54 research outputs found

    Wireless sensor network based system for underground chemical plume tracking, A

    Get PDF
    A real-time subsurface chemical plume monitoring and tracking system is being developed that uses wireless-sensor networking to automatically extract data from underground chemical sensors. This system is aimed at tracking plumes caused by the release of toxic chemicals and biological agents into the environment as a result of accidental spills and improper disposal. Current practice involves manual collection of samples from monitoring wells followed by laboratory analysis, an expensive process taking days to weeks; such a delay reduces the effectiveness of mitigation techniques as well. Virtual Sensor Networks (VSN), a novel resource efficient approach for sensor networking being developed to track the migrating underground plumes, will be applicable to a broad class of problems. Laboratory based experiments and simulations are in progress to demonstrate the feasibility of the approach for large-scale plume tracking.This research is supported in part by Army Research Office and the National Science Foundation.1st place, ISTeC Student Research Poster Contest (April 7, 2008)

    A New Scope and Aims for Perspectives of Earth and Space Scientists

    Get PDF
    The journal Perspectives of Earth and Space Scientists has expanded both its aims and its scope to better serve the community of Earth and space scientists and represent its diverse range. Perspectives is now adding several new article formats to better meet the needs of the Earth and space science community. These include memorials, commentaries, debates, opinion pieces, and news updates. The journal remains fully open access with publication costs borne by the American Geophysical Union, but is no longer by-invitation-only and welcomes submissions from all segments of the geophysical community to better represent the diversity in nationality, ethnicity, culture, gender, and career stage of Earth and space scientists

    Parameterization and prediction of nanoparticle transport in porous media : a reanalysis using artificial neural network

    Get PDF
    The continuing rapid expansion of industrial and consumer processes based on nanoparticles (NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reliably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this paper we report the reanalysis of a data set of 493 published column experiment outcomes together with their continuum modeling results. Experimental properties were parameterized into 20 factors which are commonly available. They were then used to predict five key continuum model parameters as well as the effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD) technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncertainties, respectively. The outcomes shed light on several controversial relationships between the parameters, e.g., it was revealed that the trend of math formula with average pore water velocity was positive. The resulting correlations, despite being developed based on a “black-box” technique (ANN), were able to explain the effects of theoretical parameters such as critical deposition concentration (CDC), even though these parameters were not explicitly considered in the model. Porous media heterogeneity was considered as a parameter for the first time and showed sensitivities higher than those of dispersivity. The model performance was validated well against subsets of the experimental data and was compared with current models. The robustness of the correlation matrices was not completely satisfactory, since they failed to predict the experimental breakthrough curves (BTCs) at extreme values of ionic strengths

    An overlooked mechanism underlying the attenuated temperature response of soil heterotrophic respiration

    Get PDF
    Biogeochemical reactions occurring in soil pore space underpin gaseous emissions measured at macroscopic scales but are difficult to quantify due to their complexity and heterogeneity. We develop a volumetric-average method to calculate aerobic respiration rates analytically from soil with microscopic soil structure represented explicitly. Soil water content in the model is the result of the volumetric-average of the microscopic processes, and it is nonlinearly coupled with temperature and other factors. Since many biogeochemical reactions are driven by oxygen (O2) which must overcome various resistances before reaching reactive microsites from the atmosphere, the volumetric-average results in negative feedback between temperature and soil respiration, with the magnitude of the feedback increasing with soil water content and substrate quality. Comparisons with various experiments show the model reproduces the variation of carbon dioxide emission from soils under different water content and temperature gradients, indicating that it captures the key microscopic processes underpinning soil respiration. We show that alongside thermal microbial adaptation, substrate heterogeneity and microbial turnover and carbon use efficiency, O2 dissolution and diffusion in water associated with soil pore space is another key explanation for the attenuated temperature response of soil respiration and should be considered in developing soil organic carbon models

    Imaging and quantification of spreading and trapping of carbon dioxide in saline aquifers using meter-scale laboratory experiments

    Get PDF
    The role of capillary forces during buoyant migrati on of CO2 is critical towards plume immobilization within the post-injection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in-situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-te rm experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity- and buoyancy-domin ated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type h eterogeneity plays an important role on non- wetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months vs. 24 days) to reach stable trapping c onditions, (ii) limited vertical migration of the plume (with center of mass at 39% vs. 55% of aquife r thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% vs. 51. 5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the s ubsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m)

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come
    • 

    corecore