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Originality-Significance Statement 26 

This study is the first to address the effect of root and butt rot disease on the composition of fungal 27 

communities associated with Norway spruce and the connection between health status of spruce 28 

trees and the composition of the resident mycobiota. Presented results showed the significant 29 

differences in structure of fungal communities inhabiting wood of symptomatic and asymptomatic 30 

spruce trees. Our study provides a new insight into the interaction of fungal plant pathogens with 31 

the resident plant microbiota. 32 

 33 

Summary 34 

Plant microbiome plays an important role in maintaining the host fitness as demonstrated by 35 

numerous studies. Despite a significant progress achieved in our understanding of the factors 36 

affecting the composition of microbial communities associated with trees, very little is known about 37 

the effect of plant pathogens on their structure. We analyzed the mycobiome of different parts of 38 

Norway spruce as well as their fungal communities on asymptomatic and symptomatic naturally 39 

infected trees. Using Heterobasidion-rotted and infected trees as a model, we investigated the 40 

primary impact of the disease on fungal communities associated with Norway spruce trees. Our 41 

results demonstrate that symptomatic and asymptomatic Heterobasidion-infected trees significantly 42 

differed in the structure of the fungal communities residing in their wood, but not in other anatomic 43 

regions. Each of the investigated tissues (wood, bark, needles and roots) harbored a unique fungal 44 

community. Symptomatic trees were more susceptible to co-infection by other wood-degrading 45 

fungi. 46 

 47 

Introduction 48 

All groups of land plants, ranging from mosses to angiosperms, live in close association with a 49 

diverse set of microorganisms. Both outer plant surfaces and inner parts of the plant body are 50 
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colonized by various taxa of bacteria, fungi, archaea, and protists, together comprising plant 51 

microbiota (Turner et al., 2013). It is widely accepted that plant microbiota influences host fitness 52 

(Vandenkoornhuyse et al., 2015). Certain plant-associated fungi and bacteria contribute to plant 53 

growth promotion and resistance against biotic and abiotic stresses (Hardoim et al., 2015). 54 

However, dormant pathogens and saprobes equally belong to plant microbiota (Porras-Alfaro and 55 

Bayman, 2011; Hardoim et al., 2015). Thus, the interactions between plants and the associated 56 

microorganisms can range from mutualism through commensalism to pathogenicity. The outcomes 57 

of specific interactions are influenced by a number of driving forces, including host and microbial 58 

genotypes, abiotic factors, and interactions within plant microbiome (Hardoim et al., 2015).  59 

The application of metagenomics and metatranscriptomics boosted the studies on plant microbiome 60 

function and its role in plant health and stress tolerance (Lebeis, 2015). Nevertheless, the current 61 

information on factors driving the composition of plant microbiome and, particularly, forest trees is 62 

still very scarce. The available data suggest that microbial communities of the rhizosphere are 63 

mainly influenced by soil types, whereas host plant genotype has a limited effect on their 64 

composition (Weinert et al., 2011; Bulgarelli et al., 2012; Lundberg et al., 2012). In contrast, 65 

microbial communities of phyllosphere and endosphere are predominantly determined by host plant 66 

species (Redford et al., 2010; Bulgarelli et al., 2013). 67 

Reports on abilities of microbial endophytes to improve host fitness and stress tolerance inspired the 68 

idea of using endophytic microorganisms as biocontrol and growth-promoting agents (Backman and 69 

Sikora, 2008; Mejia et al., 2008; Blumenstein et al., 2015; Pautasso et al., 2015). However, the 70 

research on the impact of microbiome on the plant disease resistance is still in its early stage. The 71 

effects of pathogens on microbiome community and vice versa observed in a few available studies 72 

differed among used experimental models (Hardoim et al., 2015), making it difficult to draw any 73 

general conclusions. Nevertheless, some pioneering studies do indicate that there might be a 74 
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correlation between the structure of microbiome communities and host plant resistance / 75 

susceptibility to pathogens (Ardanov et al., 2012; Martin et al., 2013). 76 

Butt and root rot disease caused by fungi belonging to Heterobasidion annosum species complex 77 

has a great economic impact on forest industry in boreal zone (Asiegbu et al., 2005). The pathogen 78 

grows necrotrophically in the sapwood of living trees and saprotrophically in dead wood tissues. In 79 

Norway spruce, the disease develops slowly resulting in the formation of decay column within the 80 

tree trunk, but it rarely causes instant mortality of spruce trees (Asiegbu et al., 2005). Often, decay 81 

zone remains limited to heartwood, but occasionally pathogen can reach sapwood. Oliva et al 82 

(2013) have observed in field inoculations that heartwood of Norway spruce stumps were more 83 

susceptible to H. parviporum and H. annosum s.s. infection than pine. Current control strategies 84 

focus on prevention of fungal infection of tree stumps remaining after harvesting. No absolute 85 

protection and elimination of the fungus from already infected trees or stumps are available. 86 

Therefore, better understanding of the interactions between Heterobasidion fungi, their hosts and 87 

other components of host microbiome is needed for the development of novel, more efficient 88 

disease management strategies.  89 

The aim of the presented study was to investigate the composition of fungal communities associated 90 

with different anatomical tissues of Norway spruce trees and to assess the impact of the root and 91 

butt rot caused by Heterobasidion sp. on the structure of these communities under field conditions. 92 

The pathogen establishment is likely to occur in an interaction with a resident microbiota of the 93 

infected tree. We hypothesized that there are significant differences in microbial communities of 94 

asymptomatic and symptomatic Norway spruce trees. As the extent of the potential effect exerted 95 

by Heterobasidion infection on spruce fungal communities was difficult to predict, we sampled not 96 

only tissues visibly closer to the decay zone (down stem, see Figure 1), but also included in our 97 

analysis more distant parts of spruce trees, namely root, bark and needles. 98 

 99 
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Results and discussion 100 

MiSeq sequencing output 101 

A total of 8 276 762 high quality sequences were generated across root, down stem, upper stem, 102 

bark and needle samples in the three sampling sites after sequence denoising and quality filtering. 103 

After filtering out unclassified sequences and sequences assigned to plant and animal domains, a 104 

core set of 7 673 670 sequences assigned to fungal domain was obtained. Due to technical problem 105 

of PCR amplification and sequencing, 16 out of 90 samples had lower number of reads (less than 106 

7000) and were excluded from further analysis. The excluded sampled also had lower values of 107 

Good’s coverage index than the remaining ones. The number of sequences in the remaining samples 108 

ranged from 194 915 to 22 278 with an average of 103 390 ± 44 630 (mean ± SD) sequences. 109 

 110 

Occurrence of Heterobasidion in sampled trees 111 

One of the unexpected findings of our study was that two OTUs assigned to the genus 112 

Heterobasidion were present not only in diseased trees showing symptoms of wood decay, but also 113 

in apparently healthytrees without decay symptoms (Fig. 1). Following this observation, the 114 

sampled trees were classified as “symptomatic (with decay)” and “asymptomatic (without decay), 115 

respectively. 116 

Otu00011 was tentatively classified as H. annosum, whereas Otu00048 was assigned to H. 117 

parviporum. Both species occur naturally in Finland. H. parviporum predominantly infects Norway 118 

spruce trees, whereas H. annosum has broader host spectrum and infects both Scots pine and 119 

Norway spruce. Several explanations can be proposed for the presence of Heterobasidion spp. in 120 

asymptomatic trees. First, the entry of pathogen in these trees might have occurred relatively 121 

recently, i.e. at the time point of the sample collection the trees were at the initial stages of the 122 

disease development, with no detectable symptoms of wood decay. Alternatively, the lack of 123 

disease symptoms despite presence of Heterobasidion could be related to the genetic resistance 124 



6 
 

background of each individual tree, allowing asymptomatic trees to restrict the fungal growth and 125 

invasion. It is known that spruce trees show natural variation in their susceptibility to 126 

Heterobasidion infection, which could probably explain the absence of disease symptoms despite 127 

the identification of the pathogen in the sampled trees. Finally, if two detected OTUs assigned to 128 

Heterobasidion in fact represented two different species, it is possible that they differed in their 129 

virulence. Our data show that Otu00048 was more abundant in asymptomatic trees, whereas 130 

Otu00011 had higher abundance in symptomatic trees (Table S1). Taking into account the last 131 

observation, we consider the cross-contamination during the sample processing rather unlikely 132 

sources of Heterobasidion-specific reads in samples from asymptomatic trees. We however cannot 133 

rule out completely the possibility that at least some of obtained reads were due to the presence of 134 

Heterobasidion spores, which landed on the samples surface during harvesting. However, the spore 135 

load is expected to be equal for all samples, whereas our data show clear differences in the 136 

abundance of two OTUs assigned to the genus Heterobasidion among symptomatic and 137 

asymptomatic trees. 138 

 139 

Richness, diversity and evenness of mycobiome communities of Norway spruce 140 

Quality-filtered fungal sequences were clustered into 4375 OTUs (excluding singletons). The sub-141 

sampled set used to calculate richness, diversity and evenness contained 4315 OTUs. The highest 142 

richness of fungal communities in asymptomatic and symptomatic trees were observed in needles 143 

and in roots, respectively. The bark had the lowest numbers of OTUs in both symptomatic and 144 

asymptomatic trees (Fig. 2A). There were no significant differences in the fungal species richness 145 

among asymptomatic and symptomatic trees in any of the sampled tissues. Needles had the highest 146 

community diversity in both symptomatic and asymptomatic trees. The lowest community diversity 147 

was observed in roots and in down stem in asymptomatic and in symptomatic trees, respectively 148 

(Fig. 2B). However, no statistically significant difference in fungal diversity was found in any of the 149 
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regions among symptomatic and asymptomatic trees. The highest evenness of fungal communities 150 

was found in bark of symptomatic trees and in needles of asymptomatic trees, whereas the lowest 151 

evenness was observed in roots of both groups (Fig. 2C). Evenness in needles of asymptomatic 152 

trees was significantly higher than that of symptomatic trees. 153 

The sampled tissues of the spruce trees shared 738 (16.9%) of the total 4375 OTUs. The proportion 154 

of the OTUs unique to a certain tissue ranged from 1.6% (69 OTUs; bark) to 13.3% (584 OTUs; 155 

roots) (Fig. 2D).  156 

The PCoA based on the relative OTUs abundance explained 28.5% of the observed variation and 157 

showed distinct clusters for each of the sampled tree tissues (Fig. 3), which were confirmed by 158 

PERMANOVA (p < 0.001 in all possible pairs). The detailed taxonomic analysis of OTUs detected 159 

in specific Norway spruce tissues is presented in Supporting Notes 1 and 2 and in Supporting 160 

Figures S1-S6.  161 

 162 

Impacts of health status on structure of fungal communities of Norway spruce 163 

We hypothesized that there are significant differences in microbial communities of asymptomatic 164 

and symptomatic Norway spruce trees. This hypothesis was partially confirmed. There were no 165 

significant differences among symptomatic and asymptomatic trees in the structure of fungal 166 

communities inhabiting their needles, upper stem bark or roots. At the same time, the 167 

PERMANOVA demonstrated that the structures of fungal communities associated with upper stem 168 

and down stem of symptomatic and asymptomatic trees were significantly different (p=0.001 and 169 

p=0.011, respectively) (Fig. S7). OTUs that significantly contributed to the shift in fungal 170 

community structure among samples from symptomatic and asymptomatic trees are listed in Tables 171 

S2 and S3. These results indicate that Heterobasidion infection has an effect on fungal communities 172 

in the parts of the tree adjacent to the tissues colonized by the pathogen, but no significant effect on 173 

more distant parts. However, it was demonstrated recently that Heterobasidion spp. infection 174 
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promotes mycorrhiza development in Pinus pinea (Zampieri et al., 2017), indicating that 175 

Heterobasidion infection might have more profound effects. Several explanations could be 176 

proposed for the lack of significant differences in the structure of fungal communities associated 177 

with asymptomatic and symptomatic spruce trees in our experiment. First, mycorrhizal fungi 178 

constituted only a small fraction in our dataset, and it might be due to our sampling strategy, as we 179 

sampled suberized roots and did not collect fine roots. The results might be different if fine roots 180 

colonized by ectomycorrhizal fungi were included in the analysis. Second, there might be 181 

differences among different tree species in a way they react to Heterobasidion infection. Pine trees 182 

in the experiment of (Zampieri et al., 2017) showed strong decline in vitality a few months after 183 

inoculation. At the same time, sampled spruce trees showed no symptoms of infection except for 184 

the heartwood decays, which could be observed only after tree felling. This is in line with the fact 185 

that Heterobasidion infection in Norway spruce develops slowly and infected trees show little or no 186 

symptoms. Thus, it is likely that changes in fungal communities in Norway spruce do not have a 187 

systemic effect and are restricted to tissues adjacent to Heterobasidion wood decay, at least at the 188 

early stages of infection. 189 

 190 

OTUs with different relative abundance in asymptomatic and symptomatic trees  191 

The abundance of certain OTUs differed between asymptomatic and symptomatic trees. Some 192 

saprotrophic (e.g., Talaromyces sp., Trichoderma atroviridis, Penicillium sp.) and wood-degrading 193 

species (e.g., Inonotus sp., S. sanguinolentum, A. areolatum) had higher abundance in symptomatic 194 

trees. However, many of them were detected in a limited number of trees. For example, OTU 195 

classified as Inonotus sp. was abundant only in 2 out of 9 symptomatic trees, and S. sanguinolentum 196 

and A. areolatum were abundant only in a single tree each. These observations might indicate that 197 

trees infected by Heterobasidion become more susceptible to co-infection with other wood-198 

degrading fungi, but there might be additional factors that determine what particular species will 199 
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occupy an individual tree and, likely, the stage of the disease and its progression also have their 200 

effect.  201 

At the same time, the observed difference in abundance of a number of OTUs among asymptomatic 202 

and symptomatic trees received statistical support in our analysis. Out of 50 OTUs with the highest 203 

abundance, 10 OTUs showed differences of abundance in at least one of the sampled spruce tissues 204 

(Tables 1 and S1). Nine of them were more abundant in asymptomatic trees. Only three of those 205 

could be assigned to a certain species, namely Hypogymnia tubulosa, Scoliciosporum umbrinum 206 

and Phialocephala fortinii. At the same time, Otu00002, classified as Talaromyces sp., was more 207 

abundant in symptomatic trees. Talaromyces is a large genus of saprotrophic fungi frequently 208 

isolated from various organic substrates, including plant litter. Some of them are potent producers 209 

of secondary metabolites, and T. flavus is widely used in the biological control of soil-borne plant 210 

pathogen. The corresponding OTU was abundant in all nine sampled symptomatic trees, but the 211 

biological significance of this finding merits further investigation.  212 

Among OTUs that were more abundant in asymptomatic trees, two belonged to lichens and one – to 213 

the root endophyte P. fortinii. The higher abundance of P. fortinii in asymptomatic trees is 214 

noteworthy. Dark septate endophytes of P. fortinii species complex are nearly ubiquitously present 215 

in root of conifer trees and ericaceous plants (Grunig et al., 2008). Their biological role remains 216 

largely unknown, but it was demonstrated that secondary metabolites produced by members of this 217 

species complex have an inhibitory effect on plant pathogens (Tellenbach et al., 2013). 218 

Additionally, it was shown that a Phialocephala isolate protects Norway spruce seedlings from H. 219 

parviporum infection in in vitro experiments (Terhonen et al., 2016). In view of these observations, 220 

the protective ability of the endophytes of P. fortinii species complex against Heterobasidion 221 

infection in spruce trees deserves further investigation. 222 

The higher abundance of two lichen species, Hypogymnia tubulosa and Scoliciosporum umbrinum, 223 

in samples from asymptomatic trees is remarkable, too. Lichens are well-known as producers of 224 
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biologically active secondary metabolites (Yilmaz et al., 2005). Further work will be required to 225 

elucidate whether identified lichen species have any antagonistic properties against root and butt rot 226 

pathogens. 227 

To the best of our knowledge, only few studies have addressed the effect of plant pathogens on the 228 

composition of plant microbiota. This is also the first comprehensive report on mycobiome of 229 

different anatomic regions of Norway spruce documented in a single study. The results of our work 230 

provide additional evidence that disease progression causes significant changes in the structure of 231 

resident microbial communities. However, the situation is likely more complicated, as the effect of 232 

the pathogen is rather localized and it might not affect more distant parts of the tree. The observed 233 

higher abundance of the dark septate endophyte P. fortinii in asymptomatic trees justifies further 234 

studies on the role of Phialocephala species as natural antagonists to Heterobasidion spp. Our data 235 

demonstrate the suitability of Heterobasidion – spruce pathosystem to address the fundamental 236 

question of interactions between plant pathogens and the resident microbiota. 237 

 238 

Experimental procedures 239 

Study sites and sample collection 240 

Three Norway spruce (Picea abies (L.) Karst.)-dominated forest sites in the municipality of 241 

Mäntsälä (Uusimaa region, Southern Finland) were chosen for sampling. The sites are located in 242 

privately-owned managed forest and are distributed in three selected plots: (1) plot 1 (60°44'51"N, 243 

25°13'17"E), (2) plot 2 (60°45'11"N, 25°13'24"E, and (3) plot 3 (60°45'15" N, 25°15'34" E).  244 

All three sampling plots are representative examples of managed spruce forest used for commercial 245 

timber production and growing at comparable conditions. Spruce stands at the selected sites were 246 

naturally regenerated and of the same age (approximately 55 years at the time of sampling). All 247 

three plots are located within an area with a relatively high incidence of Heterobasidion infection. 248 
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The elevation of the sites ranges from 87 to 95 m above sea level. Sample collections were 249 

conducted in May 2016. 250 

Our sampling was performed simultaneously with the tree harvesting. The samples were collected 251 

immediately after tree felling. In this way, we could clearly distinguish asymptomatic and 252 

symptomatic trees based on presence or absence of wood decay column at stump height. 253 

In each plot, six spruce trees were selected: three trees showing symptoms of Heterobasidion-254 

induced wood decay (further referred to as symptomatic trees) (Fig. 1A), and three trees without 255 

decay symptoms (further referred to as asymptomatic trees) (Fig. 1B). Diameter of selected trees 256 

ranged from 40 to 64 cm. In total, samples of suberized roots, down stem 257 

(bark+sapwood+heartwood), upper stem sapwood (referred to as upper stem), upper stem bark 258 

(referred to as bark), and needles (Fig. 1) were taken from a total of nine asymptomatic and nine 259 

symptomatic trees. 260 

 261 

DNA extraction, amplification of ITS2 region and sequencing 262 

Spruce tissues samples were surface-sterilized with 70% ethanol prior to DNA extraction. Total 263 

DNA was extracted from grinded spruce tissues following a standard cetyl–trimethyl ammonium 264 

bromide (CTAB) method (Chang et al., 1993) with modifications described in (Terhonen et al., 265 

2011). The concentrations and purity of the isolated DNA were measured using NanoDrop ND-266 

1000 spectrophotometer (Thermo Fisher Scientific, USA). 267 

PCR amplification of the fungal ITS2 region and sequencing were performed in the facilities of the 268 

Institute of Biotechnology (BI, University of Helsinki, Finland). The use of ITS2 region for 269 

metabarcoding of fungal communities was advocated in recent reports (Tedersoo et al., 2015; 270 

Tedersoo and Lindahl, 2016). Prior to sequencing, a nested PCR was performed. In the first PCR 271 

round, extracted DNA samples were used as templates, and the amplification was performed using 272 

the primers gITS7 and ITS4 (Ihrmark et al., 2012) containing partial TruSeq adapter sequences at 273 
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the 5´ends (ATC TAC ACT CTT TCC CTA CAC GAC GCT CTT CCG ATC T and GTG ACT 274 

GGA GTT CAG ACG TGT GCT CTT CCG ATC T). The combination of primers gITS7 and ITS4 275 

is widely used in metabarcoding of fungal communities. They have known limitations, as there are 276 

some mismatches between the sequences of the primers and the corresponding sequences of rRNA 277 

genes in many Tulasnellaceae, Archaeorhizomycetes and Microsporidia. A newly proposed pair of 278 

primers, which should have better performance, was published after the completion of the 279 

experimental part of our project (Taylor et al., 2016), and we were not able to assess its suitability. 280 

In the second round of PCR, full-length TruSeq P5 and Index containing P7 adapters were used as 281 

primers and the products of the first PCR were used as templates. The PCR products were purified 282 

and sequenced with Illumina MiSeq platform. Raw sequences were deposited at the European 283 

Bioinformatics Institute (EBI) under project accession number PRJEB21787 284 

(http://www.ebi.ac.uk/ena/data/view/ PRJEB21787). 285 

 286 

 Pre-processing and analysis of ITS2 sequences  287 

The raw ITS2 sequences were pre-processed at BI. The read quality was checked with FastQC 288 

(Andrews, 2010). Adapter and barcode sequences were removed using Cutadapt (Martin, 2011).  289 

The pre-processed data were analyzed using the mothur standard operation pipeline (SOP, v.1.37.6) 290 

(Schloss et al., 2011) with the modifications described earlier  (Sun et al., 2016). Briefly, pair-end 291 

reads were converted to contigs with minimum overlap of 25bp. Sequences containing ambiguous 292 

bases (N) and homopolymers longer than eight nucleotides were removed. Processed sequences 293 

were pre-clustered with a distance of 2 nt/100 nt using a pseudosingle-linkage algorithm (Huse et 294 

al., 2010). Each sequence that passed quality filtering was truncated to a 230-bp length after primer 295 

and tag removal. All potential chimeric sequences were identified using the mothur-embedded 296 

UCHIME algorithm (Edgar et al., 2011) and removed. Unique sequences were pairwise aligned 297 

using the Needleman method (Needleman and Wunsch, 1970). The aligned distance matrices were 298 
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clustered into operational taxonomic units (OTUs) using the average neighbor algorithm and 97% 299 

sequence similarity. All global singletons (OTUs containing only one sequence across all samples) 300 

were removed, and the most abundant sequence in each OTU was selected to be the representative 301 

sequence. The sequences and OTUs were assigned to taxa using the mothur-formatted UNITE 302 

taxonomy reference database (UNITE+INSD, Version 7.2) (Koljalg et al., 2013) with an 80% 303 

bootstrap confidence threshold in mothur (Wang et al., 2007). 304 

To correct the difference in sample size and ensure comparable estimators across samples, a subset 305 

of 22 500 sequences per sample (minimum number of sequences recovered among all samples) was 306 

randomly selected to calculate the diversity and to compare the community structure. The following 307 

parameters were calculated for all samples: observed and estimated fungal richness (Chao 1), 308 

diversity (Inverse Simpson’s complement – 1-D), evenness (Simpson’s equitability - ED) and 309 

Good’s coverage (complement of the ratio between local singleton OTUs and the total sequence 310 

count). 311 

Venn diagrams were constructed from the presence/absence transformed data (without singletons) 312 

with venn function from gplots (Warnes et al., 2016). Non-parametric Kruskall-Wallis tests with 313 

Hodges-Lehmann estimate were used to identify differences in diversity, species richness and 314 

evenness among the sampled tissues in symptomatic and asymptomatic trees. Principal coordinates 315 

analysis (PCoA) was used to visualize the fungal community structure with Bray-Curtis similarity 316 

using relative abundances of OTUs in PRIMER v.6 (Clarke and Gorley, 2006) with the add-on 317 

package of PERMANOVA + (Anderson et al., 2008). Prior to PCoA, the data were square root 318 

transformed to meet the analysis criteria. Subsequently, a PERMANOVA test was used to 319 

determine the significant difference in community structure between different regions in the tree. 320 
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 432 

Table and Figure legends 433 

Table 1. OTUs from the 50 most abundant OTUs in the combined dataset showing significant 434 

differences in abundance among asymptomatic and symptomatic trees. 435 
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 436 

Figure 1. Representative pictures of sampled Norway spruce trees from the sampling site. (A) A 437 

tree classified as symptomatic, with extensive wood decay caused by Heterobasidion sp. (B) An 438 

asymptomatic tree without visible symptoms of wood decay. (C) Schematic diagram illustrating the 439 

Norway spruce tissues sampled for the analysis of associated mycobiota. 440 

 441 

 442 

 443 
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 444 

Figure 2. (A) Fungal richness (observed OTUs), (B) diversity and (C) evenness indices for ITS2 445 

region libraries from different regions in symptomatic and asymptomatic trees. The mean values 446 

and standard errors are depicted on the graphs. (D) Unique and shared OTUs between different 447 

regions of the tree. The Venn diagram was constructed from the presence/absence transformed 448 

OTUs data (4375 OTUs without singletons). 449 
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 450 

Figure 3. Principal coordinates analysis (PCoA) based on the relative abundance of fungal OTUs, 451 

showing the differences in fungal community structure in different anatomic regions of the studied 452 
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Norway spruce trees. (A) Origin of the samples (either from symptomatic or asymptomatic trees) is 453 

not indicated. (B) Samples from symptomatic (I) and asymptomatic (H) trees are indicated with 454 

different symbols. 455 

 456 

Supporting Information 457 

Supporting Note S1. Mycobiome composition and distribution among Norway spruce tissues. 458 

 459 

Supporting Note S2. Dominant OTUs associated with Norway spruce tissues. 460 

 461 

Supporting Table S1. Abundance (in %) of the top 50 fungal species in symptomatic and 462 

asymptomatic trees  463 

 464 

Supporting Table S2. List of OTUs that significantly contributed to the shift in the structure of 465 

fungal communities of upper stem among asymptomatic and symptomatic trees. 466 

 467 

Supporting Table S3. List of OTUs that significantly contributed to the shift in the structure of 468 

fungal communities of down stem among asymptomatic and symptomatic trees. 469 

Supporting Figure S1. Abundance of fungal phyla (% of the total number of reads) in different 470 

tissues of the sampled spruce trees. Ascomycota is the most abundant group in all tissues, but their 471 

abundance is the highest in needles, whereas abundance of Basidiomycota increases in woody 472 

tissues. Abundance of the remaining groups in all sampled tissues was below 1% of total number of 473 

reads. Only phyla with the relative abundance >0.01% are shown on the diagrams. 474 

 475 
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Supporting Figure S2. Relative abundance of fungal phyla in different tissues of symptomatic (S) 476 

and asymptomatic (A) spruce trees. Phyla with the relative abundance of >0.01% are depicted in 477 

each diagram; phyla with the lower abundance are omitted. 478 

 479 

Supporting Figure S3. Relative abundance of fungal classes in different tissues of the sampled 480 

Norway spruce trees. Only classes with the relative abundance of >0.5% are depicted. 481 

 482 

Supporting Figure S4. Relative abundance of fungal orders in various tissues of the sampled 483 

Norway spruce trees. Only orders with the relative abundance of >1% are depicted. 484 

 485 

Supporting Figure S5. Abundance of the 20 most abundant OTUs (% of total read counts). (A) 486 

Abundance in the combined dataset. (B) Abundance in specific tree tissues. 487 

 488 

Supporting Figure S6. Ten most abundant OTUs in each of the sampled tissue of asymptomatic 489 

(A), (C), (E), (G), (I) and symptomatic (B), (D), (F), (H), (J) Norway spruce trees. 490 

 491 

Supporting Figure S7. Principal coordinates analysis (PCoA) based on the relative abundance of 492 

fungal OTUs, showing the differences in fungal community structure in upper stem and lower stem 493 

of the studied Norway spruce trees. 494 

 495 
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