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Abstract The continuing rapid expansion of industrial and consumer processes based on nanoparticles

(NP) necessitates a robust model for delineating their fate and transport in groundwater. An ability to reli-

ably specify the full parameter set for prediction of NP transport using continuum models is crucial. In this

paper we report the reanalysis of a data set of 493 published column experiment outcomes together with

their continuum modeling results. Experimental properties were parameterized into 20 factors which are

commonly available. They were then used to predict five key continuum model parameters as well as the

effluent concentration via artificial neural network (ANN)-based correlations. The Partial Derivatives (PaD)

technique and Monte Carlo method were used for the analysis of sensitivities and model-produced uncer-

tainties, respectively. The outcomes shed light on several controversial relationships between the parame-

ters, e.g., it was revealed that the trend of Katt with average pore water velocity was positive. The resulting

correlations, despite being developed based on a ‘‘black-box’’ technique (ANN), were able to explain the

effects of theoretical parameters such as critical deposition concentration (CDC), even though these param-

eters were not explicitly considered in the model. Porous media heterogeneity was considered as a parame-

ter for the first time and showed sensitivities higher than those of dispersivity. The model performance was

validated well against subsets of the experimental data and was compared with current models. The robust-

ness of the correlation matrices was not completely satisfactory, since they failed to predict the experimen-

tal breakthrough curves (BTCs) at extreme values of ionic strengths.

Plain Language Summary Models based on advection-dispersion-equation (ADE), have

succeeded in describing a variety of nanoparticle (NP) transport mechanisms within subsurface porous

media. These models are usually fitted against known observation data to obtain the unknown parameters.

Nevertheless, the parameters determined in this way cannot be used for a new problem of the same type

and again there exists the need for the data to calibrate the model parameters for a new problem. Black

box models, such as artificial neural network (ANN), have been mostly, if not all the times, used in the same

way of ADE models, i.e., single problem solver. In this paper we use the ability of ANN to develop a series of

simple correlation matrices that can be easily used for the prediction of ADE parameters in the new problem

without the need for additional calibration. Although comparisons between ANN model predictions and

experimental data show that there is still further work to be done, our approach out-performs other compa-

rable models and offers new insight into the complex interactions among the factors determining NP

transport and fate in the environment.

1. Introduction

The rapid development of nanotechnology is identified as sufficiently remarkable as to be comparable with

the industrial revolution [Lanphere et al., 2013]. A comprehensive evaluation of the fate and transport of

engineered nanoparticles (NP) is pivotal to enable robust prediction and management of nanoparticulate

materials in environmental matrices. One of the endpoints of the NP life cycle is the subsurface soil and
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thereby groundwater [Keller et al., 2013]. Nanoparticles can be introduced into groundwater unintentionally

from various sources during manufacturing/application/disposal stages; or they may be injected intention-

ally in applications such as in situ groundwater remediation or recovery enhancement of oil and gas reser-

voirs [Ehtesabi et al., 2013; Tratnyek and Johnson, 2006; Yu et al., 2015b].

Diversity of the subsurface conditions on the one hand and variations in the characteristics of NP on the

other hand limit the success of many current models in predicting the transport of NP. The ongoing devel-

opment of hybrid NP with various architectures and coatings makes it inefficient to develop a specific

model for each individual type of NP, suggesting the need for developing a robust model that can capture

the transport behavior of as many types of NP as possible [Chou et al., 2013; Huang et al., 2010, 2012; Saleh

et al., 2015]. To date, the most widely used theory to predict the transport of NP and colloids has been the

clean-bed (or classical) colloid filtration theory (CFT) [Logan et al., 1995; Molnar et al., 2015; Rajagopalan and

Tien, 1976; Yao et al., 1971]. However, models based on CFT still find it challenging to take into account the

physical retention (straining) of colloid [Bradford et al., 2002, 2003, 2006a, 2006b], heterogeneity in the col-

loid population [Jones and Su, 2012; Tong and Johnson, 2007], and heterogeneity in the surface chemistry

[Bolster et al., 1999; Li et al., 2004; Tufenkji and Elimelech, 2005]. Its application when several transport phe-

nomena occur simultaneously is under question.

Continuum-based models can describe the transport of NP in porous media when various mechanisms are

involved concurrently and across various scales, provided that conceptual models of various transport phe-

nomena can be defined and validated properly in the mathematical framework [Molnar et al., 2015; Nowack

et al., 2015]. These models are construed as partial-differential equations developed based on the mass or

particle number balance [Molnar et al., 2015]. The drawback in using continuum models is that the model

parameters cannot be simply estimated and necessitate the output data of continuum models to be fitted

against a set of experimental or field data which may not be available [Goldberg et al., 2015; Molnar et al.,

2015; Peijnenburg et al., 2016]. Efforts to predict individual parameters of continuum model via regression

analysis and/or mechanistic approaches, e.g., estimating attachment rate coefficient [Seetha et al., 2015],

site blocking, or straining parameters, have been very limited [Bradford et al., 2003; Hassan et al., 2013;

Porubcan and Xu, 2011; Xu and Saiers, 2009; Xu et al., 2006, 2008]. Furthermore, the effects of many experi-

mental and environmental factors such as soil heterogeneity and dispersivity on the continuum model

parameters are still unknown.

Recently, Goldberg et al. [2015] used a machine learning technique known as ‘‘random forest ensemble’’ to

find the most important environmental parameters in retention of NP transport. Although the outcomes of

their paper provide very useful insights into the retention behavior of NP in porous media, they are limited

to regression analysis of retained fraction and retained mass profiles of NP in porous media. The artificial

neural network (ANN) is a powerful algorithm which emulates the processing system of the human brain in

terms of the structure and interactions of neurons with the information signals [Lu et al., 2001; Maier and

Dandy, 1996; Morshed and Kaluarachchi, 1998; Nourani and Sayyah-Fard, 2012; Yu et al., 2015a]. This concept,

which was originally proposed in 1940s by McCulloch and Pitts [1943], has been introduced as a versatile

and universal tool for function approximation problems, especially in nonlinear systems, where other math-

ematical/mechanistic techniques are difficult to implement [Morshed and Kaluarachchi, 1998; Nourani et al.,

2012; Yerramareddy et al., 1993]. In spite of extensive applications in the fields of environmental, hydrology,

and civil engineering over several decades [Lu et al., 2001; Morshed and Kaluarachchi, 1998], ANN is still rela-

tively untested in colloidal transport problems. Particularly, a direct application of ANN to simulate or ana-

lyze data related to the transport of NP in porous media has not been reported thus far, although it has

been applied for the transport of other contaminants such as nitrate [Hosseini et al., 2012]. ANN is catego-

rized as a ‘‘black-box’’ model because it is difficult to draw any conceptual relationship between the mathe-

matics of the model and the underlying physical phenomena. Nevertheless, various sensitivity analysis

techniques have been developed in order to gain insight into the influence of input variables on the ANN

outputs [Gevrey et al., 2003, 2006; Lu et al., 2001; Nourani and Sayyah-Fard, 2012]. For instance, Gevrey et al.

[2003] assessed seven methods for the sensitivity analysis of ANN in ecological systems and found that the

‘‘Partial Derivatives’’ technique (PaD) is the most useful and stable method [Gevrey et al., 2003; Lu et al.,

2001; Nourani and Sayyah-Fard, 2012].

The goal of the present study is twofold. First, we develop an ANN-based code comprising PaD and Monte

Carlo methods to analyze continuum model parameter sensitivities and uncertainties in respect of 20
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experimental or environmental factors that may influence the transport of NP in porous media in 493 sepa-

rate experiments published in more than 50 peer-reviewed studies. Second, we investigate the ability of the

ANN-based correlation matrices to independently predict the continuum model parameters. If the final cor-

relation matrices are successful in predicting model parameters, they can be easily used to estimate the

major parameters of continuum models based on NP characteristics and transport conditions that are

known or simply measurable. This would mitigate the need for parameter calibration of the continuum

model in future column transport studies. To the best of our knowledge, this is the first time such a thor-

ough modeling, sensitivity, and uncertainty analysis has been conducted on the continuum model parame-

ters associated with a wide variety of environmental/experimental factors.

2. Data Set and Parameterization

We extracted the data for NP comprising silver (AgNP), nanoscale zero valent iron (NZVI), Fe3O4, hydroxyap-

atite (HAp), graphene and graphene oxide (GO), cerium dioxide (CeO2), TiO2, zinc oxide (ZnO), quantum

dots (QDs), latex, silica, aluminum oxide (AlO), and boehmite NP. All the parameters together with their sta-

tistics and ranges are given in Table 1. The parameters for which the data were collected were in two

groups: (1) modeling parameters that result from fitting the continuum model to experimental break-

through and/or retention profile data and (2) all the possible factors that could be feasibly measured from

the experimental or real environmental properties without relying on current theories and without the

need for performing any major experiment.

The required data for the first group of parameters, i.e., modeling parameters, were gathered for the attach-

ment rate constant, Katt (1/h), which was common among all of these models. Other most common parame-

ters were the detachment rate constant, Kdet (1/h), the maximum retained-particle phase concentration or

colloidal retention capacity, Sm (mg/g), and the empirical depth-dependent retention parameter, b. Investi-

gations were also extended to the second attachment rate constant, Katt2 (1/h), representing the second site

attachment rate. The second group of parameters—hereafter termed ‘‘factors’’—includes aqueous phase

ionic strength (IS), pH, zeta-potential of particle and porous media surfaces, NP coating and free-polymer

concentrations, input NP concentration, dimensions of the porous medium (column length and diameter),

average pore water velocity, grain diameter, porosity, dispersivity, heterogeneity, number of injected pore

volumes (PV), particle diameter, particle density, aspect ratio of NP, the pH of isoelectric point (or point of

zero charge), and saturation magnetization. Note that in order to consider both negative and positive values

of zeta-potential, in a consistent trend, zeta-potential data were normalized by the minimum of their range,

as explained in Table 1.

We mostly considered saturated porous media—only in one paper the porous media was unsaturated

[Liang et al., 2013b] which involved undisturbed soil with �90% saturation degree. The temperature of

experiments had to be close to 25�C. We applied a criterion that the fitting R2 for continuum modeling

parameters had to be at least 0.7 in order to incorporate the data of that modeling study. The isoelectric

point (IEP) or the point of zero charge (PZC) was rarely reported in the given papers and therefore the same

value was assumed for each type of NP according to other literature sources given in supporting informa-

tion Table S1. It is difficult to put the data of ionic strength (IS) from various studies together into the model

as a single parameter because of the diversity in the ionic compositions. In this study, we synchronized the

IS data of various ionic species by drawing linear correlations between various ionic species. For this pur-

pose, we first divided the data set based on the different ionic compositions and tried to seek linear correla-

tions between IS data of each ionic species with Katt as the most representative parameter of NP transport.

In this way, linear correlations were achieved for the data of NaCl, CaCl2, NaHCO3, KNO3, and MgSO4, with

correlation coefficients ranging from 0.42 to 0.93 (supporting information Table S2). Although these linear

correlations were not very strong, they could be useful for pretreatment of IS data since they were also sta-

tistically significant based on Fisher F test (supporting information Table S2) [Donaldson, 1966]. Eventually,

based on these linear correlations, the IS values of CaCl2, NaHCO3, KNO3, and MgSO4 were scaled to the IS

values of NaCl which was afterward used as input to the ANN modeling and extended to other model

parameters as well. Other ionic compositions which did not show a linear relationship with Katt were

involved in the IS data without any specific treatment. These species were NaNO3, Ca(NO3)2, NaClO4, and

KCl which comprised less than 13% of the data set.
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Table 1. List of the Two Groups of Parameters, Modeling Parameters and Experimental/Environmental Properties

Abbr. Description and Unit Min Max Mean STDV

Missing

Rate (%) Note

Free pol.

conc.

Free-polymer conc. (mg/L) if

cotransport

1.0E-07 1.0E104 9.7E101 5.8E102 7.3 The concentration of various polymers (e.g., NOM, surfactant, protein) which

was added to the stock dispersion of nanoparticle prior to the injection

into porous media in order to be cotransported with NPs

Zeta_NP Zeta-potential of nanoparticles

(mV)

1.0E-02 1.1E102 4.4E101 1.5E101 11.6 All the values are offset by the absolute min of the original data, 272 mV, i.e.,

all the data are added with 721 0.01

dp Hydrodynamic diameter of

nanoparticles (average) (nm)

9.7E100 3.9E103 3.4E102 5.1E102 0.6 Hydrodynamic diameter of particles mostly measured by dynamic light

scattering (DLS) or nanoparticle tracking analysis (NTA) or in few cases the

physical size measured by other techniques including laser obscuration time

[Laumann et al., 2014], TEM [Liu et al., 2013], and AFM [Qi et al., 2014a, 2014b]

NP dens. Density of nanoparticles (g/cm3) 1.1E100 1.0E101 5.6E100 3.3E100 0.0 Density of the bulk material of NP without considering the coatings

C0 Injected concentration of NP

slurry (mg/L)

1.6E-03 2.0E104 3.4E102 1.8E103 0.0

Col. diam. Packed column diameter (cm) 6.6E-01 8.0E100 2.4E100 1.4E100 0.6 Inner diameter

Col. leng. Packed column length (cm) 3.0E100 5.0E101 1.5E101 8.7E100 0.0

Heterogen. Heterogeneity parameter (%) 1.0E100 1.0E102 3.2E101 2.6E101 0.0 Categorization soil heterogeneity for this parameter is thoroughly described

in this document

dg Size of porous media grains

(average diameter) (mm)

8.7E-02 1.8E100 4.7E-01 2.7E-01 0.0 In cases where porous media was made up of natural soil and grain size

distribution was not given, the average grain size obtained by considering

the size of clay, 0.002 mm, the size of silt in range of 0.002–0.064 mm and

the size of sand in range of 0.064–2 mm

Zeta_Grain Zeta-potential of porous media

grains (mV)

1.0E-02 1.4E102 4.8E101 1.8E101 30.6 All the values are offset by the absolute min of the original data, 287 mV, i.e.,

all the data are added with 871 0.01

Porosity Porosity of packed porous media 1.9E-01 5.7E-01 4.0E-01 5.9E-02 2.8

Veloc. Pore water velocity (cm/min) 2.2E-03 1.8E101 1.4E100 2.5E100 0.0

Disp. Dispersivity (cm) 1.2E-03 1.6E100 2.8E-01 3.6E-01 59.6 Commonly obtained by fitting to tracer BTC data. Only in few cases it was

determined from the fit to the NP BTC data [e.g., Laumann et al., 2014]

pH Acidity 3.0E100 1.1E101 6.8E100 1.4E100 3.9

IS Ionic strength (mM) 1.0E-02 7.9E102 2.9E101 6.8E101 2.6 Ionic species involved in the data were NaCl, CaCl2, NaNO3, MgSo4, KNO3,

Ca(NO3)2, NaClO4, NaHCO3, and KCl. The IS of some of these ions are scaled

to that of NaCl as described in the text

PV No. Number of injected pore volumes

into porous media

1.0E100 1.2E102 1.1E101 1.5E101 0.0 In several studies it was estimated from the BTC. In cases where the injection

was continues the maximum number of PV used in the simulation (shown

in the graph) was used

Aspect

ratio

Particle shape aspect ratio 1.0E100 3.8E103 1.5E102 5.0E102 0.6 Mostly calculated as the ratio of the hydrodynamic size to the smallest

reported dimension of the particles, e.g., for GO the average thickness of

1.1 was considered as the smallest dimension. In other cases, it was

estimated from the range of the size given or roughly from the shape of

the particles in the TEM or SEM images, e.g., it was equal to unity for NPs

that are expected to be roughly spherical, e.g., Ag NP and NZVI

Coat.

conc.

Total average adsorbed coating

concentration in the dispersion

(mg/L)

1.0E-07 1.9E102 7.3E100 2.7E101 10.3 Coating were mostly various polymers (e.g., NOM, surfactant, and protein) or

in few cases Cu (in three of papers: Hosseini and Tosco [2013] and Wang

et al. [2011b, 2012a]). If the amount of adsorbed

polymer was not clear and it was not mentioned as free polymer, then half

the total initial polymer concentration was assumed as free-polymer

concentration and half as coating concentration. Labeling on NPs was not

considered as coating

Sat.

magnet.

Saturation magnetization (kA/m) 1.0E-07 5.7E102 7.3E101 1.9E102 0.0 It was assumed according to Phenrat et al. [2007] as 570 kA/m for NZVI and

330 kA/m for Fe3O4 and for other NPs as zero

IEP Isoelectric point pH or

alternatively point of zero

charge (PZC)

1.9E100 9.4E100 6.0E100 2.2E100 0.0 In most of the cases it was not reported in the given paper and thus obtained

from other literatures as listed for various NPs in supporting information

Table S1

Katt Attachment rate constant

parameter (1/h)

1.3E-05 2.1E103 7.6E101 2.7E102 NA Only in one study it was assumed zero [Kini et al., 2014] because the applied

model involved using the partition coefficient parameter

Kdet Detachment rate constant

parameter (1/h)

1.0E-09 3.7E104 1.0E102 1.7E103 NA

Sm Maximum retained-particle phase

concentration (mg/g)

2.6E-08 1.0E109 4.1E108 4.9E108 NA

B Empirical depth-dependent

retention parameter

1.0E-09 1.5E100 2.0E-01 2.7E-01 NA

Katt2 Attachment rate constant

parameter for the second

attachment sites or the second

transporting species (1/h)

1.0E-09 3.8E103 7.6E101 3.6E102 NA

C/C0 Eluted mass (concentration) per

injected mass (concentration)

(%)

1.0E-01 1.0E102 5.8E101 3.2E101 NA Generally considered as the reported diluted mass obtained from the mass

balance in the reference, otherwise it was roughly estimated by measuring

the height of the BTC plateau at the middle of its width or the peak

aNA: not applicable.
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The outliers in the data set were identified via statistical techniques such as box plot and the Grubbs test

[Grubbs, 1969]. However, in order to prevent the loss of important data only certain outliers were removed

or replaced that could be evidently true anomalies, e.g., a case that had been measured with a completely

different technique than others in that family [Aggarwal, 2013; Yang, 2013]. After this stage, the percentage

of missing data compared to the whole data set of input variables was 6.5%. This missingness mostly

involved the dispersivity parameter—3.0% of the whole data set or 60% of the expected data for this

parameter (Table 1). Therefore, a separate ANN network was developed to predict the missing data of dis-

persivity and also for future modeling purposes via the available data. This was accomplished by assuming

dispersivity to be dependent on six factors including (1) column length, (2) column diameter, (3) average

pore water velocity, (4) heterogeneity, (5) porosity, and (6) grain diameter [Chrysikopoulos and Katzourakis,

2015; Howington et al., 1997; Illangasekare et al., 2010; James and Chrysikopoulos, 2003]. In order to avoid los-

ing the effective data set, the rest of gaps in the data for experimental conditions parameters were imputed

with the average of the available data for each parameter. This may not affect the overall result of ANN

modeling significantly, because the total percentage of missing data was low (3.5%). Among these data

gaps, the maximum missing rate was 31% associated with the grain zeta-potential, followed by 12% for par-

ticle zeta-potential, and 10% for adsorbed coating concentration (Table 1). These missingness rates might

not be significant because a missingness rate of 73% or more for each parameter has been common in the

literature [Schafer and Graham, 2002]. It should be noted that there were also missingness in the data of

predicted parameters, including Kdet , Sm, b, and Katt2 . However, eliminating these gaps did not lead to signif-

icant loss in the data set. Finally, the used data set for Katt and C/C0 was 493 cases while for Kdet , Sm, b, and

Katt2 it was reduced to 200, 286, 214, and 186 cases, respectively.

The heterogeneity of the soil texture is an important factor in the transport of NP in porous media [Cullen

et al., 2010]. Nevertheless, there has not been any simple robust systematic definition of porous media het-

erogeneity in the context of colloid transport so that it can be considered as a parameter in continuum

models. Given the available information in the literature about the effective heterogeneities that affect the

transport of NP at the continuum scale, and considering the practical purpose of current modeling study,

we assume a rough categorization of porous media types in order to define a unified heterogeneity param-

eter. This conceptualization of the unified heterogeneity parameter is merely a simplification based on a

rationale that mainly considers the spatial variability of the porous media surface properties as opposed to

the heterogeneity of the hydraulic conductivity (flow). This is based upon a series of intuitive assumptions

imposed by the type of porous media, e.g., the nature of the soil sample (clean or treated laboratory porous

media, disturbed, and undisturbed), grain coating, and grain size distribution. In doing so, porous media

containing only glass beads was assumed to have the minimum heterogeneity (0.0%) compared to other

possible types of porous media and the porous media consisting of undisturbed natural soil was assumed

to have the highest heterogeneity (100%). Then three categories were considered between 0.0 and 100%

heterogeneity.

The first category, clean sand, was considered in the range of 10–20% heterogeneity, attributing the hetero-

geneity for typically washed sand as 15%. The second class was assumed for coated sand in the range of

20–60% heterogeneity, depending on the concentration of porous media coating or the proportion of

coated sand to uncoated sand, compared to the case of typical clean sand. The third class of heterogeneity,

i.e., disturbed soil samples, was considered in the range of 60–90% depending on clay, silt, and sand con-

tents of the soil. The degree of the heterogeneity in the latter category was considered based on the follow-

ing assumptions. First, a uniform soil consisting of similar proportions of the sand, clay, and silt contents

was considered with a heterogeneity degree close to the middle of this category, i.e., 75%. Second, increase

in the amount of the clay was considered to enhance the degree of heterogeneity because of the high sur-

face area and highly asymmetric clay platelet, and amphoteric behavior of the edges, i.e., having both posi-

tive and negative charges for the same geochemical conditions, which leads to ambivalent interactions

with nanoparticles at the same time [Amor�os et al., 2010; Chowdhury et al., 2012; Holmboe et al., 2009; Kim

et al., 2012; Tombacz and Szekeres, 2004; Tsujimoto et al., 2013]. Furthermore, the greater the differences in

the boundaries of the size range, the higher the heterogeneity. As such, a soil consisting of 50% clay and

50% sand should be considered more heterogeneous than a soil containing 50% silt and 50% sand. Accord-

ing to these assumptions, we developed the following formula to estimate the degree of heterogeneity in

the disturbed soil category which is within the range of 60–90%:
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(1)

where H is the estimated heterogeneity in this range (%), PClay , PSilt , and PSand are the percentages of clay,

silt, and sand in the soil, respectively. The ternary plot of the heterogeneity parameter in the soil subcate-

gory is sketched in Figure 1, and for practical purposes and comparison, it is overlain by the "USDA Soil Tex-

ture Triangle", a classification which has been used for soil texture in other contexts [e.g., Jaisi and Elimelech,

2009; Plaster, 1997; Saey et al., 2009]. Supporting information Table S3 shows the variations of H or hetero-

geneity in the range of 60–90% for different amounts of clay, silt, and sand. According to this relationship,

the maximum possible heterogeneity for disturbed soil (90%) will be obtained for a soil with 99.9% clay and

0.1% sand and the minimum heterogeneity of the soil category, 60.0%, is obtained for a soil with 99.9%

sand and 0.1% silt. This minimum value of heterogeneity increases to 64.5% when the proportions of clay

and silt change to 0.05 and 0.05%, respectively, and further increases to 69.0% when clay and silt contents

are 0.1 and 0.0%, respectively. The diagram of this categorization of heterogeneous porous media is given

in supporting information Figure S1. It should be noted that there are other types of heterogeneities

such as microsurface and nanosurface roughness heterogeneities [Liang et al., 2013a; Molnar et al., 2015;

Torkzaban et al., 2008] as well as other similar concepts such as immobile zone [Molnar et al., 2015;

Torkzaban et al., 2008] that might be counted as heterogeneity. These are not considered here due to the

lack of sufficient information in the current literature. It should also be mentioned that we believe a unifying

approach for conceptualization of the heterogeneity parameter in sequential ranges is more efficient and

flexible than considering different types of heterogeneities, each as an individual parameter, and it is also

potentially more powerful when it comes to the comparison of sensitivities among 20 experimental factors.

3. Artificial Neural Network Modeling Procedure

We adopted a three-layer configuration for the ANN model as commonly used in the literature [Gevrey et al.,

2006; Nourani and Sayyah-Fard, 2012; Yu et al., 2015a]. These layers comprise an input layer, a hidden layer,

and an output layer. Each of these layers is composed of a series of nodes (neurons) as illustrated in support-

ing information Figure S2. Each node in the hidden layer receives signals (its input information) from all nodes

of the input layer and each node in the output layer receives signals from all nodes of the hidden layer. These

signals depend upon the strength of connections which are defined as weights and biases. These weight and

biases are also known as the network structure and their values are initially unknown. They can be determined

by fitting the network against any known data set of interest which have both input and outputs sets. In this

study, the inputs are defined as the 20 common factors identified within the literature data and the outputs

against which the model is tested are the five key continuum model parameters plus the normalized effluent

concentration. The model therefore operates by optimizing hidden layer node weight-bias combinations

against the input-output data of all the literature data sets consisting of up to 493 column experiment records.

This procedure is called training of the network. Once these weights and biases are estimated, the network

can be used for prediction of unknown outputs of a new data set [Yu et al., 2015a].

The number of nodes in the input layer and in the output layer are the same as the number of input and

output variables in the data set, respectively. The number of hidden layer nodes, however, should be

selected by trial-and-error in which the best fit in the training process is achieved while the number of hid-

den layer nodes is kept minimum [Yerramareddy et al., 1993; Yu et al., 2015a]. The training is performed with

the Levenberg-Marqurdt back-propagation learning algorithm for optimization of the weights and biases.

Levenberg-Marqurdt is a well-known, generic, and efficient algorithm that is widely used for nonlinear

curve-fitting problems to minimize the errors between the given data and model-generated data in order

to ascertain the parameters of the model [Doherty, 2004; Nourani and Sayyah-Fard, 2012; Yu et al., 2015a].

Back-propagation is the way of calculating the propagation of errors from the output layer toward the input

layer and forward the information from input layer toward the output layer [Coulibaly et al., 2000; Yerramar-

eddy et al., 1993; Yu et al., 2015a]. This approach has been proved to be efficient and fast enough for most

of the problems [Hagan and Menhaj, 1994; Lu et al., 2001; Morshed and Kaluarachchi, 1998; Noori et al., 2015;

Nourani and Sayyah-Fard, 2012]. A thorough introduction to ANN was recently given in Yu et al. [2015a].
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A potential defect in ANN analysis of sensitivity is the possibility of significant variation in the structure

(weights and biases) of the trained network in different training times [Lu et al., 2001]. Furthermore, the

optimum number of nodes in the hidden layer may change upon selecting various initial weights and

biases. Although these variations may not affect the outputs of an established network, this hinders a deter-

ministic analysis of sensitivity procedure [Lu et al., 2001]. Therefore, in this paper we assessed the uncertain-

ties imposed by the variation in the structure of the network on the outcomes of the sensitivity analysis

through a Monte Carlo approach [Dehghani et al., 2014]. This was conducted using a MATLABVC (Mathworks,

USA) code that (1) finds the optimum number of hidden layer neurons (in a range of 5–35 nodes) by iterat-

ing the training process in an inner loop, (2) conducts the analysis of sensitivity method of PaD on the opti-

mized model as described later, (3) iterates all this procedure for 1000 times in an outer loop so that the

average result of the sensitivities can be ascertained together with the relevant uncertainty statistics, and

(4) finds the network with the best generalization to be presented in a spreadsheet for future predictions.

The result of this uncertainty analysis performed on the sensitivity analysis approach is presented by calcu-

lating the 95% confidence interval (CI) according to the 2.5th and 97.5th percentiles of the Student’s t distri-

bution [Couto et al., 2013; Dehghani et al., 2014]. The details of the PaD method used for ANN sensitivity

analysis along with further description of the uncertainty analysis and the validation of the code against

artificial data are available in supporting information Figure S3.

4. Results and Discussion

4.1. General Fitting Results

Over 1000 iterations the ANN was able to successfully find the relationships between the inputs and the

outputs for each of five continuum model parameters with an average Nash and Sutcliff R2 ranging from

0.884 to 0.967—mean overall R2 of 0.930 (Table 2). The standard deviations of these R2 values were rela-

tively low (<0.03, Table 2), suggesting the uncertainties that can result from poor fitting in certain iterations

of the sensitivity analysis runs are minor. The goodness of fitting, however, was not as high when C=C0 was

considered as a direct predictable parameter from experimental factors (mean R250:778, Table 2). Overall,

these goodness-of-fit ranges are comparable with [Nourani and Sayyah-Fard, 2012] carrying out ANN sensi-

tivity analysis on daily evaporation data, where R2 values were less than 0.9.

The numbers of optimum nodes which give the best fitting via the inner loop of the code were averaged

over 1000 outer iterations. These figures were between 16 and 22 for different continuum parameters as

well as C=C0 (Table 2). Standard deviations for these values, however, were between 5 and 6 (Table 2), indi-

cating the change in the structure of the network may be significant and might therefore diversify the

results of the sensitivity analysis even though the model is able to gain a consistent goodness of fit to the

experimental data as mentioned above. Therefore, as noted in the methods section we used the Monte

Carlo approach to assess the uncertainties related to variable trained model structure. The outcomes, shown

as error bars in Figures 2 and 3, indicate that the ranges of variations in the sensitivity outcomes with 95%

CI are relatively small and do not preclude ranking of parameter sensitivities from high to low.

In the following sensitivity analysis results, since a series of 20 experimental/environmental factors are

involved in the analysis, one may expect that if all factors were equally significant (a null hypothesis for this

work) then each would have a relative sensitivity (RS) of 5%. To generalize, if the number of input factors

varies, then the baseline value and hence the ‘‘cutoff’’ value for significance, would vary accordingly. For

Table 2. Fitting Results and the Number of Optimum Nodes Obtained by ANN Code for Various Continuum Model Parameters

Katt Kdet Sm b Katt2 C/C0

Average R2 (1000 simulations) 0.884 0.886 0.967 0.954 0.958 0.778

Standard deviations of R2 (1000 simulations) 0.03 0.03 0.01 0.02 0.03 0.03

Average optimum nodes (1000 simulations) 21 17 16 19 18 22

Standard deviation of optimum node (1000 simulations) 6 6 5 6 6 6

Best R2 among 1000 simulations 0.947 0.950 0.983 0.992 1.000 0.875

Corresponding node to the best R2 21 17 19 11 12 11

Best generalization efficiency (GE) 0.93 0.96 0.98 1.01 1.02 0.89

Corresponding node to best GE 25 13 14 10 18 24

Corresponding R2 to the best GE 0.913 0.902 0.971 0.950 0.967 0.830
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example, if 10 input factors

were considered in an ANN

model, then within this frame-

work, the baseline significance

is at 10%. Since the objective of

this study is to identify the rela-

tive sensitivities, we do not rec-

ommend the omission of

relatively low sensitive factors in

future modeling. Yet one may

consider factors with RS below

2.5% (50% of the baseline sensi-

tivity) as insignificant. Further

targeted work is required to

establish the practical interpre-

tation of such a threshold.

4.2. Sensitivity Results for Katt

Figure 2a shows that Katt is more

sensitive to surface-related fac-

tors, such as the coating concen-

tration (RS525.7%), grain zeta-

potential (RS58.3%), aspect ratio

of NP (RS57.9%), and isoelectric point (IEP) of NP (RS55.6%), rather than pore-scale factors, such as dispersiv-

ity (RS51.7%), heterogeneity (RS52.4%), and porosity (RS53.0%) (supporting information Table S4). The very

high sensitivity of Katt to coating concentration, which is over 3 times higher than that of the next important

factor, the grain zeta-potential, is in agreement with a large number of experimental studies emphasizing the

crucial role of NP surface coating, which can be various polymers (e.g., NOM, surfactant, and protein) or metal

dopants such as Cu, in modifying the attachment of NP [Phenrat and Lowry, 2009; Phenrat et al., 2008, 2010a,

2010b;Wang et al., 2013].

In contrast, the free-polymer concentration appeared to have the least contribution to the attachment rate

of NP (RS51:6%, supporting information Table S4). Free polymer is known to affect the attachment rates in

several potentially conflicting ways. Higher concentration of free polymer can elevate the viscosity of the

fluid [Becker et al., 2015]; it can block the attachment surfaces in competition with the NP [Becker et al.,

2015; Wang et al., 2014b]; it can slow down the agglomeration process [Phenrat et al., 2010a]; on the other

hand, in the presence of divalent cations polymer bridging can bring about a substantial level of agglomer-

ation and deposition [Chen and Elimelech, 2006; Torkzaban et al., 2012; Wang et al., 2011b]. Our result, which

is obtained for a broad range of NP and polymer types, e.g., NOM, surfactant, and protein, with a mean con-

centration of �100 mg/L (Table 1), suggests that these four effects counterbalance each other over a range

of conditions. However, the bridging mechanism influence appears still to be the dominant process,

because based on this investigation the trend between free-polymer concentration and the attachment

rate is positive rather than negative (Figure 2a).

The aspect ratio of NP has a notable influence on the attachment rate (RS57:9%) with a negative correla-

tion. Thus far, only few studies have addressed the effect of aspect ratio on the transport behavior of NP in

porous media. It should be noted that here we define the aspect ratio as the ratio of the major dimension

length to the minor dimension length of the particle, or plate diameter to plate thickness [Xu et al., 2008]

which is different from the use of this terminology in colloid filtration theory literature [e.g., Tufenkji and

Elimelech, 2004a, 2004b] where it is interpreted as the ratio of particle to collector sizes. The reported trends for

Katt with aspect ratio include a rising trend for latex microsphere (aspect ratio range of 1:1–3:1) [Salerno et al.,

2006], a decreasing trend for carboxylate-modified fluorescent polystyrene NP (aspect ratio range of 1:1–4:1)

under the favorable attachment conditions, and an increasing trend under the unfavorable conditions [Seymour

et al., 2013]. Recently, Hedayati et al. [2016] compared the retention of cylindrical NP (multiwalled carbon nano-

tubes) with spherical NP (C60) and observed that at low IS values (<11 mM) the spherical NP displayed a greater

mobility than the cylindrical NP whereas at a higher IS (60 mM) the mobility of cylindrical NP was considerably

Figure 1. Ternary plot of heterogeneity parameter for the category of disturbed soils

(range of 60–90% heterogeneity) based on different amounts of clay, silt, and sand. The

plot is overlain by the ‘‘USDA Soil Texture Triangle.’’ The color bar represents the

heterogeneity values which are determined by equation (1).
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higher than the spherical NP. In the present study which encompasses a broad range of aspect ratios from 1:1

to 1:3800 and also comprises the two-dimensional GO nanosheets, it appears that generally a higher aspect ratio

results in a reduced attachment rate. Such interpretation is consistent with reduced translational diffusion

because of the higher aspect ratios of particles [Ortega and de la Torre, 2003]. This can in turn decrease the mass

transfer rate to the collector surface and thereby reducing the attachment rate. Initial particle size, however, is

far less sensitive (RS52:2%). This might be because of the fact that the real size of the NP aggregates that con-

trols the attachment rate is different from the initial size because of the occurrence of agglomeration within

porous media as discussed below.

Column length affected the attachment rate with RS56:9%, and with a positive correlation. It is complicated to

draw any conclusion about this relationship since a variety of retention behaviors might occur along the length

of the porous media which may not only involve the attachment process but also involve other phenomena,

such as straining, site blocking, size exclusion, and agglomeration [Bradford et al., 2003; Braun et al., 2014; Liang

et al., 2013a, 2013b; Raychoudhury et al., 2014; Saiers et al., 1994; Shen et al., 2008; Wang et al., 2012a, 2012b,

2015a, 2015b, 2015c, 2014a, 2014b]. Agglomeration of NP in porous media has been widely neglected in

modeling studies. However, assuming that the agglomeration of NP is significant, the longer length of the col-

umn may allow particles to agglomerate in sufficient time during their migration along the column length. This

can in turn intensify their consequent retention rates since the larger sizes of NP come with deeper energy min-

imum wells and therefore higher retention rates [Babakhani et al., 2015; Phenrat et al., 2010a, 2009].

Figure 2. Relative sensitivity outcomes for (a) Katt , (b) Kdet , (c) Sm , and (d) b, with respect to experimental factors. In the case of Sm , saturation magnetization is excluded due to having no

variation in the available data. Green-colored bars indicate positive correlation between input and output while magenta-colored bars indicate negative correlation. Error bars represent

95% confidence intervals on each sensitivity value over 1000 independent ANN model runs. The abbreviations are provided in Table 1.
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An increase in average pore water velocity causes a rise in Katt (RS5 4.4%). This agrees well with CFT which

suggests an increase in velocity promotes the mass transfer rate between the aqueous and attached phases

whereby enhancing the attachment rate [Liang et al., 2013a; Logan et al., 1995; Yao et al., 1971]. This trend,

however, contradicts with the study of Seetha et al. [2015]. In the broad experimental data of NP transport

used in this study, it is hard to figure out a linear or log linear model fit between velocity and Katt data. A

log linear fit between the logarithm transformed data of pore water velocity and log Katt shows a poor cor-

relation coefficient of 0.2 (supporting information Figure S4). This line still demonstrates a positive slope

(0.72) between the two variables. Therefore, here it is interesting to use the final ANN-based correlations,

which will be discussed later, in order to compare the trend of predicted Katt versus pore water velocity

with correlations of other studies. We used the empirical correlations of Seetha et al. [2015] for Katt and col-

lector efficiencies of Phenrat et al. [2010a] and Tufenkji and Elimelech [2004a] to calculate Katt based on CFT.

As shown in Figure 4, in the empirical model of Seetha et al. [2015], Katt decreases with velocity by a slope

Figure 3. Relative sensitivity outcomes for (a) Katt2 and (b) C=C0 with respect to 20 experimental factors. Green-colored bars indicate posi-

tive correlation between input and output while magenta-colored bars indicate negative correlation. Error bars represent 95% confidence

intervals.
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of 2272. However, according to the correlations of the present study, Katt increases with the velocity with a

slope of 106.7. This is in agreement with the trend based on the correlations of Tufenkji and Elimelech

[2004a] yielding a positive slope of 440.0 and is also consistent with that of Phenrat et al. [2010a] which

yields a low positive slope of 0.76.

IS and pH have been among the most well-studied parameters in the context of NP transport because of

their significant impacts revealed under individual experimental outcomes [e.g., Liang et al., 2013a; Saleh

et al., 2008; Shen et al., 2008; Wang et al., 2011a]. However, our analysis indicates they are not among the

most crucial factors controlling the attachment rate as the most important parameter of the continuum

model. Figure 5 shows modeling trends of Katt versus IS determined by the ANN-based correlation of this

study and by the correlations of Seetha et al. [2015] and Tufenkji and Elimelech [2004a]. It is evident that the

impacts of the critical deposition concentration (CDC) and probably the critical coagulation concentration

(CCC) [Grolimund et al., 2001] are reflected in the modeled curves of this study and those of Seetha et al.

[2015]. The decrease in the slope of the curve is slightly less in the present correlation compared to that of

Seetha et al. [2015] and CDC might not be clearly distinguishable in the current study’s results. It is reason-

able because the current study’s model considers multiple NP types which may display various CCC and/or

CDC. This comparison further shows that considering IS versus Katt , a satisfactory overall agreement

between the performances of this study’s model with others is obtained in the ranges of parameters used

in this figure (given in the caption of Figure 5).

It should be noted that the low sensitivity of IS appears at odds with intuition based on major current

concepts in colloid science, such as DVLO theory. One interpretation of the low sensitivity of Katt to IS

is that the ranges of IS in the training data set are dominated by values above the CCC and CDC values

Figure 4. Relationship between Katt and the pore water velocity obtained from the final model of the present study, Seetha et al. [2015],

and CFT, the collector efficiencies of which were obtained based on the correlations of Phenrat et al. [2010a] or Tufenkji and Elimelech

[2004a]. The input data for the pore water velocity were artificially generated in regular intervals and the rest of the input data were mostly

selected similar to Phenrat et al. [2009]. These data were mostly in the ranges of simulated values in Seetha et al. [2015], except for Peclet

number range which was extended to values above 50 when the velocity increased to more than 0.015 cm/min. The parameter values

used here are a free-polymer concentration of 0 mg/L, a particle zeta-potential of 230 mV, and a grain zeta-potential of 250 mV, a particle

diameter of 150 nm, a grain diameter of 0.15 mm, a NP density of 6.7 g/cm3, an input concentration of 200 mg/L, a column diameter

(inner) of 2 cm, a column length of 25.5 cm, a heterogeneity of 15% (clean sand), a porosity of 0.33, a dispersivity of 0.015 cm, a pH at 5, an

IS of 10 mM, an injection duration of 1 PVs, an aspect ratio of 1, an adsorbed coating concentration of 1 mg/L, a saturation magnetization

of 570 kA/m (assuming NZVI), an IEP pH at 6.3, and with pore water velocity ranging from 0.003 to 0.039 cm/min. Extra parameters

assumed in the correlations of Seetha et al. [2015] include a temperature of 298 K, a dynamic viscosity of 0.89 mPa.S, and a cylindrical pore

constriction radius of 6:2 31025 m calculated based on grain size following Phenrat et al. [2010a]. Single collector attachment efficiency in

the equation of Tufenkji and Elimelech [2004a] was assumed equal to one. The linear fittings are only for identifying whether the trends are

increasing or decreasing.
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of major NP, after which attachment is less dependent or not dependent on the IS. Another possible

interpretation is that the rate of attachment is more controlled by diffusion in the aqueous phase

rather than the interaction energy minimum depth (controlled by IS), because once NP arrive in the

vicinity of the surface of the collector, they can be retained no matter how deep the secondary mini-

mum depth is. On the other hand, the effects of detachment processes (Kdet) may mask the role of IS

in attachment of NP, resulting in a less overall sensitivity for this factor as appeared in the result of the

present study.

In terms of pH, it appears that the point of zero charge (PZC) or IEP, which is also taken into consideration

as a factor in the model, is �2.5 times more sensitive than pH (supporting information Table S4). Further-

more, from the experimental viewpoint change in the pH may correspond to a simultaneous change in the

zeta-potential. Therefore, it is possible that the effective role of pH in attachment rate is manifested in the

model sensitivity results through IEP and zeta-potential rather than the pH itself. The ANN-based correlation

trends, shown in supporting information Figure S5, reveal that our correlation predictions for Katt is close to

those of Phenrat et al. [2010a] when the saturation magnetization feature is considered nonzero, whereas

they tend toward Tufenkji and Elimelech [2004a] predictions when the saturation magnetization is assumed

zero. The correlations of Phenrat et al. [2010a] also consider the effect of particle magnetization while other

current models do not. It might also suggest that when the particles are magnetic then the effect of solu-

tion chemistry on the attachment rate is less pronounced because magnetic forces overshadow the solution

chemistry [Phenrat et al., 2010a].

4.3. Sensitivity Results for Kdet

Figure 2b shows that the most important experimental factor in controlling the detachment rate is IS with

RS514:8% and with a negative correlation, which is in agreement with other studies (supporting informa-

tion Table S4) [e.g., Bradford et al., 2015; Torkzaban et al., 2015]. Detachment of the attached particles should

be mostly controlled by the strength of the forces between attached particle and the solid surface. This

Figure 5. Relationship between Katt and the IS obtained from the present study, and Seetha et al. [2015], as well as CFT, the collector effi-

ciencies of which were obtained based on the correlation of Tufenkji and Elimelech [2004a]. The data were selected in the ranges of simu-

lated values in Seetha et al. [2015], except for NE1 and NDL that were partly out of range. Most of experimental conditions used resembled

those of [Wang et al., 2011a]. The parameter values are a free-polymer concentration of zero mg/L, a particle zeta-potential of240 mV,

and a grain zeta-potential of 250 mV, a particle diameter of 150 nm, a grain diameter of 0.15 mm, a NP density of 3.2 g/cm3, an input con-

centration of 200 mg/L, a column diameter (inner) of 2.6 cm, a column length of 20.2 cm, a heterogeneity of 15% (clean sand), porosities

of 0.33, 0.35, and 0.4, a pore water velocity of 0.015 cm/min, a dispersivity of 0.02 cm, a pH at 5, an injection duration for 5 PVs, an aspect

ratio of 5, adsorbed coating concentration of 1 mg/L, a saturation magnetization of zero (kA/m), an IEP pH at 6.7, and IS values in range of

0.01–770 mM. Extra parameters assumed in the correlations of Seetha et al. [2015] include a temperature of 298 K, a dynamic viscosity of

0.89 mPa S, and a cylindrical pore constriction radius of 6:2 31025 m calculated based on grain size following Phenrat et al. [2010a]. Single

collector attachment efficiency in the equation of Tufenkji and Elimelech [2004a] was assumed equal to 1. Lines in figure are plotted to

guide eyes.
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strength is related to depth of the DLVO minimum energy well which is in turn associated with IS [Bergen-

dahl and Grasso, 1999, 2000]. This is consistent with our observation that IS has a significant impact on

detachment even though it was not highly sensitive for Katt , since the depth of the DLVO energy minimum,

is less important in determining the probability of entering it than of leaving it.

In contrast to the relatively low sensitivities obtained for factors representing the pore scale in the case of

Katt , for Kdet these factors, i.e., porosity (RS58:8%), heterogeneity (RS56:2%), and dispersivity (RS55:1%),

turned out to be among the most sensitive parameters, all showing a positive correlation. For particles

which are already immobilized on the surface of grains, these factors may be more important, because they

represent variation in the number and accessibility of low shear, low flow, and high-retention pore surface

sites from which removal of particles by hydrodynamic forces may be difficult [Phenrat et al., 2010a;

Torkzaban et al., 2007].

Grain zeta-potential is also one of the most important three factors (RS56:2%) contributing to detachment

rate as was also the case for Katt . The sensitivities to other factors are rather similar, and are ranging from

slightly below the baseline, i.e., RS54:6% for particle zeta-potential down to RS53% for particle diameter.

4.4. Sensitivity Results for Sm

Sm represents the capacity of the porous media for retention of particles [Adamczyk et al., 1994; Saiers

et al., 1994]. Similar to the sensitivity results of Katt and Kdet , here the grain zeta-potential (RS511:6%) is

among the most sensitive factors along with the particle zeta-potential (RS57:2%) (Figure 2c and sup-

porting information Table S4). According to this result when the zeta-potential increases (less negative),

the capacity of the porous media to retain particles increases. High sensitivities are determined for factors

related to the load of particles in porous media such as input concentration (RS57:2%) and the number

of injecting PVs (RS55:6%) with a positive correlation—in agreement with elsewhere [Liang et al., 2013a;

Y. Sun et al., 2015]. The factors representing the available surface area such as column length, column

diameter, aspect ratio, and porosity are also highly sensitive (RS ranging from 4.9 to 9.3%) and show a

direct relationship, which is in accordance with the underlying concept of Sm describing its capacity for

retaining particles and also in agreement with Saiers et al. [1994], mentioning a close correlation between

the surface area and Sm.

Similar to the sensitivity results of Katt , here IS and pH are not among the most sensitive factors for Sm—RS

is 3.2 and 4.2% for IS and pH, respectively. Elevated Sm with the IS has been attributed to microscopic or

nanoscale surface heterogeneities since rising IS can screen the double layer and may therefore reduce the

long range influence of these forces to below the influence range of microscopic heterogeneities [Liang

et al., 2013a; Torkzaban et al., 2008]. In the light of the present modeling results for Sm, which shows the

highest sensitivities for the factors related to the mean surface electrostatic charge, i.e., grain and particle

zeta-potentials, while demonstrating two to fourfolds lower sensitivity for the IS, it is revealed that surface

microscopic heterogeneities, even if important in triggering the IS-related influence on the Sm, are still far

less relevant than the mean surface characteristics, such as zeta-potential, in controlling the capacity of the

retention sites. This is also in line with the results of previous sections where Katt was moderately sensitive

to IS whereas Kdet was most sensitive to IS among all the experimental features, suggesting that this is the

ionic strength and thereby the depth of the DLVO minimum that control the strength of the interfacial

forces standing against the detachment of attached particles and not nanoscale and microscale surface het-

erogeneities. Furthermore, according to the present results, the sensitivity of Sm to velocity is slightly below

the expected baseline sensitivity (RS54.3%) and velocity has an inverse relationship with Sm (Figure 2c).

This negative relationship is in complete agreement with the hypothesis that larger torques resulting from

fluid shear can reduce the quantity of retention sites with interactions at the secondary minimum [Liang

et al., 2013a; Phenrat et al., 2009; Seetha et al., 2015; Torkzaban et al., 2007], also indicating against the domi-

nation of microscopic heterogeneity over the secondary minimum interactions [Liang et al., 2013a].

4.5. Sensitivity Results for b

The exponent of the depth-dependent retention model, b, determines the shape of colloid spatial distribu-

tion [Bradford et al., 2003]. The depth-dependent shape of the residual concentration profile (RCP) has been

the focus of many investigations relating the hyperexponential behavior of RCP to straining [e.g., Bradford

et al., 2006a; Kasel et al., 2013] or a nonmonotonic behavior of RCP to agglomeration [Bradford et al., 2006a].
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For b50 an exponential RCP is expected whereas for b > 0 one expects either a hyperexponential or uni-

form RCP shape.

Our sensitivity analysis results for b (Figure 2d and supporting information Table S4) show that the most

sensitive factor affecting the retention behavior of the NP is the influent concentration with RS512.0% and

a direct relationship. This opposes the outcomes of Raychoudhury et al. [2014] reporting a minor influence

of influent CMC-NZVI concentration (ranging from 1.085 to 1.7 g/L) on the retention via straining, whereas

this agrees with several other studies [Bradford et al., 2009; Kasel et al., 2013; Liang et al., 2013a; P. Sun et al.,

2015] highlighting the effect of injected concentration on the depth-dependent behavior. Particle diameter

is the second most important factor (RS58.7%) with a reverse association. This indicates the logic behind

the use of particle-size to the grain-size ratio as a criteria for identifying whether or not straining is an

underlying phenomena in transport of colloids [Bradford et al., 2002; Herzig et al., 1970; Shen et al., 2008].

However, the trend of b with particle size does not match that developed for traditional colloids, the reason

for which is not clear. Recently, the use of these criteria in NP transport studies was criticized due to the

potential role of agglomeration in altering the particle size during the transport in porous media (Johnson,

2011 #896).

Porous media heterogeneity showed a direct relationship (RS5 4.9%) while dispersivity revealed a negative

correlation (RS5 2.8%). These trends perhaps suggest that higher heterogeneity, e.g., with more angular

retention sites, can induce hyperexponential behavior or straining whereas a flow regime with higher dis-

persivity gives more chance for detouring when the particles are going to be trapped in the contact angles

in straining process.

4.6. Sensitivity Results for Katt2

The results for the second site attachment rate is shown in Figure 3a and supporting information Table S4.

The sensitivity of Katt2 to particle zeta-potential and grain diameter was surprisingly high with RS5 13.0%

(positive correlation) and RS5 12.5% (negative correlation), respectively. In contradiction to the results of

previous modeling parameters, particularly those of Katt , where grain zeta-potential was mainly among the

most important factors, here it is the particle zeta-potential that is the most sensitive one, the increase of

which promotes attachment in second sites. In spite of the fact that the aim of incorporating Katt2 in the

continuum model is to capture the effect of secondary attachment sites, the conceptual model for using

this parameter in the context of NP transport is not clear. We reinvestigated the literature studies and found

that the common underlying phenomena reported by almost all of these papers [Cornelis et al., 2012; Fang

et al., 2013; He et al., 2015; Qi et al., 2014a, 2014b; Rahman et al., 2013, 2014; P. Sun et al., 2015; Wang et al.,

2012b, 2011b, 2014b] is agglomeration, although ripening and clogging have been reported as well

[Hosseini and Tosco, 2013; Tosco and Sethi, 2010]. The current results clearly shows a high sensitivity to parti-

cle zeta-potential, the increase of which (less negative) causes higher degree of agglomeration [Fan et al.,

2015a, 2015b]. Interestingly, it matches the recently proposed model [Babakhani et al., 2015] in which the

agglomeration model was linked with the continuum model through an additional first-order sink term

which is mathematically similar to Katt2 . Therefore, opposed to the proposed conceptual model for deploy-

ing Katt2 , that is capturing the effect of secondary deposition sites, here it evident that this factor had to be

incorporated in models in order to represent the agglomeration effect on the transport of NP in porous

media. The underlying reason for the high influence of grain diameter in curbing Katt2 is not clear. Yet if the

aforementioned conceptual model of agglomeration coexistence holds true, it suggests that agglomeration

is more crucial for smaller grain diameters and thereby for narrower pore spaces than larger pore spaces.

Experimental studies are needed to confirm this hypothesis.

4.7. Sensitivity Results for C=C0

The sensitivity outcomes for normalized effluent concentration in respect of experimental factors are shown

in Figure 3b and supporting information Table S4. In this section the crucial role of grain zeta-potential in

the fate and transport of NP become clearer since it displays the highest sensitivity (RS5 28.7%) among all

the experimental factors. This sensitivity is around 4 times higher than the next-most important factor

which is the filtration (column) length (RS57.5%). This is in line with the study of Goldberg et al. [2015]

which demonstrated by machine learning that there is a strong contribution of the zeta-potential in control-

ling the retained fraction of NP in porous media. Although for continuum model parameters the grain size

was not among the most important factors, for C=C0 it turned out to be the third most sensitive factor
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(RS55.5%) with a positive correlation. The situation is similar for the porosity with RS54.9% and a direct

relationship with C=C0, suggesting that after the surface charge and the filtration length, the dominant fac-

tors in controlling the transport of NP is the size of the pore space geometry. This is also in agreement with

the study of Goldberg et al. [2015] who found these factors moderately important. The load of particles, i.e.,

PV number and injecting concentration, are also moderately important predictors of C=C0 with RS54.5%

and RS53.3%, respectively, with positive correlations. Goldberg et al. [2015] found these features even more

important than the pore space geometry (porosity and grain diameter). Particle diameter is moderately sen-

sitive (RS54.0%) and exhibits a negative correlation which is consistent with the current theories stating

that larger deposition energy minima resulted from larger size cause less mobility. This is also in harmony

with the concept of straining that larger particles have more chance of entrapment in grain-grain contact

angles resulting in less mobility [Babakhani et al., 2015; Bradford et al., 2003; Phenrat et al., 2009; Tufenkji

and Elimelech, 2004b].

The rest of parameters have relatively similar contribution to C=C0 with RS ranging from 3.9% down to

2.7%, except saturation magnetization with RS52:1% and free-polymer concentration with RS52:2%. The

low sensitivity of free-polymer concentration, which was also the case in the results of modeling parameters

discussed previously, suggests that the net contribution of this parameter might not be significant in the

fate and transport of NP in the environment, since it causes equivocal influences on the transport phenom-

ena as described previously. These results oppose those of Goldberg et al. [2015] reporting the highest

importance for the NOM concentration while the lowest importance for coating.

4.8. Model Validation

In this section we try to systematically validate the model predictions by comparing the performance of Katt

predictions obtained via ANN with those resulted from Seetha et al. [2015] and CFT, the collector efficiencies

of which was determined after Tufenkji and Elimelech [2004a] or Phenrat et al. [2010a]. In doing so, we used

the data of polymer-modified NZVI transport in saturated column experiments from Babakhani et al. [2015]

and Phenrat et al. [2009] for which the parameters of all four empirical models, namely, the present study,

Seetha et al. [2015], Tufenkji and Elimelech [2004a], and Phenrat et al. [2010a], were available. For this pur-

pose, instead of randomly dividing the data set into three categories of training, validation, and testing sets

Figure 6. Comparison between the predictions of Katt obtained based on ANN as the validation set with those resulted from Seetha et al. [2015]

and CFT combined with empirical models of Tufenkji and Elimelech [2004a] or Phenrat et al. [2010a]. The reference data set used is taken from

the experimental report of Phenrat et al. [2009] and continuummodeling of Babakhani et al. [2015].
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in the ANN modeling procedure (described in supporting information), we designated the data from Baba-

khani et al. [2015] and Phenrat et al. [2009] as the validation set and the rest of the data set as the training

set (472 cases).

Figure 7. Testing the model predictions against experimental data of Wang et al. [2011a] (with permission from Elsevier) for various concentrations of KCl, CaCl2, and Cu as solution ionic

strength. The BTCs have been produced with MT3DMS model using either set of Katt and Kdet or Katt alone, predicted from the ANN-based correlations. Dispersivity parameter was

obtained via a separated ANN-based empirical model in all cases. Other modeled BTCs are determined by only Katt from Phenrat et al. [2010a], Seetha et al. [2015], and Tufenkji and Elime-

lech [2004a].
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The results for this simulation are presented in Figure 6, which shows that none of the current models are

able to predict Katt in the range of parameters used here. In sharp contrast, the ANN derived model parame-

terization can very closely predict the Katt values obtained from calibration of the continuum model directly

to the data. It should be mentioned that the best network matrices chosen among 1000 iterations of the

sensitivity analysis procedure were incorporated in a spreadsheet which can be easily used as empirical

model for future predictions of a wide range of the continuum transport parameters or C=C0 in the scale of

column experiment. The dimensions of the coefficient matrices in this model are comparable with those of

Seetha et al. [2015]. This spreadsheet is presented as supporting information.

4.9. Model Robustness

In the previous section an agreement was achieved between the predicted parameters by the ANN-based

model and those determined by continuummodel calibration in the literature. As a slight change in the values

of continuum model parameters can significantly change the shape and/or position of the breakthrough

curve, here it is worth to practically compare experimental BTCs with those generated using a continuum

model based on the parameters predicted by this study’s correlations. To the best of our knowledge, only one

study Landkamer et al. [2013] has thus far performed this type of comparison, which was in a limited range of

experimental parameters. For this study, we used MT3DMS code [Babakhani et al., 2015; Zheng and Wang,

1999] to generate the BTCs based on the prediction of the ANN-based model for either sets of Katt and Kdet , or

Katt alone. The experimental BTC data of hydroxyapatite NP transport in porous media were used from Wang

et al. [2011a] which comprise transport in presence of humic acid together with either KCl or CaCl2 as electro-

lyte or dissolved Cu as contaminant. Since the behavior of Cu21 is deemed to be similar to that of Ca21, here

we added the concentration of Cu21 as IS of the solution similar to that of Ca21.

As shown in Figure 7, the performance of the model with only one parameter, Katt , in reproducing BTCs at mid-

dle concentrations of KCl seems better (R250:53 and R250:43 for 10 mM and 50 mM KCl, respectively) than

that at low concentration of 1 mM (R250:22) and high concentration of 100 mM KCl (R2 < 0). Likewise, at high

concentration of divalent electrolyte (1 mM CaCl2), R
2 was less than zero, while at lower concentrations of 0.1,

0.3, and 0.5 mM CaCl2, R
2 values were 0.88, 0.30, and 0.74, respectively. Interestingly, the model was able to cap-

ture the BTC at low concentrations of Cu although such a data set, i.e., transport in presence of external contam-

inant, had not been incorporated in the training phase of the ANN model. In these cases, R2 values for 131023

mM, 131022 mM, and 131021 mM Cu were 0.92, 0.92, and 0.89, respectively. Yet similar to previous ionic spe-

cies, at high concentration of Cu (531021 mM), the model failed to predict experimental BTC (R2 < 0). The use

of parameter set of Katt and Kdet did not change the result substantially—the differences of positive R2 values

between the two-parameter set and one-parameter set varied in the range of20.09 to 0.02.

The correlations proposed in this study overall show better performance than previous correlations in repro-

ducing experimental BTCs based on mere experimental characteristics. However, still there are several cases

where the model fails to predict the experimental BTC such as very high or low IS values. Although we used

‘‘early stopping’’ technique [Beale et al., 2015; Bishop, 1995; Coulibaly et al., 2000; Dehghani et al., 2014] along

with a generalization efficiency criteria that selected the network with the best prediction performance in

the iteration loops, there are other techniques that can be tried for improving the generalization of the

model in future studies, e.g., Bayesian regularization.

5. Conclusions

This study used an artificial neural network to reanalyze a large data set of NP transport in porous media and

develop nonlinear empirical correlations for predicting the continuum model parameters as well as C=C0. We

analyzed the sensitivities of each continuum model parameter to experimental factors and determined the

predominant and general trends between these parameters. Many interesting insights are gained from sensi-

tivity analysis which can guide the future development of mechanistic models for predicting the fate and

transport of NP as well as selections of influential factors for future modeling and experimental studies.

For instance, IS and pH were not as sensitive as coating concentration in determining Katt . In contrast to the cur-

rent ambiguity regarding the trend of attachment rate with pore water velocity, ANN showed a clear positive

correlation. Katt was more sensitive to the surface-related factors, than flow-regime-related factors whereas Kdet

was more sensitive to the flow-regime-related factors. The most sensitive factor in determining Kdet was the IS of
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the solution. In the case of Sm, the factors relevant to the surface area, including column length, column diame-

ter, aspect ratio, and porosity were moderately to highly sensitive (RS ranging from 4.9 to 9.3%). The most impor-

tant feature in curbing the depth-dependent behavior of RCP was the influent concentration with a positive

correlation. The pattern of sensitive factors around Katt2 indicates toward the influence of agglomeration on the

NP transport rather than its commonly proposed conceptual model as the attachment rate of secondary sites.

The high sensitivity to grain zeta-potential was evident in almost all cases—ranging from 4.6 to 28.7%. This

might oppose the important role of microscopic surface heterogeneities in transport of NP in porous media.

Particle zeta-potential was mostly sensitive for Sm and Katt2 . One of the most well-studies factors in the litera-

ture, IS, showed a sensitivity in range of 2.9–14.8%. For the first time we considered a simple unified param-

eter for the porous media heterogeneity, i.e., heterogeneity imposed by the nature of the soil sample (clean

or treated laboratory porous media, disturbed, and undisturbed), grain coating, and grain size distribution.

Although the conceptualization approach of this parameter was based on a series of simplifying rationale,

its sensitivity turned out to be in range of 2.4–6.2%, suggesting that considering the porous media hetero-

geneity in continuum modeling is even more important than dispersivity (RS5 1.7–5.1%) which has long

been recognized as one of the most influential parameters affecting the transport of materials in porous

media. Yet the development of the heterogeneity as a unified parameter from several relevant influences in

this study is still in an infancy level and mainly aimed at satisfying the needs of the present study. Future

studies are necessary to establish a more rigorous definition of heterogeneity as a unified parameter to be

considered in continuum modeling of NP transport, as even a rough representation of this factor turned

out to be significant. Here, the highest sensitivity to heterogeneity was revealed for the Kdet .

The developed ANN-based correlations in this study performed very well in predicting the continuum

model parameters, such as Katt and turned out to be superior to current empirical correlation methods avail-

able in the literature of colloid and NP transport. Finally, we tried to reproduce the experimental break-

through curves with continuum model based on the parameters fully predicted from our empirical

correlations. From 12 cases of investigated BTCs, in three cases the model totally failed to predict BTCs

(R2 < 0) which all involved very high IS values. Yet the model was able to predict other nine experimental

BTCs with a mean R2 of 0:6560:26. The empirical correlations obtained in this study are formulated in a

spreadsheet file so that they can be easily tested against other data sets and used for future preestimation

of continuum model parameters as well as C=C0.
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