103 research outputs found
Measurement of renin in both renal veins: its use in diagnosis of renovascular hypertension
THE RECENT development of a simple reliable method for measuring plasma renin activity, together with the availability of a safe procedure for obtaining samples of blood from both renal veins, has prompted us to assess the utility of such measurements in the diagnosis of surgically correctable renovascular hypertension. Previous studies of this type have been reported by McPhaul,1 Fitz,2 Kirkendall,3 and Ueda,4 and their associates. A series of 22 patients, diagnosed by conventional measures as having renovascular hypertension, were subjected to operative treatment. Proof of the diagnosis was considered to be established if there was unquestionable improvement in blood pressure after corrective surgery. This is a report of the measurements of renin activity in blood plasma specimens obtained from both renal veins preoperatively and, whenever possible, postoperatively. In addition, plasma renin activity in effluent blood from both kidneys was measured in 13 patients with "essential" hypertension, who were not subjecte
Dependence of Hippocampal Function on ERRÎł-Regulated Mitochondrial Metabolism
SummaryNeurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function, and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen-related receptor gamma (ERRÎł) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRÎłâ/â neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRÎłâ/â hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRÎł knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRÎł in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRÎł in the metabolic adaptations required for memory formation
Mindfulness in schools: a health promotion approach to improving adolescent mental health.
Between 10 and 20% of adolescents worldwide experience a mental health problem within a given 12-month period. Mental health problems impact on an adolescentâs potential to live a fulfilling and productive life and lead to challenges such as stigma, isolation and discrimination. To address this need, in recent years, there has been growing interest into broad-based school-integrated health promotion interventions that seek to build resilience and augment protective factors in adolescents. Mindfulness-based interventions (MBIs) reflect one such approach that have been administered to adolescent populations in both resilience building and treatment contexts. This paper discusses the utility of school-based MBIs as an adolescent health promotion approach and makes recommendations for intervention design, delivery and evaluation. Emerging evidence indicates that school-integrated MBIs may be a cost-effective means of not only meeting government objectives relating to adolescent mental health, but also for improving the wellbeing of teachers and parents. Furthermore, there is growing evidence indicating that mindfulness can elicit improvements in student learning performance and general classroom behaviour. However, notwithstanding these beneficial properties, there remains a need to conduct large-scale empirical investigations that seek to evaluate the effectiveness of school-integrated MBIs at a regional or national level. A further challenge is the need to ensure that mindfulness instructors are able to impart to adolescents an experiential understanding of this ancient contemplative technique.N
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (râ=â-0.62, Pâ=â5.30âĂâ10-5) but not between CCT and primary open-angle glaucoma (râ=â-0.17, Pâ=â0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process
Glaucoma is characterized by irreversible optic nerve degeneration and is the most frequent cause of irreversible blindness worldwide. Here, the International Glaucoma Genetics Consortium conducts a meta-analysis of genome-wide association studies of vertical cup-disc ratio (VCDR), an important disease-related optic nerve parameter. In 21,094 individuals of European ancestry and 6,784 individuals of Asian ancestry, we identify 10 new loci associated with variation in VCDR. In a separate risk-score analysis of five case-control studies, Caucasians in the highest quintile have a 2.5-fold increased risk of primary open-angle glaucoma as compared with those in the lowest quintile. This study has more than doubled the known loci associated with optic disc cupping and will allow greater understanding of mechanisms involved in this common blinding condition
Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases
Central corneal thickness (CCT) is a highly heritable trait associated with complex eye diseases such as keratoconus and glaucoma. We perform a genome-wide association meta-analysis of CCT and identify 19 novel regions. In addition to adding support for known connective tissue-related pathways, pathway analyses uncover previously unreported gene sets. Remarkably, >20% of the CCT-loci are near or within Mendelian disorder genes. These included FBN1, ADAMTS2 and TGFB2 which associate with connective tissue disorders (Marfan, Ehlers-Danlos and Loeys-Dietz syndromes), and the LUM-DCN-KERA gene complex involved in myopia, corneal dystrophies and cornea plana. Using index CCT-increasing variants, we find a significant inverse correlation in effect sizes between CCT and keratoconus (r =-0.62, P = 5.30 Ă 10-5) but not between CCT and primary open-angle glaucoma (r =-0.17, P = 0.2). Our findings provide evidence for shared genetic influences between CCT and keratoconus, and implicate candidate genes acting in collagen and extracellular matrix regulation
A âCandidate-Interactomeâ Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms
- âŠ