219 research outputs found
Multifactorial Analysis of Differences Between Sporadic Breast Cancers and Cancers Involving BRCA1 and BRCA2 Mutations
Background: We have previously demonstrated that breast cancers associated with inherited BRCA1 and BRCA2 gene mutations differ from each other in their histopathologic appearances and that each of these types differs from breast cancers in patients unselected for family history (i.e., sporadic cancers). We have now conducted a more detailed examination of cytologic and architectural features of these tumors. Methods: Specimens of tumor tissue (5-”m-thick sections) were examined independently by two pathologists, who were unaware of the case or control subject status, for the presence of cell mitosis, lymphocytic infiltration, continuous pushing margins, and solid sheets of cancer cells; cell nuclei, cell nucleoli, cell necrosis, and cell borders were also evaluated. The resulting data were combined with previously available information on tumor type and tumor grade and further evaluated by multifactorial analysis. All statistical tests are two-sided. Results: Cancers associated with BRCA1 mutations exhibited higher mitotic counts (P = .001), a greater proportion of the tumor with a continuous pushing margin (P<.0001), and more lymphocytic infiltration (P = .002) than sporadic (i.e., control) cancers. Cancers associated with BRCA2 mutations exhibited a higher score for tubule formation (fewer tubules) (P = .0002), a higher proportion of the tumor perimeter with a continuous pushing margin (P<.0001), and a lower mitotic count (P = .003) than control cancers. Conclusions: Our study has identified key features of the histologic phenotypes of breast cancers in carriers of mutant BRCA1 and BRCA2 genes. This information may improve the classification of breast cancers in individuals with a family history of the disease and may ultimately aid in the clinical management of patients. [J Natl Cancer Inst 1998;90:1138-45
Alterations in Homologous Recombination-Related Genes and Distinct Platinum Response in Metastatic Triple-Negative Breast Cancers: A Subgroup Analysis of the ProfiLER-01 Trial
International audienc
Alcohol Consumption, Cigarette Smoking, and Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Results from The BRCA1 and BRCA2 Cohort Consortium.
BACKGROUND: Tobacco smoking and alcohol consumption have been intensively studied in the general population to assess their effects on the risk of breast cancer, but very few studies have examined these effects in BRCA1 and BRCA2 mutation carriers. Given the high breast cancer risk for mutation carriers and the importance of BRCA1 and BRCA2 in DNA repair, better evidence on the associations of these lifestyle factors with breast cancer risk is essential. METHODS: Using a large international pooled cohort of BRCA1 and BRCA2 mutation carriers, we conducted retrospective (5,707 BRCA1 mutation carriers and 3,525 BRCA2 mutation carriers) and prospective (2,276 BRCA1 mutation carriers and 1,610 BRCA2 mutation carriers) analyses of alcohol and tobacco consumption using Cox proportional hazards models. RESULTS: For both BRCA1 and BRCA2 mutation carriers, none of the smoking-related variables was associated with breast cancer risk, except smoking for more than 5 years before a first full-term pregnancy (FFTP) when compared with parous women who never smoked. For BRCA1 mutation carriers, the HR from retrospective analysis (HRR) was 1.19 [95% confidence interval (CI), 1.02-1.39] and the HR from prospective analysis (HRP) was 1.36 (95% CI, 0.99-1.87). For BRCA2 mutation carriers, smoking for more than 5 years before an FFTP showed an association of a similar magnitude, but the confidence limits were wider (HRR = 1.25; 95% CI, 1.01-1.55 and HRP = 1.30; 95% CI, 0.83-2.01). For both carrier groups, alcohol consumption was not associated with breast cancer risk. CONCLUSIONS: The finding that smoking during the prereproductive years increases breast cancer risk for mutation carriers warrants further investigation. IMPACT: This is the largest prospective study of BRCA mutation carriers to assess these important risk factors
A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptorânegative breast cancer in the general population
Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (Ptrend = 2.3 Ă 10â9 to Ptrend = 3.9 Ă 10â7), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17â1.35; rs2363956 HR = 0.84, 95% CI 0.80â0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptorânegative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75â0.92, Ptrend = 0.0003) and an association with estrogen receptorâpositive disease in the opposite direction (OR = 1.07, 95% CI 1.01â1.14, Ptrend = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (Ptrend = 1 Ă 10â7 to Ptrend = 8 Ă 10â5; rs2363956 per-allele OR = 0.80, 95% CI 0.74â0.87, Ptrend = 1.1 Ă 10â7)
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women
Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2
Male breast cancer in BRCA1 and BRCA2 mutation carriers : pathology data from the Consortium of Investigators of Modifiers of BRCA1/2
Background: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs). Methods: We characterised the pathologic features of 419 BRCA1/2 MBCs and, using logistic regression analysis, contrasted those with data from 9675 BRCA1/2 FBCs and with population-based data from 6351 MBCs in the Surveillance, Epidemiology, and End Results (SEER) database. Results: Among BRCA2 MBCs, grade significantly decreased with increasing age at diagnosis (P = 0.005). Compared with BRCA2 FBCs, BRCA2 MBCs were of significantly higher stage (P for trend = 2 x 10(-5)) and higher grade (P for trend = 0.005) and were more likely to be oestrogen receptor-positive [odds ratio (OR) 10.59; 95 % confidence interval (CI) 5.15-21.80] and progesterone receptor-positive (OR 5.04; 95 % CI 3.17-8.04). With the exception of grade, similar patterns of associations emerged when we compared BRCA1 MBCs and FBCs. BRCA2 MBCs also presented with higher grade than MBCs from the SEER database (P for trend = 4 x 10(-12)). Conclusions: On the basis of the largest series analysed to date, our results show that BRCA1/2 MBCs display distinct pathologic characteristics compared with BRCA1/2 FBCs, and we identified a specific BRCA2-associated MBC phenotype characterised by a variable suggesting greater biological aggressiveness (i.e., high histologic grade). These findings could lead to the development of gender-specific risk prediction models and guide clinical strategies appropriate for MBC management.Peer reviewe
The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations
International audienceBACKGROUND:Full-term pregnancy (FTP) is associated with a reduced breast cancer (BC) risk over time, but women are at increased BC risk in the immediate years following an FTP. No large prospective studies, however, have examined whether the number and timing of pregnancies are associated with BC risk for BRCA1 and BRCA2 mutation carriers.METHODS:Using weighted and time-varying Cox proportional hazards models, we investigated whether reproductive events are associated with BC risk for mutation carriers using a retrospective cohort (5707 BRCA1 and 3525 BRCA2 mutation carriers) and a prospective cohort (2276 BRCA1 and 1610 BRCA2 mutation carriers), separately for each cohort and the combined prospective and retrospective cohort.RESULTS:For BRCA1 mutation carriers, there was no overall association with parity compared with nulliparity (combined hazard ratio [HRc]â=â0.99, 95% confidence interval [CI]â=â0.83 to 1.18). Relative to being uniparous, an increased number of FTPs was associated with decreased BC risk (HRcâ=â0.79, 95% CIâ=â0.69 to 0.91; HRcâ=â0.70, 95% CIâ=â0.59 to 0.82; HRcâ=â0.50, 95% CIâ=â0.40 to 0.63, for 2, 3, and â„4 FTPs, respectively, P trend < .0001) and increasing duration of breastfeeding was associated with decreased BC risk (combined cohort P trendâ=â.0003). Relative to being nulliparous, uniparous BRCA1 mutation carriers were at increased BC risk in the prospective analysis (prospective hazard ration [HRp]â=â1.69, 95% CIâ=â1.09 to 2.62). For BRCA2 mutation carriers, being parous was associated with a 30% increase in BC risk (HRcâ=â1.33, 95% CIâ=â1.05 to 1.69), and there was no apparent decrease in risk associated with multiparity except for having at least 4 FTPs vs. 1 FTP (HRcâ=â0.72, 95% CIâ=â0.54 to 0.98).CONCLUSIONS:These findings suggest differential associations with parity between BRCA1 and BRCA2 mutation carriers with higher risk for uniparous BRCA1 carriers and parous BRCA2 carriers
Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers
While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr
Copy number variants as modifiers of breast cancer risk for BRCA1/BRCA2 pathogenic variant carriers
The risk of germline copy number variants (CNVs) in BRCA1 and BRCA2 pathogenic variant carriers in breast cancer is assessed, with CNVs overlapping SULT1A1 decreasing breast cancer risk in BRCA1 carriers.The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.Peer reviewe
Identification of a BRCA2-Specific modifier locus at 6p24 related to breast cancer risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HRâ=â0.85, 95% CI 0.80-0.90, Pâ=â3.9Ă10â8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer
- âŠ