films sensitized by octacarboxymetallophthalocyanine derivatives

    Get PDF
    Hybrid thin films of crystalline zinc oxide (ZnO) modified by different octacarboxymetallophthalocyanines (MOCPc) were prepared by the readsorption method. Homogeneously blue or green thin films were formed. The photoelectrochemical characteristics of the electrodes were studied by time-resolved photocurrent measurements. Zinc(II) 2,3,9,10,16,17,23,24-octacarboxyphthalocyanine (ZnOCPc) showed considerably large quantum efficiency in sensitization of ZnO, one of the highest quantum efficiencies obtained so far with phthalocyanine-type sensitizers on nanocrystalline ZnO films

    Symmetrically and unsymmetrically substituted carboxy phthalocyanines as sensitizers for nanoporous ZnO films

    Get PDF
    The photoelectroectrochemical studies of water soluble octacarboxylated oxotitanium (OTiOCPc), zinc (ZnOCPC), hydroxyaluminium ((OH)AlOCPc), dihydroxysilicon ((OH)2SiOCPc), hydroxygallium (OHGaOCPc) and low symmetry zinc monocarboxy (ZnMCPc) phthalocyanines were performed. The dyes were adsorbed to nanoporous ZnO electrodeposited in the presence of eosin Y as structure directing agent (SDA) on FTO substrates by refluxing or soaking the films in a solution containing the dye of interest such that a full surface coverage was achieved. High external (IPCE) and internal (APCE) quantum efficiencies of up to 50.6% and 96.7% were achieved for the OTiOCPc complex. There was a lower overall cell efficiency for cells sensitized with phthalocyanines containing hydroxyl as axial ligand ZnO/(OH)2SiOCPc, ZnO/(OH)GaOCPc and (OH)AlOCPc because of strong aggregation on the surface of the electrodes. To further suppress dye aggregation, the zinc complex of a new monocarboxylated phthalocyanine sensitizer with bulky naphtho side groups (ZnMCPc) was employed. Among the studied sensitizers, ZnMCPc gave the highest overall cell efficiency of phthalocyanine electrodeposited on ZnO of η = 0.48%

    X-Ray Emission Line Ratios and Multiphase Gas in Elliptical Galaxies and Galaxy Clusters

    Full text link
    We examine the K shell emission lines produced by isothermal and simple multiphase models of the hot gas in elliptical galaxies and galaxy clusters to determine the most effective means for constraining the width of the differential emission measure (xi(T)) in these systems which we characterize by a dimensionless parameter, sigma_xi. Comparison of line ratios of two-temperature (sigma_xi << 1) and cooling flow (sigma_xi ~1) models is presented in detail. We find that a two-temperature model can approximate very accurately a cooling flow spectrum over 0.5-10 keV. We have re-analyzed the ASCA spectra of three of the brightest galaxy clusters to assess the evidence for multiphase gas in their cores: M87 (Virgo), the Centaurus cluster, and the Perseus cluster. K-alpha emission line blends of Si, S, Ar, Ca, and Fe are detected in each system as is significant Fe K-beta emission. The Fe K-beta/K-alpha ratios are consistent with optically thin plasma models and do not suggest resonance scattering in these systems. Consideration of both the ratios of H-like to He-like K-alpha lines and the local continuum temperatures clearly rules out isothermal gas in each case. To obtain more detailed constraints we fitted plasma models over 1.6-9 keV where the emission is dominated by these K shell lines and by continuum. In each case the ASCA spectra cannot determine whether the gas emits at only two temperatures or over a continuous range of temperatures as expected for a cooling flow. The metal abundances are near solar for all of the multiphase models. We discuss the implications of these results and examine the prospects for determining the temperature structure in these systems with upcoming X-ray missions.Comment: 30 pages (18 figures), To Appear in MNRAS. Major revision of the initially posted version: (1) The section on ASCA data of ellipticals was expanded and moved to astro-ph/9811080; (2) The ASCA data of M87, Centaurus, and Perseus have been re-analyzed. We find evidence for Fe K-beta emission in these systems, but the Fe K-beta/K-alpha ratios do not suggest resonance scattering; (3) The metal abundances of the cores of these systems are consistent with the meteoritic solar value

    Rapid accretion state transitions following the tidal disruption event AT2018fyk

    Get PDF
    Following a tidal disruption event (TDE), the accretion rate can evolve from quiescent to near-Eddington levels and back over months - years timescales. This provides a unique opportunity to study the formation and evolution of the accretion flow around supermassive black holes (SMBHs). We present two years of multi-wavelength monitoring observations of the TDE AT2018fyk at X-ray, UV, optical and radio wavelengths. We identify three distinct accretion states and two state transitions between them. These appear remarkably similar to the behaviour of stellar-mass black holes in outburst. The X-ray spectral properties show a transition from a soft (thermal-dominated) to a hard (power-law dominated) spectral state around Lbol∼_{\rm bol} \sim few ×10−2 \times 10^{-2} LEdd_{\rm Edd}, and the strengthening of the corona over time ∼\sim100--200 days after the UV/optical peak. Contemporaneously, the spectral energy distribution (in particular, the UV-to-X-ray spectral slope αox\alpha_{ox}) shows a pronounced softening as the outburst progresses. The X-ray timing properties also show a marked change, initially dominated by variability at long (>>day) timescales while a high frequency (∼\sim10−3^{-3} Hz) component emerges after the transition into the hard state. At late times (∼\sim500 days after peak), a second accretion state transition occurs, from the hard into the quiescent state, as identified by the sudden collapse of the bolometric (X-ray+UV) emission to levels below 10−3.4^{-3.4} LEdd_{\rm Edd}. Our findings illustrate that TDEs can be used to study the scale (in)variance of accretion processes in individual SMBHs. Consequently, they provide a new avenue to study accretion states over seven orders of magnitude in black hole mass, removing limitations inherent to commonly used ensemble studies.Comment: Accepted version following referee comments. 2 new figures compared to previous arxiv version (Figs 9 and 10). Data will be available from the journal webpages, or upon request to the author
    • …
    corecore