328 research outputs found

    Fungal ecological strategies reflected in gene transcription - a case study of two litter decomposers.

    Get PDF
    Microbial communities interplay with their environment through their functional traits that can be a response or an effect on the environment. Here, we explore how a functional trait-the decomposition of organic matter, can be addressed based on genetic markers and how the expression of these markers reflect ecological strategies of two fungal litter decomposer Gymnopus androsaceus and Chalara longipes. We sequenced the genomes of these two fungi, as well as their transcriptomes at different steps of Pinus sylvestris needles decomposition in microcosms. Our results highlighted that if the gene content of the two species could indicate similar potential decomposition abilities, the expression levels of specific gene families belonging to the glycoside hydrolase category reflected contrasting ecological strategies. Actually, C. longipes, the weaker decomposer in this experiment, turned out to have a high content of genes involved in cell wall polysaccharides decomposition but low expression levels, reflecting a versatile ecology compare to the more competitive G. androsaceus with high expression levels of keystone functional genes. Thus, we established that sequential expression of genes coding for different components of the decomposer machinery indicated adaptation to chemical changes in the substrate as decomposition progressed

    Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities

    Get PDF
    Recent studies have questioned the use of high-throughput sequencing of the nuclear ribosomal internal transcribed spacer (ITS) region to derive a semi-quantitative representation of fungal community composition. However, comprehensive studies that quantify biases occurring during PCR and sequencing of ITS amplicons are still lacking. We used artificially assembled communities consisting of 10 ITS-like fragments of varying lengths and guanine-cytosine (GC) contents to evaluate and quantify biases during PCR and sequencing with Illumina MiSeq, PacBio RS II and PacBio Sequel I technologies. Fragment length variation was the main source of bias in observed community composition relative to the template, with longer fragments generally being under-represented for all sequencing platforms. This bias was three times higher for Illumina MiSeq than for PacBio RS II and Sequel I. All 10 fragments in the artificial community were recovered when sequenced with PacBio technologies, whereas the three longest fragments (> 447 bases) were lost when sequenced with Illumina MiSeq. Fragment length bias also increased linearly with increasing number of PCR cycles but could be mitigated by optimization of the PCR setup. No significant biases related to GC content were observed. Despite lower sequencing output, PacBio sequencing was better able to reflect the community composition of the template than Illumina MiSeq sequencing

    Comparative analyses of the Hymenoscyphus fraxineus and Hymenoscyphus albidus genomes reveals potentially adaptive differences in secondary metabolite and transposable element repertoires

    Get PDF
    Background The dieback epidemic decimating common ash (Fraxinus excelsior) in Europe is caused by the invasive fungus Hymenoscyphus fraxineus. In this study we analyzed the genomes of H. fraxineus and H. albidus, its native but, now essentially displaced, non-pathogenic sister species, and compared them with several other members of Helotiales. The focus of the analyses was to identify signals in the genome that may explain the rapid establishment of H. fraxineus and displacement of H. albidus. Results The genomes of H. fraxineus and H. albidus showed a high level of synteny and identity. The assembly of H. fraxineus is 13 Mb longer than that of H. albidus', most of this difference can be attributed to higher dispersed repeat content (i.e. transposable elements [TEs]) in H. fraxineus. In general, TE families in H. fraxineus showed more signals of repeat-induced point mutations (RIP) than in H. albidus, especially in Long-terminal repeat (LTR)/Copia and LTR/Gypsy elements. Comparing gene family expansions and 1:1 orthologs, relatively few genes show signs of positive selection between species. However, several of those did appeared to be associated with secondary metabolite genes families, including gene families containing two of the genes in the H. fraxineus-specific, hymenosetin biosynthetic gene cluster (BGC). Conclusion The genomes of H. fraxineus and H. albidus show a high degree of synteny, and are rich in both TEs and BGCs, but the genomic signatures also indicated that H. albidus may be less well equipped to adapt and maintain its ecological niche in a rapidly changing environment

    Comparative genomics highlights the importance of drug efflux transporters during evolution of mycoparasitism in Clonostachys subgenus Bionectria (Fungi, Ascomycota, Hypocreales)

    Get PDF
    Various strains of the mycoparasitic fungal speciesClonostachys roseaare used commercially as biological control agents for the control of fungal plant diseases in agricultural crop production. Further improvements of the use and efficacy ofC. roseain biocontrol require a mechanistic understanding of the factors that determines the outcome of the interaction betweenC. roseaand plant pathogenic fungi. Here, we determined the genome sequences of 11Clonostachysstrains, representing five species inClonostachyssubgenusBionectria, and performed a comparative genomic analysis with the aim to identify gene families evolving under selection for gene gains or losses. Several gene families predicted to encode proteins involved in biosynthesis of secondary metabolites, including polyketide synthases, nonribosomal peptide syntethases and cytochrome P450s, evolved under selection for gene gains (p <= .05) in theBionectriasubgenus lineage. This was accompanied with gene copy number increases (p <= .05) in ATP-binding cassette (ABC) transporters and major facilitator superfamily (MFS) transporters predicted to contribute to drug efflux. MostClonostachysspecies were also characterized by high numbers of auxiliary activity (AA) family 9 lytic polysaccharide monooxygenases, AA3 glucose-methanol-choline oxidoreductases and additional carbohydrate-active enzyme gene families with putative activity (or binding) towards xylan and rhamnose/pectin substrates. Particular features of theC. roseagenome included expansions (p <= .05) of the ABC-B4 multidrug resistance transporters, the ABC-C5 multidrug resistance-related transporters and the 2.A.1.3 drug:H + antiporter-2 MFS drug resistance transporters. The ABC-G1 pleiotropic drug resistance transporter geneabcG6inC. roseawas induced (p <= .009) by exposure to the antifungalFusariummycotoxin zearalenone (1121-fold) and various fungicides. Deletion ofabcG6resulted in mutants with reduced (p < .001) growth rates on media containing the fungicides boscalid, fenhexamid and iprodione. Our results emphasize the role of biosynthesis of, and protection against, secondary metabolites inClonostachyssubgenusBionectria

    Chemical and transcriptional responses of Norway spruce genotypes with different susceptibility to Heterobasidion spp. infection

    Get PDF
    Background: Norway spruce [Picea abies (L.) Karst.] is one of the most important conifer species in Europe. The wood is economically important and infections by wood-rotting fungi cause substantial losses to the industry. The first line of defence in a Norway spruce tree is the bark. It is a very efficient barrier against infection based on its mechanical and chemical properties. Once an injury or an infection is recognized by the tree, induced defences are activated. In this study we examined transcriptional response, using 454-sequencing, and chemical profiles in bark of Norway spruce trees with different susceptibility to Heterobasidion annosum s.l. infection. The aim was to find associations between the transcriptome and chemical profiles to the level of susceptibility to Heterobasidion spp. in Norway spruce genotypes. Results: Both terpene and phenol compositions were analysed and at 28 days post inoculation (dpi) high levels of 3-carene was produced in response to H. annosum. However, significant patterns relating to inoculation or to genotypes with higher or lower susceptibility could only be found in the phenol fraction. The levels of the flavonoid catechin, which is polymerized into proanthocyanidins (PA), showed a temporal variation; it accumulated between 5 and 15 dpi in response to H. annosum infection in the less susceptible genotypes. The transcriptome data suggested that the accumulation of free catechin was preceded by an induction of genes in the flavonoid and PA biosynthesis pathway such as leucoanthocyanidin reductase. Quantitative PCR analyses verified the induction of genes in the phenylpropanoid and flavonoid pathway. The qPCR data also highlighted genotype-dependent differences in the transcriptional regulation of these pathways. Conclusions: The varying dynamics in transcriptional and chemical patterns displayed by the less susceptible genotypes suggest that there is a genotypic variation in successful spruce defence strategies against Heterobasidion. However, both high levels of piceasides and flavonoids in the less susceptible genotypes suggested the importance of the phenolic compounds in the defence. Clearly an extended comparison of the transcriptional responses in the interaction with Heterobasidion between several independent genotypes exhibiting reduced susceptibility is needed to catalogue mechanisms of successful host defence strategies

    Do foliar fungal communities of Norway spruce shift along a tree species diversity gradient in mature European forests?

    Get PDF
    Foliar fungal species are diverse and colonize all plants, though whether forest tree species composition influences the distribution of these fungal communities remains unclear. Fungal communities include quiescent taxa and the functionally important and metabolically active taxa that respond to changes in the environment. To determine fungal community shifts along a tree species diversity gradient, needles of Norway spruce were sampled from trees from four mature European forests. We hypothesized that the fungal communities and specific fungal taxa would correlate with tree species diversity. Furthermore, the active fungal community, and not the total community, would shift along the tree diversity gradient. High-throughput sequencing showed significant differences in the fungal communities in the different forests, and in one forest, tree diversity effects were observed, though this was not a general phenomenon. Our study also suggests that studying the metabolically active community may not provide additional information about community composition or diversity. (C) 2016 The Author(s). Published by Elsevier Ltd

    Marker-Trait Associations for Tolerance to Ash Dieback in Common Ash (Fraxinus excelsior L.)

    Get PDF
    Common ash (Fraxinus excelsior L.) is a tree species of significant ecological and economic importance that has suffered a devastating decline since the 1990s in Europe. Native ash species are being threatened by the alien invasive fungus Hymenoscyphus fraxineus, which causes ash dieback. The main goal of the study was to develop markers for traits related to tolerance to ash dieback and to investigate whether genotypes selected for tolerance were genetically different from susceptible wild populations. We phenotyped 326 ash trees from Sweden for disease severity and genotyped them using 63 amplicon-derived single-nucleotide polymorphism (SNP) markers derived from genes in 40 scaffolds spanning 8 MB in total, which represents approximately 1% of the ash genome. We used a mixed linear model to test for an association between genotypic variation at these loci and disease severity of ash. In total, two SNPs were found to have significant associations. One non-synonymous SNP associated with the disease severity of ash was found in a gene predicted to encode a subtilisin-related peptidase S8/S53 domain. A second marginally significant marker was associated with an LRR gene. Our results demonstrate an inexpensive time-effective method for generating genomic data that could have potential for use in future tree breeding programs and provide information for marker-assisted selection. Our study also showed a low differentiation between genotypes selected for disease tolerance and the wild population of ash representing a range of susceptibilities to ash dieback, indicating opportunities for further selection without significantly losing genetic diversity in the ash population

    Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology

    Get PDF
    Chitin is a promising soil amendment for improving soil quality, plant growth, and plant resilience. The objectives of this study were twofold. First, to study the effect of chitin mixed in potting soil on lettuce growth and on the survival of two zoonotic bacterial pathogens, Escherichia colt O157:H7 and Salmonella enterica on the lettuce leaves. Second, to assess the related changes in the microbial lettuce rhizosphere, using phospholipid fatty acid (PLFA) analysis and amplicon sequencing of a bacterial 16S rRNA gene fragment and the fungal ITS2. As a result of chitin addition, lettuce fresh yield weight was significantly increased. S. enterica survival in the lettuce phyllosphere was significantly reduced. The E. coli O157:H7 survival was also lowered, but not significantly. Moreover, significant changes were observed in the bacterial and fungal community of the lettuce rhizosphere. PLFA analysis showed a significant increase in fungal and bacterial biomass. Amplicon sequencing showed no increase in fungal and bacterial biodiversity, but relative abundances of the bacterial phyla Acidobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Proteobacteria and the fungal phyla Ascomycota, Basidiomycota, and Zygomycota were significantly changed. More specifically, a more than 10-fold increase was observed for operational taxonomic units belonging to the bacterial genera Cellvibrio, Pedobacter, Dyadobacter, and Streptomyces and to the fungal genera Lecanicillium and Mortierella. These genera include several species previously reported to be involved in biocontrol, plant growth promotion, the nitrogen cycle and chitin degradation. These results enhance the understanding of the response of the rhizosphere microbiome to chitin amendment. Moreover, this is the first study to investigate the use of soil amendments to control the survival of S. enterica on plant leaves

    Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens Heterobasidion spp.

    Get PDF
    Plant microbiome plays an important role in maintaining the host fitness. Despite a significant progress in our understanding of the plant microbiome achieved in the recent years, very little is known about the effect of plant pathogens on composition of microbial communities associated with trees. In this study, we analysed the mycobiome of different anatomic parts of asymptomatic and symptomatic Norway spruce trees naturally infected by Heterobasidion spp. We also investigated the primary impact of the disease on the fungal communities, which are associated with Norway spruce trees. Our results demonstrate that the structure of fungal communities residing in the wood differed significantly among symptomatic and asymptomatic Heterobasidion-infected trees. However, no significant differences were found in the other anatomic regions of the trees. The results also show that not only each of individual tree tissues (wood, bark, needles and roots) harbours a unique fungal community, but also that symptomatic trees were more susceptible to co-infection by other wood-degrading fungi compared to the asymptomatic ones.Peer reviewe

    Different alleles of a gene encoding leucoanthocyanidin reductase (PaLAR3) influence resistance against the fungus Heterobasidion parviporum in Picea abies

    Get PDF
    Despite the fact that fungal diseases are a growing menace for conifers in modern silviculture, only a very limited number of molecular markers for pathogen resistance have been validated in conifer species. A previous genetic study indicated that the resistance of Norway spruce (Picea abies) to Heterobasidion annosum s.l., a pathogenic basidiomycete species complex, is linked to a QTL that associates with differences in fungal growth in sapwood (FGS) that includes a gene, PaLAR3, which encodes a leucoanthocyanidin reductase. In this study, gene sequences showed the presence of two PaLAR3 allelic lineages in P. abies. Higher resistance was associated with the novel allele, which was found in low frequency in the four P. abies populations that we studied. Norway spruce plants carrying at least one copy of the novel allele showed a significant reduction in FGS after inoculation with Heterobasidion parviporum compared to their half-siblings carrying no copies, indicating dominance of this allele. The amount of (+) catechin, the enzymatic product of PaLAR3, was significantly higher in bark of trees homozygous for the novel allele. Although we observed that the in vitro activities of the enzymes encoded by the two alleles were similar, we could show that allele-specific transcript levels were significantly higher for the novel allele, indicating that regulation of gene expression is responsible for the observed effects in resistance, possibly caused by differences in cis-acting elements that we observe in the promoter region of the two alleles.Financial support was received from SSF (grant nr R8b08-0011), and by the Swedish Research Council FORMAS, grant nrs 2012-1276 and 217-2007-433, the European Community’s Sixth Framework Programme, under the Network of Excellence Evoltree (www.evoltree.eu/) and by the Seventh Framework Programme (FP7/2007-2013) under the grant agreement nu 211868 (Project Noveltree, www.noveltree.eu/), Support also came from the Biodiversa projects Linktree (www.igv.fi.cnr.it/linktree/) and TipTree, and The Max Planck Society.http://www.aspbjournals.orghb2016Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog
    corecore