125 research outputs found

    User-Defined Gestural Interactions Through Multi-Modal Feedback

    Get PDF
    Rapid advancements are being made in the field of HCI. However, most commercial designs using these technologies employ limited control schema and privilege interactions borrowed from pre-existing technologies. This paper suggests considering the whole body to create rich environments using coadaptive technologies

    Digitally supported assessment

    Get PDF
    This chapter focuses on digital assessment and feedback practices in distance education. Providing evidence of learning through assessment is at the heart of students’ experience of higher education (HE), whatever their mode of study. Open and distance education-focused institutions have justifiably been proud of their technical innovation, tending to move rapidly to harness available technologies (from post to broadcast media and, most recently, online media) in their mission to enable education for remote, distributed groups of learners. In recent years, distance education courses have, in the main, moved from paper and digital media delivered physically to wholly online delivery, except where the circumstances of target learners preclude reliance on a reliable and fast internet connection. In terms of content, discussion and collaboration, where distance education has forged ahead, campus-based, blended programmes have generally followed. However, in terms of assessment and feedback, distance education has remained somewhat conservative. While most assessment in distance education has taken place online along with content and communication, there has been a tendency to replicate fairly traditional assessment formats using digital tools

    Using Interactive Machine Learning to Support Interface Development Through Workshops with Disabled People

    Get PDF
    We have applied interactive machine learning (IML) to the creation and customisation of gesturally controlled musical interfaces in six workshops with people with learning and physical disabilities. Our observations and discussions with participants demonstrate the utility of IML as a tool for participatory design of accessible interfaces. This work has also led to a better understanding of challenges in end-user training of learning models, of how people develop personalised interaction strategies with different types of pre-trained interfaces, and of how properties of control spaces and input devices influence people’s customisation strategies and engagement with instruments. This work has also uncovered similarities between the musical goals and practices of disabled people and those of expert musicians

    Directional excitation of a high-density magnon gas using coherently driven spin waves

    Get PDF
    Controlling magnon densities in magnetic materials enables driving spin transport in magnonic devices. We demonstrate the creation of large, out-of-equilibrium magnon densities in a thin-film magnetic insulator via microwave excitation of coherent spin waves and subsequent multimagnon scattering. We image both the coherent spin waves and the resulting incoherent magnon gas using scanning-probe magnetometry based on electron spins in diamond. We find that the gas extends unidirectionally over hundreds of micrometers from the excitation stripline. Surprisingly, the gas density far exceeds that expected for a boson system following a Bose-Einstein distribution with a maximum value of the chemical potential. We characterize the momentum distribution of the gas by measuring the nanoscale spatial decay of the magnetic stray fields. Our results show that driving coherent spin waves leads to a strong out-of-equilibrium occupation of the spin-wave band, opening new possibilities for controlling spin transport and magnetic dynamics in target directions.Imaging- and therapeutic targets in neoplastic and musculoskeletal inflammatory diseas

    Nanocharacterization of Soft Biological Samples in Shear Mode with Quartz Tuning Fork Probes

    Get PDF
    Quartz tuning forks are extremely good resonators and their use is growing in scanning probe microscopy. Nevertheless, only a few studies on soft biological samples have been reported using these probes. In this work, we present the methodology to develop and use these nanosensors to properly work with biological samples. The working principles, fabrication and experimental setup are presented. The results in the nanocharacterization of different samples in different ambients are presented by using different working modes: amplitude modulation with and without the use of a Phase-Locked Loop (PLL) and frequency modulation. Pseudomonas aeruginosa bacteria are imaged in nitrogen using amplitude modulation. Microcontact printed antibodies are imaged in buffer using amplitude modulation with a PLL. Finally, metastatic cells are imaged in air using frequency modulation

    Prior Anticoagulation in Patients with Ischemic Stroke and Atrial Fibrillation.

    Get PDF
    The aim was to evaluate, in patients with atrial fibrillation (AF) and acute ischemic stroke, the association of prior anticoagulation with vitamin K antagonists (VKAs) or direct oral anticoagulants (DOACs) with stroke severity, utilization of intravenous thrombolysis (IVT), safety of IVT, and 3-month outcomes. This was a cohort study of consecutive patients (2014-2019) on anticoagulation versus those without (controls) with regard to stroke severity, rates of IVT/mechanical thrombectomy, symptomatic intracranial hemorrhage (sICH), and favorable outcome (modified Rankin Scale score 0-2) at 3 months. Of 8,179 patients (mean [SD] age, 79.8 [9.6] years; 49% women), 1,486 (18%) were on VKA treatment, 1,634 (20%) on DOAC treatment at stroke onset, and 5,059 controls. Stroke severity was lower in patients on DOACs (median National Institutes of Health Stroke Scale 4, [interquartile range 2-11]) compared with VKA (6, [2-14]) and controls (7, [3-15], p < 0.001; quantile regression: β -2.1, 95% confidence interval [CI] -2.6 to -1.7). The IVT rate in potentially eligible patients was significantly lower in patients on VKA (156 of 247 [63%]; adjusted odds ratio [aOR] 0.67; 95% CI 0.50-0.90) and particularly in patients on DOACs (69 of 464 [15%]; aOR 0.06; 95% CI 0.05-0.08) compared with controls (1,544 of 2,504 [74%]). sICH after IVT occurred in 3.6% (2.6-4.7%) of controls, 9 of 195 (4.6%; 1.9-9.2%; aOR 0.93; 95% CI 0.46-1.90) patients on VKA and 2 of 65 (3.1%; 0.4-10.8%, aOR 0.56; 95% CI 0.28-1.12) of those on DOACs. After adjustments for prognostic confounders, DOAC pretreatment was associated with a favorable 3-month outcome (aOR 1.24; 1.01-1.51). Prior DOAC therapy in patients with AF was associated with decreased admission stroke severity at onset and a remarkably low rate of IVT. Overall, patients on DOAC might have better functional outcome at 3 months. Further research is needed to overcome potential restrictions for IVT in patients taking DOACs. ANN NEUROL 2021;89:42-53

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns
    corecore