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SUMMARY

Neurons utilizemitochondrial oxidative phosphoryla-
tion (OxPhos) to generate energy essential for sur-
vival, function, and behavioral output. Unlike most
cells that burn both fat and sugar, neurons only
burn sugar. Despite its importance, how neurons
meet the increased energy demands of complex be-
haviors such as learning and memory is poorly un-
derstood. Here we show that the estrogen-related
receptor gamma (ERRg) orchestrates the expression
of a distinct neural gene network promoting mito-
chondrial oxidative metabolism that reflects the
extraordinary neuronal dependence on glucose.
ERRg�/� neurons exhibit decreased metabolic ca-
pacity. Impairment of long-term potentiation (LTP)
in ERRg�/� hippocampal slices can be fully rescued
by the mitochondrial OxPhos substrate pyruvate,
functionally linking the ERRg knockout metabolic
phenotype and memory formation. Consistent with
this notion, mice lacking neuronal ERRg in cerebral
cortex and hippocampus exhibit defects in spatial
learning and memory. These findings implicate
neuronal ERRg in themetabolic adaptations required
for memory formation.

INTRODUCTION

Mature neurons have exceedingly high energy demands,

requiring a continuous supply of adenosine triphosphate (ATP)

for survival, excitability, as well as for the synaptic signaling

and circuitry underlying different behaviors. Neurons utilize aer-

obic metabolism of glucose, but not fat, to meet their fluctuating
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needs (Escartin et al., 2006; Magistretti, 2003). Indeed, the pre-

dominance of pyruvate as the mitochondrial substrate for ATP

generation suggests the possibility of a distinct neuronal mito-

chondrial phenotype. Defects in neuronalmetabolism, especially

in mitochondrial OxPhos, are associated with aging and diverse

human neurological diseases (Lazarov et al., 2010; Mattson

et al., 2008; Schon and Przedborski, 2011; Stoll et al., 2011; Wal-

lace, 2005). In addition, neuronal metabolism (especially glucose

uptake) and blood flow are tightly coupled with neuronal activity,

an adaptation to the increased energy demand from complex

tasks such as learning and memory (Howarth et al., 2012; Patel

et al., 2004; Shulman et al., 2004). This neurometabolic and neu-

rovascular coupling provides the basis for widely used brain

imaging techniques including fMRI and positron emission to-

mography (Fox et al., 1988; Shulman et al., 2004). However,

the molecular underpinnings regulating neuronal metabolism

and its link to behavior remain poorly understood. Though

such metabolic adaptations are at least partially mediated by

transcriptional mechanisms that modulate the expression of

metabolic genes (Alberini, 2009; Magistretti, 2006), the key tran-

scription factors involved remain to be identified.
RESULTS

ERRg Is Highly Expressed in Both Developing and
Mature Neurons
To investigate the global impact of metabolism on neuronal func-

tion and behavior, we aimed to identify key transcription factors

that regulate metabolism in the neurons. Neuronal differentiation

is known to induce mitochondrial biogenesis and OxPhos

(Mattson et al., 2008). Therefore we reasoned that key neuronal

metabolic regulators would be concordantly induced. We used a

well-established protocol to differentiate mouse embryonic stem

(ES) cells into neurons with high degree of uniformity (Bibel et al.,

2007). We then examined the expression of some transcription
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Figure 1. ERRg Is Highly Expressed in Both

Developing and Mature Neurons

(A) Expression of ERRa, ERRb, ERRg, neuron

marker synaptophysin, astrocyte marker GFAP,

and oligodendrocyte marker MBP during mouse

ES cell differentiation were measured using qRT-

PCR. The y axis indicates fold change of gene

expression compared to the ES cells (except for

ERRb where the ES cell level is set as 100). The

result is presented as mean + SEM.

(B) ERRg expression pattern in the adult mouse

brain was revealed via X-gal staining in 5-month-

old female ERRg+/� mice. Part of the cerebrum

and hippocampus areas were enlarged for better

visualization. Ob, olfactory bulb; Cx, cerebral

cortex; Hi, hippocampus; Th, thalamus; Hy, hy-

pothalamus; Mb, midbrain; Cb, cerebellum; St,

striatum; Am, amygdala; Bs, brain stem.

(C) Immunostaining of bgal/ERRg and different cell

type markers in 4-month-old ERRg+/� mouse

cerebrum and hippocampus reveals that ERRg is

expressed in most neurons (indicated by asterisks

next to the right side of the cell) and in some as-

trocytes (arrows). Please note that most neurons

are ERRg positive, and only a portion of them are

marked by asterisks.
factors with established metabolic regulatory function in periph-

eral tissues based on existing literature.We found that ERRgwas

highly induced during neuronal differentiation (Figure 1A). In

contrast, ERRa expression was barely changed. ERRb is highly

expressed in ES cells and is one of the key factors for their main-

tenance (Feng et al., 2009); its expression was decreased during

neuronal differentiation. Using a mouse strain where LacZ was

inserted into the Esrrg locus, our previous work has shown that

ERRg is highly expressed in the developing embryonic CNS

in vivo as well (Alaynick et al., 2007). Consistent with previous re-

ports using in situ hybridization (Gofflot et al., 2007; Lorke et al.,

2000), X-gal staining revealed that ERRg protein was abundant

and widely expressed in the adult mouse brain, including the ol-
Cell Metabolism 21, 628–
factory bulb, cerebral cortex, hippocam-

pus, thalamus, hypothalamus, midbrain,

striatum, amygdala, and brain stem (Fig-

ure 1B). For example, many cells in the

cerebral cortex, hippocampal CA, and

dentate gyrus regions expressed ERRg.

Co-immunostaining with different cell

type markers suggested that most

ERRg-expressing cells in the adult brain

were neurons, though it was also ex-

pressed in some astrocytes (Figure 1C).

ERRg Regulates Neuronal
Metabolism
To elucidate a potential role for ERRg

in regulating neuronal metabolism, we

used chromatin immunoprecipitation fol-

lowed by deep sequencing (ChIP-Seq)

to map the genome-wide binding sites

(cistrome) of ERRg in neurons. Notably,
an unusually high percentage of ERRg binding sites fell in the

promoter regions (�36%), and the locations in intronic and inter-

genic regions were also significant (�28% and 30%, respec-

tively) (Figure 2A). This tendency of ERRg to bind to the promoter

regions may reflect its preference to associate with certain tran-

scriptional co-factor or chromatin-remodeling complexes.

Indeed, sequence motif analysis revealed an extensive colocal-

ization of ERRg and nuclear respiratory factors (NRFs), estab-

lished transcriptional regulators of nuclear genes encoding

respiratory subunits, and components of the mitochondrial tran-

scription and replication machinery (Figures 2B and S1A).

Pathway analysis revealed that the most represented pathways

were related to ATP generation, especially OxPhos (Figure S1B;
636, April 7, 2015 ª2015 Elsevier Inc. 629
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Figure 2. ERRg Regulates Neuronal Metabolism

(A) Pie chart shows the distribution of genome-wide ERRg binding sites revealed by ChIP-Seq.

(B) Histogram ofmotif densities near ERRg binding sites is shown. ERR andNRFmotifs are graphed based on their distances to the center of ERRg-bound peaks.

(C) OCR and ECARweremeasured inWT and ERRg�/� primary cortical neurons. Values were normalized to the baseline. The result is presented asmean + SEM.

(n = 4). Two-factor with replication ANOVA using data points of each treatment was used to calculate and determine the statistical significance. FCCP, p-tri-

fluorocarbonylcyanide phenylhydrazone; 2DG, 2-deoxy-D-glucose. Drugs used were the following: 1 mMoligomycin A, 4 mMFCCP, and 2 mM rotenone for OCR;

10 mM glucose, 2 mM oligomycin A, and 100 mM 2DG for ECAR.

(D) The cellular ATP level inWT and ERRg�/� primary cortical neurons at different time points after 1 mMFCCP treatment wasmeasured and normalized to cellular

protein level. The result is presented as mean + SEM. (n = 4). Two-tailed, unpaired, unequal variance t test was used to calculate and determine the statistical

significance. See also Figure S1.
Table S1). For example, ChIP-Seq analysis revealed that ERRg

bound to the promoter regions of genes important in transcrip-

tional regulation (Esrra, Gabpa/Nrf2a, etc.), glycolysis (Eno1,

Gpi1, Pfkm, Ldhb, etc.), TCA cycle (Fh, Idh3a, Ogdh, Sdhb,
630 Cell Metabolism 21, 628–636, April 7, 2015 ª2015 Elsevier Inc.
etc.), OxPhos (Cox5a, Cox6c, Cox8a, Atp5b, etc.), and mito-

chondrial functions (Mrpl39, Tomm40, Slc25a4/Ant1, Mtch2,

etc.), which were confirmed by conventional ChIP (Figures S1C

and S1D).



In contrast to previous ChIP-on-chip studies of ERRg in the

mouse heart (Dufour et al., 2007), the neuronal ERRg cistrome

was depleted of genes involved in fatty acid oxidation, an active

process in cardiomyocytes, but not in neurons. This indicates a

cell-type-specific role for ERRg in regulating cellular meta-

bolism, and supports the notion of an ERRg-dependent neuronal

mitochondrial phenotype. We also used microarray analysis to

compare gene expression in the cerebral cortex from newborn

wild-type (WT) and ERRg�/�mice; the cerebral cortex comprises

a relatively pure neuronal lineage at this stage compared to

adult cortex. Among the 1,215 genes that were differentially

expressed (p < 0.00001), the most significantly represented

pathways were related to ATP generation, especially OxPhos

(Figure S1E), highly overlapping with the ChIP-Seq result (Fig-

ure S1B). Importantly, mitochondrial OxPhos activity was signif-

icantly decreased in ERRg�/� mouse cortex, demonstrating the

functional importance of ERRg in supporting neuronal oxidative

metabolism (Figure S1F).

We next investigated whether the loss of ERRg would affect

the metabolic properties of neurons. Cultured primary WT and

ERRg�/� cortical neurons were morphologically similar, estab-

lished strong synaptic connections (data not shown), and re-

tained comparable protein levels of neuronal markers PSD95

and MAP2 (Figure S1G). Subsequently, their relative rates

of oxygen consumption (indicating mitochondrial OxPhos) and

extracellular pH change (indicating anaerobic glycolysis) were

compared in real time using a Seahorse extracellular flux (XF)

analyzer. Although WT and ERRg�/� cortical neurons had com-

parable basal metabolic rates (data not shown), ERRg�/� neu-

rons exhibited a significantly reduced maximal and spare oxida-

tive capacity, as determined by use of mitochondrial uncoupler

FCCP to stimulate the maximal OxPhos rates (Figures 2C and

S1H). ERRg�/� neurons demonstrated only �50% of the spare

respiratory capacity of WT neurons, suggesting that ERRg was

critical to achieve peak capacity for ATP production. ERRg�/�

neurons also displayed significantly decreased maximal glyco-

lytic capacity when stimulated with glucose or ATP synthase in-

hibitor oligomycin A (Figure 2C). Accordingly, ERRg�/� neurons

exhibited an impaired ability to maintain their cellular ATP level

(Figure 2D). Neither ERRg+/+ nor ERRg�/� neurons increased

their oxygen uptake in response to palmitate treatment, indi-

cating that neurons’ reliance on glucose, but not fat, as fuel

was ERRg independent (Figure S1I). In addition, the dependence

on ERRg for maximal metabolic capacity was cell-type-specific.

Mouse embryonic fibroblasts (MEFs) express both ERRa and

ERRg abundantly; however, loss of ERRg did not affect their total

oxidative and glycolytic capacity (Figure S1J).

ERRg Deletion Significantly Impairs Hippocampal LTP,
which Is Rescued by Mitochondrial OxPhos Substrate
Pyruvate
Wenext sought to evaluate the in vivo importance of ERRg-regu-

lated neuronal metabolism in energy-demanding brain functions

such as learning and memory. Since ERRg�/� mice die within

days of birth (Alaynick et al., 2007), floxed ERRg alleles were

targeted with a late-onset neuron-specific enolase-cre (NSE or

Eno2-Cre), to generate mature neuron ERRg knockout (KO)

mice (Figure S2A). Crosseswith a Tomato/GFP reporter line (Mu-

zumdar et al., 2007) confirmed that Eno2-Cre yielded a strong,
C

high-percentage recombination in cerebral cortex, hippocam-

pus, part of the olfactory bulb, thalamus, and brain stem, but

only sporadically in other brain regions (Figure S2B). By

comparing this recombination pattern with the endogenous

ERRg expression pattern (Figure 1B) to subtract non-ERRg-ex-

pressing areas, we found that Eno2-Cre resulted in efficient dele-

tion of ERRg in the cerebral cortex, hippocampus, and partial

olfactory bulb. ERRg deficiency in these regions was confirmed

by quantifying both themRNA and nuclear protein levels of ERRg

(Figure S2C). The residual ERRg may be due to incomplete

neuronal deletion or exist because ERRg is also expressed in

non-neuronal cells (Figure 1C). These neuronal ERRg KO mice

were born in a Mendelian ratio and appeared grossly normal.

Both male and female mice had body weights similar to Cre�
controls (Figure S2D). We evaluated their brain morphology via

Nissl staining. Detailed comparison of the coronal sections at

different planes revealed normal histology. In particular, all the

structural features and nuclei were present and microscopically

normal (Figure S2E). Electron microscopy revealed that neuronal

ERRg KO mouse hippocampi possessed normal subcellular

structure, mitochondrial morphology, and synaptic vesicles

(Figure S2F; data not shown), and no significant differences

were seen in the levels of the neurotransmitter glutamate across

several brain regions (Figure S2G). Most importantly, the

neuronal ERRg KO mouse hippocampi exhibited normal base-

line electrophysiological properties asmeasured by input-output

function and paired pulse ratio (PPR; Figures 3A and 3B),

suggesting that the basal hippocampal synaptic transmission

and circuits were functional and not affected by loss of ERRg.

LTP is well established as a key neuronal mechanism that un-

derlies learning and memory (Bliss and Collingridge, 1993; Kel-

leher et al., 2004). The ability of neurons to appropriately enhance

synaptic transmission through a memory-generating experience

depends upon an abundant energy source for ATP-dependent

action potentials as well as cycles of neurotransmitter synthesis,

release, reuptake, and recycling (Bélanger et al., 2011). We

therefore next recorded hippocampal CA1 LTP (field excitatory

post-synaptic potential, fEPSP) in brain slices from these mice.

The baseline response was comparable between control and

neuronal ERRg KO mice, again suggesting intact neuronal con-

nections and excitability. However, therewas a significant reduc-

tion of CA1 LTP in the neuronal ERRg KO mice (Figures 3C and

3D). In fact, thesemice exhibited LTP barely above baseline after

stimulation. To determine whether the observed defect in LTP

wascausedbyametabolic deficiency,we supplemented the hip-

pocampal slices with pyruvate, a well-known energy source and

mitochondrial OxPhos substrate, during LTP measurements.

Addition of pyruvate should increase the metabolic flux rate of

OxPhos and therefore enhanceATPgeneration. Remarkably, py-

ruvate supplementation completely rescued the LTP defects in

neuronal ERRgKO, but had no effect on control hippocampal sli-

ces (Figures 3C and 3D), establishing a causal link between the

metabolic deficiency and the LTP defects.

Loss of Neuronal ERRg In Vivo Impairs Spatial Learning
and Memory
We next investigated whether loss of cortical and hippocampal

neuronal ERRg impacted in vivo animal behavior, in particular,

hippocampal-dependent spatial learning and memory. As
ell Metabolism 21, 628–636, April 7, 2015 ª2015 Elsevier Inc. 631
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Figure 3. ERRg Deletion Significantly Impairs Hippocampal LTP, which Is Rescued by Mitochondrial OxPhos Substrate Pyruvate
(AandB) Input-output function (A) andPPR (B)weremeasured in5- to6-month-oldCre�andCre+mousehippocampal slices. The result ispresentedasmean±SEM.

(C) Sample traces of 5- to 6-month-old Cre� and Cre+ mouse hippocampal CA1 LTP with or without 2.5 mM pyruvate.

(D) Cre� and Cre+ mouse hippocampal CA1 LTP (slope of fEPSP) with or without 2.5 mM pyruvate. The result is presented as mean + SEM. (n = 6). Two-factor

with replication ANOVA was used to calculate and determine the statistical significance. p value from ANOVA is shown in the insert table. See also Figure S2.
ERRg expression appeared intact inmost other brain regions, we

did not expect that the behaviors heavily dependent on other

brain areas would be affected. The functional observational bat-

tery (Crawley, 2000) showed normal sensory perception, motor

control, and reflexes. Metabolic cage studies revealed a normal

circadian pattern of movement (Figure S3A) and normal respira-

tory exchange ratio (RER; Figure S3B). Furthermore, a series of

behavioral tests revealed that the neuronal ERRg KO mice had
632 Cell Metabolism 21, 628–636, April 7, 2015 ª2015 Elsevier Inc.
normal vision (visual cliff test, data not shown), motor coordina-

tion and balance (rotarod test, Figure S3C), exploratory activity

(open field test, Figure S3D), and anxiety (light/dark box test, Fig-

ure S3E; and elevated plus maze test, Figure S3F). In sharp

contrast, these mice exhibited severe defects in spatial learning

and memory in the Morris water maze test compared to control

Cre�mice (Figures 4A, 4B, andS3G). Although they had noprob-

lem locating a visible platform in theMorris watermaze indicating
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normal vision andswimmingability, theywere significantly slower

in learning to locate the hidden platform (Figure 4A). They also ex-

hibited significantly poorermemory in the probe test to locate the

original position of the removed platform (less time spent swim-

ming in the platform zone, less frequency crossing the platform,

and longer latency to first enter the target zone; Figure 4B).
DISCUSSION

Our studies here identify an essential role for ERRg in the regula-

tion of neuronal metabolism required for spatial learning and

memory.Mechanistically, we identify an ERRg genomic signature

in neuronsconsistentwith their utilizationof glucose, but not fat, in

mitochondrial OxPhos and energy generation. This neuronal

ERRg genomic signature, combined with the marked reduction

in spare respiratory capacity of neurons lacking ERRg, suggests

that persistent synaptic changes associated with memory forma-

tion may be limited by insufficient energy in neuronal ERRg KO

mice. Indeed, the finding that LTP defects in neuronal ERRg KO

hippocampus were rescued by pyruvate supplementation sup-

ports a role for ERRg in regulating neuronal metabolism. Consis-

tent with this notion, mice lacking neuronal ERRg exhibited

defects in spatial learning and memory. As ERRg activity can be

modulated with small molecules, targeting ERRg-dependent

neuronalmetabolic pathways could provide new therapeutic ave-

nues in the clinical treatment of a variety of neurological diseases.

In addition to ERRg, closely related proteins ERRa and ERRb

have been shown as important transcriptional regulators of

cellular metabolism in peripheral tissues. The three ERR proteins

clearly have non-overlapping functions, since the individual ERR

KO mouse exhibits different phenotypes (Alaynick et al., 2007;

Luo et al., 1997, 2003). On the other hand they bind to overlap-

ping loci in the genome, as illustrated in the mouse heart for

ERRa and ERRg (Dufour et al., 2007). Our current and previous

studies as well as data from the Allen Brain Atlas indicate that

all three ERR proteins are expressed in the brain, but with distinct

time and spatial patterns (Gofflot et al., 2007; Lorke et al., 2000;

Real et al., 2008). For example, ERRb is primarily expressed in

the developing brain, and ERRa expression pattern in the adult

brain is more ubiquitous compared to ERRb and ERRg. This is

significant because different brain cell types (neurons, astro-

cytes, oligodendrocytes, etc.) and same cell types in different

brain regions and during different developmental stages exhibit

diverse metabolic properties (Fünfschilling et al., 2012; Goyal

et al., 2014; Vilchez et al., 2007). The nature and importance of

these differences and how such differential metabolic regulation

is achieved remain poorly understood. Our current study reveals

that ERRg is essential for metabolism and learning/memory of

the mature neurons in the hippocampus. Future studies are

needed to determine whether the three ERR proteins regulate

distinct cellular metabolism, functions, and related behaviors in

different cell types, brain regions, and developmental stages.
EXPERIMENTAL PROCEDURES

Animal Experiments

All animal procedures were approved by and carried out under the guidelines

of the Institutional Animal Care and Use Committees of the Salk Institute and

the Children’s Hospital of Philadelphia. All mice were maintained in a temper-
634 Cell Metabolism 21, 628–636, April 7, 2015 ª2015 Elsevier Inc.
ature- and light-controlled (6am–6pm light) environment and received a stan-

dard diet (PMI laboratory rodent diet 5001, Harlan Teklad) unless otherwise

noted. ERRg KO mice were previously described (Alaynick et al., 2007), and

heterozygous mice were backcrossed to C57BL6/J background for at least

ten generations. The ERRg floxed and conditional KO strains were back-

crossed to C57BL6/J background for at least six generations. Age- and

gender-matched mice were used for all experiments.

Gene Expression and Protein Analysis

RNA isolation, gene expression analysis by qRT-PCR, and western blot were

performed as previously described (Pei et al., 2006).

Histology, Immunofluorescence, and X-Gal Staining

Histological analysis and immunofluorescence were performed as previously

described (Pei et al., 2011).

Isolation and Culture of MEFs

The isolation and culture of MEFs were performed as previously described

(Pei et al., 2011). MEFs within three generations of culture were used for the

experiments.

XF Analysis

We analyzed the bioenergetic profiles of ERRgWT and KO cells using XF24 XF

analyzer (Seahorse Bioscience) following the manufacturer’s protocol.

Generation of ES Cell-Derived Neurons

Weobtained themouse ES cell line ES-D3 fromAmerican Type Culture Collec-

tion. We followed a previously published protocol (Bibel et al., 2007) to differ-

entiate ES-D3 cells into homogeneous populations of glutamatergic neurons.

ChIP-Seq

We fixed ES cell-derived neurons and performed ChIP-Seq as previously

described (Pei et al., 2011).

Microarray Analysis

RNA fromWT and ERRg KO P0 cortex (technical duplicates of four cortices of

each genotype) were extracted, and their purity was assessed by Agilent Tech-

nologies Bioanalyzer 2100. Microarray was performed as previously described

(Pei et al., 2011).

Neurotransmitter Analysis

Different brain regionswerecarefullydissected from5-month-oldcontrol (Cre�)

and neuronal ERRgKO (Cre+) littermates, weighed, and then grinded and lysed

in hypotonic buffer containing proteinase inhibitors (Roche). Glutamate level in

the lysates of individual samples was measured using a Sigma kit following

the manufacturer’s instructions and normalized to the sample weight.

Mitochondrial Enzyme Activity

WT and ERRg KO P0 littermate mouse cortices were dissected, weighed, and

homogenized in 20 volume (v/w) of homogenization buffer (1 mM EDTA and

50 mM triethanolamine in water) on ice. Complex III (Q-cytochrome c oxidore-

ductase) and Complex IV (cytochrome c oxidase) enzymatic activities were

determined by the change in absorbance of cytochrome c measured at

550 nm. Assays were performed in 96-well plates with the ‘‘Kinetic’’ function

of a SpectraMax ParadigmMulti-Mode Microplate Detection Platform (Molec-

ular Devices). The linear slopes (DOD/min) were calculated. The enzymatic

activity was determined by the slope (DOD/min)/cortex weight (mg)/molar

extinction coefficient (OD/mmol/cm)/0.625 cm. The molar extinction coeffi-

cient for cytochrome c used was 29.5 OD/mmol/cm.

Electrophysiology

Electrophysiology studies were performed using 5- to 6-month-old control and

neuronal ERRg KO littermates as previously described with slight modification

(Mu et al., 2011).

Behavior Tests

All behavior tests were performed between 1pm and 6pm unless otherwise

noted. We conducted metabolic and behavioral studies in mice without prior



drug administration or surgery in the following order: metabolic cages, rotarod,

open field, light/dark box, elevated plus maze, and Morris water maze. We

started the test with 2- to 4-month-old mice; they reached 5–6 months of

age when the Morris water maze test was completed. All tests were repeated

in 2–3 separate cohorts of mice, and similar results were observed. All behav-

ioral studies were repeated by more than one investigator to assure the

reproducibility.

Statistical Analysis

Two-tailed, unpaired, unequal variance t test or two-factor with replication

ANOVA (Microsoft Excel) were used to calculate and determine the statistical

significance, with the criterion for significance set at p < 0.05. All figure error

bars indicate SEM.

Please see the Supplemental Information for detailed experimental

procedures.

ACCESSION NUMBERS

The GEO accession number for the ChIP-Seq and microarray data reported in

this paper is GSE47135.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, two tables, and Supple-

mental Experimental Procedures and can be found with this article online at

http://dx.doi.org/10.1016/j.cmet.2015.03.004.
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